JP7703011B2 - プロセストレースからの装置故障モードの予測 - Google Patents
プロセストレースからの装置故障モードの予測 Download PDFInfo
- Publication number
- JP7703011B2 JP7703011B2 JP2023504511A JP2023504511A JP7703011B2 JP 7703011 B2 JP7703011 B2 JP 7703011B2 JP 2023504511 A JP2023504511 A JP 2023504511A JP 2023504511 A JP2023504511 A JP 2023504511A JP 7703011 B2 JP7703011 B2 JP 7703011B2
- Authority
- JP
- Japan
- Prior art keywords
- trace data
- anomaly
- machine learning
- learning model
- database
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0224—Process history based detection method, e.g. whereby history implies the availability of large amounts of data
- G05B23/024—Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0275—Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
- G05B23/0278—Qualitative, e.g. if-then rules; Fuzzy logic; Lookup tables; Symptomatic search; FMEA
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
- G06F11/0706—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
- G06F11/0751—Error or fault detection not based on redundancy
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
- G06F11/0766—Error or fault reporting or storing
- G06F11/0778—Dumping, i.e. gathering error/state information after a fault for later diagnosis
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
- G06F11/079—Root cause analysis, i.e. error or fault diagnosis
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/07—Responding to the occurrence of a fault, e.g. fault tolerance
- G06F11/0703—Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
- G06F11/0793—Remedial or corrective actions
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3452—Performance evaluation by statistical analysis
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/34—Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
- G06F11/3466—Performance evaluation by tracing or monitoring
- G06F11/348—Circuit details, i.e. tracer hardware
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/282—Testing of electronic circuits specially adapted for particular applications not provided for elsewhere
- G01R31/2831—Testing of materials or semi-finished products, e.g. semiconductor wafers or substrates
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Mathematical Physics (AREA)
- Automation & Control Theory (AREA)
- Life Sciences & Earth Sciences (AREA)
- Probability & Statistics with Applications (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Fuzzy Systems (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Debugging And Monitoring (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
Description
Claims (7)
- 方法であって、
半導体プロセスにおける複数のステップ中に、複数の半導体装置センサーからコンピュータベースの機械学習モデル内に装置トレースデータを受信することと、
前記機械学習モデルによって、前記トレースデータ内の第1の異常を検出することであって、前記第1の異常は、前記装置トレースデータ内の関連位置を有することと、
前記機械学習モデルによって、前記第1の異常を含む装置トレースデータの期間を含む窓を定義することと、
前記機械学習モデルによって、前記窓内の装置トレースデータの期間に関して統計量を計算することと、
前記第1の異常の統計量および関連位置を、前記第1の異常と関連付けられた複数の重要な特徴としてメモリ内に格納することと、
前記第1の異常の複数の重要な特徴を、前記複数の重要な特徴を有する類似の過去のトレースデータを見つけるように構成された機械学習モデルに対する入力として提供することにより、過去のトレースデータのデータベースを検索することと、
前記機械学習モデルによって、前記過去のトレースデータのインスタンスが前記第1の異常の複数の重要な特徴を有すると判断することと、
前記機械学習モデルによって、前記第1の異常の複数の重要な特徴を有する、前記過去のトレースデータのインスタンスに対する根本原因を識別することと、
