JPH05314389A - Vehicle kind recognizing device - Google Patents
Vehicle kind recognizing deviceInfo
- Publication number
- JPH05314389A JPH05314389A JP11494892A JP11494892A JPH05314389A JP H05314389 A JPH05314389 A JP H05314389A JP 11494892 A JP11494892 A JP 11494892A JP 11494892 A JP11494892 A JP 11494892A JP H05314389 A JPH05314389 A JP H05314389A
- Authority
- JP
- Japan
- Prior art keywords
- window frame
- vehicle
- closed curve
- curve data
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Traffic Control Systems (AREA)
Abstract
(57)【要約】
【目的】 車種認識装置を、市場ニーズに合致した各種
システムを容易に構成することができるようにする。
【構成】 車種認識装置10は、各種車両の正規化窓枠
閉曲線データND1〜NDNが予めそれぞれ格納された比
較用データ記憶回路11と、テレビカメラ1から送られ
てくる識別対象車両画像Iが格納されるメモリ回路12
と、メモリ回路12に格納された識別対象車両画像Iか
ら窓枠閉曲線データDを抽出する抽出回路13と、抽出
回路13で抽出された窓枠閉曲線データDを正規化する
正規化処理回路14と、比較用データ記憶回路11に格
納されている正規化窓枠閉曲線データND1〜NDNを一
つずつ読み出して、読み出した正規化窓枠閉曲線データ
ND1〜NDNと正規化処理回路14で正規化処理された
窓枠閉曲線データD’とを比較して、テレビカメラ1で
撮影された車両の種別を判別する判別回路15とを含
む。
(57) [Summary] [Purpose] To make it possible to easily configure a vehicle type recognition device into various systems that meet market needs. The vehicle type recognition device 10 includes a comparison data storage circuit 11 in which normalized window frame closed curve data ND 1 to ND N of various vehicles are stored in advance, and an identification target vehicle image I sent from the television camera 1. Circuit 12 in which is stored
An extraction circuit 13 for extracting window frame closed curve data D from the identification target vehicle image I stored in the memory circuit 12; and a normalization processing circuit 14 for normalizing the window frame closed curve data D extracted by the extraction circuit 13. The normalized window frame closed curve data ND 1 to ND N stored in the comparison data storage circuit 11 are read one by one, and the read normalized window frame closed curve data ND 1 to ND N and the normalization processing circuit 14 are read. A discriminating circuit 15 for discriminating the type of the vehicle photographed by the television camera 1 by comparing the window frame closed curve data D ′ that has been normalized.
Description
【0001】[0001]
【産業上の利用分野】本発明は、車種認識装置に関し、
特に、停止中ないし走行中の車両をテレビカメラで撮影
して該車両の種別を判別する車種認識装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle type recognition device,
In particular, the present invention relates to a vehicle type recognition device that photographs a vehicle that is stopped or running with a television camera to determine the type of the vehicle.
【0002】[0002]
【従来の技術】従来、この種の車種認識装置としては、
有料道路における料金の自動収受のための車両区分を行
うことを目的とした、テレビカメラで撮影したナンバー
プレートに基づいて車両の種別を判別するものがある
(たとえば、特開昭60−24700号公報)。しか
し、ナンバープレートと個々の車両との対応を示すデー
タは、現状では一般に公開されていないため、かかる車
種認識装置では、多数ある車両の種別を詳細に判別する
ことはできない。2. Description of the Related Art Conventionally, as a vehicle type recognition device of this type,
There is one that determines the type of a vehicle based on a license plate photographed by a television camera for the purpose of classifying vehicles for automatic collection of tolls on toll roads (for example, Japanese Patent Laid-Open No. 60-24700). ). However, since the data showing the correspondence between the license plate and each vehicle is not open to the public at present, such a vehicle type recognizing device cannot precisely determine the types of many vehicles.
【0003】また、車両画像中の直線エッジから車両を
抽出する装置も提案されている(たとえば、特開平3−
83474号公報)。しかし、近年、丸みを帯びた車両
が多数出現していることを考慮すると、かかる装置を用
いても、車両の抽出は困難であり、したがって、車両の
種別を詳細に判別することはできない。また、キャリー
ヤーや積載荷物があると、車両の種別を誤って判別しや
すい。An apparatus for extracting a vehicle from a straight edge in a vehicle image has also been proposed (for example, Japanese Unexamined Patent Publication No. Heisei 3-
83474). However, considering that a lot of rounded vehicles have appeared in recent years, it is difficult to extract the vehicles even by using such a device, and therefore the types of the vehicles cannot be determined in detail. In addition, if there is a carrier or loaded luggage, it is easy to erroneously determine the type of vehicle.
【0004】さらに、車両の種別を詳細に判別できる車
種認識装置として、テレビカメラで撮影した画像から車
両部分の画像のみを切り出して、該切り出した画像の画
像データと予め登録された画像データとを比較すること
により、車両の種別を判別する車種認識装置が提案され
ている(たとえば、特開平1−46890号公報)。し
かし、かかる車種認識装置では、二次元データである画
像データを照合する際に必要なデータ量および演算量が
膨大なものとなるいう問題のほか、撮影環境の変動を考
慮すると、画像データをより正確に照合するために必要
な画像データの正規化が容易に行うことができないとい
う問題もある。Further, as a vehicle type recognition apparatus capable of discriminating the type of vehicle in detail, only an image of a vehicle portion is cut out from an image taken by a television camera, and the image data of the cut out image and pre-registered image data are extracted. A vehicle type recognition device that determines the type of vehicle by comparison has been proposed (for example, JP-A-1-46890). However, in such a vehicle type recognition device, in addition to the problem that the amount of data and the amount of calculation required when collating image data that is two-dimensional data becomes enormous, the image data is more There is also a problem that the image data necessary for accurate matching cannot be easily normalized.
【0005】[0005]
【発明が解決しようとする課題】したがって、上述した
従来の車種認識装置では、車両の種別を詳細に判別する
ことが容易でないため、以下に示すような市場ニーズに
合致した各種システムを容易に構成することができない
という問題がある。 (1)盗難車両,悪天候および不正行為による脱着など
でナンバープレートが認識不能な場合にも、車両の種別
を詳細に判別できる自動監視システム。 (2)機械搬送式の大駐車場で駐車券を紛失して入出庫
時間などの情報が不明となり、かつ、持ち主が自車両の
ナンバープレート番号をはっきり思い出せない場合に
も、車両の種別によって対象車両を捜し出すことができ
るシステム。 (3)車両の種別を詳細に判別できる交通流自動計測シ
ステム。Therefore, in the above-described conventional vehicle type recognition apparatus, it is not easy to determine the type of vehicle in detail, so that various systems that meet the market needs as described below can be easily configured. There is a problem that you cannot do it. (1) An automatic monitoring system that can determine the type of vehicle in detail even if the license plate cannot be recognized due to stolen vehicles, bad weather, and detachment due to fraud. (2) Even if the parking ticket is lost in a large machine-transportation type parking lot and information such as entry and departure times is unknown and the owner cannot clearly remember the license plate number of the own vehicle, it is subject to the type of vehicle A system that can find a vehicle. (3) An automatic traffic flow measurement system that can determine the type of vehicle in detail.
【0006】本発明の目的は、市場ニーズに合致した各
種システムを容易に構成することができる車種認識装置
を提供することにある。An object of the present invention is to provide a vehicle type recognition device which can easily configure various systems that meet market needs.
【0007】[0007]
【課題を解決するための手段】本発明の車種認識装置
は、テレビカメラで撮影された車両の画像から該車両の
種別を判別する車種認識装置において、各種車両の正規
化窓枠閉曲線データが予めそれぞれ格納された比較用デ
ータ記憶回路と、前記テレビカメラから送られてくる識
別対象車両画像が格納されるメモリ回路と、該メモリ回
路に格納された前記識別対象車両画像から窓枠閉曲線デ
ータを抽出する抽出回路と、該抽出回路で抽出された前
記窓枠閉曲線データを正規化する正規化処理回路と、前
記比較用データ記憶回路に格納されている前記正規化窓
枠閉曲線データを一つずつ読み出して、該読み出した前
記正規化窓枠閉曲線データと前記正規化処理回路で正規
化処理された前記窓枠閉曲線データとを比較して、前記
テレビカメラで撮影された車両の種別を判別する判別回
路とを含む。The vehicle type recognition apparatus of the present invention is a vehicle type recognition apparatus for discriminating the type of a vehicle from an image of the vehicle taken by a TV camera. Extracted window frame closed curve data from the respective stored comparison data storage circuits, a memory circuit in which the identification target vehicle image sent from the television camera is stored, and the identification target vehicle image stored in the memory circuit Extracting circuit, a normalization processing circuit for normalizing the window frame closed curve data extracted by the extraction circuit, and reading the normalized window frame closed curve data stored in the comparison data storage circuit one by one. Then, the read normalized window frame closed curve data is compared with the window frame closed curve data normalized by the normalization processing circuit, and the image is taken by the television camera. The and a discrimination circuit for discriminating the type of the vehicle.
【0008】ここで、前記各正規化窓枠閉曲線データ
が、前記各種車両の側面窓の窓枠の形状をそれぞれ示す
ものであり、前記窓枠閉曲線データが、前記テレビカメ
ラで撮影された車両の側面窓の窓枠の形状を示すもので
あってもよい。Here, each of the normalized window frame closed curve data indicates the shape of the window frame of the side window of each of the various vehicles, and the window frame closed curve data of the vehicle photographed by the television camera. It may indicate the shape of the window frame of the side window.
【0009】[0009]
【作用】本発明の車種認識装置は、以下に示す理由によ
り、車両の窓枠の形状に着目して車両の種別を判別する
ことにより、車両の種別の詳細な判別を容易に行うこと
ができる。 (1)車両の側面窓の窓枠の形状を利用する場合を想定
すると、車両のうちのキャビン上部の形状は側面窓とピ
ラーとを主たる要素とみることができるため、側面窓の
窓枠が構成する閉曲線の形状は、車両のルーフトップの
形状を間接的に反映していると考えられる。 (2)窓枠が構成する閉曲線を数学的な形状としてとら
えた場合、現在市販されている車両においても、明かに
数種類以上の形状が見受けられる。 (3)窓枠が構成する閉曲線のデータは、座標点列(一
次元データ)であり、車両形状を反映しているにも拘ら
ず車両の実形状(三次元データ)や車両画像(二次元デ
ータ)に比較してデータ量が極めて少ないとともに、方
向ヒストグラム,フーリエ展開および一般化Hough
変換などの信号処理技術によって容易にデータの比較が
できる。The vehicle type recognizing device of the present invention makes it possible to easily make a detailed determination of the vehicle type by determining the vehicle type by paying attention to the shape of the window frame of the vehicle for the following reason. .. (1) Assuming that the shape of the window frame of the side window of the vehicle is used, the shape of the upper part of the cabin of the vehicle can be regarded as the main elements of the side window and the pillars. It is considered that the shape of the constructed closed curve indirectly reflects the shape of the rooftop of the vehicle. (2) When the closed curve formed by the window frame is regarded as a mathematical shape, several types of shapes are clearly found even in the vehicles currently on the market. (3) The data of the closed curve formed by the window frame is a sequence of coordinate points (one-dimensional data), and although the vehicle shape is reflected, the actual shape of the vehicle (three-dimensional data) and the vehicle image (two-dimensional data). The amount of data is extremely small compared to (data), and the direction histogram, Fourier expansion, and generalized Hough
Data can be easily compared by signal processing techniques such as conversion.
【0010】すなわち、本発明の車種認識装置は、判別
回路において、比較用データ記憶回路に格納されている
正規化窓枠閉曲線データを一つずつ読み出して、読み出
した正規化窓枠閉曲線データと正規化処理回路で正規化
処理された窓枠閉曲線データとを比較して、テレビカメ
ラで撮影された車両の種別を判別することにより、車両
の種別の詳細な判別を容易に行うことができる。That is, in the vehicle type recognition apparatus of the present invention, the discriminator circuit reads the normalized window frame closed curve data stored in the comparison data storage circuit one by one, and the read normalized window frame closed curve data and the normalized window frame closed curve data. By comparing the window frame closed curve data that has been subjected to the normalization processing by the signal processing circuit and determining the type of the vehicle photographed by the television camera, detailed determination of the vehicle type can be easily performed.
【0011】[0011]
【実施例】以下、本発明の実施例について、図面を参照
して説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0012】図1は、本発明の車種認識装置の一実施例
を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of a vehicle type recognition device of the present invention.
【0013】この車種認識装置10は、テレビカメラ1
で撮影された車両の画像から該車両の種別を判別するも
のであって、各種車両の正規化窓枠閉曲線データND1
〜NDNが予めそれぞれ格納された比較用データ記憶回
路11と、テレビカメラ1から送られてくる識別対象車
両画像Iが格納されるメモリ回路12と、メモリ回路1
2に格納された識別対象車両画像Iから窓枠閉曲線デー
タDを抽出する抽出回路13と、抽出回路13で抽出さ
れた窓枠閉曲線データDを正規化する正規化処理回路1
4と、比較用データ記憶回路11に格納されている正規
化窓枠閉曲線データND1〜NDNを一つずつ読み出し
て、読み出した正規化窓枠閉曲線データND1〜NDNと
正規化処理回路14で正規化処理された窓枠閉曲線デー
タD’とを比較して、テレビカメラ1で撮影された車両
の種別を判別する判別回路15とを含む。The vehicle type recognizing device 10 includes a television camera 1
The type of the vehicle is discriminated from the image of the vehicle photographed in 1. The normalized window frame closed curve data ND 1 of various vehicles
To ND N are respectively stored in advance, the comparison data storage circuit 11, the memory circuit 12 in which the identification target vehicle image I sent from the television camera 1 is stored, and the memory circuit 1
Extraction circuit 13 for extracting the window frame closed curve data D from the identification target vehicle image I stored in 2, and a normalization processing circuit 1 for normalizing the window frame closed curve data D extracted by the extraction circuit 13.
4 and the normalized window frame closed curve data ND 1 to ND N stored in the comparison data storage circuit 11 one by one, and the read normalized window frame closed curve data ND 1 to ND N and the normalization processing circuit. It includes a discriminating circuit 15 for discriminating the type of the vehicle photographed by the television camera 1 by comparing the window frame closed curve data D ′ that has been normalized in 14.
【0014】次に、車種認識装置10の動作について、
車両側方にテレビカメラ1を設置して車両を観測し、車
両の側面の窓枠の形状から車両の種別を判別する場合を
例として説明する。Next, regarding the operation of the vehicle type recognition device 10,
An example will be described in which the television camera 1 is installed on the side of the vehicle, the vehicle is observed, and the type of the vehicle is determined from the shape of the window frame on the side surface of the vehicle.
【0015】側面窓を完全に含み、かつ、側面窓がほぼ
画像の中央部に位置するように、認識対象の車両をテレ
ビカメラ1で撮影する。なお、このような撮影は、車両
が移動している場合でも、従来から用いられている遮光
式センサまたは超音波式センサを用いることにより、容
易に実現することができる。また、超音波などによる車
高計測を用いることにより、車両の側面窓の高さ位置を
おおよそ知ることができるため、側面窓を完全に含むよ
うに撮影することも容易に行える。図2に、テレビカメ
ラ1で撮影された識別対象車両画像Iの一例を示す。識
別対象車両画像Iは、テレビカメラ1からメモリ回路1
2に送られて、メモリ回路12に格納される。The vehicle to be recognized is photographed by the television camera 1 so that the side window is completely included and the side window is located substantially in the center of the image. It should be noted that such photographing can be easily realized even when the vehicle is moving by using a conventionally used light-shielding sensor or ultrasonic sensor. In addition, since the height position of the side window of the vehicle can be roughly known by using the vehicle height measurement using ultrasonic waves or the like, it is possible to easily photograph the side window completely. FIG. 2 shows an example of the identification target vehicle image I captured by the television camera 1. The identification target vehicle image I is displayed from the television camera 1 to the memory circuit 1.
2 and is stored in the memory circuit 12.
【0016】抽出回路13は、メモリ回路12から識別
対象車両画像Iを読み出し、識別対象車両画像Iの車体
部分と窓枠内部とを分類したのち、公知のラベリング処
理により閉図形を取り出し、取り出した閉図形の大きさ
および位置より側面窓の窓枠を示す閉図形を推定して選
択して、識別対象車両画像Iから窓枠閉曲線データDを
抽出する(図3〜図5参照)。なお、抽出回路13で
は、明彩色の特殊車両やスポンサー名を表示した競技用
車両などを除いた一般車両では、車体表面の塗装色が均
一であるため、テレビカメラ1としてカラーテレビカメ
ラを用い、車体部分と窓枠内部とを色情報により分類す
る。これにより、側面窓の窓ガラスの一部または全部が
空いている場合でも、識別対象車両画像Iの車体部分と
窓枠内部とを分類することができる。なお、室内で安定
な光源を設定し、近傍斜め上方から車両部分が観測領域
の大部分を占有するように、車両を撮影した場合には、
識別対象車両画像Iの車体部分と窓枠内部とを特に容易
に分類することができる。The extraction circuit 13 reads out the identification target vehicle image I from the memory circuit 12, classifies the vehicle body portion of the identification target vehicle image I and the inside of the window frame, and then extracts and extracts the closed figure by a known labeling process. A closed figure showing the window frame of the side window is estimated and selected from the size and position of the closed figure, and the window frame closed curve data D is extracted from the identification target vehicle image I (see FIGS. 3 to 5). In the extraction circuit 13, a color TV camera is used as the TV camera 1 because the paint color on the vehicle body surface is uniform in general vehicles except for bright-colored special vehicles and competition vehicles displaying sponsor names. The body part and the inside of the window frame are classified by color information. Thereby, even when a part or all of the window glass of the side window is vacant, the vehicle body part of the identification target vehicle image I and the inside of the window frame can be classified. In addition, when a stable light source is set indoors and the vehicle is photographed so that the vehicle portion occupies most of the observation area from diagonally above in the vicinity,
The vehicle body portion of the identification target vehicle image I and the inside of the window frame can be particularly easily classified.
【0017】正規化処理回路14では、抽出回路13で
抽出された窓枠閉曲線データDの正規化が行われるが、
これは、テレビカメラ1による車両の観測方向によって
窓枠閉曲線データDが異なるので、比較用データ記憶回
路11に予め格納されている各種車両の正規化窓枠閉曲
線データND1〜NDNと同一の観測方向条件に窓枠閉曲
線データDを変換するためである。なお、正規化処理回
路14では、観測条件のうちでテレビカメラ1と車両と
の位置関係を示す、マシンピジョンやコンピュータグラ
フィックなどの分野で一般に用いられているカメラパラ
メータに基づいて、公知の透視投影交換と呼ばれている
写像演算により、抽出回路13で抽出された窓枠閉曲線
データDの正規化が行われる。The normalization processing circuit 14 normalizes the window frame closed curve data D extracted by the extraction circuit 13,
This is because the window frame closed curve data D differs depending on the direction of observation of the vehicle by the TV camera 1, so that it is the same as the normalized window frame closed curve data ND 1 to ND N of various vehicles stored in the comparison data storage circuit 11 in advance. This is for converting the window frame closed curve data D into the observation direction condition. The normalization processing circuit 14 uses a known perspective projection based on a camera parameter that is generally used in the field of machine pigeons, computer graphics, etc., which indicates the positional relationship between the television camera 1 and the vehicle in the observation conditions. The window frame closed curve data D extracted by the extraction circuit 13 is normalized by a mapping operation called exchange.
【0018】判別回路15では、公知の閉図形輪郭解析
手法の一つである方向ヒストグラムにより、比較用デー
タ記憶回路11から一つずつ読み出した正規化窓枠閉曲
線データND1〜NDNと正規化処理回路14で正規化処
理された窓枠閉曲線データD’とから、テレビカメラ1
で撮影された車両の種別が判別される。In the discriminating circuit 15, the normalized window frame closed curve data ND 1 to ND N read out one by one from the comparison data storage circuit 11 are normalized by the direction histogram which is one of the known closed figure contour analysis methods. From the window frame closed curve data D ′ that has been normalized by the processing circuit 14, the television camera 1
The type of the vehicle photographed in is determined.
【0019】各正規化窓枠閉曲線データND1〜NDNは
それぞれ、離散座標データ列となっているため、正規化
窓枠閉曲線データND1〜NDNの重心を求め、該重心を
中心として一定角度ごとに直線を引き、前記重心から輪
郭までの距離を求めて、いわゆるγ(θ)曲線に変換した
のち、微小分割した線分の法線方向を離散的にサンプリ
ングし、その長さを輪郭全周について同一法線方向ごと
に累積し、全方向分の総和が”1”となるようにスケー
リングすることにより、法線方向のヒストグラム(すな
わち、方向ヒストグラム)が得られる。正規化処理され
た窓枠閉曲線データDについても、同様である。したが
って、大部分の車両の窓枠閉曲線データDは凸形状とみ
なすことができるため、前記方向ヒストグラムについ
て、本質的に、 (1)窓枠閉曲線データDのような閉曲線と方向ヒスト
グラムとは、一対一に対応する。 (2)窓枠閉曲線データDのような閉曲線からγ(θ)曲
線に変換する時点でのサンプル中心位置が変動しても、
方向ヒストグラムは不変であることが理論的に解明され
ている。 と言えるので、正規化窓枠閉曲線データND1〜NDNに
ついて求めた方向ヒストグラムと窓枠閉曲線データDに
ついて求めた方向ヒストグラムとの相関値を演算して、
該相関値が最も大きい正規化窓枠閉曲線データND1〜
NDNに対応した車両の種別を選択することにより、テ
レビカメラ1で撮影された車両の種別を判別することが
できる。Since each of the normalized window frame closed curve data ND 1 to ND N is a discrete coordinate data string, the center of gravity of the normalized window frame closed curve data ND 1 to ND N is obtained, and the center of gravity is constant. Draw a straight line for each angle, find the distance from the center of gravity to the contour, and convert it to a so-called γ (θ) curve, then discretely sample the normal direction of the minutely divided line segment, and measure its length. A histogram in the normal direction (that is, a direction histogram) is obtained by accumulating all the directions in the same normal direction and scaling so that the total sum for all directions becomes "1". The same applies to the normalized window frame closed curve data D. Therefore, the window frame closed curve data D of most of the vehicles can be regarded as a convex shape. Therefore, with respect to the direction histogram, (1) a closed curve like the window frame closed curve data D and a direction histogram are essentially paired. Corresponds to one. (2) Even if the sample center position changes at the time of conversion from a closed curve such as the window frame closed curve data D to a γ (θ) curve,
It has been theoretically elucidated that the directional histogram is invariant. Therefore, the correlation value between the direction histogram obtained for the normalized window frame closed curve data ND 1 to ND N and the direction histogram obtained for the window frame closed curve data D is calculated,
Normalized window frame closed curve data ND 1 ~ having the largest correlation value
By selecting the type of vehicle corresponding to ND N , the type of vehicle captured by the TV camera 1 can be determined.
【0020】以上のように、車種認識装置10は、側面
窓の窓枠の形状に着目して車両の種別を判別することに
より、前述した従来の車種認識装置に比べて、以下に示
すような利点を有する。 (1)車両の輪郭からその車両の種別を判別する車種認
識装置では、キャリーヤーや積載荷物のための誤判別が
問題となったが、車種認識装置10は側面窓の窓枠の形
状に着目して車両の種別を判別するため、キャリーヤー
や積載荷物が判別性能に影響することがない。 (2)テレビカメラで撮影した画像から切り出した画像
の画像データと予め登録された画像データとを比較して
車両の種別を判別する車種認識装置では、データ量およ
び演算量の膨大が問題となったが、窓枠が構成する閉曲
線のデータは一次元データであるため、データ量および
演算量の大幅な縮小が図れる。 (3)側面窓の窓枠の形状に着目して車両の種別を判別
することにより、判別の際に必要となる窓枠閉曲線デー
タDの正規化を、前述したように容易に行うことができ
る。 (4)比較用データ記憶回路11に予め格納される正規
化窓枠閉曲線データND 1〜NDNは、車両製造メーカー
が発行するパンフレットや、有償で閲覧可能な意匠登録
公報の車両形状図から容易に入手できるため、新規車種
への対応もより容易に行うことができる。As described above, the vehicle type recognition device 10 has the side surface.
Focusing on the shape of the window frame to determine the type of vehicle
Therefore, compared to the conventional vehicle type recognition device described above,
It has the following advantages. (1) Vehicle type identification that distinguishes the type of a vehicle from the contour of the vehicle
In the identification device, misidentification due to carrier or loaded luggage
There was a problem, but the vehicle type recognition device 10 has the shape of the window frame of the side window.
The carrier is used to distinguish the type of vehicle
And the loaded luggage does not affect the discrimination performance. (2) Images cut out from images taken with a TV camera
Compare the image data of and the image data registered in advance
In the vehicle type recognition device that determines the type of vehicle, the amount of data and
And the enormous amount of calculation became a problem, but the closed music composed by the window frame
Since the line data is one-dimensional data,
The amount of calculation can be significantly reduced. (3) Determine the type of vehicle by paying attention to the shape of the side window frame
By doing so, the window frame closed curve data required for discrimination
The normalization of data D can be easily performed as described above.
It (4) Regular data stored in the comparison data storage circuit 11 in advance
Window frame closed curve data ND 1~ NDNIs a vehicle manufacturer
Pamphlet issued by the company or design registration that can be viewed for a fee
Since it can be easily obtained from the vehicle shape diagram in the official gazette,
Can be more easily dealt with.
【0021】以上の説明においては、抽出回路13は、
色情報により車体部分と窓枠内部とを分類したが、車体
部分は一般に金属で構成され、また、窓枠は一般にゴム
枠を介してガラスに接続されるため、テレビカメラ1と
して赤外テレビカメラを用い、車体部分と窓枠内部とを
熱情報により分類してもよい。In the above description, the extraction circuit 13 is
Although the body part and the inside of the window frame are classified according to the color information, since the body part is generally made of metal and the window frame is generally connected to the glass through a rubber frame, an infrared television camera is used as the television camera 1. May be used to classify the vehicle body portion and the inside of the window frame by thermal information.
【0022】正規化処理回路14は、抽出回路13で抽
出された窓枠閉曲線データDの正規化を行ったが、テレ
ビカメラ1による窓枠の撮影が三次元的な配置において
常に同一であれば、カメラパラメータは同一であるた
め、正規化は特に必要でない。また、テレビカメラ1と
して長焦点テレビカメラを用い、同一撮影方向から車両
を撮影した場合には、正規化は単純なスケーリングのみ
でよい。The normalization processing circuit 14 normalizes the window frame closed curve data D extracted by the extraction circuit 13, but if the window frame shooting by the television camera 1 is always the same in the three-dimensional arrangement. , The camera parameters are the same, so normalization is not particularly necessary. Further, when a long focus television camera is used as the television camera 1 and the vehicle is photographed from the same photographing direction, the normalization need only be simple scaling.
【0023】側面窓の窓枠の形状から車両の種別を判別
したが、車両のどの窓枠の形状からも同様にして車両の
種別を判別することができる。ただし、側面窓の窓枠の
形状から車両の種別を判別することにより、より詳細な
車両の種別の判別が可能となる。Although the type of the vehicle is determined from the shape of the window frame of the side window, the type of the vehicle can be similarly determined from the shape of any window frame of the vehicle. However, by determining the type of vehicle from the shape of the window frame of the side window, it is possible to determine the type of vehicle in more detail.
【0024】[0024]
【発明の効果】本発明は、上述のとおり構成されている
ので、次に示す効果を奏する。Since the present invention is configured as described above, it has the following effects.
【0025】判別回路において、比較用データ記憶回路
に格納されている正規化窓枠閉曲線データを一つずつ読
み出して、読み出した正規化窓枠閉曲線データと正規化
処理回路で正規化処理された窓枠閉曲線データとを比較
して、テレビカメラで撮影された車両の種別を判別する
ことにより、車両の種別の詳細な判別を容易に行うこと
ができるため、市場ニーズに合致した各種システムを容
易に構成することができる。In the discriminating circuit, the normalized window frame closed curve data stored in the comparison data storage circuit are read out one by one, and the read out normalized window frame closed curve data and the window which is normalized by the normalization processing circuit. By comparing the frame closed curve data with the type of vehicle captured by the TV camera, it is possible to easily perform detailed determination of the type of vehicle, making it easy to implement various systems that meet market needs. Can be configured.
【図1】本発明の車種認識装置の一実施例を示すブロッ
ク図である。FIG. 1 is a block diagram showing an embodiment of a vehicle type recognition device of the present invention.
【図2】図1に示したテレビカメラで撮影された識別対
象車両画像の一例を示す図である。FIG. 2 is a diagram showing an example of an identification target vehicle image captured by the television camera shown in FIG.
【図3】図1に示した抽出回路の動作を説明するための
図である。FIG. 3 is a diagram for explaining the operation of the extraction circuit shown in FIG.
【図4】図1に示した抽出回路の動作を説明するための
図である。FIG. 4 is a diagram for explaining the operation of the extraction circuit shown in FIG.
【図5】図1に示した抽出回路の動作を説明するための
図である。5 is a diagram for explaining the operation of the extraction circuit shown in FIG.
1 テレビカメラ 10 車種認識装置 11 比較用データ記憶回路 12 メモリ回路 13 抽出回路 14 正規化処理回路 15 判別回路 ND1〜NDN 正規化窓枠閉曲線データ I 識別対象車両画像 D 窓枠閉曲線データ D’ 正規化処理された窓枠閉曲線データ1 a television camera 10 vehicle type recognizing apparatus 11 compares data storage circuit 12 memory circuit 13 extracting circuit 14 normalization processing circuit 15 discriminating circuit ND 1 to ND N normalized window frame closed curve data I identified target vehicle image D windows closed curve data D ' Normalized window frame closed curve data
Claims (2)
ら該車両の種別を判別する車種認識装置において、 各種車両の正規化窓枠閉曲線データが予めそれぞれ格納
された比較用データ記憶回路と、 前記テレビカメラから送られてくる識別対象車両画像が
格納されるメモリ回路と、 該メモリ回路に格納された前記識別対象車両画像から窓
枠閉曲線データを抽出する抽出回路と、 該抽出回路で抽出された前記窓枠閉曲線データを正規化
する正規化処理回路と、 前記比較用データ記憶回路に格納されている前記正規化
窓枠閉曲線データを一つずつ読み出して、該読み出した
前記正規化窓枠閉曲線データと前記正規化処理回路で正
規化処理された前記窓枠閉曲線データとを比較して、前
記テレビカメラで撮影された車両の種別を判別する判別
回路とを含むことを特徴とする車種認識装置。1. A vehicle type recognition device for determining the type of a vehicle from an image of the vehicle taken by a television camera, comprising: a comparison data storage circuit in which normalized window frame closed curve data of various vehicles are stored in advance; A memory circuit that stores the identification target vehicle image sent from the television camera, an extraction circuit that extracts window frame closed curve data from the identification target vehicle image stored in the memory circuit, and an extraction circuit that is extracted by the extraction circuit A normalization processing circuit for normalizing the window frame closed curve data and the normalized window frame closed curve data stored in the comparison data storage circuit one by one, and the read out normalized window frame closed curve data. A discriminating circuit for discriminating the type of the vehicle photographed by the television camera by comparing the window frame closed curve data normalized by the normalizing circuit with the window frame closed curve data. Vehicle type recognition apparatus characterized by comprising.
各種車両の側面窓の窓枠の形状をそれぞれ示すものであ
り、 前記窓枠閉曲線データが、前記テレビカメラで撮影され
た車両の側面窓の窓枠の形状を示すものであることを特
徴とする請求項1記載の車種認識装置。2. Each of the normalized window frame closed curve data represents a shape of a window frame of a side window of each of the various vehicles, and the window frame closed curve data is a side surface of the vehicle photographed by the television camera. The vehicle type recognition device according to claim 1, wherein the vehicle type recognition device shows a shape of a window frame of the window.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11494892A JP3243747B2 (en) | 1992-05-07 | 1992-05-07 | Vehicle type recognition device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11494892A JP3243747B2 (en) | 1992-05-07 | 1992-05-07 | Vehicle type recognition device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05314389A true JPH05314389A (en) | 1993-11-26 |
JP3243747B2 JP3243747B2 (en) | 2002-01-07 |
Family
ID=14650624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11494892A Expired - Fee Related JP3243747B2 (en) | 1992-05-07 | 1992-05-07 | Vehicle type recognition device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3243747B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000182184A (en) * | 1998-12-18 | 2000-06-30 | Matsushita Electric Ind Co Ltd | In-vehicle antenna detection method and device |
WO2007139035A1 (en) * | 2006-05-26 | 2007-12-06 | Fujitsu Limited | Vehicle type determination device, program, and method |
-
1992
- 1992-05-07 JP JP11494892A patent/JP3243747B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000182184A (en) * | 1998-12-18 | 2000-06-30 | Matsushita Electric Ind Co Ltd | In-vehicle antenna detection method and device |
WO2007139035A1 (en) * | 2006-05-26 | 2007-12-06 | Fujitsu Limited | Vehicle type determination device, program, and method |
JP2007316997A (en) * | 2006-05-26 | 2007-12-06 | Fujitsu Ltd | Vehicle type identification program and vehicle type identification device |
US8229171B2 (en) | 2006-05-26 | 2012-07-24 | Fujitsu Limited | Apparatus, method, and computer product for vehicle-type determination using image data of vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP3243747B2 (en) | 2002-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Panahi et al. | Accurate detection and recognition of dirty vehicle plate numbers for high-speed applications | |
Petrovic et al. | Analysis of Features for Rigid Structure Vehicle Type Recognition. | |
US9177211B2 (en) | Method and apparatus for identifying motor vehicles for monitoring traffic | |
Rasheed et al. | Automated number plate recognition using hough lines and template matching | |
US6553131B1 (en) | License plate recognition with an intelligent camera | |
CN105702048B (en) | Highway front truck illegal road occupation identifying system based on automobile data recorder and method | |
US7650030B2 (en) | Method and apparatus for unsupervised learning of discriminative edge measures for vehicle matching between non-overlapping cameras | |
CN108171247B (en) | Vehicle re-identification method and system | |
CN102915433B (en) | Character combination-based license plate positioning and identifying method | |
CN110658539A (en) | Vehicle positioning method, apparatus, vehicle, and computer-readable storage medium | |
CN104778444A (en) | Method for analyzing apparent characteristic of vehicle image in road scene | |
CN106778742B (en) | Car logo detection method based on Gabor filter background texture suppression | |
Maldonado-Bascon et al. | Traffic sign recognition system for inventory purposes | |
CN111950499A (en) | A Method for Detecting Statistics Information of Vehicle Personnel | |
CN104463238B (en) | Vehicle logo identification method and system | |
US20220309809A1 (en) | Vehicle identification profile methods and systems at the edge | |
Devi et al. | An efficient hybrid technique for automatic license plate recognitions | |
CN113327337A (en) | Method for ensuring normal payment and departure of vehicle | |
Hashem et al. | Detection and recognition of car plates in parking lots at Baghdad University | |
JP5991886B2 (en) | Parking system | |
Lin et al. | Traffic Light Detection and Recognition Using a Two-Stage Framework From Individual Signal Bulb Identification | |
Fernandez et al. | Raspberry Pi based ANPR for smart access | |
CN104463135B (en) | A kind of automobile logo identification method and system | |
CN112069971A (en) | A video-based highway sign marking recognition method and recognition system | |
JP3243747B2 (en) | Vehicle type recognition device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071026 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081026 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20091026 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |