JP5174040B2 - 画像の構成要素と背景とを区別するためにコンピュータで実行される方法および画像の構成要素と背景とを区別するためのシステム - Google Patents
画像の構成要素と背景とを区別するためにコンピュータで実行される方法および画像の構成要素と背景とを区別するためのシステム Download PDFInfo
- Publication number
- JP5174040B2 JP5174040B2 JP2009548337A JP2009548337A JP5174040B2 JP 5174040 B2 JP5174040 B2 JP 5174040B2 JP 2009548337 A JP2009548337 A JP 2009548337A JP 2009548337 A JP2009548337 A JP 2009548337A JP 5174040 B2 JP5174040 B2 JP 5174040B2
- Authority
- JP
- Japan
- Prior art keywords
- probability
- pixels
- component
- background
- boundary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/162—Segmentation; Edge detection involving graph-based methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/69—Microscopic objects, e.g. biological cells or cellular parts
- G06V20/695—Preprocessing, e.g. image segmentation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10056—Microscopic image
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20072—Graph-based image processing
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20092—Interactive image processing based on input by user
- G06T2207/20101—Interactive definition of point of interest, landmark or seed
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30024—Cell structures in vitro; Tissue sections in vitro
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Microscoopes, Condenser (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Description
ここで、Iiは画素viにおける色を表し、βは自由パラメータであり、
Claims (12)
- 画像の構成要素と背景とを区別するためにコンピュータで実行される方法であって、
前記構成要素の図および背景を形成する画素を含む画像を入力するステップと、
予め定められた分類に属する確率を前記各画素に割り当てるためのモデルを用意するステップと、
前記各画素に、前記予め定められた分類に属する確率を割り当てるための第1のセグメンテーションを実行するステップと、
該各画素を、該当する前記確率および予め定められた閾値に従って前記構成要素と前記背景とにラベリングするステップと、
前記構成要素としてラベリングされた前記画素のグループについてグループ間の境界を決定するために、当該ラベリングされた画素の等周グラフ分割を実行し、第2のセグメンテーションを実行するステップと、
前記境界を視覚化して出力するステップと、
を含むコンピュータで実行される方法。 - さらに、前記境界によって定められる前記構成要素の色情報を抽出するステップを含む、請求項1に記載のコンピュータで実行される方法。
- 前記第1のセグメンテーションを実行するステップが、1に近い確率を第1の色に写像し且つゼロに近い確率を第2の色に写像するステップを含み、確率の画像が出力される、請求項1又は請求項2に記載のコンピュータで実行される方法。
- 前記等周グラフ分割は、前記構成要素としてラベリングされた画素のグループを順次に分割する、請求項1〜3のいずれか1項に記載のコンピュータで実行される方法。
- さらに、前記境界によって定められる前記構成要素の形状情報を抽出するステップを含む、請求項1〜4のいずれか1項に記載のコンピュータで実行される方法。
- さらに、前記境界によって定められる前記構成要素の数を抽出するステップを含む、請求項1〜5のいずれか1項に記載のコンピュータで実行される方法。
- 画像の構成要素と背景とを区別するためのシステムであって、
前記画像の構成要素の図を形成する画素を含む画像データを含むデータセットと、前記画像の構成要素と背景とを区別するためのシステムを具体化する複数の命令とを記憶するメモリ装置、および
前記データセットを受け取って、
予め定められた分類に属する確率を前記画像データの各画素に割り当てるためのモデルを用意するステップと、
前記各画素に、前記予め定められた分類に属する確率を割り当てるための第1のセグメンテーションを実行するステップと、
該各画素を、該当する前記確率および予め定められた閾値に従って前記構成要素と前記背景とにラベリングするステップと、
前記構成要素としてラベリングされた前記画素のグループについてグループ間の境界を決定するために、当該ラベリングされた画素の等周グラフ分割を実行し、第2のセグメンテーションを実行するステップと、
前記境界を視覚化して出力するステップと、
を含む方法を実行すべく前記複数の命令を実行するプロセッサ、
を備えているシステム。 - 前記プロセッサにより実行される前記方法に、前記境界によって定められる前記構成要素の色情報を抽出するステップがさらに含まれる、請求項7に記載のシステム。
- 前記プロセッサにより実行される前記方法の前記第1のセグメンテーションを実行するステップに、1に近い確率を第1の色に写像し且つゼロに近い確率を第2の色に写像するステップが含まれ、確率の画像が出力される、請求項7又は請求項8に記載のシステム。
- 前記等周グラフ分割は、前記構成要素としてラベリングされた画素のグループを順次に分割する、請求項7〜9のいずれか1項に記載のシステム。
- 前記プロセッサにより実行される前記方法に、前記境界によって定められる前記構成要素の形状情報を抽出するステップがさらに含まれる、請求項7〜10のいずれか1項に記載のシステム。
- 前記プロセッサにより実行される前記方法に、前記境界によって定められる前記構成要素の数を抽出するステップがさらに含まれる、請求項7〜11のいずれか1項に記載のシステム。
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US88814707P | 2007-02-05 | 2007-02-05 | |
| US60/888,147 | 2007-02-05 | ||
| PCT/US2008/001523 WO2008097552A2 (en) | 2007-02-05 | 2008-02-05 | System and method for cell analysis in microscopy |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2010518486A JP2010518486A (ja) | 2010-05-27 |
| JP2010518486A5 JP2010518486A5 (ja) | 2010-08-26 |
| JP5174040B2 true JP5174040B2 (ja) | 2013-04-03 |
Family
ID=39676210
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2009548337A Active JP5174040B2 (ja) | 2007-02-05 | 2008-02-05 | 画像の構成要素と背景とを区別するためにコンピュータで実行される方法および画像の構成要素と背景とを区別するためのシステム |
Country Status (6)
| Country | Link |
|---|---|
| US (1) | US8131035B2 (ja) |
| EP (1) | EP2109856B1 (ja) |
| JP (1) | JP5174040B2 (ja) |
| CN (1) | CN101657840B (ja) |
| HU (1) | HUE041756T2 (ja) |
| WO (1) | WO2008097552A2 (ja) |
Families Citing this family (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008067333A2 (en) | 2006-11-27 | 2008-06-05 | Nik Software, Inc. | Method for sliced inpainting |
| US8023734B2 (en) * | 2007-10-10 | 2011-09-20 | Siemens Aktiengesellschaft | 3D general lesion segmentation in CT |
| US8218869B2 (en) * | 2009-03-29 | 2012-07-10 | Mitsubishi Electric Research Laboratories, Inc. | Image segmentation using spatial random walks |
| WO2011016189A1 (ja) * | 2009-08-07 | 2011-02-10 | 株式会社ニコン | 細胞の分類手法、この手法を用いた画像処理プログラム及び画像処理装置、並びに細胞塊の製造方法 |
| JP5535727B2 (ja) * | 2010-04-01 | 2014-07-02 | ソニー株式会社 | 画像処理装置、画像処理方法、およびプログラム |
| US9522396B2 (en) | 2010-12-29 | 2016-12-20 | S.D. Sight Diagnostics Ltd. | Apparatus and method for automatic detection of pathogens |
| JP5385313B2 (ja) * | 2011-01-25 | 2014-01-08 | 日本電信電話株式会社 | データの領域分割装置、データの領域分割方法およびデータの領域分割プログラム |
| US8478032B2 (en) | 2011-05-24 | 2013-07-02 | Hewlett-Packard Development Company, L.P. | Segmenting an image |
| ES2754304T3 (es) | 2011-09-23 | 2020-04-16 | Siemens Healthcare Diagnostics Inc | Ensayo de respuesta celular para detectar cáncer y métodos de producción y uso del mismo |
| CN106840812B (zh) | 2011-12-29 | 2019-12-17 | 思迪赛特诊断有限公司 | 用于检测生物样品中病原体的方法和系统 |
| US9269155B2 (en) * | 2012-04-05 | 2016-02-23 | Mediatek Singapore Pte. Ltd. | Region growing method for depth map/color image |
| EP3869257B1 (en) | 2013-05-23 | 2024-05-08 | S.D. Sight Diagnostics Ltd. | Method and system for imaging a cell sample |
| IL227276A0 (en) | 2013-07-01 | 2014-03-06 | Parasight Ltd | A method and system for preparing a monolayer of cells, particularly suitable for diagnosis |
| EP3955042B1 (en) | 2013-08-26 | 2024-08-21 | S.D. Sight Diagnostics Ltd. | Digital microscopy systems, methods and computer program products |
| CN104794684B (zh) * | 2014-01-17 | 2018-02-27 | 复旦大学 | 一种基于病毒噬斑图像的自动噬斑测定方法 |
| CN105093479A (zh) * | 2014-04-30 | 2015-11-25 | 西门子医疗保健诊断公司 | 用于显微镜的自动对焦方法和装置 |
| SE538435C2 (en) * | 2014-05-14 | 2016-06-28 | Cellavision Ab | Method, device and computer program product for determining colour transforms between images comprising a plurality of image elements |
| WO2016030897A1 (en) | 2014-08-27 | 2016-03-03 | S.D. Sight Diagnostics Ltd | System and method for calculating focus variation for a digital microscope |
| JP6336932B2 (ja) * | 2015-03-03 | 2018-06-06 | 富士フイルム株式会社 | 細胞群検出装置および方法並びにプログラム |
| CN108474934B (zh) | 2015-09-17 | 2022-01-18 | 思迪赛特诊断有限公司 | 用于检测身体样本中实体的方法和设备 |
| US9858675B2 (en) | 2016-02-11 | 2018-01-02 | Adobe Systems Incorporated | Object segmentation, including sky segmentation |
| WO2017168411A1 (en) | 2016-03-30 | 2017-10-05 | S.D. Sight Diagnostics Ltd | Image processing device for identifying blood parasites |
| EP3455610B1 (en) | 2016-05-11 | 2023-01-04 | S.D. Sight Diagnostics Ltd. | Sample carrier for optical measurements |
| US11099175B2 (en) | 2016-05-11 | 2021-08-24 | S.D. Sight Diagnostics Ltd. | Performing optical measurements on a sample |
| CA3025822A1 (en) | 2016-06-03 | 2017-12-07 | Koninklijke Philips N.V. | Biological object detection |
| CN106485223B (zh) * | 2016-10-12 | 2019-07-12 | 南京大学 | 一种砂岩显微薄片中岩石颗粒的自动识别方法 |
| CN111788471B (zh) | 2017-11-14 | 2023-12-12 | 思迪赛特诊断有限公司 | 用于光学测量的样品载体 |
| CA3155820A1 (en) | 2019-10-22 | 2021-04-29 | S.D. Sight Diagnostics Ltd | Accounting for errors in optical measurements |
| CN114787685B (zh) | 2019-12-12 | 2025-10-17 | 思迪赛特诊断有限公司 | 人工生成彩色血液涂片图像 |
| CN114787625B (zh) | 2019-12-12 | 2026-01-13 | 思迪赛特诊断有限公司 | 检测血液样品中的血小板 |
| MX2022007123A (es) | 2019-12-12 | 2022-07-11 | S D Sight Diagnostics Ltd | Analisis de un analito dispuesto dentro de un medio. |
| CN111161301B (zh) * | 2019-12-31 | 2021-07-27 | 上海商汤智能科技有限公司 | 图像分割方法及装置、电子设备和存储介质 |
Family Cites Families (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5633948A (en) * | 1992-11-30 | 1997-05-27 | Kegelmeyer, Jr.; W. Philip | Method and apparatus for detecting a desired behavior in digital image data |
| WO1995020343A1 (en) * | 1994-01-28 | 1995-08-03 | Schneider Medical Technologies, Inc. | Imaging device and method |
| US5764792A (en) * | 1996-01-19 | 1998-06-09 | Oncor, Inc. | Method and apparatus for processing images |
| US20040072143A1 (en) * | 1998-06-01 | 2004-04-15 | Weyerhaeuser Company | Methods for classification of somatic embryos |
| IL132687A0 (en) * | 1999-11-01 | 2001-03-19 | Keren Mechkarim Ichilov Pnimit | System and method for evaluating body fluid samples |
| DE60019786T2 (de) * | 1999-11-09 | 2006-03-09 | The University Of Manchester | Identifizierung oder überprüfung von objektklassen, oder erzeugung von objektbildern |
| US20020186875A1 (en) * | 2001-04-09 | 2002-12-12 | Burmer Glenna C. | Computer methods for image pattern recognition in organic material |
| US7219016B2 (en) * | 2001-04-20 | 2007-05-15 | Yale University | Systems and methods for automated analysis of cells and tissues |
| JP4749637B2 (ja) * | 2001-09-28 | 2011-08-17 | オリンパス株式会社 | 画像解析方法、装置、及び記録媒体 |
| US20030095707A1 (en) * | 2001-11-19 | 2003-05-22 | Koninklijke Philips Electronics N.V. | Computer vision method and system for blob-based analysis using a probabilistic pramework |
| US7050613B2 (en) * | 2002-11-07 | 2006-05-23 | Fujitsu Limited | Method for supporting cell image analysis |
| JP4037869B2 (ja) * | 2002-11-07 | 2008-01-23 | 富士通株式会社 | 画像解析支援方法、画像解析支援プログラムおよび画像解析支援装置 |
| GB2396406A (en) * | 2002-12-17 | 2004-06-23 | Qinetiq Ltd | Image analysis |
| US7840357B2 (en) * | 2003-07-29 | 2010-11-23 | Nec Corporation | Method of evaluating chromosome state and evaluation system |
| CA2487233C (en) * | 2003-11-10 | 2014-05-13 | Frederick David King | Method and apparatus for particle measurement employing optical imaging |
| EP1692657A1 (en) * | 2003-12-10 | 2006-08-23 | Agency for Science, Technology and Research | Methods and apparatus for binarising images |
| US7460709B2 (en) * | 2004-01-23 | 2008-12-02 | Siemens Medical Solutions Usa, Inc. | System and method for multi-label image segmentation |
| US20050251347A1 (en) * | 2004-05-05 | 2005-11-10 | Pietro Perona | Automatic visual recognition of biological particles |
| US7630548B2 (en) * | 2004-09-22 | 2009-12-08 | Siemens Medical Solutions Usa, Inc. | Image segmentation using isoperimetric trees |
| US7697755B2 (en) * | 2004-09-29 | 2010-04-13 | Drvision Technologies Llc | Method for robust analysis of biological activity in microscopy images |
| US7519220B2 (en) * | 2004-11-15 | 2009-04-14 | Siemens Medical Solutions Usa, Inc. | GPU accelerated isoperimetric algorithm for image segmentation, digital photo and video editing |
| ATE527619T1 (de) * | 2005-01-27 | 2011-10-15 | Cambridge Res & Instrumentation Inc | Klassifizierung der bildeigenschaften |
| US8050734B2 (en) * | 2005-09-07 | 2011-11-01 | General Electric Company | Method and system for performing patient specific analysis of disease relevant changes of a disease in an anatomical structure |
| US8073220B2 (en) * | 2009-04-20 | 2011-12-06 | Siemens Aktiengesellschaft | Methods and systems for fully automatic segmentation of medical images |
-
2008
- 2008-02-05 JP JP2009548337A patent/JP5174040B2/ja active Active
- 2008-02-05 HU HUE08725194A patent/HUE041756T2/hu unknown
- 2008-02-05 WO PCT/US2008/001523 patent/WO2008097552A2/en not_active Ceased
- 2008-02-05 US US12/025,979 patent/US8131035B2/en active Active
- 2008-02-05 EP EP08725194.8A patent/EP2109856B1/en active Active
- 2008-02-05 CN CN200880004004XA patent/CN101657840B/zh not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| HUE041756T2 (hu) | 2019-05-28 |
| JP2010518486A (ja) | 2010-05-27 |
| CN101657840B (zh) | 2013-07-31 |
| US20080187198A1 (en) | 2008-08-07 |
| CN101657840A (zh) | 2010-02-24 |
| EP2109856B1 (en) | 2019-01-16 |
| EP2109856A2 (en) | 2009-10-21 |
| WO2008097552A3 (en) | 2009-04-02 |
| WO2008097552A2 (en) | 2008-08-14 |
| US8131035B2 (en) | 2012-03-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP5174040B2 (ja) | 画像の構成要素と背景とを区別するためにコンピュータで実行される方法および画像の構成要素と背景とを区別するためのシステム | |
| Gandhi et al. | Preprocessing of non-symmetrical images for edge detection | |
| JP6710135B2 (ja) | 細胞画像の自動分析方法及びシステム | |
| US10121245B2 (en) | Identification of inflammation in tissue images | |
| Shahzad et al. | Robust Method for Semantic Segmentation of Whole‐Slide Blood Cell Microscopic Images | |
| JP6262748B2 (ja) | 教師あり形状ランク付けに基づく生物学的単位の識別 | |
| CN111754531A (zh) | 图像实例分割方法和装置 | |
| Bashar et al. | Automatic extraction of nuclei centroids of mouse embryonic cells from fluorescence microscopy images | |
| CN113096080B (zh) | 图像分析方法及系统 | |
| CN115359060B (zh) | 一种肺炎ct影像的病灶实例分割方法及装置 | |
| CN108765315A (zh) | 图像补全方法、装置、计算机设备及存储介质 | |
| WO2024016812A1 (zh) | 显微图像的处理方法、装置、计算机设备及存储介质 | |
| Chang et al. | Modified YOLO network model for metaphase cell detection in antinuclear antibody images | |
| Mobiny et al. | Lung cancer screening using adaptive memory-augmented recurrent networks | |
| Shahriyar et al. | An approach for multi label image classification using single label convolutional neural network | |
| Kromp et al. | Deep Learning architectures for generalized immunofluorescence based nuclear image segmentation | |
| Huang et al. | Review of cervical cell segmentation | |
| Nguyen et al. | Finding nano-Ötzi: cryo-electron tomography visualization guided by learned segmentation | |
| CN109977834A (zh) | 从深度图像中分割人手与交互物体的方法和装置 | |
| He et al. | A two-stage approach solo_GAN for overlapping cervical cell segmentation based on single-cell identification and boundary generation | |
| US7609887B2 (en) | System and method for toboggan-based object segmentation using distance transform | |
| Das et al. | Object detection on scene images: a novel approach | |
| Liu et al. | Learning to refine object contours with a top-down fully convolutional encoder-decoder network | |
| Sun et al. | Contextual models for automatic building extraction in high resolution remote sensing image using object-based boosting method | |
| Hussan et al. | ECGANCOVID: Efficient Conditional GAN Architecture for Covid-19 Disease Segmentation |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100709 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100709 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110729 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110830 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20111130 |
|
| A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20111207 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20111227 |
|
| A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20120110 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20120130 |
|
| A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20120206 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120228 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120501 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20120801 |
|
| A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20120808 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20120903 |
|
| A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20120910 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20121001 |
|
| A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20121009 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121101 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121204 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121227 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 5174040 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |