JP4116329B2 - 文書情報表示システム、文書情報表示方法及び文書検索方法 - Google Patents
文書情報表示システム、文書情報表示方法及び文書検索方法 Download PDFInfo
- Publication number
- JP4116329B2 JP4116329B2 JP2002152594A JP2002152594A JP4116329B2 JP 4116329 B2 JP4116329 B2 JP 4116329B2 JP 2002152594 A JP2002152594 A JP 2002152594A JP 2002152594 A JP2002152594 A JP 2002152594A JP 4116329 B2 JP4116329 B2 JP 4116329B2
- Authority
- JP
- Japan
- Prior art keywords
- document
- unit
- search
- elements
- relevance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/34—Browsing; Visualisation therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S707/00—Data processing: database and file management or data structures
- Y10S707/99931—Database or file accessing
- Y10S707/99933—Query processing, i.e. searching
- Y10S707/99935—Query augmenting and refining, e.g. inexact access
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S707/00—Data processing: database and file management or data structures
- Y10S707/99941—Database schema or data structure
- Y10S707/99944—Object-oriented database structure
- Y10S707/99945—Object-oriented database structure processing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S707/00—Data processing: database and file management or data structures
- Y10S707/99941—Database schema or data structure
- Y10S707/99948—Application of database or data structure, e.g. distributed, multimedia, or image
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Description
【発明の属する技術分野】
本発明は、複数の文書の内容を概観表示する文書情報表示システム、文書情報表示方法及び文書検索方法に関する。
【0002】
【従来の技術】
コンピュータやインターネットの普及に伴い、文書情報の電子化が急速に進んでいる。入手可能な文書情報が増加するにつれ、その中から必要な情報を探し出すことが重要な課題となってくる。情報検索技術はこのような課題を解決するための技術であり、最近では、情報検索技術を応用した検索エンジン(サーチエンジンともいう)を利用して必要とする情報を検索することが一般的に行なわれている。
【0003】
インターネット上で利用可能な代表的な検索エンジンである Google(http://www.google.com)やgoo(http://www.goo.ne.jp)では、利用者が検索要求を入力すると、それに関連するウェブページがインターネット上から検索され、結果が関連度順にリスト形式で表示される。利用者はそこから自分に必要な情報を入手するわけであるが、検索結果の中には利用者の検索要求とは無関係なものが含まれることがある。しかし、検索結果が単なるリスト形式で表示されているだけでは、検索結果の内容を個々に判断しながら取捨選択する必要があり面倒である。したがって、検索結果として得られた文書集合がどのようなものであるかを利用者が容易に判断できる仕組みが必要となってくる。
【0004】
これに対する一つのアプローチとして、クラスタリング技術を利用して検索結果を分類表示する技術がある。ここで、クラスタリングとは、文書集合を類似度に応じてグループ分けすることであり、その手法は階層型クラスタリングと非階層型クラスタリングに分けられる。階層型クラスタリングの結果は木構造となり、非階層型クラスタリングの結果は単にグループ分けされただけの平坦な構造となる。クラスタリングの手法としては、例えば、特開平9−62693号公報「確率モデルによる文書分類方法」に記載されている方法を用いることができる。Lycosサーチ(http://www.lycos.co.jp)が採用しているWiseNutサーチ(http://www.wisenut.com)では、検索結果のウェブページを分類し、類似したウェブページをフォルダにまとめて表示している。一方、Vivisimo(http://www.vivisimo.com)では、階層型クラスタリング技術を利用することで、検索結果を木構造状に分類して表示している。どちらの技術も検索結果を単にリスト形式で羅列するのではなく、検索結果をその内容に応じて分類することで利用者の情報アクセスに対する利便性の向上をはかっている。
【0005】
【発明が解決しようとする課題】
しかし、分類結果をフォルダ表示すると、一度に一つのフォルダの内容しか参照できないため、文書集合全体に対する一覧性が欠如する。また、木構造状に表示する場合でも、個々の木のノードを展開して順に参照していく必要があるため、フォルダ表示の場合と同様に一覧性が欠如してしまう。
本発明は、上記現状を鑑み、一覧性を損なうことなく文書集合全体の特徴を可視化することのできる文書情報表示システム、文書情報表示方法及び文書検索方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明では、文書集合の特徴を2次元座標上に表示することによって文書集合全体の特徴を一目で概観できるようにする。
すなわち、複数の文書に関する情報を画面表示する本発明の文書情報表示システムは、一方の軸に要素として文書又は文を配置し、他方の軸に要素として文書の集合、文書、文又は単語を配置した2次元座標を表示し、該2次元座標上の各座標点に、対応する一方の軸の要素と他方の軸の要素の関連度を表示することを特徴とする。この文書情報表示システムは、データベース検索によって得られた複数の文書の特徴を概観するのに利用することができる。
【0007】
2つの軸の要素間の関連度は、2次元座標の座標点に、関連度の強さに応じた明度又は彩度を有する色あるいは関連度の強さに応じたサイズを有する図形を表示することによって示すことができる。一方の軸の要素及び/又は他方の軸の要素の並び順を、要素の類似度を反映したものにすると、類似した要素同士が隣接して表示されるため、要素間の関連をより明確に捉えることが出来る。
【0008】
複数の文書に関する情報を画面表示する本発明の文書情報表示方法は、文書の集合又は文書中の文の集合からなる第1の集合の各要素と、文書集合の集合、文書の集合、文の集合又は単語の集合からなる第2の集合の各要素の間の関連度を計算するステップと、一方の軸に第1の集合の要素を配置し、他方の軸に第2の集合の要素を配置した2次元座標上の各座標点に、対応する一方の軸の要素と他方の軸の要素の関連度を表示するステップとを含むことを特徴とする。
【0009】
典型的には、第1の集合は文書の集合、第2の集合は単語の集合であり、文書の集合から単語の集合を抽出するステップを有する。また、一方の軸の要素の類似度及び/又は他方の軸の要素の類似度を計算するステップと、一方の軸の要素及び/又は他方の軸の要素を類似度に応じて並べ替えるステップとを更に有することも出来る。
【0010】
本発明による文書検索方法は、文書データベースの検索要求を受信するステップと、検索要求に応じて前記文書データベースを検索し、複数の文書情報を取得するステップと、検索によって得られた複数の文書から複数の単語を抽出するステップと、各文書と各単語の間の関連度を計算するステップと、複数の文書、複数の単語、及び各文書と各単語の間の関連度に関する情報を送信するステップとを含むことを特徴とする。この文書検索方法は、複数の文書の間の類似度及び/又は前記複数の単語の間の類似度を計算するステップと、計算した複数の文書の間の類似度及び/又は複数の単語の間の類似度を送信するステップとを更に有していてもよい。
【0011】
【発明の実施の形態】
本発明の代表的な態様には、以下のものがある。
(1)文書集合が一つある場合、一方の軸に文書集合、もう一方の軸にその文書集合に含まれる単語集合をとり、単語iと文書jの関連度をその強さに応じた表示状態で座標(i,j)に表示するようにする。文書と単語の関係を2次元座標上に表示することで、ある文書にどのような単語が含まれているのか、ある単語がどのような文書に含まれているのかなど、文書集合の特徴を一見して把握できるようになる。
【0012】
(2)2つの文書集合(文書集合A、文書集合Bとする)がある場合、一方の軸に文書集合A、もう一方の軸に文書集合Bをとり、文書集合Aの文書iと文書集合Bの文書jの関連度をその強さに応じた表示状態で座標(i,j)に表示する。文書間の関係を2次元座標上に表示することで、文書集合全体としての関係、個々の文書間の関係など、文書集合の特徴を一見して把握できるようになる。
【0013】
文書集合Aと文書集合Bが同一の文書集合の場合に、この表示をすると、一つの文書集合内における文書間の関係を容易に把握できる。但し、その場合、縦軸と横軸に同一の文書がきたときの関連度は情報としての意味がないため、表示しないようにする。
【0014】
(3)前記(1)(2)において、縦軸方向、横軸方向のどちらか一方、あるいは両方について、クラスタリングして並べ替えを行った結果を2次元座標上に表示すると、クラスタリングを行った軸方向に関して、関連度の高い文書、あるいは単語が近くにまとまって配置される。その結果、縦軸と横軸の要素間の関連度が、クラスタリングを行わない場合に比べて、より明確に2次元座標上に可視化されるようになり、文書集合の特徴の把握が更に容易に行えるようになる。
【0015】
(4)前記(1)(2)(3)において、縦軸方向、横軸方向の要素数が多い場合、座標軸上にそれぞれの要素名(単語、記事のタイトルなど)を表示せず、2次元座標上の任意の領域を範囲指定したとき、その部分を拡大表示するようにする。全体表示画面で全体の様子を把握し、注目する領域を拡大表示すると縦軸、横軸、それぞれの要素名を知ることができる。
【0016】
(5)2つの文集合(文集合A、文集合Bとする)がある場合、一方の軸に文集合A、もう一方の軸に文集合Bをとり、文集合Aの要素iと文集合Bの要素jの関連度をその強さに応じた表示状態で座標(i,j)に表示するようにする。文集合A,Bが一つの文書に含まれる場合(例えば、論文の概要とその本文、特許の請求項とその実施例など)、文書内における文集合の対応関係を2次元座標上に表示することで、文書の内部構造を把握することができる。文集合A,Bが別の文書の場合、2つの文書内における文集合の対応関係を2次元座標上に表示することで、2つの文書間のどの部分が関連しているかなど、文書の内部構造を分析しながら文集合A,Bを比較検討することができる。
【0017】
(6)前記(5)の2次元座標表示を画面上部、画面下部に文集合A,Bを表示する。2次元座標上の任意の領域を範囲指定すると、その範囲に対応する文集合A,Bの該当範囲が識別表示されるようにする。また、表示されている文集合のうち、どちらか一方の文集合中の文を範囲選択すると、それに対応する2次元座標上の領域が識別表示され、更に、もう一方の文集合中において、選択された文集合に関連する文に該当する部分が識別表示されるようにする。これにより、各文集合間の関連を視覚的に捉えることができ、文書内容の概観把握、比較、分析を容易に行うことができる。
以下、図面を参照して本発明の実施の形態を説明する。
【0018】
図1は、本発明を実現するためのシステムの構成例を示す概略図である。このシステムはクライアント20、サーバ30、文書データベース40,50から構成され、クライアント20とサーバ30は通信ネットワーク10で接続されている。図に示した例では、2つの文書データベースがサーバ30に接続されているが、サーバに接続される文書データベースの数は任意でよい。クライアントの数も任意である。
【0019】
クライアント20は、表示部201、検索要求入力部202、文書データベース選択部203を備える。サーバ30は関連度計算部301、クラスタリング部302、単語抽出部303、検索部304を備える。上記のうち、最低限、2次元座標を表示する表示部201と文書ユニット間の関連度を計算する関連度計算部301とが本発明の実施には必要である。文書ユニットとは、単語、単語の集合、文、文の集合、文書、文書の集合のいずれかであり、2次元座標の縦軸あるいは横軸に配列される要素となるものである。
【0020】
サーバ30の備える関連度計算部301は、入力として文書データベースから取り出した2つの文書ユニットの集合を受け取る。2つの文書ユニット集合は異なる文書データベースから取り出しても良いし、同じ文書データベースから取り出しても良い。以下の説明では、文書データベースから取り出した2つの文書ユニットの集合を、それぞれ文書ユニットAi(i=1〜M)、文書ユニットBj(j=1〜N)として説明を行う。
【0021】
サーバ30の関連度計算部301は、文書ユニットAiと文書ユニットBjの間の関連度を計算する。関連度の計算方法は任意でよい。例えば、文書ユニットAi(i=1〜M)が単語、文書ユニットBj(j=1〜N)が文書の場合、公知技術である tf*idf法で単語と文書の間の関連度を計算できる。ここでtf*idf法とは、ある文書d中に出現する単語tの頻度(term frequency)であるtf(t,d)と、ある単語tが全文書中でどれくらいの文書に出現するかを表わすIDF(inverse document frequency)と呼ばれる尺度
【0022】
【数1】
【0023】
との積であるtf(t,d)×idf(t)を重みとする方法である。ここでTは全文書数、df(t)は単語tが出現する文書数である。また、tf*idf法を改良したSMART尺度(Singhal, A., Duckley, C. and Mitra, M., "Pivoted Document Length Normalization", in Proceedings of SIGIR'96, pp.21-29, 1996)を用いることもできる。
【0024】
また、文書ユニットAi(i=1〜M)と文書ユニットBj(j=1〜N)がともに文書の場合、各文書に含まれる単語を用いて文書をベクトル表現し、公知技術であるベクトル空間法を用いて文書間の関連度を計算できる。ベクトル空間法については、文献"Automatic Text Processing"(Salton, G., ADDISON-WESLEY PUBLISHING COMPANY)の10章に詳しい。
関連度の計算結果は行列形式のデータ構造として表現され、クライアント20に送られる。図2はそのデータ構造の例であり、文書ユニットAiと文書ユニットBj間の関連度がxijとして表現されている。
【0025】
クライアント20の表示部201は、関連度計算部301から受け取ったデータを利用して、文書ユニット間の関係を2次元座標上に表示する。どちらをどの軸にとるかは任意でよいが、ここでは説明のために、文書ユニットAを縦軸、文書ユニットBを横軸にとる。文書ユニットAの要素がM個、文書ユニットBの要素がN個あるとする。文書ユニットAのj番目の要素と文書ユニットBのi番目の要素の関連度の強さを座標(i,j)に表示する。ここで、関連度の強さは、あるオブジェクト(円や四角など)の大きさ、色の明度、彩度の差異などで表現すればよい。関連度の値を連続的に表示することもできるが、値をある範囲に区切って離散化し、段階的に関連度の強さを表示する方が見やすく便利である。図3は、関連度の強さを3段階の円の大きさで表現した例を示している。
【0026】
このような可視化を行うことで、文書ユニット間の関連を視覚的に把握することができる。例えば、文書ユニットAが文書、文書ユニットBが単語とすると、どの文書にどの単語が含まれているのか、どの単語がどの文書に含まれているのかが、一覧性を失うことなく把握できる。
【0027】
サーバ30が備えるクラスタリング部302は、関連度計算部301が出力したデータをもとに、文書ユニットA、文書ユニットBのどちらか一方、あるいは両方をクラスタリングして並べ替えを行い、その結果をクライアント20の表示部201に送る。表示部201は、受け取った結果を先述の方法で表示する。図4は、文書ユニットA、文書ユニットBの両方をクラスタリングして並べ替えた例を示す。クラスタリングした結果を2次元座標上に可視化することで、類似した文書ユニットどうしが隣接して表示されるため、クラスタリングを行わない場合と比較して、より明確に文書ユニット間の関連を捉えることができる。
【0028】
ここで、クラスタリング手法について、文書集合をクラスタリングする場合を例にとって説明する。文書集合を類似度に応じてグループ分けすることをクラスタリングと呼び、その手法は階層型クラスタリングと非階層型クラスタリングに分けられる。階層型クラスタリングの結果は木構造となり、非階層型クラスタリングの結果は単にグループ分けされただけの平坦な構造となる。階層型クラスタリングの結果として得られる木構造はデンドログラムと呼ばれる。図5はデンドログラムの例である。デンドログラムにおいて、中間節点の集合を選ぶと非階層型クラスタリングのような平坦なクラスタを得ることができる。
【0029】
階層型クラスタリングのアルゴリズムは基本的に以下の手順からなる。
(1)各要素だけからなるクラスタを作る。
(2)すべてのクラスタ間の距離(類似度)を計算する。
(3)最も距離の近いクラスタの組を併合する。
(4)併合によってできたクラスタと他のクラスタの距離を計算する。
(5)上記(3)(4)をクラスタが一つになるまで繰り返す。
【0030】
上記(4)の手順における距離計算の方法として様々な手法があるが、一般に、単一リンク法、完全リンク法、Ward法などがよく用いられる。各手法の詳細については、例えば"Information Retrieval"(Frakes, W. and Baeza-Yates, R. eds, Prentice Hall)の16章に記述されている。
【0031】
本発明で用いるクラスタリング手法は任意であるが、上記以外の方法として、ある文書があるクラスタに入る確率をモデル化することによってクラスタリングを行う特開平9−62693号公報「確率モデルによる文書分類方法」に記載されている方法を用いてもよい。
【0032】
クラスタリングに必要な類似度は、関連度計算部301が出力したデータから計算できる。図2の各行をベクトルとみなすと、文書ユニットAの各要素を文書ユニットBの各要素の重みベクトルとして表現することができ、公知技術であるベクトル空間法を用いて文書ユニットAの各要素間の類似度が計算できる。同様に、図2の各列をベクトルとみなすと、文書ユニットBの各要素間の類似度が計算できる。類似度計算はすべての要素間で行う必要がある(上記、階層型クラスタリングの手順(2))。
【0033】
このように計算された類似度を用いて階層型クラスタリングを行い、デンドログラムを構成することで文書ユニットの並べ替えを行うことができる。図5は、文書d1〜d10からなる文書集合をクラスタリングした例を示している。最初のクラスタ併合によって文書d1とd6、d8とd5、d10とd2、d3とd9が併合され、次にクラスタ(d1,d6)と(d8,d5)、クラスタ(d10,d2)とd7、クラスタ(d3,d9)とd4が併合され…と順にクラスタを併合し、図示するようなデンドログラムが得られている。このクラスタリングの結果、例えば横軸上にd1,d2,d3,…,d10のように並んでいた文書集合は、d1,d6,d8,…,d9のように並べ替えて配列される。
縦軸方向、横軸方向それぞれに対して、各要素間の類似度を計算し、デンドログラムを構成することで、図4のような表示が得られる。
【0034】
検索結果を可視化する場合、入力としては検索結果の文書集合しか得ることができない。そのような場合の処理について、図6から図9を用いて説明する。ここでは簡単のためキーワード検索によって文書集合を得る例によって説明する。しかし、キーワード検索に限らず、連想検索(例えば、特開2000−155758号公報参照)など任意の方法で取得した文書集合に対しても本発明が適用できるのは勿論である。
【0035】
図6は、クライアント20の備えるモニターの初期画面例を示す図である。モニター画面は、検索された文書集合についての情報を表示する表示部201、検索キーワードを入力する検索要求入力部202、所望のデータベースを選択するための文書データベース選択部203を備える。
【0036】
図7は、クライアントからのコマンド送信とサーバからのデータ返信の処理の流れを示すシーケンス図である。いま、ユーザが検索要求入力部202に検索要求として例えばキーワード「virus」を入力し、文書データベース選択部203における文書データベース選択ボタン2031によりDB1を選択し、「search」ボタン2021を押すと、選択されたデータベースの情報とキーワードがサーバに送られる(T11)。
【0037】
サーバ30では、検索部304により指定された文書データベースをキーワード検索し、その結果の文書集合を得る。次に、単語抽出部303によって、取得した文書集合から単語集合を抽出する。単語抽出の方法は任意でよいが、例えば、前述の tf*idf法などを利用して文書中の単語の重要度を計算し、重要度の高い順に抽出すればよい。得られた文書集合と単語集合を入力として関連度計算部301が単語と文書の間の関連度の計算を行い、結果をクライアントに返す(T12)。クライアント20は、先述した方法と同様にして、表示部201に、2次元座標によって単語集合と文書集合の関連を可視化する。
【0038】
図8は、2次元座標による表示例を示す図である。図8の2次元座標表示部2011には、横軸に単語を配置し、縦軸に文書の表題を配置した相互の関連度が2次元表示されている。縦軸と横軸の交点に配置されている四角形のオブジェクトは、縦軸の文書と横軸の単語の関連度を表し、両者の関連度が高いほど濃い色のオブジェクトが配置される。関連度自体は連続数で表されるが、ここでは関連度をその値に応じて数段階(例えば5段階)に等級分けし、各等級に異なる明度を割り当てて表示している。オブジェクトが表示されていない交点は、縦軸の文書と横軸の単語の間に関連が無いか、関連度が表示のための閾値以下であることを示している。この2次元表示により、検索された文書全体を概観しながら各文書の内容をある程度推測することができる。しかし、高い関連度を表す濃い色のオブジェクトが2次元座標上に分散しているため、文書間に何らかの関連があるのか等の情報は把握しにくい。
【0039】
そこで、ユーザが図8の表示部201に表示されている「clustering」ボタン2012を押すと、クラスタリング実行の指示がサーバに送信される(T13)。サーバ30のクラスタリング部302では、記事方向のクラスタリングで記事が分類され、また、単語方向のクラスタリングで単語が分類され、その結果のデータがクライアント20に返される(T14)。クラスタリングを行った2次元座標データを受け、クライアントの表示部201には、クラスタリングによって縦軸及び横軸の要素の並び替えが行われた単語と文書の2次元座標が表示される。それによってユーザは、記事集合に含まれる話題を2次元座標上で視覚的に捉えることができる。
【0040】
図9は、クラスタリング処理をした後の単語と文書の関連度の2次元座標表示例を示す図である。図9の例では、右下部分と左上部分に特徴的なまとまりがあり、文書集合に2つの話題(コンピュータウイルスに関する話題と生物学のウイルスに関する話題)が含まれていると推測される。更に、縦軸の単語を参照することで、記事タイトルだけでは読み取ることのできない情報を得ることができ、それぞれの話題をより深く理解できるようになる。
以下、本発明による文書ユニット間の関連度の2次元座標表示の他の例について説明する。
【0041】
図10は文書ユニットAとして記事集合A、文書ユニットBとして記事集合Bとし、クラスタリング部302でクラスタリングして両方の軸について並べ替えを行った例を示す図である。2つの記事集合A,Bを得る方法は任意でよいが、例えば、2つのデータベースに対して、同じキーワードで同時に検索を行い、それぞれのデータベースから得られた検索結果を文書集合A,Bとすればよい。得られた文書集合A,Bに対し、関連度計算部301が文書集合Aの要素と文書集合Bの要素の間の関連度を計算する。その結果をクラスタリング部302でクラスタリングして両方の軸に沿って並べ替えを行うことで図10が得られる。
【0042】
2つの記事集合がある場合、それらの間の関連を知ることは難しいが、図10のように可視化を行うことによって、2つの記事集合の中で、どの記事とどの記事に関連があるのかを視覚的に理解できるようになる。記事集合A,Bが同一の記事集合の場合でも記事集合内部の構造を把握するのに利用することができる。
【0043】
文書ユニットAとして単語、文書ユニットBとして時間順に並んだ新聞記事とし、それらの関係を2次元座標上に可視化することもできる。図11はある新聞社から発行された新聞を一ヶ月単位で2次元座標上に可視化するためのインタフェースの初期画面の例を示した図である。文書データベース選択部203で「Newspaper A (2002/02/01-28)」を選択し、「Search」ボタン2021を押すと、横軸に新聞一ヶ月分の記事の集合を時間順にとり、縦軸にそれらの記事から抽出した単語が配置したものが表示される。その画面が図12である。時間順に並んだ新聞記事とそれらに含まれる単語を2次元座標上に可視化することで、時系列に沿った話題の推移を視覚的に見ることができる。
【0044】
図13は、2次元座標の拡大表示機能を有するインタフェースの例を示す図である。2次元座標に表示する文書ユニットの数が増えると、座標軸上にそれぞれの要素名(単語、記事タイトルなど)を全て表示することができない。このような場合は、拡大表示することで、それぞれの要素名を知ることができる。
【0045】
図13において、2次元座標表示部2011内に表示された2次元座標上で、高い関連度を示すオブジェクトが集中している興味のある任意の範囲を範囲指定部分21として選択すると、拡大表示部2013にその部分の2次元座標が拡大表示され、縦軸、横軸の要素名を知ることができる。範囲指定は、マウスのドラッグで矩形領域の対角線上の2点を指定することで行うことができる。
【0046】
2つの文集合(文集合A、文集合Bとする)がある場合、一方の軸に文集合Aを、もう一方の軸に文集合Bをとり、文集合Aの要素iと文集合Bの要素jの関連度を座標(i,j)に表示してもよい。関連度の強さは、座標(i,j)に表示するオブジェクトの色や形状によって表現することができる。文集合A,Bが一つの文書に属する場合(例えば、論文の概要とその本文、特許公報の請求項とその実施例の説明など)、文書内における文集合の対応関係を2次元座標上に表示することで、文書の内部構造を把握することができる。文集合A,Bが別の文書の場合、2つの文書内における文集合の対応関係を2次元座標上に表示することで、2つの文書間のどの部分が関連しているかなど、文書の内部構造を分析しながら文集合A,Bを比較検討することができる。
【0047】
図14は、文書ユニットの2次元座標表示と文書ユニットの内容表示を同時に行うことで文集合間を関連づける機能を有するインタフェースの例を示す図である。文書ユニットAとして特許公報の請求項(CLAIM)、文書ユニットBとして特許公報の実施例や段落(DESCRIPTION)をとり、2次元座標表示部2011内の2次元座標に表示されている。
【0048】
本文表示部2014には特許公報の請求項、特許公報の実施例の本文がそれぞれ表示されている。ここで、マウスのドラッグ等によって2次元座標上の任意の範囲21を選択すると、本文表示部2014に、その範囲に対応する請求項、実施例の文が識別表示される。図14では斜体太字で識別表示してあるが、識別表示の仕方は任意でよい。
【0049】
この場合、本文表示部2014に表示された特定の文を選択すると、それに対応する2次元座標上の領域が識別表示されるようにしてもよい。図15に、その例を示す。図15において、本文表示部2014に表示されているCLAIM内の任意の文22をマウス等でクリックして範囲指定すると、それに対応する2次元座標上の領域23が識別表示され、更に、実施例において、請求項で選択した文に関連する文が斜体太字等で識別表示される。実施例内の任意の文を範囲選択した場合も同様に識別表示が行なわれる。図15では2次元座標上の識別表示を矩形で囲むことによって行っているが、識別表示の仕方は任意でよい。
このインタフェースを用いることで、各文集合間の対応関係を視覚的に捉えることができ、内容の概観把握、比較、分析などを容易に行うことができるようになる。
【0050】
【発明の効果】
本発明によると、2次元座標上に表示された文書ユニット間の関連を見ることで、一覧性を失うことなく文書内容の概観を得ることができる。
【図面の簡単な説明】
【図1】本発明を実現するためのシステムの構成例を示す概略図。
【図2】文書ユニット間の関連度を表現するデータ構造の例を示す図。
【図3】文書ユニット間の関連度を2次元座標に可視化した例を示す図。
【図4】クラスタリング処理をした表示例を示す図。
【図5】階層的クラスタリングの例を示す図。
【図6】クライアントの備えるモニターの初期画面例を示す図。
【図7】クライアントとサーバ間におけるコマンドとデータの流れを示すシーケンス図。
【図8】2次元座標による表示例を示す図。
【図9】クラスタリング処理をした後の2次元座標表示例を示す図。
【図10】2つの記事集合間の関係を2次元座標表示した例を示す図。
【図11】単語と時系列に並んだ記事の関係を2次元座標表示する場合の初期画面の例を示す図。
【図12】単語と時系列に並んだ記事の関係を2次元座標表示した例を示す図。
【図13】2次元座標の拡大表示機能を有するインタフェースの例を示す図。
【図14】2次元座標表示と文書表示を同時に行うことで文集合間を関連づける機能を有するインタフェースの例を示す図。
【図15】2次元座標表示と文書表示を同時に行うことで文集合間を関連づける機能を有するインタフェースの例を示す図。
【符号の説明】
10:通信ネットワーク
20:クライアント
201:表示部
2011:2次元座標表示部
2013:拡大表示部
2014:本文表示部
202:検索要求入力部
203:文書データベース選択部
2031:文書データベース選択ボタン
2032:文書データベース名表示ボックス
21、22:範囲指定部分
23:識別表示部分
30:サーバ
301:関連度計算部
302:クラスタリング部
303:単語抽出部
304:検索部
40,50:文書データベース
Claims (7)
- 検索要求を入力する入力部と、
前記入力部から入力された検索要求に従って文書データベースを検索し、検索結果を出力する検索部と、
前記検索部によって検索された文書集合から単語集合を抽出する単語抽出部と、
第1の集合の各要素と、第2の集合の各要素の間の関連度を計算する関連度計算部と、
階層型クラスタリング部と、
表示部とを備え、
前記関連度計算部は、前記検索によって得られた文書の集合又は文書中の文の集合を第1の集合とし、前記検索によって得られた文書集合の集合、文書の集合、文の集合又は前記単語抽出部によって抽出された単語集合を第2の集合として、各要素の間の関連度を計算し、
前記階層型クラスタリング部は、前記第1の集合の要素の間の類似度及び前記第2の集合の要素の間の類似度を計算し、前記第1の集合の要素及び前記第2の集合の要素を前記類似度に応じて並べ替え、
前記表示部に、一方の軸に前記並べ替えられた第1の集合の要素を配置し、他方の軸に前記並べ替えられた第2の集合の要素を配置した2次元座標を表示し、該2次元座標上の各座標点に、対応する一方の軸の要素と他方の軸の要素の関連度を表示することを特徴とする文書情報表示システム。 - 検索要求を入力する入力部と、
前記入力部から入力された検索要求に従って文書データベースを検索し、検索結果を出力する検索部と、
第1の集合の各要素と、第2の集合の各要素の間の関連度を計算する関連度計算部と、
階層型クラスタリング部と、
表示部とを備え、
前記関連度計算部は、前記検索によって得られた文書の集合又は文書中の文の集合を第1の集合とし、前記検索によって得られた文書集合の集合、文書の集合、又は文の集合を第2の集合として、各要素の間の関連度を計算し、
前記階層型クラスタリング部は、前記第1の集合の要素の間の類似度及び前記第2の集合の要素の間の類似度を計算し、前記第1の集合の要素及び前記第2の集合の要素を前記類似度に応じて並べ替え、
前記表示部に、一方の軸に前記並べ替えられた第1の集合の要素を配置し、他方の軸に前記並べ替えられた第2の集合の要素を配置した2次元座標を表示し、該2次元座標上の各座標点に、対応する一方の軸の要素と他方の軸の要素の関連度を表示することを特徴とする文書情報表示システム。 - 請求項1又は2記載の文書情報表示システムにおいて、前記座標点に、前記関連度の強さに応じた明度又は彩度を有する色あるいは前記関連度の強さに応じたサイズを有する図形を表示することを特徴とする文書情報表示システム。
- 請求項1又は2記載の文書情報表示システムにおいて、前記2次元座標上の指定範囲を拡大表示する機能を有することを特徴とする文書情報表示システム。
- 文書データベースを検索する検索部と、
単語抽出部と、
第1の集合の各要素と、第2の集合の各要素の間の関連度を計算する関連度計算部と、
階層型クラスタリング部と、
表示部と
を備える検索システムを用いた複数の文書に関する情報を画面表示する方法において、
前記検索部が、入力された検索要求に従って文書データベースを検索するステップ、
前記単語抽出部が、前記検索部によって検索された文書集合から単語集合を抽出するステップ、
前記関連度計算部が、前記検索によって得られた文書の集合又は文書中の文の集合を第1の集合とし、前記検索によって得られた文書集合の集合、文書の集合、文の集合又は前記抽出された単語集合を第2の集合として、第1の集合の各要素と第2の集合の各要素の間の関連度を計算するステップ、
前記階層型クラスタリング部が、前記第1の集合の要素の間の類似度及び前記第2の集合の要素の間の類似度を計算し、前記第1の集合の要素及び前記第2の集合の要素を前記類似度に応じて並べ替えるステップ、
前記表示部に、一方の軸に前記並べ替えられた第1の集合の要素を配置し、他方の軸に前記並べ替えられた第2の集合の要素を配置した2次元座標上の各座標点に、対応する一方の軸の要素と他方の軸の要素の関連度を表示するステップ
を実行する文書情報表示方法。 - 文書データベースを検索する検索部と、
第1の集合の各要素と、第2の集合の各要素の間の関連度を計算する関連度計算部と、
階層型クラスタリング部と、
表示部と
を備える検索システムを用いた複数の文書に関する情報を画面表示する方法において、
前記検索部が、入力された検索要求に従って文書データベースを検索するステップ、
前記関連度計算部が、前記検索によって得られた文書の集合又は文書中の文の集合を第1の集合とし、前記検索によって得られた文書集合の集合、文書の集合、又は文の集合を第2の集合として、各要素の間の関連度を計算するステップ、
前記階層型クラスタリング部が、前記第1の集合の要素の間の類似度及び前記第2の要素の間の類似度を計算し、前記第1の要素及び前記第2の要素を前記類似度に応じて並べ替えるステップ、
前記表示部に、一方の軸に前記並べ替えられた第1の集合の要素を配置し、他方の軸に前記並べ替えられた第2の集合の要素を配置した2次元座標上の各座標点に、対応する一方の軸の要素と他方の軸の要素の関連度を表示するステップ
を実行する文書情報表示方法。 - 請求項5又は6記載の文書情報表示方法において、前記座標点に、前記関連度の強さに応じた明度又は彩度の色あるいは前記関連度の強さに応じたサイズの図形を表示することを特徴とする文書情報表示方法。
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002152594A JP4116329B2 (ja) | 2002-05-27 | 2002-05-27 | 文書情報表示システム、文書情報表示方法及び文書検索方法 |
| US10/374,091 US7047255B2 (en) | 2002-05-27 | 2003-02-27 | Document information display system and method, and document search method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2002152594A JP4116329B2 (ja) | 2002-05-27 | 2002-05-27 | 文書情報表示システム、文書情報表示方法及び文書検索方法 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2005312942A Division JP2006127523A (ja) | 2005-10-27 | 2005-10-27 | 文書情報表示システム |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2003345811A JP2003345811A (ja) | 2003-12-05 |
| JP4116329B2 true JP4116329B2 (ja) | 2008-07-09 |
Family
ID=29545406
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2002152594A Expired - Fee Related JP4116329B2 (ja) | 2002-05-27 | 2002-05-27 | 文書情報表示システム、文書情報表示方法及び文書検索方法 |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US7047255B2 (ja) |
| JP (1) | JP4116329B2 (ja) |
Families Citing this family (44)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP4025517B2 (ja) * | 2001-05-31 | 2007-12-19 | 株式会社日立製作所 | 文書検索システムおよびサーバ |
| US20030004996A1 (en) * | 2001-06-29 | 2003-01-02 | International Business Machines Corporation | Method and system for spatial information retrieval for hyperlinked documents |
| US7296015B2 (en) * | 2002-10-17 | 2007-11-13 | Poltorak Alexander I | Apparatus and method for identifying and/or for analyzing potential patent infringement |
| US7792832B2 (en) * | 2002-10-17 | 2010-09-07 | Poltorak Alexander I | Apparatus and method for identifying potential patent infringement |
| US7801909B2 (en) * | 2002-10-17 | 2010-09-21 | Poltorak Alexander I | Apparatus and method for identifying and/or for analyzing potential patent infringement |
| US7904453B2 (en) * | 2002-10-17 | 2011-03-08 | Poltorak Alexander I | Apparatus and method for analyzing patent claim validity |
| JP4014160B2 (ja) * | 2003-05-30 | 2007-11-28 | インターナショナル・ビジネス・マシーンズ・コーポレーション | 情報処理装置、プログラム、及び記録媒体 |
| GB2403636A (en) * | 2003-07-02 | 2005-01-05 | Sony Uk Ltd | Information retrieval using an array of nodes |
| US7475087B1 (en) * | 2003-08-29 | 2009-01-06 | The United States Of America As Represented By The Secretary Of Agriculture | Computer display tool for visualizing relationships between and among data |
| AU2004282733A1 (en) * | 2003-10-21 | 2005-04-28 | Intellectual Property Bank Corp. | Document characteristic analysis device for document to be surveyed |
| US20050114169A1 (en) * | 2003-11-24 | 2005-05-26 | Hazim Ansari | Systems and methods for evaluating information to identify, and act upon, intellectual property issues |
| US20050160080A1 (en) * | 2004-01-16 | 2005-07-21 | The Regents Of The University Of California | System and method of context-specific searching in an electronic database |
| JP4202287B2 (ja) * | 2004-03-15 | 2008-12-24 | 公策 大久保 | 注目する情報について複数のタームを用いて記述されてなる文章テキストからなる情報オブジェクトをコンピュータで可視的に処理するためのシステム及びそのためのコンピュータソフトウエア |
| JP4639734B2 (ja) * | 2004-09-30 | 2011-02-23 | 富士ゼロックス株式会社 | スライドコンテンツ処理装置およびプログラム |
| US20060106760A1 (en) * | 2004-10-29 | 2006-05-18 | Netzer Moriya | Method and apparatus of inter-document data retrieval |
| JP2007004233A (ja) | 2005-06-21 | 2007-01-11 | Yamatake Corp | 文章分類装置、文章分類方法、およびプログラム |
| US20070028189A1 (en) * | 2005-07-27 | 2007-02-01 | Microsoft Corporation | Hierarchy highlighting |
| JP4886266B2 (ja) * | 2005-10-11 | 2012-02-29 | 株式会社東芝 | 文献調査方法、文献調査システムおよび文献調査プログラム |
| US7636884B2 (en) * | 2005-12-06 | 2009-12-22 | Yueh Heng Goffin | Visually enhanced text and method of preparation |
| WO2007069663A1 (ja) * | 2005-12-13 | 2007-06-21 | Intellectual Property Bank Corp. | 技術文書属性の関連性分析支援装置 |
| WO2007069408A1 (ja) * | 2005-12-13 | 2007-06-21 | Intellectual Property Bank Corp. | 技術文書属性の関連性分析支援装置 |
| CN100524307C (zh) * | 2006-06-27 | 2009-08-05 | 国际商业机器公司 | 一种建立文档间关联关系的方法和装置 |
| JP4769151B2 (ja) * | 2006-09-01 | 2011-09-07 | 日本電信電話株式会社 | 文書集合分析装置,文書集合分析方法,その方法を実装したプログラム及びそのプログラムを格納した記録媒体 |
| JP2008107867A (ja) * | 2006-10-23 | 2008-05-08 | Hitachi Ltd | コミュニティ抽出方法、コミュニティ抽出処理装置 |
| WO2008143116A1 (ja) | 2007-05-17 | 2008-11-27 | So-Ti, Inc. | 文書検索装置及び文書検索方法 |
| JP5268373B2 (ja) * | 2008-01-24 | 2013-08-21 | 東芝医療情報システムズ株式会社 | 電子カルテシステム、カルテボリュームインジケータ制御方法、インジケータバーの検索表示方法およびカルテボリュームインジケータプログラム |
| JP5155710B2 (ja) * | 2008-03-25 | 2013-03-06 | 株式会社 日立東日本ソリューションズ | 文書群分析支援装置 |
| JP2009252185A (ja) * | 2008-04-10 | 2009-10-29 | Ricoh Co Ltd | 情報検索装置、情報検索方法、制御プログラム及び記録媒体 |
| TW201013426A (en) * | 2008-09-19 | 2010-04-01 | Esobi Inc | Combination method for document clusters |
| US8892574B2 (en) | 2008-11-26 | 2014-11-18 | Nec Corporation | Search apparatus, search method, and non-transitory computer readable medium storing program that input a query representing a subset of a document set stored to a document database and output a keyword that often appears in the subset |
| EP2241983B1 (en) | 2009-04-17 | 2012-12-19 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for searching objects in a database |
| JP5132667B2 (ja) * | 2009-12-15 | 2013-01-30 | 株式会社東芝 | 情報処理装置およびプログラム |
| JP5023176B2 (ja) * | 2010-03-19 | 2012-09-12 | 株式会社東芝 | 特徴語抽出装置及びプログラム |
| US10019995B1 (en) | 2011-03-01 | 2018-07-10 | Alice J. Stiebel | Methods and systems for language learning based on a series of pitch patterns |
| US11062615B1 (en) | 2011-03-01 | 2021-07-13 | Intelligibility Training LLC | Methods and systems for remote language learning in a pandemic-aware world |
| US9830620B2 (en) * | 2013-03-14 | 2017-11-28 | Igor Gershteyn | Method and system for data structure creation, organization and searching using basic atomic units of information |
| US9223769B2 (en) | 2011-09-21 | 2015-12-29 | Roman Tsibulevskiy | Data processing systems, devices, and methods for content analysis |
| CN103502919A (zh) * | 2012-02-21 | 2014-01-08 | 松下电器产业株式会社 | 菜谱提示装置以及菜谱提示方法 |
| US9348846B2 (en) | 2012-07-02 | 2016-05-24 | Google Inc. | User-navigable resource representations |
| JP6372165B2 (ja) * | 2014-05-26 | 2018-08-15 | 富士ゼロックス株式会社 | デザイン管理装置及びプログラム |
| CN106776659B (zh) * | 2015-11-25 | 2021-06-11 | 腾讯科技(深圳)有限公司 | 基于景点成分识别的检索结果排序方法、装置、用户终端 |
| JP6403850B1 (ja) * | 2017-08-30 | 2018-10-10 | Nsフィナンシャルマネジメントコンサルティング株式会社 | 情報処理装置、情報処理方法及びプログラム |
| US11689507B2 (en) * | 2019-11-26 | 2023-06-27 | Adobe Inc. | Privacy preserving document analysis |
| KR102669258B1 (ko) * | 2021-02-25 | 2024-05-24 | 덕성여자대학교 산학협력단 | 대규모 시계열 데이터를 시각화하는 사용자 인터페이스 제공 방법 및 이를 지원하는 전자 장치 |
Family Cites Families (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0736922A (ja) * | 1993-07-19 | 1995-02-07 | Sumitomo Metal Mining Co Ltd | 情報の検索処理システム |
| US6081804A (en) * | 1994-03-09 | 2000-06-27 | Novell, Inc. | Method and apparatus for performing rapid and multi-dimensional word searches |
| US5625767A (en) * | 1995-03-13 | 1997-04-29 | Bartell; Brian | Method and system for two-dimensional visualization of an information taxonomy and of text documents based on topical content of the documents |
| JPH08320881A (ja) * | 1995-05-25 | 1996-12-03 | Tokyo Gas Co Ltd | 文書検索システム |
| US5675710A (en) * | 1995-06-07 | 1997-10-07 | Lucent Technologies, Inc. | Method and apparatus for training a text classifier |
| JPH0962693A (ja) | 1995-08-24 | 1997-03-07 | Hitachi Ltd | 確率モデルによる文書分類方法 |
| US6457004B1 (en) * | 1997-07-03 | 2002-09-24 | Hitachi, Ltd. | Document retrieval assisting method, system and service using closely displayed areas for titles and topics |
| US6298174B1 (en) * | 1996-08-12 | 2001-10-02 | Battelle Memorial Institute | Three-dimensional display of document set |
| US6038561A (en) * | 1996-10-15 | 2000-03-14 | Manning & Napier Information Services | Management and analysis of document information text |
| JP2000011078A (ja) * | 1998-06-25 | 2000-01-14 | Gijutsu Transfer Service:Kk | 電子データ集計方法およびデータのグラフ化方法並びに電子データ集計とデータのグラフ化のプログラムを記録したコンピュータ読取可能な記録媒体 |
| JP2000148760A (ja) * | 1998-11-05 | 2000-05-30 | Inpatekku Kk | 情報分析方法及び情報分析装置 |
| US6574632B2 (en) * | 1998-11-18 | 2003-06-03 | Harris Corporation | Multiple engine information retrieval and visualization system |
| JP3463010B2 (ja) * | 1999-09-17 | 2003-11-05 | Necエレクトロニクス株式会社 | 情報処理装置および情報処理方法 |
| US6738518B1 (en) * | 2000-05-12 | 2004-05-18 | Xerox Corporation | Document image decoding using text line column-based heuristic scoring |
| JP2002245070A (ja) * | 2001-02-20 | 2002-08-30 | Hitachi Ltd | データ表示方法及び装置並びにその処理プログラムを記憶した媒体 |
-
2002
- 2002-05-27 JP JP2002152594A patent/JP4116329B2/ja not_active Expired - Fee Related
-
2003
- 2003-02-27 US US10/374,091 patent/US7047255B2/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| JP2003345811A (ja) | 2003-12-05 |
| US7047255B2 (en) | 2006-05-16 |
| US20030220916A1 (en) | 2003-11-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP4116329B2 (ja) | 文書情報表示システム、文書情報表示方法及び文書検索方法 | |
| JP3781696B2 (ja) | イメージ検索方法及び検索装置 | |
| US10997678B2 (en) | Systems and methods for image searching of patent-related documents | |
| CN103294815B (zh) | 基于关键字分类并有多种呈现方式的搜索引擎装置与方法 | |
| US7133860B2 (en) | Device and method for automatically classifying documents using vector analysis | |
| Barbosa et al. | Organizing hidden-web databases by clustering visible web documents | |
| Hoeber et al. | The visual exploration ofweb search results using hotmap | |
| US20070288442A1 (en) | System and a program for searching documents | |
| JP2005038386A (ja) | 文章分類装置および方法 | |
| US20180341686A1 (en) | System and method for data search based on top-to-bottom similarity analysis | |
| JP2000311246A (ja) | 類似画像表示方法及び類似画像表示処理プログラムを格納した記録媒体 | |
| JP3577822B2 (ja) | 情報提示装置及び情報提示方法 | |
| JP2006127523A (ja) | 文書情報表示システム | |
| JPH08263514A (ja) | 文書の自動分類方法、および情報空間の可視化方法、ならびに情報検索システム | |
| JP2001337971A (ja) | 文書分類装置、文書分類方法及び文書分類方法のプログラムを記録した記憶媒体 | |
| JP2002324077A (ja) | 文書検索装置および文書検索方法 | |
| Boyack et al. | Information visualization, human-computer interaction, and cognitive psychology: Domain visualizations | |
| JP2002056009A (ja) | 文書分類方法および装置 | |
| JPH1185794A (ja) | 検索語入力装置および検索語入力プログラムを記録した記録媒体 | |
| Hwang et al. | A befitting image data crawling and annotating system with cnn based transfer learning | |
| JP2011018152A (ja) | 情報提示装置、情報提示方法およびプログラム | |
| KR100809751B1 (ko) | 문서분석 시스템 및 그 방법 | |
| JP4189251B2 (ja) | キーワード解析方法及びそれに使用するプログラム | |
| Li et al. | Clustering web search results using conceptual grouping | |
| Atlam | A new approach for text similarity using articles |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050524 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050725 |
|
| A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050927 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080307 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080417 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110425 Year of fee payment: 3 |
|
| R151 | Written notification of patent or utility model registration |
Ref document number: 4116329 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110425 Year of fee payment: 3 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120425 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120425 Year of fee payment: 4 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130425 Year of fee payment: 5 |
|
| FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140425 Year of fee payment: 6 |
|
| LAPS | Cancellation because of no payment of annual fees |