前記半導体プロセスにおいて、前記根本原因を是正するための措置を取ることと、
を含む、方法。 - 前記根本原因および前記根本原因に対する是正措置を前記データベースから取得すること
をさらに含む、請求項1に記載の方法。 - 判断ステップは、
前記機械学習モデルによって、前記データベース内の過去のトレースデータのインスタンスが前記第1の異常の複数の重要な特徴を有する尤度を判断することと、
前記尤度が閾値を超えている場合に、前記根本原因を取得することと、
をさらに含む、請求項1に記載の方法。 - 前記根本原因を取得するステップは、
前記根本原因に対する是正措置を前記データベースから取得すること
をさらに含む、請求項3に記載の方法。 - 半導体処理装置の故障を予測するための方法であって、
多変量解析を使用してトレースデータのセット内の異常を検出するように訓練された機械学習モデルを含むプロセッサによって、半導体プロセスにおける複数のステップ中に、複数の半導体装置センサーから取得された第1のセットのトレース内の第1の異常なパターンを検出することと、
前記プロセッサによって、前記第1のセットのデータ内に前記第1の異常なパターンを含む期間窓を識別することと、
前記プロセッサによって、多変量解析を使用して、前記窓内に位置する第1のセットのトレースから複数の特徴を計算することと、
前記プロセッサによって、過去のトレースデータのデータベースを検索することと、
前記プロセッサによって、関連する異常なパターン内に前記複数の特徴を有する、前記データベース内の過去のトレースデータの少なくとも1つのセットを識別することと、
前記プロセッサによって、前記関連する異常なパターン内の複数の特徴の多変量解析を使用して、前記過去のトレースデータの少なくとも1つのセットの関連する異常なパターンが前記第1の異常なパターンと同じである尤度を判断することと、
前記プロセッサによって、前記尤度が閾値を超えている場合に、少なくとも1つの以前の異常なパターンに対する根本原因を前記データベースから取得することと、
前記半導体プロセスにおいて、前記根本原因を是正するための措置を取ることと、
を含む、方法。 - 前記期間窓を識別するステップは、
前記期間窓を、前記第1のセットのトレース内の値が急激に変化している領域として定義すること
をさらに含む、請求項5に記載の方法。 - 前記期間窓を識別するステップは、
前記期間窓を、前記第1のセットのトレース内の値の変化率が急激に変化している領域として定義すること
をさらに含む、請求項5に記載の方法。
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US202063055893P | 2020-07-23 | 2020-07-23 | |
| US63/055,893 | 2020-07-23 | ||
| PCT/US2021/042842 WO2022020642A1 (en) | 2020-07-23 | 2021-07-22 | Predicting equipment fail mode from process trace |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2023535721A JP2023535721A (ja) | 2023-08-21 |
| JPWO2022020642A5 JPWO2022020642A5 (ja) | 2024-07-26 |
| JP7703011B2 true JP7703011B2 (ja) | 2025-07-04 |
Family
ID=79688227
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2023504511A Active JP7703011B2 (ja) | 2020-07-23 | 2021-07-22 | プロセストレースからの装置故障モードの予測 |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US11640328B2 (ja) |
| EP (1) | EP4162395A4 (ja) |
| JP (1) | JP7703011B2 (ja) |
| KR (1) | KR20230042041A (ja) |
| CN (1) | CN116113942A (ja) |
| TW (1) | TWI887455B (ja) |
| WO (1) | WO2022020642A1 (ja) |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11436072B2 (en) * | 2020-02-27 | 2022-09-06 | Hewlett Packard Enterprise Development Lp | System and method for collecting contextual log files from a computing system |
| CN114764550B (zh) * | 2021-01-12 | 2025-09-30 | 联华电子股份有限公司 | 失效检测与分类模型的运作方法与运作装置 |
| US12019507B2 (en) * | 2022-05-19 | 2024-06-25 | Applied Materials, Inc. | Guardbands in substrate processing systems |
| US12372952B2 (en) * | 2022-05-19 | 2025-07-29 | Applied Materials, Inc. | Guardbands in substrate processing systems |
| US20230376374A1 (en) * | 2022-05-19 | 2023-11-23 | Applied Materials, Inc. | Guardbands in substrate processing systems |
| US20240169215A1 (en) * | 2022-11-21 | 2024-05-23 | Disney Enterprises, Inc. | Machine Learning Model-Based Anomaly Prediction and Mitigation |
| KR20240083695A (ko) * | 2022-12-05 | 2024-06-12 | 세메스 주식회사 | 심층 학습 기반 분석 시스템 및 그의 동작 방법 |
| CN116629707B (zh) * | 2023-07-20 | 2023-10-20 | 合肥喆塔科技有限公司 | 基于分布式并行计算的fdc溯因分析方法及存储介质 |
| US20250157271A1 (en) * | 2023-11-14 | 2025-05-15 | Mercedes-Benz Group AG | Method, electronic device, and autonomous driving system for error event analysis |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006099249A (ja) | 2004-09-28 | 2006-04-13 | Fujitsu Ltd | 障害管理装置および障害管理方法 |
| JP2017207894A (ja) | 2016-05-18 | 2017-11-24 | 株式会社日立システムズ | 統合監視運用システムおよび方法 |
| JP2018178157A (ja) | 2017-04-05 | 2018-11-15 | 株式会社荏原製作所 | 半導体製造装置、半導体製造装置の故障予知方法、および半導体製造装置の故障予知プログラム |
| US20200104639A1 (en) | 2018-09-28 | 2020-04-02 | Applied Materials, Inc. | Long short-term memory anomaly detection for multi-sensor equipment monitoring |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20160026915A1 (en) | 2001-01-05 | 2016-01-28 | In-Depth Test Llc | Methods and Apparatus for Data Analysis |
| WO2005054968A1 (en) * | 2003-11-26 | 2005-06-16 | Tokyo Electron Limited | Intelligent system for detection of process status, process fault and preventive maintenance |
| US20080228338A1 (en) * | 2007-03-15 | 2008-09-18 | Honeywell International, Inc. | Automated engine data diagnostic analysis |
| US8046637B2 (en) * | 2009-03-06 | 2011-10-25 | Oracle America, Inc. | Telemetry data filtering through sequential analysis |
| ES2427645B1 (es) * | 2011-11-15 | 2014-09-02 | Telefónica, S.A. | Método para gestionar el rendimiento en aplicaciones de múltiples capas implantadas en una infraestructura de tecnología de información |
| US9298538B2 (en) * | 2012-08-16 | 2016-03-29 | Vmware, Inc. | Methods and systems for abnormality analysis of streamed log data |
| KR102195070B1 (ko) * | 2014-10-10 | 2020-12-24 | 삼성에스디에스 주식회사 | 시계열 데이터의 분석을 통한 이상 감지 및 예측 시스템 및 방법 |
| US10275303B2 (en) * | 2015-10-23 | 2019-04-30 | Oracle International Corporation | Mechanism for running diagnostic rules across multiple nodes |
| US11205119B2 (en) * | 2015-12-22 | 2021-12-21 | Applied Materials Israel Ltd. | Method of deep learning-based examination of a semiconductor specimen and system thereof |
| US10109046B2 (en) | 2016-07-19 | 2018-10-23 | Globalfoundries Inc. | Methods of detecting faults in real-time for semiconductor wafers |
| US10546085B2 (en) * | 2017-04-12 | 2020-01-28 | Anchor Semiconductor Inc. | Pattern centric process control |
| JP7348440B2 (ja) * | 2018-03-20 | 2023-09-21 | 東京エレクトロン株式会社 | 統合的な半導体処理モジュールを組み込んだ自己認識及び補正異種プラットフォーム及びその使用方法 |
| US10685159B2 (en) * | 2018-06-27 | 2020-06-16 | Intel Corporation | Analog functional safety with anomaly detection |
| US11568198B2 (en) * | 2018-09-12 | 2023-01-31 | Applied Materials, Inc. | Deep auto-encoder for equipment health monitoring and fault detection in semiconductor and display process equipment tools |
| US11731232B2 (en) * | 2018-10-30 | 2023-08-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Irregular mechanical motion detection systems and method |
| CN111291096B (zh) * | 2020-03-03 | 2023-07-28 | 腾讯科技(深圳)有限公司 | 数据集构建方法、装置和存储介质及异常指标检测方法 |
| CN111353482B (zh) * | 2020-05-25 | 2020-12-08 | 天津开发区精诺瀚海数据科技有限公司 | 一种基于lstm的疲劳因子隐性异常检测及故障诊断方法 |
-
2021
- 2021-07-22 WO PCT/US2021/042842 patent/WO2022020642A1/en not_active Ceased
- 2021-07-22 CN CN202180058614.3A patent/CN116113942A/zh active Pending
- 2021-07-22 JP JP2023504511A patent/JP7703011B2/ja active Active
- 2021-07-22 EP EP21845272.0A patent/EP4162395A4/en active Pending
- 2021-07-22 US US17/383,334 patent/US11640328B2/en active Active
- 2021-07-22 KR KR1020237005035A patent/KR20230042041A/ko active Pending
- 2021-07-23 TW TW110127131A patent/TWI887455B/zh active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006099249A (ja) | 2004-09-28 | 2006-04-13 | Fujitsu Ltd | 障害管理装置および障害管理方法 |
| JP2017207894A (ja) | 2016-05-18 | 2017-11-24 | 株式会社日立システムズ | 統合監視運用システムおよび方法 |
| JP2018178157A (ja) | 2017-04-05 | 2018-11-15 | 株式会社荏原製作所 | 半導体製造装置、半導体製造装置の故障予知方法、および半導体製造装置の故障予知プログラム |
| US20200104639A1 (en) | 2018-09-28 | 2020-04-02 | Applied Materials, Inc. | Long short-term memory anomaly detection for multi-sensor equipment monitoring |
Also Published As
| Publication number | Publication date |
|---|---|
| TWI887455B (zh) | 2025-06-21 |
| TW202211341A (zh) | 2022-03-16 |
| KR20230042041A (ko) | 2023-03-27 |
| EP4162395A4 (en) | 2024-03-27 |
| JP2023535721A (ja) | 2023-08-21 |
| WO2022020642A1 (en) | 2022-01-27 |
| US11640328B2 (en) | 2023-05-02 |
| EP4162395A1 (en) | 2023-04-12 |
| CN116113942A (zh) | 2023-05-12 |
| US20220027230A1 (en) | 2022-01-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7703011B2 (ja) | プロセストレースからの装置故障モードの予測 | |
| US10373065B2 (en) | Generating database cluster health alerts using machine learning | |
| US11609812B2 (en) | Anomalous equipment trace detection and classification | |
| US20240103950A1 (en) | Method, computing device and computer program for detecting abnormal behavior of process equipment | |
| US20240184283A1 (en) | Time-Series Segmentation and Anomaly Detection | |
| CN116230586A (zh) | 晶圆制造机台单元的共性分析方法及终端 | |
| KR102830973B1 (ko) | 업데이트를 기반으로 장비 이상 탐지 모델의 정확도를 유지하는 방법, 장치 및 프로그램 | |
| CN111400850B (zh) | 设备故障分析方法、装置、设备和存储介质 | |
| CN113255840A (zh) | 故障检测与分类方法、装置、系统及存储介质 | |
| US20240362106A1 (en) | Predicting Equipment Fail Mode from Process Trace | |
| KR102830971B1 (ko) | 센서 데이터의 최소 값, 최대 값 및 중간 값을 활용한 복수의 제조 공정 장비 간 정합성 검사 방법, 장치 및 프로그램 | |
| KR102486463B1 (ko) | 열화에 따른 시계열 데이터를 이용한 실시간 이상 감지 방법 및 그를 위한 장치 | |
| KR102486462B1 (ko) | 열화에 따른 패턴 학습을 이용한 이상 감지 방법 및 그를 위한 장치 | |
| JPWO2022020642A5 (ja) | ||
| CN118410436A (zh) | 一种时序异常检测方法及装置 | |
| MELLAH et al. | Early semiconductor anomaly detection based on multivariate time-series classification using multilayer perceptron | |
| JP7698034B2 (ja) | プロセストレースのための自動窓生成 | |
| CN120763822B (zh) | 一种晶圆加工过程传感器数据异常检测方法及相关设备 | |
| US20250348760A1 (en) | Method, device, and system for detecting abnormality of semiconductor equipment | |
| CN117131467A (zh) | 一种核循环泵齿轮箱润滑系统故障诊断方法 | |
| CN120974299A (zh) | 用于评估弹簧针健康状况的方法及系统 | |
| CN121071327A (zh) | 一种时序数据多尺度缺失值填充方法及系统 | |
| CN120910492A (zh) | 基于多维度数据融合的gpu芯片良率预测方法及系统 | |
| CN118964921A (zh) | 半导体缺陷根因分析方法及装置 | |
| CN119943716A (zh) | 一种芯片制造质量检测与控制方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230807 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240717 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240717 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20250514 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20250603 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20250624 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 7703011 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |