JP2025059012A - system - Google Patents
system Download PDFInfo
- Publication number
- JP2025059012A JP2025059012A JP2024163174A JP2024163174A JP2025059012A JP 2025059012 A JP2025059012 A JP 2025059012A JP 2024163174 A JP2024163174 A JP 2024163174A JP 2024163174 A JP2024163174 A JP 2024163174A JP 2025059012 A JP2025059012 A JP 2025059012A
- Authority
- JP
- Japan
- Prior art keywords
- voice
- unit
- data
- user
- generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Abstract
Description
æ¬éç€ºã®æè¡ã¯ãã·ã¹ãã ã«é¢ããã The technology disclosed herein relates to a system.
ç¹èš±æç®ïŒã«ã¯ãå°ãªããšãäžã€ã®ããã»ããµã«ããéè¡ãããããã«ãœããã£ãããããå¶åŸ¡æ¹æ³ã§ãã£ãŠããŠãŒã¶çºè©±ãåä¿¡ããã¹ããããšãåèšãŠãŒã¶çºè©±ãããã£ãããããã®ãã£ã©ã¯ã¿ãŒã«é¢ãã説æãšé¢é£ããæç€ºæãå«ãããã³ããã«è¿œå ããã¹ããããšåèšããã³ããããšã³ã³ãŒãããã¹ããããšãåèšãšã³ã³ãŒãããããã³ãããèšèªã¢ãã«ã«å ¥åããŠãåèšãŠãŒã¶çºè©±ã«å¿çãããã£ãããããçºè©±ãçæããã¹ãããããå«ããæ¹æ³ãé瀺ãããŠããã Patent document 1 discloses a persona chatbot control method performed by at least one processor, the method including the steps of receiving a user utterance, adding the user utterance to a prompt including a description of the chatbot character and an associated instruction sentence, encoding the prompt, and inputting the encoded prompt into a language model to generate a chatbot utterance in response to the user utterance.
åŸæ¥ã®æè¡ã§ã¯ãé³å£°ããŒã¿ãè§£æããé©åãªè¿çãçæããŠé³å£°åããããã»ã¹ãèªååãããŠããããæ¹åã®äœå°ãããã Conventional technology does not automate the process of analyzing voice data and generating appropriate responses and converting them into voice, leaving room for improvement.
宿œåœ¢æ ã«ä¿ãã·ã¹ãã ã¯ãé³å£°ããŒã¿ãè§£æããé©åãªè¿çãèªåçã«çæããŠé³å£°åããããšãç®çãšããã The system according to the embodiment aims to analyze voice data and automatically generate and voice appropriate responses.
宿œåœ¢æ ã«ä¿ãã·ã¹ãã ã¯ãè§£æéšãšãçæéšãšãé³å£°åéšãšãåãããè§£æéšã¯ãé³å£°ããŒã¿ãè§£æãããçæéšã¯ãè§£æéšã«ãã£ãŠè§£æãããããŒã¿ã«åºã¥ããŠè¿çãçæãããé³å£°åéšã¯ãçæéšã«ãã£ãŠçæãããè¿çãé³å£°åããã The system according to the embodiment includes an analysis unit, a generation unit, and a voice conversion unit. The analysis unit analyzes the voice data. The generation unit generates a response based on the data analyzed by the analysis unit. The voice conversion unit voices the response generated by the generation unit.
宿œåœ¢æ ã«ä¿ãã·ã¹ãã ã¯ãé³å£°ããŒã¿ãè§£æããé©åãªè¿çãèªåçã«çæããŠé³å£°åããããšãã§ããã The system according to the embodiment can analyze voice data and automatically generate and voice appropriate responses.
以äžãæ·»ä»å³é¢ã«åŸã£ãŠæ¬éç€ºã®æè¡ã«ä¿ãã·ã¹ãã ã®å®æœåœ¢æ ã®äžäŸã«ã€ããŠèª¬æããã Below, an example of an embodiment of a system related to the technology disclosed herein is described with reference to the attached drawings.
å ãã以äžã®èª¬æã§äœ¿çšãããæèšã«ã€ããŠèª¬æããã First, let us explain the terminology used in the following explanation.
以äžã®å®æœåœ¢æ ã«ãããŠã笊å·ä»ãã®ããã»ããµïŒä»¥äžãåã«ãããã»ããµããšç§°ããïŒã¯ãïŒã€ã®æŒç®è£ 眮ã§ãã£ãŠãããããè€æ°ã®æŒç®è£ 眮ã®çµã¿åããã§ãã£ãŠãããããŸããããã»ããµã¯ãïŒçš®é¡ã®æŒç®è£ 眮ã§ãã£ãŠãããããè€æ°çš®é¡ã®æŒç®è£ 眮ã®çµã¿åããã§ãã£ãŠããããæŒç®è£ 眮ã®äžäŸãšããŠã¯ãïŒCentral Processing UnitïŒãïŒGraphics Processing UnitïŒãïŒGeneral-Purpose computing on Graphics Processing UnitsïŒãïŒAccelerated Processing UnitïŒããŸãã¯ïŒŽïŒ°ïŒµïŒTensor Processing UnitïŒãªã©ãæããããã In the following embodiments, the signed processor (hereinafter simply referred to as the "processor") may be a single arithmetic device or a combination of multiple arithmetic devices. The processor may be a single type of arithmetic device or a combination of multiple types of arithmetic devices. Examples of arithmetic devices include a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a GPGPU (General-Purpose computing on Graphics Processing Units), an APU (Accelerated Processing Unit), or a TPU (Tensor Processing Unit).
以äžã®å®æœåœ¢æ ã«ãããŠã笊å·ä»ãã®ïŒ²ïŒ¡ïŒïŒRandom Access MemoryïŒã¯ãäžæçã«æ å ±ãæ ŒçŽãããã¡ã¢ãªã§ãããããã»ããµã«ãã£ãŠã¯ãŒã¯ã¡ã¢ãªãšããŠçšããããã In the following embodiments, a signed random access memory (RAM) is a memory in which information is temporarily stored and is used as a working memory by the processor.
以äžã®å®æœåœ¢æ ã«ãããŠã笊å·ä»ãã®ã¹ãã¬ãŒãžã¯ãåçš®ããã°ã©ã ããã³åçš®ãã©ã¡ãŒã¿ãªã©ãèšæ¶ããïŒã€ãŸãã¯è€æ°ã®äžæ®çºæ§ã®èšæ¶è£ 眮ã§ãããäžæ®çºæ§ã®èšæ¶è£ 眮ã®äžäŸãšããŠã¯ããã©ãã·ã¥ã¡ã¢ãªïŒïŒ³ïŒ³ïŒ€ïŒSolid State DriveïŒïŒãç£æ°ãã£ã¹ã¯ïŒäŸãã°ãããŒããã£ã¹ã¯ïŒããŸãã¯ç£æ°ããŒããªã©ãæããããã In the following embodiments, the coded storage is one or more non-volatile storage devices that store various programs and various parameters. Examples of non-volatile storage devices include flash memory (Solid State Drive (SSD)), magnetic disks (e.g., hard disks), and magnetic tapes.
以äžã®å®æœåœ¢æ ã«ãããŠã笊å·ä»ãã®é信ïŒïŒŠïŒInterfaceïŒã¯ãéä¿¡ããã»ããµããã³ã¢ã³ãããªã©ãå«ãã€ã³ã¿ãã§ãŒã¹ã§ãããé信ïŒïŒŠã¯ãè€æ°ã®ã³ã³ãã¥ãŒã¿éã§ã®éä¿¡ãåžããé信ïŒïŒŠã«å¯ŸããŠé©çšãããéä¿¡èŠæ Œã®äžäŸãšããŠã¯ãïŒïŒ§ïŒ5th Generation Mobile Communication SystemïŒãïœïŒïŒŠïœïŒç»é²åæšïŒããŸãã¯ïŒ¢ïœïœïœ ïœïœïœïœïœïŒç»é²åæšïŒãªã©ãå«ãç¡ç·éä¿¡èŠæ Œãæããããã In the following embodiments, a communication I/F (Interface) with a code is an interface including a communication processor and an antenna. The communication I/F controls communication between multiple computers. Examples of communication standards applied to the communication I/F include wireless communication standards including 5G (5th Generation Mobile Communication System), Wi-Fi (registered trademark), and Bluetooth (registered trademark).
以äžã®å®æœåœ¢æ ã«ãããŠããããã³ïŒãŸãã¯ïŒ¢ãã¯ããããã³ïŒ¢ã®ãã¡ã®å°ãªããšãïŒã€ããšå矩ã§ãããã€ãŸãããããã³ïŒãŸãã¯ïŒ¢ãã¯ãã ãã§ãã£ãŠãããããã ãã§ãã£ãŠãããããããã³ïŒ¢ã®çµã¿åããã§ãã£ãŠãããããšããæå³ã§ããããŸããæ¬æçްæžã«ãããŠãïŒã€ä»¥äžã®äºæããããã³ïŒãŸãã¯ãã§çµã³ä»ããŠè¡šçŸããå Žåãããããã³ïŒãŸãã¯ïŒ¢ããšåæ§ã®èãæ¹ãé©çšãããã In the following embodiments, "A and/or B" is synonymous with "at least one of A and B." In other words, "A and/or B" means that it may be only A, only B, or a combination of A and B. In addition, in this specification, the same concept as "A and/or B" is also applied when three or more things are expressed by connecting them with "and/or."
第ïŒå®æœåœ¢æ

å³ïŒã«ã¯ã第ïŒå®æœåœ¢æ
ã«ä¿ãããŒã¿åŠçã·ã¹ãã ïŒïŒã®æ§æã®äžäŸã瀺ãããŠããã
[First embodiment]
FIG. 1 shows an example of the configuration of a
å³ïŒã«ç€ºãããã«ãããŒã¿åŠçã·ã¹ãã ïŒïŒã¯ãããŒã¿åŠçè£
眮ïŒïŒããã³ã¹ããŒãããã€ã¹ïŒïŒãåããŠãããããŒã¿åŠçè£
眮ïŒïŒã®äžäŸãšããŠã¯ããµãŒããæããããã
As shown in FIG. 1, the
ããŒã¿åŠçè£
眮ïŒïŒã¯ãã³ã³ãã¥ãŒã¿ïŒïŒãããŒã¿ããŒã¹ïŒïŒãããã³é信ïŒïŒŠïŒïŒãåããŠãããã³ã³ãã¥ãŒã¿ïŒïŒã¯ãããã»ããµïŒïŒãïŒïŒïŒãããã³ã¹ãã¬ãŒãžïŒïŒãåããŠãããããã»ããµïŒïŒãïŒïŒïŒãããã³ã¹ãã¬ãŒãžïŒïŒã¯ããã¹ïŒïŒã«æ¥ç¶ãããŠããããŸããããŒã¿ããŒã¹ïŒïŒããã³é信ïŒïŒŠïŒïŒãããã¹ïŒïŒã«æ¥ç¶ãããŠãããé信ïŒïŒŠïŒïŒã¯ããããã¯ãŒã¯ïŒïŒã«æ¥ç¶ãããŠããããããã¯ãŒã¯ïŒïŒã®äžäŸãšããŠã¯ãïŒWide Area NetworkïŒããã³ïŒãŸãã¯ïŒ¬ïŒ¡ïŒ®ïŒLocal Area NetworkïŒãªã©ãæããããã
The
ã¹ããŒãããã€ã¹ïŒïŒã¯ãã³ã³ãã¥ãŒã¿ïŒïŒãåä»è£
眮ïŒïŒãåºåè£
眮ïŒïŒãã«ã¡ã©ïŒïŒãããã³é信ïŒïŒŠïŒïŒãåããŠãããã³ã³ãã¥ãŒã¿ïŒïŒã¯ãããã»ããµïŒïŒãïŒïŒïŒãããã³ã¹ãã¬ãŒãžïŒïŒãåããŠãããããã»ããµïŒïŒãïŒïŒïŒãããã³ã¹ãã¬ãŒãžïŒïŒã¯ããã¹ïŒïŒã«æ¥ç¶ãããŠããããŸããåä»è£
眮ïŒïŒãåºåè£
眮ïŒïŒãããã³ã«ã¡ã©ïŒïŒãããã¹ïŒïŒã«æ¥ç¶ãããŠããã
The
åä»è£
眮ïŒïŒã¯ãã¿ããããã«ïŒïŒïŒ¡ããã³ãã€ã¯ããã©ã³ïŒïŒïŒ¢ãªã©ãåããŠããããŠãŒã¶å
¥åãåãä»ãããã¿ããããã«ïŒïŒïŒ¡ã¯ãæç€ºäœïŒäŸãã°ããã³ãŸãã¯æãªã©ïŒã®æ¥è§Šãæ€åºããããšã«ãããæç€ºäœã®æ¥è§Šã«ãããŠãŒã¶å
¥åãåãä»ããããã€ã¯ããã©ã³ïŒïŒïŒ¢ã¯ããŠãŒã¶ã®é³å£°ãæ€åºããããšã«ãããé³å£°ã«ãããŠãŒã¶å
¥åãåãä»ãããå¶åŸ¡éšïŒïŒïŒ¡ã¯ãã¿ããããã«ïŒïŒïŒ¡ããã³ãã€ã¯ããã©ã³ïŒïŒïŒ¢ã«ãã£ãŠåãä»ãããŠãŒã¶å
¥åã瀺ãããŒã¿ãããŒã¿åŠçè£
眮ïŒïŒã«éä¿¡ãããããŒã¿åŠçè£
眮ïŒïŒã§ã¯ãç¹å®åŠçéšïŒïŒïŒïŒå³ïŒåç
§ïŒãããŠãŒã¶å
¥åã瀺ãããŒã¿ãååŸããã
The
åºåè£
眮ïŒïŒã¯ããã£ã¹ãã¬ã€ïŒïŒïŒ¡ããã³ã¹ããŒã«ïŒïŒïŒ¢ãªã©ãåããŠãããããŒã¿ããŠãŒã¶ãç¥èŠå¯èœãªè¡šçŸåœ¢ïŒäŸãã°ãé³å£°ããã³ïŒãŸãã¯ããã¹ãïŒã§åºåããããšã§ããŒã¿ããŠãŒã¶ã«å¯ŸããŠæç€ºããããã£ã¹ãã¬ã€ïŒïŒïŒ¡ã¯ãããã»ããµïŒïŒããã®æç€ºã«åŸã£ãŠããã¹ãããã³ç»åãªã©ã®å¯èŠæ
å ±ã衚瀺ãããã¹ããŒã«ïŒïŒïŒ¢ã¯ãããã»ããµïŒïŒããã®æç€ºã«åŸã£ãŠé³å£°ãåºåãããã«ã¡ã©ïŒïŒã¯ãã¬ã³ãºãçµããããã³ã·ã£ãã¿ãªã©ã®å
åŠç³»ãšãïŒïŒ¯ïŒ³ïŒComplementary Metal-Oxide-SemiconductorïŒã€ã¡ãŒãžã»ã³ãµãŸãã¯ïŒ£ïŒ£ïŒ€ïŒCharge Coupled DeviceïŒã€ã¡ãŒãžã»ã³ãµãªã©ã®æ®åçŽ åãšãæèŒãããå°åããžã¿ã«ã«ã¡ã©ã§ããã
The
é信ïŒïŒŠïŒïŒã¯ããããã¯ãŒã¯ïŒïŒã«æ¥ç¶ãããŠãããé信ïŒïŒŠïŒïŒããã³ïŒïŒã¯ããããã¯ãŒã¯ïŒïŒãä»ããŠããã»ããµïŒïŒãšããã»ããµïŒïŒãšã®éã®åçš®æ
å ±ã®æåãåžãã
The communication I/
å³ïŒã«ã¯ãããŒã¿åŠçè£
眮ïŒïŒããã³ã¹ããŒãããã€ã¹ïŒïŒã®èŠéšæ©èœã®äžäŸã瀺ãããŠããã
Figure 2 shows an example of the main functions of the
å³ïŒã«ç€ºãããã«ãããŒã¿åŠçè£
眮ïŒïŒã§ã¯ãããã»ããµïŒïŒã«ãã£ãŠç¹å®åŠçãè¡ããããã¹ãã¬ãŒãžïŒïŒã«ã¯ãç¹å®åŠçããã°ã©ã ïŒïŒãæ ŒçŽãããŠãããç¹å®åŠçããã°ã©ã ïŒïŒã¯ãæ¬éç€ºã®æè¡ã«ä¿ããããã°ã©ã ãã®äžäŸã§ãããããã»ããµïŒïŒã¯ãã¹ãã¬ãŒãžïŒïŒããç¹å®åŠçããã°ã©ã ïŒïŒãèªã¿åºããèªã¿åºããç¹å®åŠçããã°ã©ã ïŒïŒãïŒïŒïŒäžã§å®è¡ãããç¹å®åŠçã¯ãããã»ããµïŒïŒãïŒïŒïŒäžã§å®è¡ããç¹å®åŠçããã°ã©ã ïŒïŒã«åŸã£ãŠç¹å®åŠçéšïŒïŒïŒãšããŠåäœããããšã«ãã£ãŠå®çŸãããã
As shown in FIG. 2, in the
ã¹ãã¬ãŒãžïŒïŒã«ã¯ãããŒã¿çæã¢ãã«ïŒïŒããã³ææ
ç¹å®ã¢ãã«ïŒïŒãæ ŒçŽãããŠãããããŒã¿çæã¢ãã«ïŒïŒããã³ææ
ç¹å®ã¢ãã«ïŒïŒã¯ãç¹å®åŠçéšïŒïŒïŒã«ãã£ãŠçšãããããç¹å®åŠçéšïŒïŒïŒã¯ãææ
ç¹å®ã¢ãã«ïŒïŒãçšããŠãŠãŒã¶ã®ææ
ãæšå®ãããŠãŒã¶ã®ææ
ãçšããç¹å®åŠçãè¡ãããšãã§ãããææ
ç¹å®ã¢ãã«ïŒïŒãçšããææ
æšå®æ©èœïŒææ
ç¹å®æ©èœïŒã§ã¯ããŠãŒã¶ã®ææ
ã®æšå®ãäºæž¬ãªã©ãå«ãããŠãŒã¶ã®ææ
ã«é¢ããçš®ã
ã®æšå®ãäºæž¬ãªã©ãè¡ããããããããäŸã«éå®ãããªãããŸããææ
ã®æšå®ãäºæž¬ã«ã¯ãäŸãã°ãææ
ã®åæïŒè§£æïŒãªã©ãå«ãŸããã
The
ã¹ããŒãããã€ã¹ïŒïŒã§ã¯ãããã»ããµïŒïŒã«ãã£ãŠç¹å®åŠçãè¡ããããã¹ãã¬ãŒãžïŒïŒã«ã¯ãç¹å®åŠçããã°ã©ã ïŒïŒãæ ŒçŽãããŠãããç¹å®åŠçããã°ã©ã ïŒïŒã¯ãããŒã¿åŠçã·ã¹ãã ïŒïŒã«ãã£ãŠç¹å®åŠçããã°ã©ã ïŒïŒãšäœµçšããããããã»ããµïŒïŒã¯ãã¹ãã¬ãŒãžïŒïŒããç¹å®åŠçããã°ã©ã ïŒïŒãèªã¿åºããèªã¿åºããç¹å®åŠçããã°ã©ã ïŒïŒãïŒïŒïŒäžã§å®è¡ãããç¹å®åŠçã¯ãããã»ããµïŒïŒãïŒïŒïŒäžã§å®è¡ããç¹å®åŠçããã°ã©ã ïŒïŒã«åŸã£ãŠãå¶åŸ¡éšïŒïŒïŒ¡ãšããŠåäœããããšã«ãã£ãŠå®çŸãããããªããã¹ããŒãããã€ã¹ïŒïŒã«ã¯ãããŒã¿çæã¢ãã«ïŒïŒããã³ææ
ç¹å®ã¢ãã«ïŒïŒãšåæ§ã®ããŒã¿çæã¢ãã«ããã³ææ
ç¹å®ã¢ãã«ãæãããããã¢ãã«ãçšããŠç¹å®åŠçéšïŒïŒïŒãšåæ§ã®åŠçãè¡ãããšãã§ããã
In the
ãªããããŒã¿åŠçè£
眮ïŒïŒä»¥å€ã®ä»ã®è£
眮ãããŒã¿çæã¢ãã«ïŒïŒãæããŠããããäŸãã°ããµãŒãè£
眮ïŒäŸãã°ãçæãµãŒãïŒãããŒã¿çæã¢ãã«ïŒïŒãæããŠãããããã®å ŽåãããŒã¿åŠçè£
眮ïŒïŒã¯ãããŒã¿çæã¢ãã«ïŒïŒãæãããµãŒãè£
眮ãšéä¿¡ãè¡ãããšã§ãããŒã¿çæã¢ãã«ïŒïŒãçšããããåŠççµæïŒäºæž¬çµæãªã©ïŒãåŸãããŸããããŒã¿åŠçè£
眮ïŒïŒã¯ããµãŒãè£
眮ã§ãã£ãŠããããããŠãŒã¶ãä¿æãã端æ«è£
眮ïŒäŸãã°ãæºåž¯é»è©±ããããããå®¶é»ãªã©ïŒã§ãã£ãŠããããæ¬¡ã«ã第ïŒå®æœåœ¢æ
ã«ä¿ãããŒã¿åŠçã·ã¹ãã ïŒïŒã«ããåŠçã®äžäŸã«ã€ããŠèª¬æããã
Note that a device other than the
ïŒåœ¢æ
äŸïŒïŒ
æ¬çºæã®å®æœåœ¢æ
ã«ä¿ã顧客察å¿èªååã·ã¹ãã ã¯ãå€§èŠæš¡é³å£°ããŒã¿ã䜿çšããŠå£°ã®ãã³ãã»ææã¢ãã«ãäœæããçæïŒ¡ïŒ©ãšçµã¿åãããããšã§ã顧客ãªã©ã®åãåããã«å¯Ÿãå®å
šèªåã§å¯Ÿå¿ããã·ã¹ãã ã§ããããã®ã·ã¹ãã ã¯ããŸããå€§èŠæš¡é³å£°ããŒã¿ã䜿çšããŠã声ã®ãã³ããææãã¢ãã«åããããã®ã¢ãã«ã¯ãé³å£°ããŒã¿ã®è§£æãéããŠãèªç¶ãªäŒè©±ã®ãªãºã ãã€ã³ãããŒã·ã§ã³ãåŠç¿ãããæ¬¡ã«ãçæïŒ¡ïŒ©ãçšããŠã顧客ããã®åãåããå
容ã«å¯Ÿããè¿çãçæããããã®çæïŒ¡ïŒ©ã¯ãäºåã«ãã¡ã€ã³ãã¥ãŒãã³ã°ãããŠãããç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã£ãŠãããããã«ãçæïŒ¡ïŒ©ãçæããè¿çå
容ãã声ã®ãã³ãã»ææã¢ãã«ãçšããŠé³å£°åãããããã«ãããçæïŒ¡ïŒ©ãçæããããã¹ãããŒã¹ã®è¿çããèªç¶ãªé³å£°ãšããŠé¡§å®¢ã«æäŸããããäŸãã°ã顧客ããã®åãåããã«å¯ŸããŠãè¿
éãã€æ£ç¢ºãªå¯Ÿå¿ãå¯èœãšãªãããŸãããã¡ã€ã³ãã¥ãŒãã³ã°ã宿œããããšã§ãçæïŒ¡ïŒ©ã®è¿çå
容ãããæ£ç¢ºãªãã®ã«è¿ã¥ããããšãã§ããããã®ããã«ããŠãæ¬çºæã¯ãå€§èŠæš¡é³å£°ããŒã¿ãšçæïŒ¡ïŒ©ãçµã¿åãããããšã§ã顧客察å¿ã®èªååãå®çŸããæ¥åå¹çã®åäžãšé¡§å®¢æºè¶³åºŠã®åäžãå³ãããšãã§ãããããã«ããã顧客察å¿èªååã·ã¹ãã ã¯ã顧客ããã®åãåããã«å¯ŸããŠè¿
éãã€æ£ç¢ºãªå¯Ÿå¿ãå¯èœãšãªãã
(Example 1)
The customer response automation system according to the embodiment of the present invention is a system that uses large-scale voice data to create a voice tempo and intonation model, and combines it with a generation AI to fully automatically respond to inquiries from customers and the like. This system first uses large-scale voice data to model the voice tempo and intonation. This model learns the rhythm and intonation of natural conversation through analysis of voice data. Next, a response to the customer's inquiry is generated using the generation AI. This generation AI has been fine-tuned in advance and has knowledge of specific business and services. Furthermore, the response content generated by the generation AI is converted into voice using the voice tempo and intonation model. As a result, the text-based response generated by the generation AI is provided to the customer as a natural voice. For example, a quick and accurate response to customer inquiries is possible. In addition, by performing fine tuning, the response content of the generation AI can be made closer to a more accurate one. In this way, the present invention combines large-scale voice data and generation AI to realize automation of customer responses, thereby improving business efficiency and customer satisfaction. As a result, the customer response automation system is able to respond quickly and accurately to inquiries from customers.
宿œåœ¢æ ã«ä¿ã顧客察å¿èªååã·ã¹ãã ã¯ãè§£æéšãšãçæéšãšãé³å£°åéšãšãåãããè§£æéšã¯ãé³å£°ããŒã¿ãè§£æãããè§£æéšã¯ãäŸãã°ãé³å£°èªèæè¡ãçšããŠé³å£°ããŒã¿ãããã¹ãããŒã¿ã«å€æããããŸããè§£æéšã¯ãèªç¶èšèªåŠçæè¡ãçšããŠé³å£°ããŒã¿ã®å 容ãè§£æããããšãã§ãããäŸãã°ãè§£æéšã¯ãé³å£°ããŒã¿ã®é³çŽ ãé³é»ãè§£æããé³å£°ã®ãã³ããææãã¢ãã«åãããçæéšã¯ãçæïŒ¡ïŒ©ãçšããŠãè§£æéšã«ãã£ãŠè§£æãããããŒã¿ã«åºã¥ããŠè¿çãçæãããçæéšã¯ãäŸãã°ãããã¹ãçæïŒ¡ïŒ©ïŒäŸãã°ãLLMïŒãçšããŠè¿çãçæããããŸããçæéšã¯ãçæïŒ¡ïŒ©ãçšããŠãç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã€è¿çãçæããããšãã§ãããäŸãã°ãçæéšã¯ãã«ã¹ã¿ããŒãµããŒãã«é¢ããåãåããã«å¯ŸããŠãé©åãªè¿çãçæãããé³å£°åéšã¯ãçæéšã«ãã£ãŠçæãããè¿çãé³å£°åãããé³å£°åéšã¯ãäŸãã°ãé³å£°åææè¡ãçšããŠããã¹ãããŒã¿ãé³å£°ããŒã¿ã«å€æããããŸããé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ãé¡§å®¢ã«æäŸããããšãã§ãããäŸãã°ãé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ãé»è©±ãã€ã³ã¿ãŒããããéããŠé¡§å®¢ã«æäŸãããããã«ããã宿œåœ¢æ ã«ä¿ã顧客察å¿èªååã·ã¹ãã ã¯ã顧客ããã®åãåããã«å¯ŸããŠè¿ éãã€æ£ç¢ºãªå¯Ÿå¿ãå¯èœãšãªããè§£æéšãçæéšãé³å£°åéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãè§£æéšã¯ãé³å£°ããŒã¿ãã«å ¥åããé³å£°ããŒã¿ã®è§£æãã«å®è¡ãããããšãã§ãããçæéšã¯ãè§£æéšã«ãã£ãŠè§£æãããããŒã¿ãã«å ¥åããè¿çã®çæãã«å®è¡ãããããšãã§ãããé³å£°åéšã¯ãçæéšã«ãã£ãŠçæãããè¿çãã«å ¥åããé³å£°åãã«å®è¡ãããããšãã§ããã The customer support automation system according to the embodiment includes an analysis unit, a generation unit, and a voice conversion unit. The analysis unit analyzes voice data. The analysis unit converts voice data into text data, for example, using voice recognition technology. The analysis unit can also analyze the content of the voice data using natural language processing technology. For example, the analysis unit analyzes the phonemes and phonology of the voice data and models the tempo and intonation of the voice. The generation unit uses a generation AI to generate a response based on the data analyzed by the analysis unit. The generation unit generates a response, for example, using a text generation AI (for example, LLM). The generation unit can also use a generation AI to generate a response that has knowledge about a specific business or service. For example, the generation unit generates an appropriate response to an inquiry about customer support. The voice conversion unit voices the response generated by the generation unit. The voice conversion unit converts text data into voice data, for example, using voice synthesis technology. The voice conversion unit can also provide the generated voice data to the customer. For example, the voice conversion unit provides the generated voice data to the customer via telephone or the Internet. This enables the customer response automation system according to the embodiment to respond quickly and accurately to customer inquiries. Some or all of the above-mentioned processes in the analysis unit, generation unit, and voice conversion unit may be performed, for example, using AI, or may be performed without using AI. For example, the analysis unit can input voice data to the AI and have the AI analyze the voice data. The generation unit can input data analyzed by the analysis unit to the AI and have the AI generate a response. The voice conversion unit can input the response generated by the generation unit to the AI and have the AI convert it into voice.
è§£æéšã¯ãé³å£°ããŒã¿ãè§£æãããè§£æéšã¯ãäŸãã°ãé³å£°èªèæè¡ãçšããŠé³å£°ããŒã¿ãããã¹ãããŒã¿ã«å€æãããå ·äœçã«ã¯ãé³å£°èªèæè¡ã¯ãé³å£°ä¿¡å·ãããžã¿ã«ããŒã¿ã«å€æãããã®ããžã¿ã«ããŒã¿ãè§£æããŠé³çŽ ãé³é»ãç¹å®ãããããã«ãããé³å£°ããŒã¿ãæã€æ å ±ãããã¹ã圢åŒã§æœåºããããšãã§ããããŸããè§£æéšã¯ãèªç¶èšèªåŠçæè¡ãçšããŠé³å£°ããŒã¿ã®å 容ãè§£æããããšãã§ãããèªç¶èšèªåŠçæè¡ã¯ãããã¹ãããŒã¿ã®ææ³æ§é ãæå³ãè§£æããæèã«åºã¥ããçè§£ãè¡ããäŸãã°ãè§£æéšã¯ãé³å£°ããŒã¿ã®é³çŽ ãé³é»ãè§£æããé³å£°ã®ãã³ããææãã¢ãã«åãããããã«ããã話è ã®ææ ãæå³ãããæ£ç¢ºã«ææ¡ããããšãã§ãããããã«ãè§£æéšã¯ãé³å£°ããŒã¿ã®èæ¯ãã€ãºããšã³ãŒãé€å»ããããã®ãã£ã«ã¿ãªã³ã°æè¡ãçšããããšãã§ãããããã«ãããé³å£°ããŒã¿ã®å質ãåäžãããè§£æã®ç²ŸåºŠãé«ããããšãã§ãããè§£æéšã¯ããããã®æè¡ãçµã¿åãããŠãé³å£°ããŒã¿ãé«ç²ŸåºŠã§è§£æããããã¹ãããŒã¿ãšããŠåºåãããè§£æéšã¯ãé³å£°ããŒã¿ã®è§£æçµæãä»ã®ã·ã¹ãã ãéšéãšå ±æããããšãã§ããäŸãã°ãã«ã¹ã¿ããŒãµããŒãã·ã¹ãã ãããŒã¿ããŒã¹ãšé£æºããŠã顧客察å¿ã®å¹çãåäžãããããšãã§ããã The analysis unit analyzes the voice data. The analysis unit converts the voice data into text data, for example, using voice recognition technology. Specifically, the voice recognition technology converts the voice signal into digital data, and analyzes the digital data to identify phonemes and phonology. This makes it possible to extract information contained in the voice data in text format. The analysis unit can also analyze the contents of the voice data using natural language processing technology. Natural language processing technology analyzes the grammatical structure and meaning of the text data, and performs understanding based on the context. For example, the analysis unit analyzes the phonemes and phonology of the voice data and models the tempo and intonation of the voice. This makes it possible to grasp the speaker's emotions and intentions more accurately. Furthermore, the analysis unit can also use filtering technology to remove background noise and echoes from the voice data. This makes it possible to improve the quality of the voice data and increase the accuracy of the analysis. The analysis unit combines these technologies to analyze the voice data with high accuracy and output it as text data. The analysis unit can share the results of the analysis of the voice data with other systems and departments, and can, for example, work with a customer support system or database to improve the efficiency of customer support.
çæéšã¯ãçæïŒ¡ïŒ©ãçšããŠãè§£æéšã«ãã£ãŠè§£æãããããŒã¿ã«åºã¥ããŠè¿çãçæãããçæéšã¯ãäŸãã°ãããã¹ãçæïŒ¡ïŒ©ïŒäŸãã°ãLLMïŒãçšããŠè¿çãçæãããå ·äœçã«ã¯ãçæïŒ¡ïŒ©ã¯ãè§£æéšããæäŸãããããã¹ãããŒã¿ãå ¥åãšããŠåãåãããã®å 容ã«åºã¥ããŠé©åãªè¿çãçæãããçæïŒ¡ïŒ©ã¯ã倧éã®ããã¹ãããŒã¿ãåŠç¿ããŠãããææ³ãæèãçè§£ããèœåãæã€ãããèªç¶ã§æµæ¢ãªè¿çãçæããããšãã§ããããŸããçæéšã¯ãçæïŒ¡ïŒ©ãçšããŠãç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã€è¿çãçæããããšãã§ãããäŸãã°ãçæéšã¯ãã«ã¹ã¿ããŒãµããŒãã«é¢ããåãåããã«å¯ŸããŠãé©åãªè¿çãçæãããçæïŒ¡ïŒ©ã¯ãäºåã«ç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãåŠç¿ããŠãããå°éçãªè³ªåã«ã察å¿ã§ãããããã«ãçæéšã¯ãçæãããè¿çã®å質ãè©äŸ¡ããå¿ èŠã«å¿ããŠä¿®æ£ãè¡ãããšãã§ãããäŸãã°ãçæïŒ¡ïŒ©ãçæããè¿çãäžé©åãªå Žåãçæéšã¯ãè¿çã®å 容ãåè©äŸ¡ããããé©åãªè¿çãçæããããŸããçæéšã¯ãçæãããè¿çãããŒã¿ããŒã¹ã«ä¿åããå°æ¥çãªåãåããã«å¯ŸããåèãšããŠå©çšããããšãã§ãããããã«ãããçæéšã¯ãè¿ éãã€æ£ç¢ºãªè¿çãçæãã顧客察å¿ã®å¹çãšå質ãåäžãããããšãã§ããã The generation unit uses the generation AI to generate a response based on the data analyzed by the analysis unit. The generation unit generates a response using, for example, a text generation AI (e.g., LLM). Specifically, the generation AI receives text data provided by the analysis unit as input and generates an appropriate response based on the content. The generation AI has learned a large amount of text data and has the ability to understand grammar and context, so it can generate natural and fluent responses. The generation unit can also use the generation AI to generate responses with knowledge of specific business operations and services. For example, the generation unit generates an appropriate response to an inquiry about customer support. The generation AI has learned knowledge about specific business operations and services in advance and can also respond to specialized questions. Furthermore, the generation unit can evaluate the quality of the generated response and make corrections as necessary. For example, if the response generated by the generation AI is inappropriate, the generation unit reevaluates the content of the response and generates a more appropriate response. The generation unit can also store the generated response in a database and use it as a reference for future inquiries. This allows the generation unit to generate quick and accurate responses, improving the efficiency and quality of customer support.
é³å£°åéšã¯ãçæéšã«ãã£ãŠçæãããè¿çãé³å£°åãããé³å£°åéšã¯ãäŸãã°ãé³å£°åææè¡ãçšããŠããã¹ãããŒã¿ãé³å£°ããŒã¿ã«å€æãããå ·äœçã«ã¯ãé³å£°åææè¡ã¯ãããã¹ãããŒã¿ãå ¥åãšããŠåãåãããã®å 容ã«åºã¥ããŠèªç¶ãªé³å£°ãçæãããé³å£°åææè¡ã¯ãé³çŽ ãé³é»ã®çµã¿åãããè§£æããé©åãªææããã³ããä»äžããããšã§ãèªç¶ã§èãåããããé³å£°ãçæããããŸããé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ãé¡§å®¢ã«æäŸããããšãã§ãããäŸãã°ãé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ãé»è©±ãã€ã³ã¿ãŒããããéããŠé¡§å®¢ã«æäŸãããé»è©±ã®å Žåãé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ããªã¢ã«ã¿ã€ã ã§é»è©±åç·ã«éä¿¡ãã顧客ã«çŽæ¥å¿çãããã€ã³ã¿ãŒãããã®å Žåãé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ãã¹ããªãŒãã³ã°åœ¢åŒã§é ä¿¡ãã顧客ããŠã§ããã©ãŠã¶ãå°çšã¢ããªã±ãŒã·ã§ã³ãéããŠé³å£°ãèãããšãã§ããããã«ãããããã«ãé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ã®å質ãè©äŸ¡ããå¿ èŠã«å¿ããŠä¿®æ£ãè¡ãããšãã§ãããäŸãã°ãé³å£°ã®ææããã³ããäžèªç¶ãªå Žåãé³å£°åéšã¯ãé³å£°åææè¡ãå調æŽããããèªç¶ãªé³å£°ãçæããããŸããé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ãããŒã¿ããŒã¹ã«ä¿åããå°æ¥çãªåãåããã«å¯ŸããåèãšããŠå©çšããããšãã§ãããããã«ãããé³å£°åéšã¯ãè¿ éãã€æ£ç¢ºãªé³å£°å¿çãæäŸãã顧客察å¿ã®å¹çãšå質ãåäžãããããšãã§ããã The voice conversion unit converts the response generated by the generation unit into voice. The voice conversion unit converts text data into voice data, for example, using voice synthesis technology. Specifically, the voice synthesis technology receives text data as input and generates natural voice based on the content. The voice synthesis technology generates natural and easy-to-listen voice by analyzing combinations of phonemes and phonological elements and adding appropriate intonation and tempo. The voice conversion unit can also provide the generated voice data to customers. For example, the voice conversion unit provides the generated voice data to customers via telephone or the Internet. In the case of telephone, the voice conversion unit transmits the generated voice data to a telephone line in real time and responds directly to the customer. In the case of the Internet, the voice conversion unit distributes the generated voice data in a streaming format so that the customer can listen to the voice through a web browser or a dedicated application. Furthermore, the voice conversion unit can evaluate the quality of the generated voice data and make corrections as necessary. For example, if the intonation or tempo of the voice is unnatural, the voice conversion unit readjusts the voice synthesis technology to generate a more natural voice. The voice conversion unit can also store the generated voice data in a database and use it as a reference for future inquiries. This allows the voice conversion unit to provide fast and accurate voice responses, improving the efficiency and quality of customer service.
çæéšã¯ããã¡ã€ã³ãã¥ãŒãã³ã°ãè¡ã調æŽéšãåããããšãã§ããã調æŽéšã¯ãçæïŒ¡ïŒ©ã®ãã¡ã€ã³ãã¥ãŒãã³ã°ãè¡ãã調æŽéšã¯ãäŸãã°ãçæïŒ¡ïŒ©ã®ãã©ã¡ãŒã¿ã調æŽããããšã§ãè¿çã®ç²ŸåºŠãåäžãããããŸãã調æŽéšã¯ããã¬ãŒãã³ã°ããŒã¿ã®éžå®ãè¡ãããšãã§ãããäŸãã°ã調æŽéšã¯ãç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããããŒã¿ãéžå®ããçæïŒ¡ïŒ©ã®ãã¬ãŒãã³ã°ã«äœ¿çšãããããã«ãããçæéšã¯ããã¡ã€ã³ãã¥ãŒãã³ã°ãè¡ãããšã§ãçæïŒ¡ïŒ©ã®è¿çå 容ãããæ£ç¢ºã«ããããšãã§ããã調æŽéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ã調æŽéšã¯ãçæïŒ¡ïŒ©ã®ãã©ã¡ãŒã¿èª¿æŽãã«å®è¡ãããããšãã§ããã The generation unit can include an adjustment unit that performs fine tuning. The adjustment unit performs fine tuning of the generation AI. The adjustment unit improves the accuracy of the response by, for example, adjusting parameters of the generation AI. The adjustment unit can also select training data. For example, the adjustment unit selects data related to a specific business or service and uses it for training the generation AI. In this way, the generation unit can make the response content of the generation AI more accurate by performing fine tuning. Some or all of the above-mentioned processing in the adjustment unit may be performed, for example, using AI, or may be performed without using AI. For example, the adjustment unit can cause the AI to adjust parameters of the generation AI.
é³å£°åéšã¯ãçæãããé³å£°ãé¡§å®¢ã«æäŸããæäŸéšãåããããšãã§ãããæäŸéšã¯ãçæãããé³å£°ãé¡§å®¢ã«æäŸãããæäŸéšã¯ãäŸãã°ãé»è©±ãéããŠé³å£°ãé¡§å®¢ã«æäŸããããŸããæäŸéšã¯ãã€ã³ã¿ãŒããããéããŠé³å£°ãé¡§å®¢ã«æäŸããããšãã§ãããäŸãã°ãæäŸéšã¯ããŠã§ããµã€ããã¢ãã€ã«ã¢ããªãéããŠé³å£°ãæäŸãããããã«ãããçæãããé³å£°ãé¡§å®¢ã«æäŸããããšã§ãèªç¶ãªé³å£°ã§ã®å¯Ÿå¿ãå¯èœãšãªããæäŸéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãæäŸéšã¯ãçæãããé³å£°ããŒã¿ãã«å ¥åããé³å£°ã®æäŸãã«å®è¡ãããããšãã§ããã The voice conversion unit may include a providing unit that provides the generated voice to the customer. The providing unit provides the generated voice to the customer. The providing unit provides the voice to the customer, for example, via telephone. The providing unit may also provide the voice to the customer via the Internet. For example, the providing unit provides the voice through a website or a mobile app. In this way, by providing the generated voice to the customer, it becomes possible to respond in a natural voice. Some or all of the above-mentioned processing in the providing unit may be performed, for example, using AI, or may be performed without using AI. For example, the providing unit may input the generated voice data to AI and cause the AI to provide the voice.
è§£æéšã¯ãè€æ°ã®é³å£°ããŒã¿ãè§£æãã声ã®ãã³ããææãã¢ãã«åããããšãã§ãããè§£æéšã¯ãäŸãã°ãé»è©±é³å£°ãé²é³é³å£°ãªã©ã®è€æ°ã®é³å£°ããŒã¿ãè§£æãããè§£æéšã¯ãé³å£°æ³¢åœ¢ã®è§£æãè¡ãããªãºã ãã¿ãŒã³ãæœåºãããäŸãã°ãè§£æéšã¯ãé³å£°ããŒã¿ã®é³çŽ ãé³é»ãè§£æãã声ã®ãã³ããææãã¢ãã«åãããããã«ãããå€§èŠæš¡é³å£°ããŒã¿ãè§£æããããšã§ãèªç¶ãªäŒè©±ã®ãªãºã ãã€ã³ãããŒã·ã§ã³ãåŠç¿ããããšãã§ãããè§£æéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãè§£æéšã¯ãé³å£°ããŒã¿ãã«å ¥åããé³å£°ããŒã¿ã®è§£æãã«å®è¡ãããããšãã§ããã The analysis unit can analyze multiple pieces of voice data and model the tempo and intonation of the voice. The analysis unit analyzes multiple pieces of voice data, such as telephone voices and recorded voices. The analysis unit analyzes the voice waveform and extracts rhythm patterns. For example, the analysis unit analyzes the phonemes and phonology of the voice data and models the tempo and intonation of the voice. In this way, the rhythm and intonation of natural conversation can be learned by analyzing large-scale voice data. Some or all of the above-mentioned processing in the analysis unit may be performed, for example, using AI, or may be performed without using AI. For example, the analysis unit can input the voice data to AI and have the AI analyze the voice data.
çæéšã¯ãç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã€çæïŒ¡ïŒ©ãçšããããšãã§ãããçæéšã¯ãäŸãã°ãã«ã¹ã¿ããŒãµããŒããå»ççžè«ãªã©ã®ç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã€çæïŒ¡ïŒ©ãçšãããçæéšã¯ãçæïŒ¡ïŒ©ãçšããŠãç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããåãåããã«å¯ŸããŠé©åãªè¿çãçæãããäŸãã°ãçæéšã¯ãã«ã¹ã¿ããŒãµããŒãã«é¢ããåãåããã«å¯ŸããŠãé©åãªè¿çãçæãããããã«ãããç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã€çæïŒ¡ïŒ©ãçšããããšã§ãããé©åãªè¿çãçæããããšãã§ãããçæéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãçæéšã¯ãç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã€çæïŒ¡ïŒ©ãã«å®è¡ãããããšãã§ããã The generation unit can use a generation AI that has knowledge about a specific business or service. The generation unit uses a generation AI that has knowledge about a specific business or service, such as customer support or medical consultation. The generation unit uses the generation AI to generate an appropriate response to an inquiry about the specific business or service. For example, the generation unit generates an appropriate response to an inquiry about customer support. In this way, by using the generation AI that has knowledge about the specific business or service, a more appropriate response can be generated. Some or all of the above-mentioned processing in the generation unit may be performed, for example, using AI, or may be performed without using AI. For example, the generation unit can cause the AI to execute the generation AI that has knowledge about the specific business or service.
è§£æéšã¯ãé³å£°ããŒã¿ã®è§£ææã«ãç¹å®ã®ã¢ã¯ã»ã³ããŸãã¯æ¹èšãèæ ®ããŠè§£æç²ŸåºŠãåäžãããããšãã§ãããè§£æéšã¯ãäŸãã°ãç¹å®ã®å°åã®ã¢ã¯ã»ã³ããæã€é³å£°ããŒã¿ãè§£æããéã«ããã®å°åã®ã¢ã¯ã»ã³ãã¢ãã«ãé©çšããããŸããè§£æéšã¯ãç¹å®ã®æ¹èšãæã€é³å£°ããŒã¿ãè§£æããéã«ããã®æ¹èšã®ç¹åŸŽãèæ ®ããŠè§£æãè¡ãããšãã§ãããããã«ãè§£æéšã¯ãè€æ°ã®ã¢ã¯ã»ã³ããæ¹èšãæ··åšããé³å£°ããŒã¿ãè§£æããéã«ãããããã®ç¹åŸŽãçµ±åããŠè§£æãè¡ãããšãã§ãããããã«ãããç¹å®ã®ã¢ã¯ã»ã³ããæ¹èšãèæ ®ããããšã§ãè§£æç²ŸåºŠãåäžãããè§£æéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãè§£æéšã¯ãç¹å®ã®ã¢ã¯ã»ã³ããæ¹èšãæã€é³å£°ããŒã¿ãã«å ¥åããè§£æãã«å®è¡ãããããšãã§ããã When analyzing voice data, the analysis unit can improve the analysis accuracy by taking into account a specific accent or dialect. For example, when analyzing voice data having an accent of a specific region, the analysis unit applies an accent model of that region. In addition, when analyzing voice data having a specific dialect, the analysis unit can also perform the analysis by taking into account the characteristics of the dialect. Furthermore, when analyzing voice data containing a mixture of multiple accents or dialects, the analysis unit can also perform the analysis by integrating the characteristics of each. In this way, by taking into account a specific accent or dialect, the analysis accuracy is improved. Some or all of the above-mentioned processing in the analysis unit may be performed, for example, using AI, or may be performed without using AI. For example, the analysis unit can input voice data having a specific accent or dialect to AI and have the AI perform the analysis.
è§£æéšã¯ãé³å£°ããŒã¿ã®è§£ææã«ãèæ¯ãã€ãºãé€å»ããããã®ãã£ã«ã¿åŠçãè¡ãããšãã§ãããè§£æéšã¯ãäŸãã°ãé³å£°ããŒã¿ã®è§£æåã«ãèæ¯ãã€ãºãé€å»ããããã®ãã£ã«ã¿ãªã³ã°ãé©çšããããŸããè§£æéšã¯ãç¹å®ã®åšæ³¢æ°åž¯åã®ãã€ãºãé€å»ããããã®ãã£ã«ã¿ãªã³ã°ãè¡ãããšãã§ãããããã«ãè§£æéšã¯ãåçã«å€åããèæ¯ãã€ãºããªã¢ã«ã¿ã€ã ã§é€å»ããããã®ãã£ã«ã¿ãªã³ã°ãè¡ãããšãã§ãããããã«ãããèæ¯ãã€ãºãé€å»ããããšã§ãè§£æç²ŸåºŠãåäžãããè§£æéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãè§£æéšã¯ãé³å£°ããŒã¿ãã«å ¥åããèæ¯ãã€ãºã®é€å»ãã«å®è¡ãããããšãã§ããã The analysis unit can perform filtering to remove background noise when analyzing the voice data. For example, the analysis unit applies filtering to remove background noise before analyzing the voice data. The analysis unit can also perform filtering to remove noise in a specific frequency band. Furthermore, the analysis unit can also perform filtering to remove dynamically changing background noise in real time. This removes background noise, improving analysis accuracy. Some or all of the above-mentioned processing in the analysis unit may be performed using AI, for example, or may be performed without using AI. For example, the analysis unit can input the voice data to AI and cause the AI to remove background noise.
è§£æéšã¯ãé³å£°ããŒã¿ã®è§£ææã«ããŠãŒã¶ã®å°ççäœçœ®æ å ±ã«åºã¥ããŠè§£ææ¹æ³ã調æŽããããšãã§ãããè§£æéšã¯ãäŸãã°ããŠãŒã¶ãç¹å®ã®å°åã«ããå Žåããã®å°åã®ã¢ã¯ã»ã³ããæ¹èšãèæ ®ããŠè§£æãè¡ãããŸããè§£æéšã¯ããŠãŒã¶ãç§»åäžã®å Žåãç§»åå ã®å°åã®ã¢ã¯ã»ã³ããæ¹èšãèæ ®ããŠè§£æãè¡ãããšãã§ãããããã«ãè§£æéšã¯ããŠãŒã¶ãç°ãªãå°åã«ããå Žåãããããã®å°åã®ç¹åŸŽãçµ±åããŠè§£æãè¡ãããšãã§ãããããã«ããããŠãŒã¶ã®å°ççäœçœ®æ å ±ãèæ ®ããããšã§ãè§£ææ¹æ³ã調æŽããããšãã§ãããè§£æéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãè§£æéšã¯ããŠãŒã¶ã®å°ççäœçœ®æ å ±ãã«å ¥åããè§£ææ¹æ³ã®èª¿æŽãã«å®è¡ãããããšãã§ããã When analyzing the voice data, the analysis unit can adjust the analysis method based on the geographical location information of the user. For example, when the user is in a specific area, the analysis unit performs the analysis taking into account the accent and dialect of that area. In addition, when the user is moving, the analysis unit can also perform the analysis taking into account the accent and dialect of the destination area. Furthermore, when the user is in different areas, the analysis unit can also perform the analysis by integrating the characteristics of each area. In this way, the analysis method can be adjusted by taking into account the geographical location information of the user. Some or all of the above-mentioned processing in the analysis unit may be performed using, for example, AI, or may be performed without using AI. For example, the analysis unit can input the geographical location information of the user to AI and cause the AI to adjust the analysis method.
è§£æéšã¯ãé³å£°ããŒã¿ã®è§£ææã«ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãåæããé¢é£ããé³å£°ããŒã¿ãåªå çã«è§£æããããšãã§ãããè§£æéšã¯ãäŸãã°ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãããç¹å®ã®ãããã¯ã«é¢é£ããé³å£°ããŒã¿ãåªå çã«è§£æããããŸããè§£æéšã¯ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãããç¹å®ã®ã€ãã³ãã«é¢é£ããé³å£°ããŒã¿ãåªå çã«è§£æããããšãã§ãããããã«ãè§£æéšã¯ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãããç¹å®ã®äººç©ã«é¢é£ããé³å£°ããŒã¿ãåªå çã«è§£æããããšãã§ãããããã«ããããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãåæããããšã§ãé¢é£ããé³å£°ããŒã¿ãåªå çã«è§£æããããšãã§ãããè§£æéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãè§£æéšã¯ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åããŒã¿ãã«å ¥åããé¢é£ããé³å£°ããŒã¿ã®åªå é äœã決å®ããè§£æãã«å®è¡ãããããšãã§ããã When analyzing the voice data, the analysis unit can analyze the user's social media activity and prioritize analysis of related voice data. For example, the analysis unit prioritizes analysis of voice data related to a specific topic from the user's social media activity. The analysis unit can also prioritize analysis of voice data related to a specific event from the user's social media activity. Furthermore, the analysis unit can also prioritize analysis of voice data related to a specific person from the user's social media activity. In this way, by analyzing the user's social media activity, related voice data can be prioritized. A part or all of the above-mentioned processing in the analysis unit may be performed, for example, using AI or may be performed without using AI. For example, the analysis unit can input the user's social media activity data to AI and cause AI to perform analysis to determine the priority order of related voice data.
çæéšã¯ãè¿ççææã«ãåãåããå 容ã®éèŠåºŠã«åºã¥ããŠè¿çã®è©³çŽ°åºŠã調æŽããããšãã§ãããçæéšã¯ãäŸãã°ãéèŠåºŠã®é«ãåãåããã«å¯ŸããŠã詳现ãªè¿çãçæããããŸããçæéšã¯ãéèŠåºŠã®äœãåãåããã«å¯ŸããŠãç°¡æœãªè¿çãçæããããšãã§ãããããã«ãçæéšã¯ãéèŠåºŠã«å¿ããŠãè¿çã®è©³çŽ°åºŠãåçã«èª¿æŽããããšãã§ãããããã«ãããåãåããå 容ã®éèŠåºŠã«åºã¥ããŠè¿çã®è©³çŽ°åºŠã調æŽããããšã§ãããé©åãªè¿çãå¯èœãšãªããçæéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãçæéšã¯ãåãåããå 容ã®éèŠåºŠãã«å ¥åããè¿çã®è©³çŽ°åºŠã調æŽããåŠçãã«å®è¡ãããããšãã§ããã When generating a response, the generation unit can adjust the level of detail of the response based on the importance of the inquiry content. For example, the generation unit generates a detailed response to an inquiry of high importance. The generation unit can also generate a concise response to an inquiry of low importance. Furthermore, the generation unit can dynamically adjust the level of detail of the response according to the importance. This allows for a more appropriate response by adjusting the level of detail of the response based on the importance of the inquiry content. Some or all of the above-mentioned processing in the generation unit may be performed using, for example, AI, or may be performed without using AI. For example, the generation unit can input the importance of the inquiry content to the AI and cause the AI to execute processing to adjust the level of detail of the response.
çæéšã¯ãè¿ççææã«ãåãåããã®ã«ããŽãªã«å¿ããŠç°ãªãçæã¢ã«ãŽãªãºã ãé©çšããããšãã§ãããçæéšã¯ãäŸãã°ãæè¡çãªåãåããã«å¯ŸããŠãå°éçãªçæã¢ã«ãŽãªãºã ãé©çšããããŸããçæéšã¯ãäžè¬çãªåãåããã«å¯ŸããŠãæ±çšçãªçæã¢ã«ãŽãªãºã ãé©çšããããšãã§ãããããã«ãçæéšã¯ãç·æ¥ã®åãåããã«å¯ŸããŠãè¿ éãªçæã¢ã«ãŽãªãºã ãé©çšããããšãã§ãããããã«ãããåãåããã®ã«ããŽãªã«å¿ããŠç°ãªãçæã¢ã«ãŽãªãºã ãé©çšããããšã§ãããé©åãªè¿çãå¯èœãšãªããçæéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãçæéšã¯ãåãåããã®ã«ããŽãªãã«å ¥åããé©çšããçæã¢ã«ãŽãªãºã ãæ±ºå®ããåŠçãã«å®è¡ãããããšãã§ããã When generating a response, the generation unit can apply different generation algorithms depending on the category of the inquiry. For example, the generation unit applies a specialized generation algorithm to a technical inquiry. The generation unit can also apply a general-purpose generation algorithm to a general inquiry. Furthermore, the generation unit can apply a quick generation algorithm to an urgent inquiry. This allows for a more appropriate response by applying different generation algorithms depending on the inquiry category. Some or all of the above-mentioned processing in the generation unit may be performed using, for example, AI, or may be performed without using AI. For example, the generation unit can input the inquiry category to the AI and cause the AI to execute a process of determining the generation algorithm to be applied.
çæéšã¯ãè¿ççææã«ãåãåããã®æåºææã«åºã¥ããŠè¿çã®åªå é äœã決å®ããããšãã§ãããçæéšã¯ãäŸãã°ãæè¿æåºãããåãåããã«å¯ŸããŠãåªå çã«è¿çãçæããããŸããçæéšã¯ãé·æéæªè§£æ±ºã®åãåããã«å¯ŸããŠãåªå çã«è¿çãçæããããšãã§ãããããã«ãçæéšã¯ãæåºææã«å¿ããŠãè¿çã®åªå é äœãåçã«èª¿æŽããããšãã§ãããããã«ãããåãåããã®æåºææã«åºã¥ããŠè¿çã®åªå é äœã決å®ããããšã§ãããè¿ éãªå¯Ÿå¿ãå¯èœãšãªããçæéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãçæéšã¯ãåãåããã®æåºææãã«å ¥åããè¿çã®åªå é äœã決å®ããåŠçãã«å®è¡ãããããšãã§ããã When generating a reply, the generation unit can determine the priority of the reply based on the time of submission of the inquiry. For example, the generation unit can generate a reply with priority to a recently submitted inquiry. The generation unit can also generate a reply with priority to an inquiry that has been unresolved for a long time. Furthermore, the generation unit can dynamically adjust the priority of the reply depending on the submission time. This allows for a faster response by determining the priority of the reply based on the submission time of the inquiry. Some or all of the above-mentioned processing in the generation unit may be performed using, for example, AI, or may be performed without using AI. For example, the generation unit can input the submission time of the inquiry to the AI and cause the AI to execute a process of determining the priority of the reply.
çæéšã¯ãè¿ççææã«ãåãåããã®é¢é£æ§ã«åºã¥ããŠè¿çã®é åºã調æŽããããšãã§ãããçæéšã¯ãäŸãã°ãé¢é£æ§ã®é«ãåãåããã«å¯ŸããŠãåªå çã«è¿çãçæããããŸããçæéšã¯ãé¢é£æ§ã®äœãåãåããã«å¯ŸããŠãåŸåãã«ããŠè¿çãçæããããšãã§ãããããã«ãçæéšã¯ãé¢é£æ§ã«å¿ããŠãè¿çã®é åºãåçã«èª¿æŽããããšãã§ãããããã«ãããåãåããã®é¢é£æ§ã«åºã¥ããŠè¿çã®é åºã調æŽããããšã§ãããé©åãªè¿çãå¯èœãšãªããçæéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãçæéšã¯ãåãåããã®é¢é£æ§ãã«å ¥åããè¿çã®é åºã調æŽããåŠçãã«å®è¡ãããããšãã§ããã When generating a reply, the generation unit can adjust the order of replies based on the relevance of the inquiries. For example, the generation unit generates replies preferentially for inquiries with high relevance. The generation unit can also postpone generating replies for inquiries with low relevance. Furthermore, the generation unit can dynamically adjust the order of replies according to the relevance. This allows for a more appropriate reply by adjusting the order of replies based on the relevance of the inquiries. Some or all of the above-mentioned processing in the generation unit may be performed, for example, using AI, or may be performed without using AI. For example, the generation unit can input the relevance of the inquiries to the AI and cause the AI to execute processing to adjust the order of replies.
é³å£°åéšã¯ãé³å£°åæã«ãçæãããé³å£°ã®èªç¶ããåäžãããããã®é³å£°ãã£ã«ã¿ãªã³ã°ãè¡ãããšãã§ãããé³å£°åéšã¯ãäŸãã°ãçæãããé³å£°ã«å¯ŸããŠããã€ãºãªãã¯ã·ã§ã³ãã£ã«ã¿ãé©çšããããŸããé³å£°åéšã¯ãçæãããé³å£°ã«å¯ŸããŠããšã³ãŒãã£ã³ã»ãªã³ã°ãã£ã«ã¿ãé©çšããããšãã§ãããããã«ãé³å£°åéšã¯ãçæãããé³å£°ã«å¯ŸããŠãé³è³ªåäžãã£ã«ã¿ãé©çšããããšãã§ãããããã«ãããçæãããé³å£°ã®èªç¶ããåäžãããããšã§ãããèªç¶ãªé³å£°åãå¯èœãšãªããé³å£°åéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ãã«å ¥åããé³å£°ãã£ã«ã¿ãªã³ã°ãã«å®è¡ãããããšãã§ããã The voice conversion unit can perform voice filtering to improve the naturalness of the generated voice during voice conversion. For example, the voice conversion unit applies a noise reduction filter to the generated voice. The voice conversion unit can also apply an echo canceling filter to the generated voice. Furthermore, the voice conversion unit can apply a sound quality improvement filter to the generated voice. This improves the naturalness of the generated voice, making it possible to convert the voice into a more natural voice. Some or all of the above-mentioned processing in the voice conversion unit can be performed using, for example, AI, or can be performed without using AI. For example, the voice conversion unit can input the generated voice data to AI and have the AI perform voice filtering.
é³å£°åéšã¯ãé³å£°åæã«ãç¹å®ã®ã¢ã¯ã»ã³ããæ¹èšãèæ ®ããŠé³å£°åã®ç²ŸåºŠãåäžãããããšãã§ãããé³å£°åéšã¯ãäŸãã°ãç¹å®ã®å°åã®ã¢ã¯ã»ã³ããæã€é³å£°ãçæããéã«ããã®å°åã®ã¢ã¯ã»ã³ãã¢ãã«ãé©çšããããŸããé³å£°åéšã¯ãç¹å®ã®æ¹èšãæã€é³å£°ãçæããéã«ããã®æ¹èšã®ç¹åŸŽãèæ ®ããŠé³å£°åãè¡ãããšãã§ãããããã«ãé³å£°åéšã¯ãè€æ°ã®ã¢ã¯ã»ã³ããæ¹èšãæ··åšããé³å£°ãçæããéã«ãããããã®ç¹åŸŽãçµ±åããŠé³å£°åãè¡ãããšãã§ãããããã«ãããç¹å®ã®ã¢ã¯ã»ã³ããæ¹èšãèæ ®ããããšã§ãé³å£°åã®ç²ŸåºŠãåäžãããé³å£°åéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãé³å£°åéšã¯ãç¹å®ã®ã¢ã¯ã»ã³ããæ¹èšãæã€é³å£°ããŒã¿ãã«å ¥åããé³å£°åãã«å®è¡ãããããšãã§ããã The voice conversion unit can improve the accuracy of voice conversion by taking into account a specific accent or dialect when generating voice. For example, when generating voice with an accent of a specific region, the voice conversion unit applies an accent model of that region. In addition, when generating voice with a specific dialect, the voice conversion unit can also perform voice conversion by taking into account the characteristics of the dialect. Furthermore, when generating voice in which multiple accents or dialects are mixed, the voice conversion unit can also perform voice conversion by integrating the characteristics of each. In this way, the accuracy of voice conversion is improved by taking into account a specific accent or dialect. Some or all of the above-mentioned processing in the voice conversion unit may be performed using, for example, AI, or may be performed without using AI. For example, the voice conversion unit can input voice data with a specific accent or dialect to AI and have the AI perform voice conversion.
é³å£°åéšã¯ãé³å£°åæã«ããŠãŒã¶ã®å°ççäœçœ®æ å ±ãèæ ®ããŠé³å£°åæ¹æ³ã調æŽããããšãã§ãããé³å£°åéšã¯ãäŸãã°ããŠãŒã¶ãç¹å®ã®å°åã«ããå Žåããã®å°åã®ã¢ã¯ã»ã³ããæ¹èšãèæ ®ããŠé³å£°åãè¡ãããŸããé³å£°åéšã¯ããŠãŒã¶ãç§»åäžã®å Žåãç§»åå ã®å°åã®ã¢ã¯ã»ã³ããæ¹èšãèæ ®ããŠé³å£°åãè¡ãããšãã§ãããããã«ãé³å£°åéšã¯ããŠãŒã¶ãç°ãªãå°åã«ããå Žåãããããã®å°åã®ç¹åŸŽãçµ±åããŠé³å£°åãè¡ãããšãã§ãããããã«ããããŠãŒã¶ã®å°ççäœçœ®æ å ±ãèæ ®ããããšã§ãé³å£°åæ¹æ³ã調æŽããããšãã§ãããé³å£°åéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãé³å£°åéšã¯ããŠãŒã¶ã®å°ççäœçœ®æ å ±ãã«å ¥åããé³å£°åæ¹æ³ã®èª¿æŽãã«å®è¡ãããããšãã§ããã The voice conversion unit can adjust the voice conversion method taking into account the geographical location information of the user when vocalizing. For example, when the user is in a specific area, the voice conversion unit performs voice conversion taking into account the accent or dialect of that area. In addition, when the user is moving, the voice conversion unit can also perform voice conversion taking into account the accent or dialect of the area to which the user is moving. Furthermore, when the user is in different areas, the voice conversion unit can also perform voice conversion by integrating the characteristics of each area. In this way, the voice conversion method can be adjusted by taking into account the geographical location information of the user. Part or all of the above-mentioned processing in the voice conversion unit may be performed using, for example, AI, or may be performed without using AI. For example, the voice conversion unit can input the geographical location information of the user to AI and cause the AI to adjust the voice conversion method.
é³å£°åéšã¯ãé³å£°åæã«ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãåæããé¢é£ããé³å£°ããŒã¿ãåªå çã«é³å£°åããããšãã§ãããé³å£°åéšã¯ãäŸãã°ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãããç¹å®ã®ãããã¯ã«é¢é£ããé³å£°ãåªå çã«çæããããŸããé³å£°åéšã¯ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãããç¹å®ã®ã€ãã³ãã«é¢é£ããé³å£°ãåªå çã«çæããããšãã§ãããããã«ãé³å£°åéšã¯ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãããç¹å®ã®äººç©ã«é¢é£ããé³å£°ãåªå çã«çæããããšãã§ãããããã«ããããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãåæããããšã§ãé¢é£ããé³å£°ããŒã¿ãåªå çã«é³å£°åããããšãã§ãããé³å£°åéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãé³å£°åéšã¯ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åããŒã¿ãã«å ¥åããé¢é£ããé³å£°ããŒã¿ã®åªå é äœã決å®ããé³å£°åãã«å®è¡ãããããšãã§ããã When vocalizing, the vocalization unit can analyze the user's social media activity and vocalize related voice data preferentially. For example, the vocalization unit preferentially generates voice related to a specific topic from the user's social media activity. The vocalization unit can also preferentially generate voice related to a specific event from the user's social media activity. Furthermore, the vocalization unit can also preferentially generate voice related to a specific person from the user's social media activity. In this way, by analyzing the user's social media activity, related voice data can be preferentially vocalized. A part or all of the above-mentioned processing in the vocalization unit may be performed, for example, using AI or may be performed without using AI. For example, the vocalization unit inputs the user's social media activity data into AI and causes AI to perform vocalization that determines the priority of related voice data.
調æŽéšã¯ããã¡ã€ã³ãã¥ãŒãã³ã°æã«ãéå»ã®åãåããããŒã¿ãåç §ããŠçæã¢ã«ãŽãªãºã ãæé©åããããšãã§ããã調æŽéšã¯ãäŸãã°ãéå»ã®åãåããããŒã¿ãåæããçæã¢ã«ãŽãªãºã ã®ãã©ã¡ãŒã¿ãæé©åããããŸãã調æŽéšã¯ãéå»ã®åãåããããŒã¿ãããç¹å®ã®ãã¿ãŒã³ãæœåºããçæã¢ã«ãŽãªãºã ã«åæ ããããšãã§ãããããã«ã調æŽéšã¯ãéå»ã®åãåããããŒã¿ãåºã«ãçæã¢ã«ãŽãªãºã ã®ç²ŸåºŠãåäžãããããšãã§ãããããã«ãããéå»ã®åãåããããŒã¿ãåç §ããããšã§ãçæã¢ã«ãŽãªãºã ãæé©åããããšãã§ããã調æŽéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ã調æŽéšã¯ãéå»ã®åãåããããŒã¿ãã«å ¥åããçæã¢ã«ãŽãªãºã ã®æé©åãã«å®è¡ãããããšãã§ããã During fine tuning, the adjustment unit can optimize the generation algorithm by referring to past inquiry data. The adjustment unit, for example, analyzes past inquiry data and optimizes parameters of the generation algorithm. The adjustment unit can also extract specific patterns from past inquiry data and reflect them in the generation algorithm. Furthermore, the adjustment unit can improve the accuracy of the generation algorithm based on past inquiry data. This makes it possible to optimize the generation algorithm by referring to past inquiry data. Some or all of the above-mentioned processing in the adjustment unit may be performed, for example, using AI, or may be performed without using AI. For example, the adjustment unit can input past inquiry data to AI and cause AI to optimize the generation algorithm.
調æŽéšã¯ããã¡ã€ã³ãã¥ãŒãã³ã°æã«ãåãåããã®æåºææã«åºã¥ããŠåŠç¿ããŒã¿ã®éã¿ä»ããè¡ãããšãã§ããã調æŽéšã¯ãäŸãã°ãæè¿ã®åãåããããŒã¿ã«å¯ŸããŠãéã¿ä»ããè¡ããçæã¢ã«ãŽãªãºã ã«åæ ããããŸãã調æŽéšã¯ãé·æéæªè§£æ±ºã®åãåããããŒã¿ã«å¯ŸããŠãéã¿ä»ããè¡ããçæã¢ã«ãŽãªãºã ã«åæ ããããšãã§ãããããã«ã調æŽéšã¯ãæåºææã«å¿ããŠãåŠç¿ããŒã¿ã®éã¿ä»ããåçã«èª¿æŽããããšãã§ãããããã«ãããåãåããã®æåºææã«åºã¥ããŠåŠç¿ããŒã¿ã®éã¿ä»ããè¡ãããšã§ãããé©åãªèª¿æŽãå¯èœãšãªãã調æŽéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ã調æŽéšã¯ãåãåããã®æåºææãã«å ¥åããåŠç¿ããŒã¿ã®éã¿ä»ããã«å®è¡ãããããšãã§ããã During fine tuning, the adjustment unit can weight the learning data based on the time of inquiry submission. For example, the adjustment unit weights recent inquiry data and reflects the weight in the generation algorithm. The adjustment unit can also weight inquiry data that has been unresolved for a long time and reflect the weight in the generation algorithm. Furthermore, the adjustment unit can dynamically adjust the weighting of the learning data according to the submission time. This allows for more appropriate adjustment by weighting the learning data based on the time of inquiry submission. Some or all of the above-mentioned processing in the adjustment unit may be performed using, for example, AI, or may be performed without using AI. For example, the adjustment unit can input the time of inquiry submission to AI and cause AI to perform weighting of the learning data.
æäŸéšã¯ãé³å£°æäŸæã«ããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãåç §ããŠæé©ãªæäŸæ¹æ³ãéžå®ããããšãã§ãããæäŸéšã¯ãäŸãã°ããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãããæé©ãªé³å£°æäŸæ¹æ³ãéžå®ããããŸããæäŸéšã¯ããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãåæããç¹å®ã®ãã¿ãŒã³ã«åºã¥ããŠé³å£°æäŸæ¹æ³ãéžå®ããããšãã§ãããããã«ãæäŸéšã¯ããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãåºã«ãé³å£°æäŸæ¹æ³ãåçã«èª¿æŽããããšãã§ãããããã«ããããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãåç §ããããšã§ãæé©ãªé³å£°æäŸæ¹æ³ãéžå®ããããšãã§ãããæäŸéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãæäŸéšã¯ããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãã«å ¥åããæé©ãªæäŸæ¹æ³ãéžå®ããåŠçãã«å®è¡ãããããšãã§ããã When providing voice, the providing unit can select the optimal voice providing method by referring to the user's past inquiry history. For example, the providing unit selects the optimal voice providing method from the user's past inquiry history. The providing unit can also analyze the user's past inquiry history and select the voice providing method based on a specific pattern. Furthermore, the providing unit can dynamically adjust the voice providing method based on the user's past inquiry history. In this way, the optimal voice providing method can be selected by referring to the user's past inquiry history. A part or all of the above-mentioned processing in the providing unit may be performed, for example, using AI or may be performed without using AI. For example, the providing unit can input the user's past inquiry history to AI and cause AI to execute processing to select the optimal providing method.
æäŸéšã¯ãé³å£°æäŸæã«ããŠãŒã¶ã®ããã€ã¹æ å ±ãèæ ®ããŠæé©ãªæäŸæ¹æ³ãéžå®ããããšãã§ãããæäŸéšã¯ãäŸãã°ããŠãŒã¶ãã¹ããŒããã©ã³ã䜿çšããŠããå Žåãç»é¢ãµã€ãºã«åãããé³å£°æäŸæ¹æ³ãéžå®ããããŸããæäŸéšã¯ããŠãŒã¶ãã¿ãã¬ããã䜿çšããŠããå Žåã倧ããªç»é¢ã«æé©åãããé³å£°æäŸæ¹æ³ãéžå®ããããšãã§ãããããã«ãæäŸéšã¯ããŠãŒã¶ãã¹ããŒããŠã©ããã䜿çšããŠããå Žåãç°¡æœã§èŠèªæ§ã®é«ãé³å£°æäŸæ¹æ³ãéžå®ããããšãã§ãããããã«ããããŠãŒã¶ã®ããã€ã¹æ å ±ãèæ ®ããããšã§ãæé©ãªé³å£°æäŸæ¹æ³ãéžå®ããããšãã§ãããæäŸéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãæäŸéšã¯ããŠãŒã¶ã®ããã€ã¹æ å ±ãã«å ¥åããæé©ãªæäŸæ¹æ³ãéžå®ããåŠçãã«å®è¡ãããããšãã§ããã When providing voice, the providing unit can select the optimal providing method by taking into account the device information of the user. For example, when the user is using a smartphone, the providing unit selects a voice providing method that matches the screen size. In addition, when the user is using a tablet, the providing unit can also select a voice providing method optimized for a large screen. Furthermore, when the user is using a smartwatch, the providing unit can also select a voice providing method that is simple and highly visible. In this way, the optimal voice providing method can be selected by taking into account the device information of the user. Some or all of the above-mentioned processing in the providing unit may be performed, for example, using AI, or may be performed without using AI. For example, the providing unit can input the device information of the user to the AI and cause the AI to execute a process of selecting the optimal providing method.
宿œåœ¢æ ã«ä¿ãã·ã¹ãã ã¯ãäžè¿°ããäŸã«éå®ããããäŸãã°ã以äžã®ããã«ãçš®ã ã®å€æŽãå¯èœã§ããã The system according to the embodiment is not limited to the above-mentioned example, and various modifications are possible, for example, as follows:
è§£æéšã¯ãé³å£°ããŒã¿ã®è§£ææã«ããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãåç §ããŠè§£æç²ŸåºŠãåäžãããããšãã§ãããè§£æéšã¯ãäŸãã°ãéå»ã®åãåããå±¥æŽãããç¹å®ã®ãã¿ãŒã³ãæœåºããé³å£°ããŒã¿ã®è§£æã«åæ ããããŸããè§£æéšã¯ãéå»ã®åãåããå±¥æŽãåºã«ããŠãŒã¶ã®çºè©±åŸåãåŠç¿ããè§£æç²ŸåºŠãåäžãããããšãã§ãããããã«ãè§£æéšã¯ãéå»ã®åãåããå±¥æŽãåç §ããããšã§ãç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã€è§£æãè¡ãããšãã§ãããããã«ããããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãåç §ããããšã§ãè§£æç²ŸåºŠãåäžããããé©åãªå¯Ÿå¿ãå¯èœãšãªãã When analyzing the voice data, the analysis unit can improve the accuracy of the analysis by referring to the user's past inquiry history. For example, the analysis unit extracts specific patterns from the past inquiry history and reflects them in the analysis of the voice data. The analysis unit can also learn the user's speech tendencies based on the past inquiry history and improve the accuracy of the analysis. Furthermore, the analysis unit can perform analysis with knowledge of specific tasks or services by referring to the past inquiry history. In this way, by referring to the user's past inquiry history, the accuracy of the analysis is improved and more appropriate responses are possible.
é³å£°åéšã¯ãçæãããé³å£°ãæäŸããéã«ããŠãŒã¶ã®ããã€ã¹ã®ããããªãŒæ®éãèæ ®ããŠé³å£°ã®é·ãã調æŽããããšãã§ãããé³å£°åéšã¯ãäŸãã°ãããããªãŒæ®éãå°ãªãå ŽåãçããŠèŠç¹ãæŒãããé³å£°ãæäŸããããŸããããããªãŒæ®éãååãªå Žåã詳现ãªèª¬æãå«ãé³å£°ãæäŸããããšãã§ãããããã«ãããããªãŒæ®éãäžçšåºŠã®å Žåãé©åºŠãªé·ãã®é³å£°ãæäŸããããšãã§ãããããã«ããããŠãŒã¶ã®ããã€ã¹ã®ããããªãŒæ®éãèæ ®ããããšã§ãæé©ãªé³å£°æäŸãå¯èœãšãªãã When providing the generated voice, the voice generation unit can adjust the length of the voice taking into account the remaining battery level of the user's device. For example, when the battery level is low, the voice generation unit can provide a short voice that focuses on the main points. When the battery level is sufficient, the voice generation unit can also provide a voice that includes a detailed explanation. Furthermore, when the battery level is moderate, the voice generation unit can provide a voice of an appropriate length. This makes it possible to provide optimal voice by taking into account the remaining battery level of the user's device.
è§£æéšã¯ãé³å£°ããŒã¿ã®è§£ææã«ããŠãŒã¶ã®çºè©±é床ããªã¢ã«ã¿ã€ã ã§ã¢ãã¿ãªã³ã°ããè§£ææ¹æ³ãåçã«èª¿æŽããããšãã§ãããè§£æéšã¯ãäŸãã°ããŠãŒã¶ã®çºè©±é床ãéãå Žåãè§£æé床ãäžããããŸãããŠãŒã¶ã®çºè©±é床ãé ãå Žåãè§£æé床ãäžããããšãã§ãããããã«ããŠãŒã¶ã®çºè©±é床ãå€åããå Žåãè§£æé床ãåçã«èª¿æŽããããšãã§ãããããã«ããããŠãŒã¶ã®çºè©±é床ã«å¿ããŠè§£ææ¹æ³ã調æŽããããšã§ãããé©åãªè§£æãå¯èœãšãªãã When analyzing the voice data, the analysis unit can monitor the user's speaking speed in real time and dynamically adjust the analysis method. For example, if the user's speaking speed is fast, the analysis unit can increase the analysis speed. Also, if the user's speaking speed is slow, the analysis unit can decrease the analysis speed. Furthermore, if the user's speaking speed fluctuates, the analysis speed can also be dynamically adjusted. This allows for more appropriate analysis by adjusting the analysis method according to the user's speaking speed.
è§£æéšã¯ãé³å£°ããŒã¿ã®è§£ææã«ããŠãŒã¶ã®å¹Žéœ¢å±€ãæšå®ãã幎霢局ã«å¿ããè§£ææ¹æ³ãé©çšããããšãã§ãããè§£æéšã¯ãäŸãã°ãè¥å¹Žå±€ã®ãŠãŒã¶ã«å¯ŸããŠã¯ãã«ãžã¥ã¢ã«ãªèšèé£ããèæ ®ããè§£æãè¡ãããŸããé«éœ¢å±€ã®ãŠãŒã¶ã«å¯ŸããŠã¯ãäžå¯§ãªèšèé£ããèæ ®ããè§£æãè¡ãããšãã§ãããããã«ã幎霢局ã«å¿ããŠãç¹å®ã®èšèããã¬ãŒãºã®äœ¿çšé »åºŠãèæ ®ããè§£æãè¡ãããšãã§ãããããã«ããããŠãŒã¶ã®å¹Žéœ¢å±€ã«å¿ããè§£ææ¹æ³ãé©çšããããšã§ãè§£æç²ŸåºŠãåäžããããé©åãªå¯Ÿå¿ãå¯èœãšãªãã When analyzing the voice data, the analysis unit can estimate the user's age group and apply an analysis method appropriate to the age group. For example, the analysis unit can perform an analysis that takes into account casual language for younger users. Also, for older users, the analysis unit can perform an analysis that takes into account polite language. Furthermore, the analysis can also take into account the frequency of use of specific words and phrases depending on the age group. In this way, by applying an analysis method appropriate to the user's age group, the analysis accuracy can be improved and more appropriate responses can be made.
é³å£°åéšã¯ãçæãããé³å£°ãæäŸããéã«ããŠãŒã¶ã®èŽèŠç¹æ§ãèæ ®ããŠé³å£°ã®åšæ³¢æ°åž¯åã調æŽããããšãã§ãããé³å£°åéšã¯ãäŸãã°ããŠãŒã¶ãé«é³åãèãåãã«ããå Žåãäœé³åã匷調ããé³å£°ãæäŸããããŸãããŠãŒã¶ãäœé³åãèãåãã«ããå Žåãé«é³åã匷調ããé³å£°ãæäŸããããšãã§ãããããã«ããŠãŒã¶ã®èŽèŠç¹æ§ã«å¿ããŠãç¹å®ã®åšæ³¢æ°åž¯åã匷調ãŸãã¯æå¶ããããšãã§ãããããã«ããããŠãŒã¶ã®èŽèŠç¹æ§ãèæ ®ããããšã§ãæé©ãªé³å£°æäŸãå¯èœãšãªãã When providing the generated voice, the voice generation unit can adjust the frequency band of the voice taking into account the user's hearing characteristics. For example, if the user has difficulty hearing high-pitched sounds, the voice generation unit can provide voice with emphasis on low-pitched sounds. Also, if the user has difficulty hearing low-pitched sounds, the voice generation unit can provide voice with emphasis on high-pitched sounds. Furthermore, specific frequency bands can be emphasized or suppressed depending on the user's hearing characteristics. This makes it possible to provide optimal voice by taking into account the user's hearing characteristics.
çæéšã¯ãè¿ççææã«ããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãåç §ããŠè¿çã®äžè²«æ§ãä¿ã€ããšãã§ãããçæéšã¯ãäŸãã°ãéå»ã®åãåããå 容ãšäžèŽããè¿çãçæããããŸããéå»ã®åãåããå±¥æŽãåºã«ããŠãŒã¶ã®å¥œã¿ãåŸåãåæ ããè¿çãçæããããšãã§ãããããã«ãéå»ã®åãåããå±¥æŽãåç §ããããšã§ãççŸã®ãªãè¿çãçæããããšãã§ãããããã«ããããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãåç §ããããšã§ãè¿çã®äžè²«æ§ãä¿ã¡ãããé©åãªå¯Ÿå¿ãå¯èœãšãªãã When generating a response, the generation unit can maintain consistency in the response by referring to the user's past inquiry history. For example, the generation unit generates a response that matches the content of the past inquiry. In addition, the generation unit can generate a response that reflects the user's preferences and tendencies based on the past inquiry history. Furthermore, by referring to the past inquiry history, it is possible to generate a response that is free of inconsistencies. In this way, by referring to the user's past inquiry history, consistency in the response can be maintained, enabling a more appropriate response.
以äžã«ã圢æ äŸïŒã®åŠçã®æµãã«ã€ããŠç°¡åã«èª¬æããã The processing flow of Example 1 is briefly explained below.
ã¹ãããïŒïŒè§£æéšã¯ãé³å£°ããŒã¿ãè§£æãããè§£æéšã¯ãäŸãã°ãé³å£°èªèæè¡ãçšããŠé³å£°ããŒã¿ãããã¹ãããŒã¿ã«å€æããããŸããè§£æéšã¯ãèªç¶èšèªåŠçæè¡ãçšããŠé³å£°ããŒã¿ã®å
容ãè§£æããããšãã§ãããäŸãã°ãè§£æéšã¯ãé³å£°ããŒã¿ã®é³çŽ ãé³é»ãè§£æããé³å£°ã®ãã³ããææãã¢ãã«åããã
ã¹ãããïŒïŒçæéšã¯ãçæïŒ¡ïŒ©ãçšããŠãè§£æéšã«ãã£ãŠè§£æãããããŒã¿ã«åºã¥ããŠè¿çãçæãããçæéšã¯ãäŸãã°ãããã¹ãçæïŒ¡ïŒ©ïŒäŸãã°ãLLMïŒãçšããŠè¿çãçæããããŸããçæéšã¯ãçæïŒ¡ïŒ©ãçšããŠãç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã€è¿çãçæããããšãã§ãããäŸãã°ãçæéšã¯ãã«ã¹ã¿ããŒãµããŒãã«é¢ããåãåããã«å¯ŸããŠãé©åãªè¿çãçæããã
ã¹ãããïŒïŒé³å£°åéšã¯ãçæéšã«ãã£ãŠçæãããè¿çãé³å£°åãããé³å£°åéšã¯ãäŸãã°ãé³å£°åææè¡ãçšããŠããã¹ãããŒã¿ãé³å£°ããŒã¿ã«å€æããããŸããé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ãé¡§å®¢ã«æäŸããããšãã§ãããäŸãã°ãé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ãé»è©±ãã€ã³ã¿ãŒããããéããŠé¡§å®¢ã«æäŸããã
Step 1: The analysis unit analyzes the voice data. For example, the analysis unit converts the voice data into text data using a voice recognition technique. The analysis unit can also analyze the contents of the voice data using a natural language processing technique. For example, the analysis unit analyzes the phonemes and phonology of the voice data and models the tempo and intonation of the voice.
Step 2: The generation unit uses the generation AI to generate a response based on the data analyzed by the analysis unit. The generation unit generates a response, for example, using a text generation AI (e.g., LLM). The generation unit can also use the generation AI to generate a response with knowledge about a specific business or service. For example, the generation unit generates an appropriate response to a customer support inquiry.
Step 3: The voice conversion unit converts the response generated by the generation unit into voice. The voice conversion unit converts the text data into voice data, for example, using a voice synthesis technique. The voice conversion unit can also provide the generated voice data to the customer. For example, the voice conversion unit provides the generated voice data to the customer over the telephone or the Internet.
ïŒåœ¢æ
äŸïŒïŒ
æ¬çºæã®å®æœåœ¢æ
ã«ä¿ã顧客察å¿èªååã·ã¹ãã ã¯ãå€§èŠæš¡é³å£°ããŒã¿ã䜿çšããŠå£°ã®ãã³ãã»ææã¢ãã«ãäœæããçæïŒ¡ïŒ©ãšçµã¿åãããããšã§ã顧客ãªã©ã®åãåããã«å¯Ÿãå®å
šèªåã§å¯Ÿå¿ããã·ã¹ãã ã§ããããã®ã·ã¹ãã ã¯ããŸããå€§èŠæš¡é³å£°ããŒã¿ã䜿çšããŠã声ã®ãã³ããææãã¢ãã«åããããã®ã¢ãã«ã¯ãé³å£°ããŒã¿ã®è§£æãéããŠãèªç¶ãªäŒè©±ã®ãªãºã ãã€ã³ãããŒã·ã§ã³ãåŠç¿ãããæ¬¡ã«ãçæïŒ¡ïŒ©ãçšããŠã顧客ããã®åãåããå
容ã«å¯Ÿããè¿çãçæããããã®çæïŒ¡ïŒ©ã¯ãäºåã«ãã¡ã€ã³ãã¥ãŒãã³ã°ãããŠãããç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã£ãŠãããããã«ãçæïŒ¡ïŒ©ãçæããè¿çå
容ãã声ã®ãã³ãã»ææã¢ãã«ãçšããŠé³å£°åãããããã«ãããçæïŒ¡ïŒ©ãçæããããã¹ãããŒã¹ã®è¿çããèªç¶ãªé³å£°ãšããŠé¡§å®¢ã«æäŸããããäŸãã°ã顧客ããã®åãåããã«å¯ŸããŠãè¿
éãã€æ£ç¢ºãªå¯Ÿå¿ãå¯èœãšãªãããŸãããã¡ã€ã³ãã¥ãŒãã³ã°ã宿œããããšã§ãçæïŒ¡ïŒ©ã®è¿çå
容ãããæ£ç¢ºãªãã®ã«è¿ã¥ããããšãã§ããããã®ããã«ããŠãæ¬çºæã¯ãå€§èŠæš¡é³å£°ããŒã¿ãšçæïŒ¡ïŒ©ãçµã¿åãããããšã§ã顧客察å¿ã®èªååãå®çŸããæ¥åå¹çã®åäžãšé¡§å®¢æºè¶³åºŠã®åäžãå³ãããšãã§ãããããã«ããã顧客察å¿èªååã·ã¹ãã ã¯ã顧客ããã®åãåããã«å¯ŸããŠè¿
éãã€æ£ç¢ºãªå¯Ÿå¿ãå¯èœãšãªãã
(Example 2)
The customer response automation system according to the embodiment of the present invention is a system that uses large-scale voice data to create a voice tempo and intonation model, and combines it with a generation AI to fully automatically respond to inquiries from customers and the like. This system first uses large-scale voice data to model the voice tempo and intonation. This model learns the rhythm and intonation of natural conversation through analysis of voice data. Next, a response to the customer's inquiry is generated using the generation AI. This generation AI has been fine-tuned in advance and has knowledge of specific business and services. Furthermore, the response content generated by the generation AI is converted into voice using the voice tempo and intonation model. As a result, the text-based response generated by the generation AI is provided to the customer as a natural voice. For example, a quick and accurate response to customer inquiries is possible. In addition, by performing fine tuning, the response content of the generation AI can be made closer to a more accurate one. In this way, the present invention combines large-scale voice data and generation AI to realize automation of customer responses, thereby improving business efficiency and customer satisfaction. As a result, the customer response automation system is able to respond quickly and accurately to inquiries from customers.
宿œåœ¢æ ã«ä¿ã顧客察å¿èªååã·ã¹ãã ã¯ãè§£æéšãšãçæéšãšãé³å£°åéšãšãåãããè§£æéšã¯ãé³å£°ããŒã¿ãè§£æãããè§£æéšã¯ãäŸãã°ãé³å£°èªèæè¡ãçšããŠé³å£°ããŒã¿ãããã¹ãããŒã¿ã«å€æããããŸããè§£æéšã¯ãèªç¶èšèªåŠçæè¡ãçšããŠé³å£°ããŒã¿ã®å 容ãè§£æããããšãã§ãããäŸãã°ãè§£æéšã¯ãé³å£°ããŒã¿ã®é³çŽ ãé³é»ãè§£æããé³å£°ã®ãã³ããææãã¢ãã«åãããçæéšã¯ãçæïŒ¡ïŒ©ãçšããŠãè§£æéšã«ãã£ãŠè§£æãããããŒã¿ã«åºã¥ããŠè¿çãçæãããçæéšã¯ãäŸãã°ãããã¹ãçæïŒ¡ïŒ©ïŒäŸãã°ãLLMïŒãçšããŠè¿çãçæããããŸããçæéšã¯ãçæïŒ¡ïŒ©ãçšããŠãç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã€è¿çãçæããããšãã§ãããäŸãã°ãçæéšã¯ãã«ã¹ã¿ããŒãµããŒãã«é¢ããåãåããã«å¯ŸããŠãé©åãªè¿çãçæãããé³å£°åéšã¯ãçæéšã«ãã£ãŠçæãããè¿çãé³å£°åãããé³å£°åéšã¯ãäŸãã°ãé³å£°åææè¡ãçšããŠããã¹ãããŒã¿ãé³å£°ããŒã¿ã«å€æããããŸããé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ãé¡§å®¢ã«æäŸããããšãã§ãããäŸãã°ãé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ãé»è©±ãã€ã³ã¿ãŒããããéããŠé¡§å®¢ã«æäŸãããããã«ããã宿œåœ¢æ ã«ä¿ã顧客察å¿èªååã·ã¹ãã ã¯ã顧客ããã®åãåããã«å¯ŸããŠè¿ éãã€æ£ç¢ºãªå¯Ÿå¿ãå¯èœãšãªããè§£æéšãçæéšãé³å£°åéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãè§£æéšã¯ãé³å£°ããŒã¿ãã«å ¥åããé³å£°ããŒã¿ã®è§£æãã«å®è¡ãããããšãã§ãããçæéšã¯ãè§£æéšã«ãã£ãŠè§£æãããããŒã¿ãã«å ¥åããè¿çã®çæãã«å®è¡ãããããšãã§ãããé³å£°åéšã¯ãçæéšã«ãã£ãŠçæãããè¿çãã«å ¥åããé³å£°åãã«å®è¡ãããããšãã§ããã The customer support automation system according to the embodiment includes an analysis unit, a generation unit, and a voice conversion unit. The analysis unit analyzes voice data. The analysis unit converts voice data into text data, for example, using voice recognition technology. The analysis unit can also analyze the content of the voice data using natural language processing technology. For example, the analysis unit analyzes the phonemes and phonology of the voice data and models the tempo and intonation of the voice. The generation unit uses a generation AI to generate a response based on the data analyzed by the analysis unit. The generation unit generates a response, for example, using a text generation AI (for example, LLM). The generation unit can also use a generation AI to generate a response that has knowledge about a specific business or service. For example, the generation unit generates an appropriate response to an inquiry about customer support. The voice conversion unit voices the response generated by the generation unit. The voice conversion unit converts text data into voice data, for example, using voice synthesis technology. The voice conversion unit can also provide the generated voice data to the customer. For example, the voice conversion unit provides the generated voice data to the customer via telephone or the Internet. This enables the customer response automation system according to the embodiment to respond quickly and accurately to customer inquiries. Some or all of the above-mentioned processes in the analysis unit, generation unit, and voice conversion unit may be performed, for example, using AI, or may be performed without using AI. For example, the analysis unit can input voice data to the AI and have the AI analyze the voice data. The generation unit can input data analyzed by the analysis unit to the AI and have the AI generate a response. The voice conversion unit can input the response generated by the generation unit to the AI and have the AI convert it into voice.
è§£æéšã¯ãé³å£°ããŒã¿ãè§£æãããè§£æéšã¯ãäŸãã°ãé³å£°èªèæè¡ãçšããŠé³å£°ããŒã¿ãããã¹ãããŒã¿ã«å€æãããå ·äœçã«ã¯ãé³å£°èªèæè¡ã¯ãé³å£°ä¿¡å·ãããžã¿ã«ããŒã¿ã«å€æãããã®ããžã¿ã«ããŒã¿ãè§£æããŠé³çŽ ãé³é»ãç¹å®ãããããã«ãããé³å£°ããŒã¿ãæã€æ å ±ãããã¹ã圢åŒã§æœåºããããšãã§ããããŸããè§£æéšã¯ãèªç¶èšèªåŠçæè¡ãçšããŠé³å£°ããŒã¿ã®å 容ãè§£æããããšãã§ãããèªç¶èšèªåŠçæè¡ã¯ãããã¹ãããŒã¿ã®ææ³æ§é ãæå³ãè§£æããæèã«åºã¥ããçè§£ãè¡ããäŸãã°ãè§£æéšã¯ãé³å£°ããŒã¿ã®é³çŽ ãé³é»ãè§£æããé³å£°ã®ãã³ããææãã¢ãã«åãããããã«ããã話è ã®ææ ãæå³ãããæ£ç¢ºã«ææ¡ããããšãã§ãããããã«ãè§£æéšã¯ãé³å£°ããŒã¿ã®èæ¯ãã€ãºããšã³ãŒãé€å»ããããã®ãã£ã«ã¿ãªã³ã°æè¡ãçšããããšãã§ãããããã«ãããé³å£°ããŒã¿ã®å質ãåäžãããè§£æã®ç²ŸåºŠãé«ããããšãã§ãããè§£æéšã¯ããããã®æè¡ãçµã¿åãããŠãé³å£°ããŒã¿ãé«ç²ŸåºŠã§è§£æããããã¹ãããŒã¿ãšããŠåºåãããè§£æéšã¯ãé³å£°ããŒã¿ã®è§£æçµæãä»ã®ã·ã¹ãã ãéšéãšå ±æããããšãã§ããäŸãã°ãã«ã¹ã¿ããŒãµããŒãã·ã¹ãã ãããŒã¿ããŒã¹ãšé£æºããŠã顧客察å¿ã®å¹çãåäžãããããšãã§ããã The analysis unit analyzes the voice data. The analysis unit converts the voice data into text data, for example, using voice recognition technology. Specifically, the voice recognition technology converts the voice signal into digital data, and analyzes the digital data to identify phonemes and phonology. This makes it possible to extract information contained in the voice data in text format. The analysis unit can also analyze the contents of the voice data using natural language processing technology. Natural language processing technology analyzes the grammatical structure and meaning of the text data, and performs understanding based on the context. For example, the analysis unit analyzes the phonemes and phonology of the voice data and models the tempo and intonation of the voice. This makes it possible to grasp the speaker's emotions and intentions more accurately. Furthermore, the analysis unit can also use filtering technology to remove background noise and echoes from the voice data. This makes it possible to improve the quality of the voice data and increase the accuracy of the analysis. The analysis unit combines these technologies to analyze the voice data with high accuracy and output it as text data. The analysis unit can share the results of the analysis of the voice data with other systems and departments, and can, for example, work with a customer support system or database to improve the efficiency of customer support.
çæéšã¯ãçæïŒ¡ïŒ©ãçšããŠãè§£æéšã«ãã£ãŠè§£æãããããŒã¿ã«åºã¥ããŠè¿çãçæãããçæéšã¯ãäŸãã°ãããã¹ãçæïŒ¡ïŒ©ïŒäŸãã°ãLLMïŒãçšããŠè¿çãçæãããå ·äœçã«ã¯ãçæïŒ¡ïŒ©ã¯ãè§£æéšããæäŸãããããã¹ãããŒã¿ãå ¥åãšããŠåãåãããã®å 容ã«åºã¥ããŠé©åãªè¿çãçæãããçæïŒ¡ïŒ©ã¯ã倧éã®ããã¹ãããŒã¿ãåŠç¿ããŠãããææ³ãæèãçè§£ããèœåãæã€ãããèªç¶ã§æµæ¢ãªè¿çãçæããããšãã§ããããŸããçæéšã¯ãçæïŒ¡ïŒ©ãçšããŠãç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã€è¿çãçæããããšãã§ãããäŸãã°ãçæéšã¯ãã«ã¹ã¿ããŒãµããŒãã«é¢ããåãåããã«å¯ŸããŠãé©åãªè¿çãçæãããçæïŒ¡ïŒ©ã¯ãäºåã«ç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãåŠç¿ããŠãããå°éçãªè³ªåã«ã察å¿ã§ãããããã«ãçæéšã¯ãçæãããè¿çã®å質ãè©äŸ¡ããå¿ èŠã«å¿ããŠä¿®æ£ãè¡ãããšãã§ãããäŸãã°ãçæïŒ¡ïŒ©ãçæããè¿çãäžé©åãªå Žåãçæéšã¯ãè¿çã®å 容ãåè©äŸ¡ããããé©åãªè¿çãçæããããŸããçæéšã¯ãçæãããè¿çãããŒã¿ããŒã¹ã«ä¿åããå°æ¥çãªåãåããã«å¯ŸããåèãšããŠå©çšããããšãã§ãããããã«ãããçæéšã¯ãè¿ éãã€æ£ç¢ºãªè¿çãçæãã顧客察å¿ã®å¹çãšå質ãåäžãããããšãã§ããã The generation unit uses the generation AI to generate a response based on the data analyzed by the analysis unit. The generation unit generates a response using, for example, a text generation AI (e.g., LLM). Specifically, the generation AI receives text data provided by the analysis unit as input and generates an appropriate response based on the content. The generation AI has learned a large amount of text data and has the ability to understand grammar and context, so it can generate natural and fluent responses. The generation unit can also use the generation AI to generate responses with knowledge of specific business operations and services. For example, the generation unit generates an appropriate response to an inquiry about customer support. The generation AI has learned knowledge about specific business operations and services in advance and can also respond to specialized questions. Furthermore, the generation unit can evaluate the quality of the generated response and make corrections as necessary. For example, if the response generated by the generation AI is inappropriate, the generation unit reevaluates the content of the response and generates a more appropriate response. The generation unit can also store the generated response in a database and use it as a reference for future inquiries. This allows the generation unit to generate quick and accurate responses, improving the efficiency and quality of customer support.
é³å£°åéšã¯ãçæéšã«ãã£ãŠçæãããè¿çãé³å£°åãããé³å£°åéšã¯ãäŸãã°ãé³å£°åææè¡ãçšããŠããã¹ãããŒã¿ãé³å£°ããŒã¿ã«å€æãããå ·äœçã«ã¯ãé³å£°åææè¡ã¯ãããã¹ãããŒã¿ãå ¥åãšããŠåãåãããã®å 容ã«åºã¥ããŠèªç¶ãªé³å£°ãçæãããé³å£°åææè¡ã¯ãé³çŽ ãé³é»ã®çµã¿åãããè§£æããé©åãªææããã³ããä»äžããããšã§ãèªç¶ã§èãåããããé³å£°ãçæããããŸããé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ãé¡§å®¢ã«æäŸããããšãã§ãããäŸãã°ãé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ãé»è©±ãã€ã³ã¿ãŒããããéããŠé¡§å®¢ã«æäŸãããé»è©±ã®å Žåãé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ããªã¢ã«ã¿ã€ã ã§é»è©±åç·ã«éä¿¡ãã顧客ã«çŽæ¥å¿çãããã€ã³ã¿ãŒãããã®å Žåãé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ãã¹ããªãŒãã³ã°åœ¢åŒã§é ä¿¡ãã顧客ããŠã§ããã©ãŠã¶ãå°çšã¢ããªã±ãŒã·ã§ã³ãéããŠé³å£°ãèãããšãã§ããããã«ãããããã«ãé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ã®å質ãè©äŸ¡ããå¿ èŠã«å¿ããŠä¿®æ£ãè¡ãããšãã§ãããäŸãã°ãé³å£°ã®ææããã³ããäžèªç¶ãªå Žåãé³å£°åéšã¯ãé³å£°åææè¡ãå調æŽããããèªç¶ãªé³å£°ãçæããããŸããé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ãããŒã¿ããŒã¹ã«ä¿åããå°æ¥çãªåãåããã«å¯ŸããåèãšããŠå©çšããããšãã§ãããããã«ãããé³å£°åéšã¯ãè¿ éãã€æ£ç¢ºãªé³å£°å¿çãæäŸãã顧客察å¿ã®å¹çãšå質ãåäžãããããšãã§ããã The voice conversion unit converts the response generated by the generation unit into voice. The voice conversion unit converts text data into voice data, for example, using voice synthesis technology. Specifically, the voice synthesis technology receives text data as input and generates natural voice based on the content. The voice synthesis technology generates natural and easy-to-listen voice by analyzing combinations of phonemes and phonological elements and adding appropriate intonation and tempo. The voice conversion unit can also provide the generated voice data to customers. For example, the voice conversion unit provides the generated voice data to customers via telephone or the Internet. In the case of telephone, the voice conversion unit transmits the generated voice data to a telephone line in real time and responds directly to the customer. In the case of the Internet, the voice conversion unit distributes the generated voice data in a streaming format so that the customer can listen to the voice through a web browser or a dedicated application. Furthermore, the voice conversion unit can evaluate the quality of the generated voice data and make corrections as necessary. For example, if the intonation or tempo of the voice is unnatural, the voice conversion unit readjusts the voice synthesis technology to generate a more natural voice. The voice conversion unit can also store the generated voice data in a database and use it as a reference for future inquiries. This allows the voice conversion unit to provide fast and accurate voice responses, improving the efficiency and quality of customer service.
çæéšã¯ããã¡ã€ã³ãã¥ãŒãã³ã°ãè¡ã調æŽéšãåããããšãã§ããã調æŽéšã¯ãçæïŒ¡ïŒ©ã®ãã¡ã€ã³ãã¥ãŒãã³ã°ãè¡ãã調æŽéšã¯ãäŸãã°ãçæïŒ¡ïŒ©ã®ãã©ã¡ãŒã¿ã調æŽããããšã§ãè¿çã®ç²ŸåºŠãåäžãããããŸãã調æŽéšã¯ããã¬ãŒãã³ã°ããŒã¿ã®éžå®ãè¡ãããšãã§ãããäŸãã°ã調æŽéšã¯ãç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããããŒã¿ãéžå®ããçæïŒ¡ïŒ©ã®ãã¬ãŒãã³ã°ã«äœ¿çšãããããã«ãããçæéšã¯ããã¡ã€ã³ãã¥ãŒãã³ã°ãè¡ãããšã§ãçæïŒ¡ïŒ©ã®è¿çå 容ãããæ£ç¢ºã«ããããšãã§ããã調æŽéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ã調æŽéšã¯ãçæïŒ¡ïŒ©ã®ãã©ã¡ãŒã¿èª¿æŽãã«å®è¡ãããããšãã§ããã The generation unit can include an adjustment unit that performs fine tuning. The adjustment unit performs fine tuning of the generation AI. The adjustment unit improves the accuracy of the response by, for example, adjusting parameters of the generation AI. The adjustment unit can also select training data. For example, the adjustment unit selects data related to a specific business or service and uses it for training the generation AI. In this way, the generation unit can make the response content of the generation AI more accurate by performing fine tuning. Some or all of the above-mentioned processing in the adjustment unit may be performed, for example, using AI, or may be performed without using AI. For example, the adjustment unit can cause the AI to adjust parameters of the generation AI.
é³å£°åéšã¯ãçæãããé³å£°ãé¡§å®¢ã«æäŸããæäŸéšãåããããšãã§ãããæäŸéšã¯ãçæãããé³å£°ãé¡§å®¢ã«æäŸãããæäŸéšã¯ãäŸãã°ãé»è©±ãéããŠé³å£°ãé¡§å®¢ã«æäŸããããŸããæäŸéšã¯ãã€ã³ã¿ãŒããããéããŠé³å£°ãé¡§å®¢ã«æäŸããããšãã§ãããäŸãã°ãæäŸéšã¯ããŠã§ããµã€ããã¢ãã€ã«ã¢ããªãéããŠé³å£°ãæäŸãããããã«ãããçæãããé³å£°ãé¡§å®¢ã«æäŸããããšã§ãèªç¶ãªé³å£°ã§ã®å¯Ÿå¿ãå¯èœãšãªããæäŸéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãæäŸéšã¯ãçæãããé³å£°ããŒã¿ãã«å ¥åããé³å£°ã®æäŸãã«å®è¡ãããããšãã§ããã The voice conversion unit may include a providing unit that provides the generated voice to the customer. The providing unit provides the generated voice to the customer. The providing unit provides the voice to the customer, for example, via telephone. The providing unit may also provide the voice to the customer via the Internet. For example, the providing unit provides the voice through a website or a mobile app. In this way, by providing the generated voice to the customer, it becomes possible to respond in a natural voice. Some or all of the above-mentioned processing in the providing unit may be performed, for example, using AI, or may be performed without using AI. For example, the providing unit may input the generated voice data to AI and cause the AI to provide the voice.
è§£æéšã¯ãè€æ°ã®é³å£°ããŒã¿ãè§£æãã声ã®ãã³ããææãã¢ãã«åããããšãã§ãããè§£æéšã¯ãäŸãã°ãé»è©±é³å£°ãé²é³é³å£°ãªã©ã®è€æ°ã®é³å£°ããŒã¿ãè§£æãããè§£æéšã¯ãé³å£°æ³¢åœ¢ã®è§£æãè¡ãããªãºã ãã¿ãŒã³ãæœåºãããäŸãã°ãè§£æéšã¯ãé³å£°ããŒã¿ã®é³çŽ ãé³é»ãè§£æãã声ã®ãã³ããææãã¢ãã«åãããããã«ãããå€§èŠæš¡é³å£°ããŒã¿ãè§£æããããšã§ãèªç¶ãªäŒè©±ã®ãªãºã ãã€ã³ãããŒã·ã§ã³ãåŠç¿ããããšãã§ãããè§£æéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãè§£æéšã¯ãé³å£°ããŒã¿ãã«å ¥åããé³å£°ããŒã¿ã®è§£æãã«å®è¡ãããããšãã§ããã The analysis unit can analyze multiple pieces of voice data and model the tempo and intonation of the voice. The analysis unit analyzes multiple pieces of voice data, such as telephone voices and recorded voices. The analysis unit analyzes the voice waveform and extracts rhythm patterns. For example, the analysis unit analyzes the phonemes and phonology of the voice data and models the tempo and intonation of the voice. In this way, the rhythm and intonation of natural conversation can be learned by analyzing large-scale voice data. Some or all of the above-mentioned processing in the analysis unit may be performed, for example, using AI, or may be performed without using AI. For example, the analysis unit can input the voice data to AI and have the AI analyze the voice data.
çæéšã¯ãç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã€çæïŒ¡ïŒ©ãçšããããšãã§ãããçæéšã¯ãäŸãã°ãã«ã¹ã¿ããŒãµããŒããå»ççžè«ãªã©ã®ç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã€çæïŒ¡ïŒ©ãçšãããçæéšã¯ãçæïŒ¡ïŒ©ãçšããŠãç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããåãåããã«å¯ŸããŠé©åãªè¿çãçæãããäŸãã°ãçæéšã¯ãã«ã¹ã¿ããŒãµããŒãã«é¢ããåãåããã«å¯ŸããŠãé©åãªè¿çãçæãããããã«ãããç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã€çæïŒ¡ïŒ©ãçšããããšã§ãããé©åãªè¿çãçæããããšãã§ãããçæéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãçæéšã¯ãç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã€çæïŒ¡ïŒ©ãã«å®è¡ãããããšãã§ããã The generation unit can use a generation AI that has knowledge about a specific business or service. The generation unit uses a generation AI that has knowledge about a specific business or service, such as customer support or medical consultation. The generation unit uses the generation AI to generate an appropriate response to an inquiry about the specific business or service. For example, the generation unit generates an appropriate response to an inquiry about customer support. In this way, by using the generation AI that has knowledge about the specific business or service, a more appropriate response can be generated. Some or all of the above-mentioned processing in the generation unit may be performed, for example, using AI, or may be performed without using AI. For example, the generation unit can cause the AI to execute the generation AI that has knowledge about the specific business or service.
è§£æéšã¯ããŠãŒã¶ã®ææ ãæšå®ããæšå®ãããŠãŒã¶ã®ææ ã«åºã¥ããŠé³å£°ããŒã¿ã®è§£ææ¹æ³ã調æŽããããšãã§ãããè§£æéšã¯ãäŸãã°ããŠãŒã¶ãã¹ãã¬ã¹ãæããŠããå Žåãé³å£°ããŒã¿ã®ãã³ããé ãããææãç©ããã«ããããŸããè§£æéšã¯ããŠãŒã¶ããªã©ãã¯ã¹ããŠããå Žåãé³å£°ããŒã¿ã®ãã³ããéãããææãè±ãã«ããããšãã§ãããããã«ãè§£æéšã¯ããŠãŒã¶ãæ¥ãã§ããå Žåãé³å£°ããŒã¿ã®ãã³ããéãããææãç°¡æœã«ããããšãã§ãããããã«ããããŠãŒã¶ã®ææ ã«å¿ããŠé³å£°ããŒã¿ã®è§£ææ¹æ³ã調æŽããããšã§ãããé©åãªè§£æãå¯èœãšãªããææ ã®æšå®ã¯ãäŸãã°ãææ ãšã³ãžã³ãŸãã¯çæïŒ¡ïŒ©ãªã©ãçšããŠææ æšå®æ©èœãçšããŠå®çŸããããçæïŒ¡ïŒ©ã¯ãããã¹ãçæïŒ¡ïŒ©ïŒäŸãã°ãïŒïŒããã«ãã¢ãŒãã«çæïŒ¡ïŒ©ãªã©ã§ãããããããäŸã«éå®ãããªããè§£æéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãè§£æéšã¯ããŠãŒã¶ã®ææ ããŒã¿ãã«å ¥åããææ ã®æšå®ãã«å®è¡ãããããšãã§ããã The analysis unit can estimate the user's emotions and adjust the analysis method of the voice data based on the estimated user's emotions. For example, when the user is feeling stressed, the analysis unit can slow down the tempo of the voice data and make the intonation gentle. In addition, when the user is relaxed, the analysis unit can also speed up the tempo of the voice data and enrich the intonation. Furthermore, when the user is in a hurry, the analysis unit can also speed up the tempo of the voice data and simplify the intonation. This allows for more appropriate analysis by adjusting the analysis method of the voice data according to the user's emotions. The estimation of emotions is realized using an emotion estimation function using, for example, an emotion engine or a generation AI. The generation AI is, for example, a text generation AI (for example, LLM) or a multimodal generation AI, but is not limited to such examples. A part or all of the above-mentioned processing in the analysis unit may be performed using, for example, an AI, or may be performed without using an AI. For example, the analysis unit can input the user's emotion data to the AI and cause the AI to execute emotion estimation.
è§£æéšã¯ãé³å£°ããŒã¿ã®è§£ææã«ãç¹å®ã®ã¢ã¯ã»ã³ããŸãã¯æ¹èšãèæ ®ããŠè§£æç²ŸåºŠãåäžãããããšãã§ãããè§£æéšã¯ãäŸãã°ãç¹å®ã®å°åã®ã¢ã¯ã»ã³ããæã€é³å£°ããŒã¿ãè§£æããéã«ããã®å°åã®ã¢ã¯ã»ã³ãã¢ãã«ãé©çšããããŸããè§£æéšã¯ãç¹å®ã®æ¹èšãæã€é³å£°ããŒã¿ãè§£æããéã«ããã®æ¹èšã®ç¹åŸŽãèæ ®ããŠè§£æãè¡ãããšãã§ãããããã«ãè§£æéšã¯ãè€æ°ã®ã¢ã¯ã»ã³ããæ¹èšãæ··åšããé³å£°ããŒã¿ãè§£æããéã«ãããããã®ç¹åŸŽãçµ±åããŠè§£æãè¡ãããšãã§ãããããã«ãããç¹å®ã®ã¢ã¯ã»ã³ããæ¹èšãèæ ®ããããšã§ãè§£æç²ŸåºŠãåäžãããè§£æéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãè§£æéšã¯ãç¹å®ã®ã¢ã¯ã»ã³ããæ¹èšãæã€é³å£°ããŒã¿ãã«å ¥åããè§£æãã«å®è¡ãããããšãã§ããã When analyzing voice data, the analysis unit can improve the analysis accuracy by taking into account a specific accent or dialect. For example, when analyzing voice data having an accent of a specific region, the analysis unit applies an accent model of that region. In addition, when analyzing voice data having a specific dialect, the analysis unit can also perform the analysis by taking into account the characteristics of the dialect. Furthermore, when analyzing voice data containing a mixture of multiple accents or dialects, the analysis unit can also perform the analysis by integrating the characteristics of each. In this way, by taking into account a specific accent or dialect, the analysis accuracy is improved. Some or all of the above-mentioned processing in the analysis unit may be performed, for example, using AI, or may be performed without using AI. For example, the analysis unit can input voice data having a specific accent or dialect to AI and have the AI perform the analysis.
è§£æéšã¯ãé³å£°ããŒã¿ã®è§£ææã«ãèæ¯ãã€ãºãé€å»ããããã®ãã£ã«ã¿åŠçãè¡ãããšãã§ãããè§£æéšã¯ãäŸãã°ãé³å£°ããŒã¿ã®è§£æåã«ãèæ¯ãã€ãºãé€å»ããããã®ãã£ã«ã¿ãªã³ã°ãé©çšããããŸããè§£æéšã¯ãç¹å®ã®åšæ³¢æ°åž¯åã®ãã€ãºãé€å»ããããã®ãã£ã«ã¿ãªã³ã°ãè¡ãããšãã§ãããããã«ãè§£æéšã¯ãåçã«å€åããèæ¯ãã€ãºããªã¢ã«ã¿ã€ã ã§é€å»ããããã®ãã£ã«ã¿ãªã³ã°ãè¡ãããšãã§ãããããã«ãããèæ¯ãã€ãºãé€å»ããããšã§ãè§£æç²ŸåºŠãåäžãããè§£æéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãè§£æéšã¯ãé³å£°ããŒã¿ãã«å ¥åããèæ¯ãã€ãºã®é€å»ãã«å®è¡ãããããšãã§ããã The analysis unit can perform filtering to remove background noise when analyzing the voice data. For example, the analysis unit applies filtering to remove background noise before analyzing the voice data. The analysis unit can also perform filtering to remove noise in a specific frequency band. Furthermore, the analysis unit can also perform filtering to remove dynamically changing background noise in real time. This removes background noise, improving analysis accuracy. Some or all of the above-mentioned processing in the analysis unit may be performed using AI, for example, or may be performed without using AI. For example, the analysis unit can input the voice data to AI and cause the AI to remove background noise.
è§£æéšã¯ããŠãŒã¶ã®ææ ãæšå®ããæšå®ãããŠãŒã¶ã®ææ ã«åºã¥ããŠè§£æããé³å£°ããŒã¿ã®åªå é äœã決å®ããããšãã§ãããè§£æéšã¯ãäŸãã°ããŠãŒã¶ãã¹ãã¬ã¹ãæããŠããå Žåãã¹ãã¬ã¹ã軜æžããããã®é³å£°ããŒã¿ãåªå çã«è§£æããããŸããè§£æéšã¯ããŠãŒã¶ããªã©ãã¯ã¹ããŠããå Žåããªã©ãã¯ã¹ãç¶æããããã®é³å£°ããŒã¿ãåªå çã«è§£æããããšãã§ãããããã«ãè§£æéšã¯ããŠãŒã¶ãæ¥ãã§ããå Žåãè¿ éã«å¯Ÿå¿ããããã®é³å£°ããŒã¿ãåªå çã«è§£æããããšãã§ãããããã«ããããŠãŒã¶ã®ææ ã«å¿ããŠè§£æããé³å£°ããŒã¿ã®åªå é äœã決å®ããããšã§ãããé©åãªè§£æãå¯èœãšãªããææ ã®æšå®ã¯ãäŸãã°ãææ ãšã³ãžã³ãŸãã¯çæïŒ¡ïŒ©ãªã©ãçšããŠææ æšå®æ©èœãçšããŠå®çŸããããçæïŒ¡ïŒ©ã¯ãããã¹ãçæïŒ¡ïŒ©ïŒäŸãã°ãïŒïŒããã«ãã¢ãŒãã«çæïŒ¡ïŒ©ãªã©ã§ãããããããäŸã«éå®ãããªããè§£æéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãè§£æéšã¯ããŠãŒã¶ã®ææ ããŒã¿ãã«å ¥åããææ ã®æšå®ãã«å®è¡ãããããšãã§ããã The analysis unit can estimate the user's emotions and determine the priority of the voice data to be analyzed based on the estimated user's emotions. For example, when the user is feeling stressed, the analysis unit preferentially analyzes voice data for reducing stress. In addition, when the user is relaxed, the analysis unit can also preferentially analyze voice data for maintaining relaxation. Furthermore, when the user is in a hurry, the analysis unit can also preferentially analyze voice data for responding quickly. This enables more appropriate analysis by determining the priority of the voice data to be analyzed according to the user's emotions. The estimation of emotions is realized using an emotion estimation function using, for example, an emotion engine or a generation AI. The generation AI is, for example, a text generation AI (for example, LLM) or a multimodal generation AI, but is not limited to such examples. A part or all of the above-mentioned processing in the analysis unit may be performed using, for example, an AI, or may be performed without using an AI. For example, the analysis unit can input the user's emotion data to the AI and cause the AI to execute emotion estimation.
è§£æéšã¯ãé³å£°ããŒã¿ã®è§£ææã«ããŠãŒã¶ã®å°ççäœçœ®æ å ±ã«åºã¥ããŠè§£ææ¹æ³ã調æŽããããšãã§ãããè§£æéšã¯ãäŸãã°ããŠãŒã¶ãç¹å®ã®å°åã«ããå Žåããã®å°åã®ã¢ã¯ã»ã³ããæ¹èšãèæ ®ããŠè§£æãè¡ãããŸããè§£æéšã¯ããŠãŒã¶ãç§»åäžã®å Žåãç§»åå ã®å°åã®ã¢ã¯ã»ã³ããæ¹èšãèæ ®ããŠè§£æãè¡ãããšãã§ãããããã«ãè§£æéšã¯ããŠãŒã¶ãç°ãªãå°åã«ããå Žåãããããã®å°åã®ç¹åŸŽãçµ±åããŠè§£æãè¡ãããšãã§ãããããã«ããããŠãŒã¶ã®å°ççäœçœ®æ å ±ãèæ ®ããããšã§ãè§£ææ¹æ³ã調æŽããããšãã§ãããè§£æéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãè§£æéšã¯ããŠãŒã¶ã®å°ççäœçœ®æ å ±ãã«å ¥åããè§£ææ¹æ³ã®èª¿æŽãã«å®è¡ãããããšãã§ããã When analyzing the voice data, the analysis unit can adjust the analysis method based on the geographical location information of the user. For example, when the user is in a specific area, the analysis unit performs the analysis taking into account the accent and dialect of that area. In addition, when the user is moving, the analysis unit can also perform the analysis taking into account the accent and dialect of the destination area. Furthermore, when the user is in different areas, the analysis unit can also perform the analysis by integrating the characteristics of each area. In this way, the analysis method can be adjusted by taking into account the geographical location information of the user. Some or all of the above-mentioned processing in the analysis unit may be performed using, for example, AI, or may be performed without using AI. For example, the analysis unit can input the geographical location information of the user to AI and cause the AI to adjust the analysis method.
è§£æéšã¯ãé³å£°ããŒã¿ã®è§£ææã«ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãåæããé¢é£ããé³å£°ããŒã¿ãåªå çã«è§£æããããšãã§ãããè§£æéšã¯ãäŸãã°ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãããç¹å®ã®ãããã¯ã«é¢é£ããé³å£°ããŒã¿ãåªå çã«è§£æããããŸããè§£æéšã¯ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãããç¹å®ã®ã€ãã³ãã«é¢é£ããé³å£°ããŒã¿ãåªå çã«è§£æããããšãã§ãããããã«ãè§£æéšã¯ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãããç¹å®ã®äººç©ã«é¢é£ããé³å£°ããŒã¿ãåªå çã«è§£æããããšãã§ãããããã«ããããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãåæããããšã§ãé¢é£ããé³å£°ããŒã¿ãåªå çã«è§£æããããšãã§ãããè§£æéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãè§£æéšã¯ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åããŒã¿ãã«å ¥åããé¢é£ããé³å£°ããŒã¿ã®åªå é äœã決å®ããè§£æãã«å®è¡ãããããšãã§ããã When analyzing the voice data, the analysis unit can analyze the user's social media activity and prioritize analysis of related voice data. For example, the analysis unit prioritizes analysis of voice data related to a specific topic from the user's social media activity. The analysis unit can also prioritize analysis of voice data related to a specific event from the user's social media activity. Furthermore, the analysis unit can also prioritize analysis of voice data related to a specific person from the user's social media activity. In this way, by analyzing the user's social media activity, related voice data can be prioritized. A part or all of the above-mentioned processing in the analysis unit may be performed, for example, using AI or may be performed without using AI. For example, the analysis unit can input the user's social media activity data to AI and cause AI to perform analysis to determine the priority order of related voice data.
çæéšã¯ããŠãŒã¶ã®ææ ãæšå®ããæšå®ãããŠãŒã¶ã®ææ ã«åºã¥ããŠè¿çã®è¡šçŸæ¹æ³ã調æŽããããšãã§ãããçæéšã¯ãäŸãã°ããŠãŒã¶ãã¹ãã¬ã¹ãæããŠããå Žåãç©ãããªè¡šçŸæ¹æ³ã§è¿çãçæããããŸããçæéšã¯ããŠãŒã¶ããªã©ãã¯ã¹ããŠããå Žåã芪ãã¿ãããè¡šçŸæ¹æ³ã§è¿çãçæããããšãã§ãããããã«ãçæéšã¯ããŠãŒã¶ãæ¥ãã§ããå Žåãç°¡æœã§è¿ éãªè¡šçŸæ¹æ³ã§è¿çãçæããããšãã§ãããããã«ããããŠãŒã¶ã®ææ ã«å¿ããŠè¿çã®è¡šçŸæ¹æ³ã調æŽããããšã§ãããé©åãªè¿çãå¯èœãšãªããææ ã®æšå®ã¯ãäŸãã°ãææ ãšã³ãžã³ãŸãã¯çæïŒ¡ïŒ©ãªã©ãçšããŠææ æšå®æ©èœãçšããŠå®çŸããããçæïŒ¡ïŒ©ã¯ãããã¹ãçæïŒ¡ïŒ©ïŒäŸãã°ãïŒïŒããã«ãã¢ãŒãã«çæïŒ¡ïŒ©ãªã©ã§ãããããããäŸã«éå®ãããªããçæéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãçæéšã¯ããŠãŒã¶ã®ææ ããŒã¿ãã«å ¥åããææ ã®æšå®ãã«å®è¡ãããããšãã§ããã The generation unit can estimate the user's emotions and adjust the way of expressing the response based on the estimated user's emotions. For example, when the user is stressed, the generation unit generates a response using a gentle expression method. Also, when the user is relaxed, the generation unit can generate a response using a friendly expression method. Furthermore, when the user is in a hurry, the generation unit can generate a response using a concise and quick expression method. This allows for a more appropriate response by adjusting the way of expressing the response according to the user's emotions. The estimation of emotions is realized using an emotion estimation function using, for example, an emotion engine or a generation AI. The generation AI is, for example, a text generation AI (e.g., LLM) or a multimodal generation AI, but is not limited to such examples. A part or all of the above-mentioned processing in the generation unit may be performed using, for example, an AI, or may be performed without using an AI. For example, the generation unit can input the user's emotion data to the AI and cause the AI to execute emotion estimation.
çæéšã¯ãè¿ççææã«ãåãåããå 容ã®éèŠåºŠã«åºã¥ããŠè¿çã®è©³çŽ°åºŠã調æŽããããšãã§ãããçæéšã¯ãäŸãã°ãéèŠåºŠã®é«ãåãåããã«å¯ŸããŠã詳现ãªè¿çãçæããããŸããçæéšã¯ãéèŠåºŠã®äœãåãåããã«å¯ŸããŠãç°¡æœãªè¿çãçæããããšãã§ãããããã«ãçæéšã¯ãéèŠåºŠã«å¿ããŠãè¿çã®è©³çŽ°åºŠãåçã«èª¿æŽããããšãã§ãããããã«ãããåãåããå 容ã®éèŠåºŠã«åºã¥ããŠè¿çã®è©³çŽ°åºŠã調æŽããããšã§ãããé©åãªè¿çãå¯èœãšãªããçæéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãçæéšã¯ãåãåããå 容ã®éèŠåºŠãã«å ¥åããè¿çã®è©³çŽ°åºŠã調æŽããåŠçãã«å®è¡ãããããšãã§ããã When generating a response, the generation unit can adjust the level of detail of the response based on the importance of the inquiry content. For example, the generation unit generates a detailed response to an inquiry of high importance. The generation unit can also generate a concise response to an inquiry of low importance. Furthermore, the generation unit can dynamically adjust the level of detail of the response according to the importance. This allows for a more appropriate response by adjusting the level of detail of the response based on the importance of the inquiry content. Some or all of the above-mentioned processing in the generation unit may be performed using, for example, AI, or may be performed without using AI. For example, the generation unit can input the importance of the inquiry content to the AI and cause the AI to execute processing to adjust the level of detail of the response.
çæéšã¯ãè¿ççææã«ãåãåããã®ã«ããŽãªã«å¿ããŠç°ãªãçæã¢ã«ãŽãªãºã ãé©çšããããšãã§ãããçæéšã¯ãäŸãã°ãæè¡çãªåãåããã«å¯ŸããŠãå°éçãªçæã¢ã«ãŽãªãºã ãé©çšããããŸããçæéšã¯ãäžè¬çãªåãåããã«å¯ŸããŠãæ±çšçãªçæã¢ã«ãŽãªãºã ãé©çšããããšãã§ãããããã«ãçæéšã¯ãç·æ¥ã®åãåããã«å¯ŸããŠãè¿ éãªçæã¢ã«ãŽãªãºã ãé©çšããããšãã§ãããããã«ãããåãåããã®ã«ããŽãªã«å¿ããŠç°ãªãçæã¢ã«ãŽãªãºã ãé©çšããããšã§ãããé©åãªè¿çãå¯èœãšãªããçæéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãçæéšã¯ãåãåããã®ã«ããŽãªãã«å ¥åããé©çšããçæã¢ã«ãŽãªãºã ãæ±ºå®ããåŠçãã«å®è¡ãããããšãã§ããã When generating a response, the generation unit can apply different generation algorithms depending on the category of the inquiry. For example, the generation unit applies a specialized generation algorithm to a technical inquiry. The generation unit can also apply a general-purpose generation algorithm to a general inquiry. Furthermore, the generation unit can apply a quick generation algorithm to an urgent inquiry. This allows for a more appropriate response by applying different generation algorithms depending on the inquiry category. Some or all of the above-mentioned processing in the generation unit may be performed using, for example, AI, or may be performed without using AI. For example, the generation unit can input the inquiry category to the AI and cause the AI to execute a process of determining the generation algorithm to be applied.
çæéšã¯ããŠãŒã¶ã®ææ ãæšå®ããæšå®ãããŠãŒã¶ã®ææ ã«åºã¥ããŠè¿çã®é·ãã調æŽããããšãã§ãããçæéšã¯ãäŸãã°ããŠãŒã¶ãã¹ãã¬ã¹ãæããŠããå ŽåãçããŠèŠç¹ãæŒãããè¿çãçæããããŸããçæéšã¯ããŠãŒã¶ããªã©ãã¯ã¹ããŠããå Žåã詳现ãªèª¬æãå«ãé·ãã®è¿çãçæããããšãã§ãããããã«ãçæéšã¯ããŠãŒã¶ãæ¥ãã§ããå Žåãè¿ éã§ç°¡æœãªè¿çãçæããããšãã§ãããããã«ããããŠãŒã¶ã®ææ ã«å¿ããŠè¿çã®é·ãã調æŽããããšã§ãããé©åãªè¿çãå¯èœãšãªããææ ã®æšå®ã¯ãäŸãã°ãææ ãšã³ãžã³ãŸãã¯çæïŒ¡ïŒ©ãªã©ãçšããŠææ æšå®æ©èœãçšããŠå®çŸããããçæïŒ¡ïŒ©ã¯ãããã¹ãçæïŒ¡ïŒ©ïŒäŸãã°ãïŒïŒããã«ãã¢ãŒãã«çæïŒ¡ïŒ©ãªã©ã§ãããããããäŸã«éå®ãããªããçæéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãçæéšã¯ããŠãŒã¶ã®ææ ããŒã¿ãã«å ¥åããææ ã®æšå®ãã«å®è¡ãããããšãã§ããã The generation unit can estimate the user's emotions and adjust the length of the response based on the estimated user's emotions. For example, when the user is stressed, the generation unit generates a short, to-the-point response. Also, when the user is relaxed, the generation unit can generate a longer response including detailed explanations. Furthermore, when the user is in a hurry, the generation unit can generate a quick, concise response. This allows for a more appropriate response by adjusting the length of the response according to the user's emotions. The estimation of emotions is realized using an emotion estimation function, for example, using an emotion engine or generation AI. The generation AI is, for example, a text generation AI (e.g., LLM) or a multimodal generation AI, but is not limited to such examples. A part or all of the above-mentioned processing in the generation unit may be performed, for example, using AI, or may be performed without using AI. For example, the generation unit can input the user's emotion data to the AI and cause the AI to perform emotion estimation.
çæéšã¯ãè¿ççææã«ãåãåããã®æåºææã«åºã¥ããŠè¿çã®åªå é äœã決å®ããããšãã§ãããçæéšã¯ãäŸãã°ãæè¿æåºãããåãåããã«å¯ŸããŠãåªå çã«è¿çãçæããããŸããçæéšã¯ãé·æéæªè§£æ±ºã®åãåããã«å¯ŸããŠãåªå çã«è¿çãçæããããšãã§ãããããã«ãçæéšã¯ãæåºææã«å¿ããŠãè¿çã®åªå é äœãåçã«èª¿æŽããããšãã§ãããããã«ãããåãåããã®æåºææã«åºã¥ããŠè¿çã®åªå é äœã決å®ããããšã§ãããè¿ éãªå¯Ÿå¿ãå¯èœãšãªããçæéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãçæéšã¯ãåãåããã®æåºææãã«å ¥åããè¿çã®åªå é äœã決å®ããåŠçãã«å®è¡ãããããšãã§ããã When generating a reply, the generation unit can determine the priority of the reply based on the time of submission of the inquiry. For example, the generation unit can generate a reply with priority to a recently submitted inquiry. The generation unit can also generate a reply with priority to an inquiry that has been unresolved for a long time. Furthermore, the generation unit can dynamically adjust the priority of the reply depending on the submission time. This allows for a faster response by determining the priority of the reply based on the submission time of the inquiry. Some or all of the above-mentioned processing in the generation unit may be performed using, for example, AI, or may be performed without using AI. For example, the generation unit can input the submission time of the inquiry to the AI and cause the AI to execute a process of determining the priority of the reply.
çæéšã¯ãè¿ççææã«ãåãåããã®é¢é£æ§ã«åºã¥ããŠè¿çã®é åºã調æŽããããšãã§ãããçæéšã¯ãäŸãã°ãé¢é£æ§ã®é«ãåãåããã«å¯ŸããŠãåªå çã«è¿çãçæããããŸããçæéšã¯ãé¢é£æ§ã®äœãåãåããã«å¯ŸããŠãåŸåãã«ããŠè¿çãçæããããšãã§ãããããã«ãçæéšã¯ãé¢é£æ§ã«å¿ããŠãè¿çã®é åºãåçã«èª¿æŽããããšãã§ãããããã«ãããåãåããã®é¢é£æ§ã«åºã¥ããŠè¿çã®é åºã調æŽããããšã§ãããé©åãªè¿çãå¯èœãšãªããçæéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãçæéšã¯ãåãåããã®é¢é£æ§ãã«å ¥åããè¿çã®é åºã調æŽããåŠçãã«å®è¡ãããããšãã§ããã When generating a reply, the generation unit can adjust the order of replies based on the relevance of the inquiries. For example, the generation unit generates replies preferentially for inquiries with high relevance. The generation unit can also postpone generating replies for inquiries with low relevance. Furthermore, the generation unit can dynamically adjust the order of replies according to the relevance. This allows for a more appropriate reply by adjusting the order of replies based on the relevance of the inquiries. Some or all of the above-mentioned processing in the generation unit may be performed, for example, using AI, or may be performed without using AI. For example, the generation unit can input the relevance of the inquiries to the AI and cause the AI to execute processing to adjust the order of replies.
é³å£°åéšã¯ããŠãŒã¶ã®ææ ãæšå®ããæšå®ãããŠãŒã¶ã®ææ ã«åºã¥ããŠé³å£°åã®è¡šçŸæ¹æ³ã調æŽããããšãã§ãããé³å£°åéšã¯ãäŸãã°ããŠãŒã¶ãã¹ãã¬ã¹ãæããŠããå Žåãç©ãããªå£°ã§é³å£°åãè¡ãããŸããé³å£°åéšã¯ããŠãŒã¶ããªã©ãã¯ã¹ããŠããå Žåã芪ãã¿ããã声ã§é³å£°åãè¡ãããšãã§ãããããã«ãé³å£°åéšã¯ããŠãŒã¶ãæ¥ãã§ããå Žåãè¿ éã§ç°¡æœãªå£°ã§é³å£°åãè¡ãããšãã§ãããããã«ããããŠãŒã¶ã®ææ ã«å¿ããŠé³å£°åã®è¡šçŸæ¹æ³ã調æŽããããšã§ãããé©åãªé³å£°åãå¯èœãšãªããææ ã®æšå®ã¯ãäŸãã°ãææ ãšã³ãžã³ãŸãã¯çæïŒ¡ïŒ©ãªã©ãçšããŠææ æšå®æ©èœãçšããŠå®çŸããããçæïŒ¡ïŒ©ã¯ãããã¹ãçæïŒ¡ïŒ©ïŒäŸãã°ãïŒïŒããã«ãã¢ãŒãã«çæïŒ¡ïŒ©ãªã©ã§ãããããããäŸã«éå®ãããªããé³å£°åéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãé³å£°åéšã¯ããŠãŒã¶ã®ææ ããŒã¿ãã«å ¥åããææ ã®æšå®ãã«å®è¡ãããããšãã§ããã The voice conversion unit can estimate the user's emotion and adjust the vocalization expression method based on the estimated user's emotion. For example, when the user is stressed, the voice conversion unit performs vocalization in a gentle voice. Also, when the user is relaxed, the voice conversion unit can perform vocalization in a friendly voice. Furthermore, when the user is in a hurry, the voice conversion unit can perform vocalization in a quick and concise voice. This allows for more appropriate vocalization by adjusting the vocalization expression method according to the user's emotion. The emotion estimation is realized using an emotion estimation function, for example, using an emotion engine or a generation AI. The generation AI is a text generation AI (e.g., LLM) or a multimodal generation AI, but is not limited to such examples. A part or all of the above-mentioned processing in the voice conversion unit may be performed, for example, using AI, or may be performed without using AI. For example, the voice conversion unit can input the user's emotion data to the AI and cause the AI to perform emotion estimation.
é³å£°åéšã¯ãé³å£°åæã«ãçæãããé³å£°ã®èªç¶ããåäžãããããã®é³å£°ãã£ã«ã¿ãªã³ã°ãè¡ãããšãã§ãããé³å£°åéšã¯ãäŸãã°ãçæãããé³å£°ã«å¯ŸããŠããã€ãºãªãã¯ã·ã§ã³ãã£ã«ã¿ãé©çšããããŸããé³å£°åéšã¯ãçæãããé³å£°ã«å¯ŸããŠããšã³ãŒãã£ã³ã»ãªã³ã°ãã£ã«ã¿ãé©çšããããšãã§ãããããã«ãé³å£°åéšã¯ãçæãããé³å£°ã«å¯ŸããŠãé³è³ªåäžãã£ã«ã¿ãé©çšããããšãã§ãããããã«ãããçæãããé³å£°ã®èªç¶ããåäžãããããšã§ãããèªç¶ãªé³å£°åãå¯èœãšãªããé³å£°åéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ãã«å ¥åããé³å£°ãã£ã«ã¿ãªã³ã°ãã«å®è¡ãããããšãã§ããã The voice conversion unit can perform voice filtering to improve the naturalness of the generated voice during voice conversion. For example, the voice conversion unit applies a noise reduction filter to the generated voice. The voice conversion unit can also apply an echo canceling filter to the generated voice. Furthermore, the voice conversion unit can apply a sound quality improvement filter to the generated voice. This improves the naturalness of the generated voice, making it possible to convert the voice into a more natural voice. Some or all of the above-mentioned processing in the voice conversion unit can be performed using, for example, AI, or can be performed without using AI. For example, the voice conversion unit can input the generated voice data to AI and have the AI perform voice filtering.
é³å£°åéšã¯ãé³å£°åæã«ãç¹å®ã®ã¢ã¯ã»ã³ããæ¹èšãèæ ®ããŠé³å£°åã®ç²ŸåºŠãåäžãããããšãã§ãããé³å£°åéšã¯ãäŸãã°ãç¹å®ã®å°åã®ã¢ã¯ã»ã³ããæã€é³å£°ãçæããéã«ããã®å°åã®ã¢ã¯ã»ã³ãã¢ãã«ãé©çšããããŸããé³å£°åéšã¯ãç¹å®ã®æ¹èšãæã€é³å£°ãçæããéã«ããã®æ¹èšã®ç¹åŸŽãèæ ®ããŠé³å£°åãè¡ãããšãã§ãããããã«ãé³å£°åéšã¯ãè€æ°ã®ã¢ã¯ã»ã³ããæ¹èšãæ··åšããé³å£°ãçæããéã«ãããããã®ç¹åŸŽãçµ±åããŠé³å£°åãè¡ãããšãã§ãããããã«ãããç¹å®ã®ã¢ã¯ã»ã³ããæ¹èšãèæ ®ããããšã§ãé³å£°åã®ç²ŸåºŠãåäžãããé³å£°åéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãé³å£°åéšã¯ãç¹å®ã®ã¢ã¯ã»ã³ããæ¹èšãæã€é³å£°ããŒã¿ãã«å ¥åããé³å£°åãã«å®è¡ãããããšãã§ããã The voice conversion unit can improve the accuracy of voice conversion by taking into account a specific accent or dialect when generating voice. For example, when generating voice with an accent of a specific region, the voice conversion unit applies an accent model of that region. In addition, when generating voice with a specific dialect, the voice conversion unit can also perform voice conversion by taking into account the characteristics of the dialect. Furthermore, when generating voice in which multiple accents or dialects are mixed, the voice conversion unit can also perform voice conversion by integrating the characteristics of each. In this way, the accuracy of voice conversion is improved by taking into account a specific accent or dialect. Some or all of the above-mentioned processing in the voice conversion unit may be performed using, for example, AI, or may be performed without using AI. For example, the voice conversion unit can input voice data with a specific accent or dialect to AI and have the AI perform voice conversion.
é³å£°åéšã¯ããŠãŒã¶ã®ææ ãæšå®ããæšå®ãããŠãŒã¶ã®ææ ã«åºã¥ããŠé³å£°åã®åªå é äœã決å®ããããšãã§ãããé³å£°åéšã¯ãäŸãã°ããŠãŒã¶ãã¹ãã¬ã¹ãæããŠããå Žåãã¹ãã¬ã¹ã軜æžããããã®é³å£°ãåªå çã«çæããããŸããé³å£°åéšã¯ããŠãŒã¶ããªã©ãã¯ã¹ããŠããå Žåããªã©ãã¯ã¹ãç¶æããããã®é³å£°ãåªå çã«çæããããšãã§ãããããã«ãé³å£°åéšã¯ããŠãŒã¶ãæ¥ãã§ããå Žåãè¿ éã«å¯Ÿå¿ããããã®é³å£°ãåªå çã«çæããããšãã§ãããããã«ããããŠãŒã¶ã®ææ ã«å¿ããŠé³å£°åã®åªå é äœã決å®ããããšã§ãããé©åãªé³å£°åãå¯èœãšãªããææ ã®æšå®ã¯ãäŸãã°ãææ ãšã³ãžã³ãŸãã¯çæïŒ¡ïŒ©ãªã©ãçšããŠææ æšå®æ©èœãçšããŠå®çŸããããçæïŒ¡ïŒ©ã¯ãããã¹ãçæïŒ¡ïŒ©ïŒäŸãã°ãïŒïŒããã«ãã¢ãŒãã«çæïŒ¡ïŒ©ãªã©ã§ãããããããäŸã«éå®ãããªããé³å£°åéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãé³å£°åéšã¯ããŠãŒã¶ã®ææ ããŒã¿ãã«å ¥åããææ ã®æšå®ãã«å®è¡ãããããšãã§ããã The voice conversion unit can estimate the user's emotion and determine the priority of voice conversion based on the estimated user's emotion. For example, when the user is stressed, the voice conversion unit generates a voice for reducing stress. In addition, when the user is relaxed, the voice conversion unit can also generate a voice for maintaining relaxation. Furthermore, when the user is in a hurry, the voice conversion unit can also generate a voice for responding quickly. This enables more appropriate voice conversion by determining the priority of voice conversion according to the user's emotion. The emotion estimation is realized using an emotion estimation function using, for example, an emotion engine or a generation AI. The generation AI is, for example, a text generation AI (for example, LLM) or a multimodal generation AI, but is not limited to such examples. A part or all of the above-mentioned processing in the voice conversion unit may be performed using, for example, an AI, or may be performed without using an AI. For example, the voice conversion unit can input the user's emotion data to the AI and cause the AI to execute emotion estimation.
é³å£°åéšã¯ãé³å£°åæã«ããŠãŒã¶ã®å°ççäœçœ®æ å ±ãèæ ®ããŠé³å£°åæ¹æ³ã調æŽããããšãã§ãããé³å£°åéšã¯ãäŸãã°ããŠãŒã¶ãç¹å®ã®å°åã«ããå Žåããã®å°åã®ã¢ã¯ã»ã³ããæ¹èšãèæ ®ããŠé³å£°åãè¡ãããŸããé³å£°åéšã¯ããŠãŒã¶ãç§»åäžã®å Žåãç§»åå ã®å°åã®ã¢ã¯ã»ã³ããæ¹èšãèæ ®ããŠé³å£°åãè¡ãããšãã§ãããããã«ãé³å£°åéšã¯ããŠãŒã¶ãç°ãªãå°åã«ããå Žåãããããã®å°åã®ç¹åŸŽãçµ±åããŠé³å£°åãè¡ãããšãã§ãããããã«ããããŠãŒã¶ã®å°ççäœçœ®æ å ±ãèæ ®ããããšã§ãé³å£°åæ¹æ³ã調æŽããããšãã§ãããé³å£°åéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãé³å£°åéšã¯ããŠãŒã¶ã®å°ççäœçœ®æ å ±ãã«å ¥åããé³å£°åæ¹æ³ã®èª¿æŽãã«å®è¡ãããããšãã§ããã The voice conversion unit can adjust the voice conversion method taking into account the geographical location information of the user when vocalizing. For example, when the user is in a specific area, the voice conversion unit performs voice conversion taking into account the accent or dialect of that area. In addition, when the user is moving, the voice conversion unit can also perform voice conversion taking into account the accent or dialect of the area to which the user is moving. Furthermore, when the user is in different areas, the voice conversion unit can also perform voice conversion by integrating the characteristics of each area. In this way, the voice conversion method can be adjusted by taking into account the geographical location information of the user. Part or all of the above-mentioned processing in the voice conversion unit may be performed using, for example, AI, or may be performed without using AI. For example, the voice conversion unit can input the geographical location information of the user to AI and cause the AI to adjust the voice conversion method.
é³å£°åéšã¯ãé³å£°åæã«ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãåæããé¢é£ããé³å£°ããŒã¿ãåªå çã«é³å£°åããããšãã§ãããé³å£°åéšã¯ãäŸãã°ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãããç¹å®ã®ãããã¯ã«é¢é£ããé³å£°ãåªå çã«çæããããŸããé³å£°åéšã¯ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãããç¹å®ã®ã€ãã³ãã«é¢é£ããé³å£°ãåªå çã«çæããããšãã§ãããããã«ãé³å£°åéšã¯ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãããç¹å®ã®äººç©ã«é¢é£ããé³å£°ãåªå çã«çæããããšãã§ãããããã«ããããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãåæããããšã§ãé¢é£ããé³å£°ããŒã¿ãåªå çã«é³å£°åããããšãã§ãããé³å£°åéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãé³å£°åéšã¯ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åããŒã¿ãã«å ¥åããé¢é£ããé³å£°ããŒã¿ã®åªå é äœã決å®ããé³å£°åãã«å®è¡ãããããšãã§ããã When vocalizing, the vocalization unit can analyze the user's social media activity and vocalize related voice data preferentially. For example, the vocalization unit preferentially generates voice related to a specific topic from the user's social media activity. The vocalization unit can also preferentially generate voice related to a specific event from the user's social media activity. Furthermore, the vocalization unit can also preferentially generate voice related to a specific person from the user's social media activity. In this way, by analyzing the user's social media activity, related voice data can be preferentially vocalized. A part or all of the above-mentioned processing in the vocalization unit may be performed, for example, using AI or may be performed without using AI. For example, the vocalization unit inputs the user's social media activity data into AI and causes AI to perform vocalization that determines the priority of related voice data.
調æŽéšã¯ããŠãŒã¶ã®ææ ãæšå®ããæšå®ãããŠãŒã¶ã®ææ ã«åºã¥ããŠãã¡ã€ã³ãã¥ãŒãã³ã°ã®ãã©ã¡ãŒã¿ã調æŽããããšãã§ããã調æŽéšã¯ãäŸãã°ããŠãŒã¶ãã¹ãã¬ã¹ãæããŠããå Žåãã¹ãã¬ã¹ã軜æžããããã®ãã©ã¡ãŒã¿ã調æŽããããŸãã調æŽéšã¯ããŠãŒã¶ããªã©ãã¯ã¹ããŠããå Žåããªã©ãã¯ã¹ãç¶æããããã®ãã©ã¡ãŒã¿ã調æŽããããšãã§ãããããã«ã調æŽéšã¯ããŠãŒã¶ãæ¥ãã§ããå Žåãè¿ éã«å¯Ÿå¿ããããã®ãã©ã¡ãŒã¿ã調æŽããããšãã§ãããããã«ããããŠãŒã¶ã®ææ ã«å¿ããŠãã¡ã€ã³ãã¥ãŒãã³ã°ã®ãã©ã¡ãŒã¿ã調æŽããããšã§ãããé©åãªèª¿æŽãå¯èœãšãªããææ ã®æšå®ã¯ãäŸãã°ãææ ãšã³ãžã³ãŸãã¯çæïŒ¡ïŒ©ãªã©ãçšããŠææ æšå®æ©èœãçšããŠå®çŸããããçæïŒ¡ïŒ©ã¯ãããã¹ãçæïŒ¡ïŒ©ïŒäŸãã°ãïŒïŒããã«ãã¢ãŒãã«çæïŒ¡ïŒ©ãªã©ã§ãããããããäŸã«éå®ãããªãã調æŽéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ã調æŽéšã¯ããŠãŒã¶ã®ææ ããŒã¿ãã«å ¥åããææ ã®æšå®ãã«å®è¡ãããããšãã§ããã The adjustment unit can estimate the user's emotion and adjust the fine-tuning parameters based on the estimated user's emotion. For example, when the user is feeling stressed, the adjustment unit adjusts the parameters for reducing stress. In addition, when the user is relaxed, the adjustment unit can also adjust the parameters for maintaining relaxation. Furthermore, when the user is in a hurry, the adjustment unit can adjust the parameters for responding quickly. This allows for more appropriate adjustment by adjusting the fine-tuning parameters according to the user's emotion. The emotion estimation is realized using an emotion estimation function using, for example, an emotion engine or a generation AI. The generation AI is, for example, a text generation AI (e.g., LLM) or a multimodal generation AI, but is not limited to such examples. A part or all of the above-mentioned processing in the adjustment unit may be performed using, for example, an AI, or may be performed without using an AI. For example, the adjustment unit can input the user's emotion data to the AI and cause the AI to execute emotion estimation.
調æŽéšã¯ããã¡ã€ã³ãã¥ãŒãã³ã°æã«ãéå»ã®åãåããããŒã¿ãåç §ããŠçæã¢ã«ãŽãªãºã ãæé©åããããšãã§ããã調æŽéšã¯ãäŸãã°ãéå»ã®åãåããããŒã¿ãåæããçæã¢ã«ãŽãªãºã ã®ãã©ã¡ãŒã¿ãæé©åããããŸãã調æŽéšã¯ãéå»ã®åãåããããŒã¿ãããç¹å®ã®ãã¿ãŒã³ãæœåºããçæã¢ã«ãŽãªãºã ã«åæ ããããšãã§ãããããã«ã調æŽéšã¯ãéå»ã®åãåããããŒã¿ãåºã«ãçæã¢ã«ãŽãªãºã ã®ç²ŸåºŠãåäžãããããšãã§ãããããã«ãããéå»ã®åãåããããŒã¿ãåç §ããããšã§ãçæã¢ã«ãŽãªãºã ãæé©åããããšãã§ããã調æŽéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ã調æŽéšã¯ãéå»ã®åãåããããŒã¿ãã«å ¥åããçæã¢ã«ãŽãªãºã ã®æé©åãã«å®è¡ãããããšãã§ããã During fine tuning, the adjustment unit can optimize the generation algorithm by referring to past inquiry data. The adjustment unit, for example, analyzes past inquiry data and optimizes parameters of the generation algorithm. The adjustment unit can also extract specific patterns from past inquiry data and reflect them in the generation algorithm. Furthermore, the adjustment unit can improve the accuracy of the generation algorithm based on past inquiry data. In this way, the generation algorithm can be optimized by referring to past inquiry data. Some or all of the above-mentioned processing in the adjustment unit may be performed, for example, using AI, or may be performed without using AI. For example, the adjustment unit can input past inquiry data to AI and cause AI to optimize the generation algorithm.
調æŽéšã¯ããŠãŒã¶ã®ææ ãæšå®ããæšå®ãããŠãŒã¶ã®ææ ã«åºã¥ããŠãã¡ã€ã³ãã¥ãŒãã³ã°ã®é »åºŠã調æŽããããšãã§ããã調æŽéšã¯ãäŸãã°ããŠãŒã¶ãã¹ãã¬ã¹ãæããŠããå Žåãé »ç¹ã«ãã¡ã€ã³ãã¥ãŒãã³ã°ãè¡ããã¹ãã¬ã¹ã軜æžããããŸãã調æŽéšã¯ããŠãŒã¶ããªã©ãã¯ã¹ããŠããå Žåããã¡ã€ã³ãã¥ãŒãã³ã°ã®é »åºŠãæžããããªã©ãã¯ã¹ãç¶æããããšãã§ãããããã«ã調æŽéšã¯ããŠãŒã¶ãæ¥ãã§ããå Žåãè¿ éã«å¯Ÿå¿ããããã«ãé »ç¹ã«ãã¡ã€ã³ãã¥ãŒãã³ã°ãè¡ãããšãã§ãããããã«ããããŠãŒã¶ã®ææ ã«å¿ããŠãã¡ã€ã³ãã¥ãŒãã³ã°ã®é »åºŠã調æŽããããšã§ãããé©åãªèª¿æŽãå¯èœãšãªããææ ã®æšå®ã¯ãäŸãã°ãææ ãšã³ãžã³ãŸãã¯çæïŒ¡ïŒ©ãªã©ãçšããŠææ æšå®æ©èœãçšããŠå®çŸããããçæïŒ¡ïŒ©ã¯ãããã¹ãçæïŒ¡ïŒ©ïŒäŸãã°ãïŒïŒããã«ãã¢ãŒãã«çæïŒ¡ïŒ©ãªã©ã§ãããããããäŸã«éå®ãããªãã調æŽéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ã調æŽéšã¯ããŠãŒã¶ã®ææ ããŒã¿ãã«å ¥åããææ ã®æšå®ãã«å®è¡ãããããšãã§ããã The adjustment unit can estimate the user's emotion and adjust the frequency of fine tuning based on the estimated user's emotion. For example, when the user is stressed, the adjustment unit performs fine tuning frequently to reduce stress. In addition, when the user is relaxed, the adjustment unit can also reduce the frequency of fine tuning to maintain relaxation. Furthermore, when the user is in a hurry, the adjustment unit can perform fine tuning frequently to respond quickly. This allows for more appropriate adjustment by adjusting the frequency of fine tuning according to the user's emotion. The emotion estimation is realized using an emotion estimation function using, for example, an emotion engine or a generation AI. The generation AI is, for example, a text generation AI (e.g., LLM) or a multimodal generation AI, but is not limited to such examples. A part or all of the above-mentioned processing in the adjustment unit may be performed using, for example, an AI, or may be performed without using an AI. For example, the adjustment unit can input the user's emotion data to the AI and cause the AI to perform emotion estimation.
調æŽéšã¯ããã¡ã€ã³ãã¥ãŒãã³ã°æã«ãåãåããã®æåºææã«åºã¥ããŠåŠç¿ããŒã¿ã®éã¿ä»ããè¡ãããšãã§ããã調æŽéšã¯ãäŸãã°ãæè¿ã®åãåããããŒã¿ã«å¯ŸããŠãéã¿ä»ããè¡ããçæã¢ã«ãŽãªãºã ã«åæ ããããŸãã調æŽéšã¯ãé·æéæªè§£æ±ºã®åãåããããŒã¿ã«å¯ŸããŠãéã¿ä»ããè¡ããçæã¢ã«ãŽãªãºã ã«åæ ããããšãã§ãããããã«ã調æŽéšã¯ãæåºææã«å¿ããŠãåŠç¿ããŒã¿ã®éã¿ä»ããåçã«èª¿æŽããããšãã§ãããããã«ãããåãåããã®æåºææã«åºã¥ããŠåŠç¿ããŒã¿ã®éã¿ä»ããè¡ãããšã§ãããé©åãªèª¿æŽãå¯èœãšãªãã調æŽéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ã調æŽéšã¯ãåãåããã®æåºææãã«å ¥åããåŠç¿ããŒã¿ã®éã¿ä»ããã«å®è¡ãããããšãã§ããã During fine tuning, the adjustment unit can weight the learning data based on the time of inquiry submission. For example, the adjustment unit weights recent inquiry data and reflects the weight in the generation algorithm. The adjustment unit can also weight inquiry data that has been unresolved for a long time and reflect the weight in the generation algorithm. Furthermore, the adjustment unit can dynamically adjust the weighting of the learning data according to the submission time. This allows for more appropriate adjustment by weighting the learning data based on the time of inquiry submission. Some or all of the above-mentioned processing in the adjustment unit may be performed using, for example, AI, or may be performed without using AI. For example, the adjustment unit can input the time of inquiry submission to AI and cause AI to perform weighting of the learning data.
æäŸéšã¯ããŠãŒã¶ã®ææ ãæšå®ããæšå®ãããŠãŒã¶ã®ææ ã«åºã¥ããŠé³å£°æäŸã®æ¹æ³ã調æŽããããšãã§ãããæäŸéšã¯ãäŸãã°ããŠãŒã¶ãã¹ãã¬ã¹ãæããŠããå Žåãç©ãããªå£°ã§é³å£°ãæäŸããããŸããæäŸéšã¯ããŠãŒã¶ããªã©ãã¯ã¹ããŠããå Žåã芪ãã¿ããã声ã§é³å£°ãæäŸããããšãã§ãããããã«ãæäŸéšã¯ããŠãŒã¶ãæ¥ãã§ããå Žåãè¿ éã§ç°¡æœãªå£°ã§é³å£°ãæäŸããããšãã§ãããããã«ããããŠãŒã¶ã®ææ ã«å¿ããŠé³å£°æäŸã®æ¹æ³ã調æŽããããšã§ãããé©åãªé³å£°æäŸãå¯èœãšãªããææ ã®æšå®ã¯ãäŸãã°ãææ ãšã³ãžã³ãŸãã¯çæïŒ¡ïŒ©ãªã©ãçšããŠææ æšå®æ©èœãçšããŠå®çŸããããçæïŒ¡ïŒ©ã¯ãããã¹ãçæïŒ¡ïŒ©ïŒäŸãã°ãïŒïŒããã«ãã¢ãŒãã«çæïŒ¡ïŒ©ãªã©ã§ãããããããäŸã«éå®ãããªããæäŸéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãæäŸéšã¯ããŠãŒã¶ã®ææ ããŒã¿ãã«å ¥åããææ ã®æšå®ãã«å®è¡ãããããšãã§ããã The providing unit can estimate the user's emotions and adjust the method of providing voice based on the estimated user's emotions. For example, when the user is stressed, the providing unit provides voice in a gentle voice. Also, when the user is relaxed, the providing unit can provide voice in a friendly voice. Furthermore, when the user is in a hurry, the providing unit can provide voice in a quick and concise voice. This allows for more appropriate voice provision by adjusting the method of providing voice according to the user's emotions. The estimation of emotions is realized using an emotion estimation function using, for example, an emotion engine or a generation AI. The generation AI is, for example, a text generation AI (e.g., LLM) or a multimodal generation AI, but is not limited to such examples. A part or all of the above-mentioned processing in the providing unit may be performed using, for example, an AI, or may be performed without using an AI. For example, the providing unit can input the user's emotion data to the AI and cause the AI to perform emotion estimation.
æäŸéšã¯ãé³å£°æäŸæã«ããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãåç §ããŠæé©ãªæäŸæ¹æ³ãéžå®ããããšãã§ãããæäŸéšã¯ãäŸãã°ããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãããæé©ãªé³å£°æäŸæ¹æ³ãéžå®ããããŸããæäŸéšã¯ããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãåæããç¹å®ã®ãã¿ãŒã³ã«åºã¥ããŠé³å£°æäŸæ¹æ³ãéžå®ããããšãã§ãããããã«ãæäŸéšã¯ããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãåºã«ãé³å£°æäŸæ¹æ³ãåçã«èª¿æŽããããšãã§ãããããã«ããããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãåç §ããããšã§ãæé©ãªé³å£°æäŸæ¹æ³ãéžå®ããããšãã§ãããæäŸéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãæäŸéšã¯ããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãã«å ¥åããæé©ãªæäŸæ¹æ³ãéžå®ããåŠçãã«å®è¡ãããããšãã§ããã When providing voice, the providing unit can select the optimal voice providing method by referring to the user's past inquiry history. For example, the providing unit selects the optimal voice providing method from the user's past inquiry history. The providing unit can also analyze the user's past inquiry history and select the voice providing method based on a specific pattern. Furthermore, the providing unit can dynamically adjust the voice providing method based on the user's past inquiry history. In this way, the optimal voice providing method can be selected by referring to the user's past inquiry history. A part or all of the above-mentioned processing in the providing unit may be performed, for example, using AI or may be performed without using AI. For example, the providing unit can input the user's past inquiry history to AI and cause AI to execute processing to select the optimal providing method.
æäŸéšã¯ããŠãŒã¶ã®ææ ãæšå®ããæšå®ãããŠãŒã¶ã®ææ ã«åºã¥ããŠé³å£°æäŸã®åªå é äœã決å®ããããšãã§ãããæäŸéšã¯ãäŸãã°ããŠãŒã¶ãã¹ãã¬ã¹ãæããŠããå Žåãã¹ãã¬ã¹ã軜æžããããã®é³å£°ãåªå çã«æäŸããããŸããæäŸéšã¯ããŠãŒã¶ããªã©ãã¯ã¹ããŠããå Žåããªã©ãã¯ã¹ãç¶æããããã®é³å£°ãåªå çã«æäŸããããšãã§ãããããã«ãæäŸéšã¯ããŠãŒã¶ãæ¥ãã§ããå Žåãè¿ éã«å¯Ÿå¿ããããã®é³å£°ãåªå çã«æäŸããããšãã§ãããããã«ããããŠãŒã¶ã®ææ ã«å¿ããŠé³å£°æäŸã®åªå é äœã決å®ããããšã§ãããé©åãªé³å£°æäŸãå¯èœãšãªããææ ã®æšå®ã¯ãäŸãã°ãææ ãšã³ãžã³ãŸãã¯çæïŒ¡ïŒ©ãªã©ãçšããŠææ æšå®æ©èœãçšããŠå®çŸããããçæïŒ¡ïŒ©ã¯ãããã¹ãçæïŒ¡ïŒ©ïŒäŸãã°ãïŒïŒããã«ãã¢ãŒãã«çæïŒ¡ïŒ©ãªã©ã§ãããããããäŸã«éå®ãããªããæäŸéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãæäŸéšã¯ããŠãŒã¶ã®ææ ããŒã¿ãã«å ¥åããææ ã®æšå®ãã«å®è¡ãããããšãã§ããã The providing unit can estimate the user's emotion and determine the priority of voice provision based on the estimated user's emotion. For example, when the user is feeling stressed, the providing unit can provide voice for reducing stress preferentially. In addition, when the user is relaxed, the providing unit can also provide voice for maintaining relaxation preferentially. Furthermore, when the user is in a hurry, the providing unit can also provide voice for responding quickly preferentially. This enables more appropriate voice provision by determining the priority of voice provision according to the user's emotion. The emotion estimation is realized using an emotion estimation function using, for example, an emotion engine or a generation AI. The generation AI is, for example, a text generation AI (for example, LLM) or a multimodal generation AI, but is not limited to such examples. A part or all of the above-mentioned processing in the providing unit may be performed using, for example, an AI, or may be performed without using an AI. For example, the providing unit can input the user's emotion data to the AI and cause the AI to execute emotion estimation.
æäŸéšã¯ãé³å£°æäŸæã«ããŠãŒã¶ã®ããã€ã¹æ å ±ãèæ ®ããŠæé©ãªæäŸæ¹æ³ãéžå®ããããšãã§ãããæäŸéšã¯ãäŸãã°ããŠãŒã¶ãã¹ããŒããã©ã³ã䜿çšããŠããå Žåãç»é¢ãµã€ãºã«åãããé³å£°æäŸæ¹æ³ãéžå®ããããŸããæäŸéšã¯ããŠãŒã¶ãã¿ãã¬ããã䜿çšããŠããå Žåã倧ããªç»é¢ã«æé©åãããé³å£°æäŸæ¹æ³ãéžå®ããããšãã§ãããããã«ãæäŸéšã¯ããŠãŒã¶ãã¹ããŒããŠã©ããã䜿çšããŠããå Žåãç°¡æœã§èŠèªæ§ã®é«ãé³å£°æäŸæ¹æ³ãéžå®ããããšãã§ãããããã«ããããŠãŒã¶ã®ããã€ã¹æ å ±ãèæ ®ããããšã§ãæé©ãªé³å£°æäŸæ¹æ³ãéžå®ããããšãã§ãããæäŸéšã«ãããäžè¿°ããåŠçã®äžéšãŸãã¯å šéšã¯ãäŸãã°ããçšããŠè¡ãããŠãããããçšããã«è¡ãããŠããããäŸãã°ãæäŸéšã¯ããŠãŒã¶ã®ããã€ã¹æ å ±ãã«å ¥åããæé©ãªæäŸæ¹æ³ãéžå®ããåŠçãã«å®è¡ãããããšãã§ããã When providing voice, the providing unit can select the optimal providing method by taking into account the device information of the user. For example, when the user is using a smartphone, the providing unit selects a voice providing method that matches the screen size. In addition, when the user is using a tablet, the providing unit can also select a voice providing method optimized for a large screen. Furthermore, when the user is using a smartwatch, the providing unit can also select a voice providing method that is simple and highly visible. In this way, the optimal voice providing method can be selected by taking into account the device information of the user. Some or all of the above-mentioned processing in the providing unit may be performed, for example, using AI, or may be performed without using AI. For example, the providing unit can input the device information of the user to the AI and cause the AI to execute a process of selecting the optimal providing method.
宿œåœ¢æ ã«ä¿ãã·ã¹ãã ã¯ãäžè¿°ããäŸã«éå®ããããäŸãã°ã以äžã®ããã«ãçš®ã ã®å€æŽãå¯èœã§ããã The system according to the embodiment is not limited to the above-mentioned example, and various modifications are possible, for example, as follows:
è§£æéšã¯ãé³å£°ããŒã¿ã®è§£ææã«ããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãåç §ããŠè§£æç²ŸåºŠãåäžãããããšãã§ãããè§£æéšã¯ãäŸãã°ãéå»ã®åãåããå±¥æŽãããç¹å®ã®ãã¿ãŒã³ãæœåºããé³å£°ããŒã¿ã®è§£æã«åæ ããããŸããè§£æéšã¯ãéå»ã®åãåããå±¥æŽãåºã«ããŠãŒã¶ã®çºè©±åŸåãåŠç¿ããè§£æç²ŸåºŠãåäžãããããšãã§ãããããã«ãè§£æéšã¯ãéå»ã®åãåããå±¥æŽãåç §ããããšã§ãç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã€è§£æãè¡ãããšãã§ãããããã«ããããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãåç §ããããšã§ãè§£æç²ŸåºŠãåäžããããé©åãªå¯Ÿå¿ãå¯èœãšãªãã When analyzing the voice data, the analysis unit can improve the accuracy of the analysis by referring to the user's past inquiry history. For example, the analysis unit extracts specific patterns from the past inquiry history and reflects them in the analysis of the voice data. The analysis unit can also learn the user's speech tendencies based on the past inquiry history and improve the accuracy of the analysis. Furthermore, the analysis unit can perform analysis with knowledge of specific tasks or services by referring to the past inquiry history. In this way, by referring to the user's past inquiry history, the accuracy of the analysis can be improved and more appropriate responses can be made.
çæéšã¯ããŠãŒã¶ã®ææ ãæšå®ããæšå®ãããŠãŒã¶ã®ææ ã«åºã¥ããŠè¿çã®ããŒã³ã調æŽããããšãã§ãããçæéšã¯ãäŸãã°ããŠãŒã¶ãæã£ãŠããå Žåãå·éã§èœã¡çããããŒã³ã§è¿çãçæããããŸããçæéšã¯ããŠãŒã¶ãæ²ããã§ããå ŽåãåªããããŒã³ã§è¿çãçæããããšãã§ãããããã«ãçæéšã¯ããŠãŒã¶ãåãã§ããå ŽåãæããããŒã³ã§è¿çãçæããããšãã§ãããããã«ããããŠãŒã¶ã®ææ ã«å¿ããŠè¿çã®ããŒã³ã調æŽããããšã§ãããé©åãªè¿çãå¯èœãšãªãã The generation unit can estimate the user's emotions and adjust the tone of the reply based on the estimated user's emotions. For example, if the user is angry, the generation unit generates a reply in a calm and subdued tone. Also, if the user is sad, the generation unit can generate a reply in a gentle tone. Furthermore, if the user is happy, the generation unit can generate a reply in a bright tone. This allows for a more appropriate reply by adjusting the tone of the reply according to the user's emotions.
é³å£°åéšã¯ãçæãããé³å£°ãæäŸããéã«ããŠãŒã¶ã®ããã€ã¹ã®ããããªãŒæ®éãèæ ®ããŠé³å£°ã®é·ãã調æŽããããšãã§ãããé³å£°åéšã¯ãäŸãã°ãããããªãŒæ®éãå°ãªãå ŽåãçããŠèŠç¹ãæŒãããé³å£°ãæäŸããããŸããããããªãŒæ®éãååãªå Žåã詳现ãªèª¬æãå«ãé³å£°ãæäŸããããšãã§ãããããã«ãããããªãŒæ®éãäžçšåºŠã®å Žåãé©åºŠãªé·ãã®é³å£°ãæäŸããããšãã§ãããããã«ããããŠãŒã¶ã®ããã€ã¹ã®ããããªãŒæ®éãèæ ®ããããšã§ãæé©ãªé³å£°æäŸãå¯èœãšãªãã When providing the generated voice, the voice generation unit can adjust the length of the voice taking into account the remaining battery level of the user's device. For example, when the battery level is low, the voice generation unit can provide a short voice that focuses on the main points. When the battery level is sufficient, the voice generation unit can also provide a voice that includes a detailed explanation. Furthermore, when the battery level is moderate, the voice generation unit can provide a voice of an appropriate length. This makes it possible to provide optimal voice by taking into account the remaining battery level of the user's device.
è§£æéšã¯ãé³å£°ããŒã¿ã®è§£ææã«ããŠãŒã¶ã®çºè©±é床ããªã¢ã«ã¿ã€ã ã§ã¢ãã¿ãªã³ã°ããè§£ææ¹æ³ãåçã«èª¿æŽããããšãã§ãããè§£æéšã¯ãäŸãã°ããŠãŒã¶ã®çºè©±é床ãéãå Žåãè§£æé床ãäžããããŸãããŠãŒã¶ã®çºè©±é床ãé ãå Žåãè§£æé床ãäžããããšãã§ãããããã«ããŠãŒã¶ã®çºè©±é床ãå€åããå Žåãè§£æé床ãåçã«èª¿æŽããããšãã§ãããããã«ããããŠãŒã¶ã®çºè©±é床ã«å¿ããŠè§£ææ¹æ³ã調æŽããããšã§ãããé©åãªè§£æãå¯èœãšãªãã When analyzing the voice data, the analysis unit can monitor the user's speaking speed in real time and dynamically adjust the analysis method. For example, if the user's speaking speed is fast, the analysis unit can increase the analysis speed. Also, if the user's speaking speed is slow, the analysis unit can decrease the analysis speed. Furthermore, if the user's speaking speed fluctuates, the analysis speed can also be dynamically adjusted. This allows for more appropriate analysis by adjusting the analysis method according to the user's speaking speed.
çæéšã¯ããŠãŒã¶ã®ææ ãæšå®ããæšå®ãããŠãŒã¶ã®ææ ã«åºã¥ããŠè¿çã®å 容ãã«ã¹ã¿ãã€ãºããããšãã§ãããçæéšã¯ãäŸãã°ããŠãŒã¶ãäžå®ãæããŠããå Žåãå®å¿æãäžããå 容ã§è¿çãçæããããŸãããŠãŒã¶ãè奮ããŠããå Žåãå·éããä¿ãå 容ã§è¿çãçæããããšãã§ãããããã«ããŠãŒã¶ãå°æããŠããå Žåãæç¢ºã§åãããããå 容ã§è¿çãçæããããšãã§ãããããã«ããããŠãŒã¶ã®ææ ã«å¿ããŠè¿çã®å 容ãã«ã¹ã¿ãã€ãºããããšã§ãããé©åãªè¿çãå¯èœãšãªãã The generation unit can estimate the user's emotions and customize the content of the reply based on the estimated user's emotions. For example, if the user is feeling anxious, the generation unit can generate a reply with content that gives a sense of security. Also, if the user is excited, the generation unit can generate a reply with content that encourages the user to remain calm. Furthermore, if the user is confused, the generation unit can generate a reply with clear and easy-to-understand content. This allows for a more appropriate reply by customizing the content of the reply according to the user's emotions.
è§£æéšã¯ãé³å£°ããŒã¿ã®è§£ææã«ããŠãŒã¶ã®å¹Žéœ¢å±€ãæšå®ãã幎霢局ã«å¿ããè§£ææ¹æ³ãé©çšããããšãã§ãããè§£æéšã¯ãäŸãã°ãè¥å¹Žå±€ã®ãŠãŒã¶ã«å¯ŸããŠã¯ãã«ãžã¥ã¢ã«ãªèšèé£ããèæ ®ããè§£æãè¡ãããŸããé«éœ¢å±€ã®ãŠãŒã¶ã«å¯ŸããŠã¯ãäžå¯§ãªèšèé£ããèæ ®ããè§£æãè¡ãããšãã§ãããããã«ã幎霢局ã«å¿ããŠãç¹å®ã®èšèããã¬ãŒãºã®äœ¿çšé »åºŠãèæ ®ããè§£æãè¡ãããšãã§ãããããã«ããããŠãŒã¶ã®å¹Žéœ¢å±€ã«å¿ããè§£ææ¹æ³ãé©çšããããšã§ãè§£æç²ŸåºŠãåäžããããé©åãªå¯Ÿå¿ãå¯èœãšãªãã When analyzing the voice data, the analysis unit can estimate the user's age group and apply an analysis method appropriate to the age group. For example, the analysis unit can perform an analysis that takes into account casual language for younger users. Also, for older users, the analysis unit can perform an analysis that takes into account polite language. Furthermore, the analysis can also take into account the frequency of use of specific words and phrases depending on the age group. In this way, by applying an analysis method appropriate to the user's age group, the analysis accuracy can be improved and more appropriate responses can be made.
çæéšã¯ããŠãŒã¶ã®ææ ãæšå®ããæšå®ãããŠãŒã¶ã®ææ ã«åºã¥ããŠè¿çã®ã¿ã€ãã³ã°ã調æŽããããšãã§ãããçæéšã¯ãäŸãã°ããŠãŒã¶ãçŠã£ãŠããå Žåãè¿ éã«è¿çãçæããããŸãããŠãŒã¶ããªã©ãã¯ã¹ããŠããå Žåãå°ãé ããŠè¿çãçæããããšãã§ãããããã«ããŠãŒã¶ãæã£ãŠããå Žåãå·éã«ãªãæéãäžããããã«ãè¿çãé ãããããšãã§ãããããã«ããããŠãŒã¶ã®ææ ã«å¿ããŠè¿çã®ã¿ã€ãã³ã°ã調æŽããããšã§ãããé©åãªè¿çãå¯èœãšãªãã The generation unit can estimate the user's emotions and adjust the timing of the response based on the estimated user's emotions. For example, if the user is impatient, the generation unit can generate a response quickly. Also, if the user is relaxed, the generation unit can generate a response with a slight delay. Furthermore, if the user is angry, the response can be delayed to give the user time to calm down. In this way, a more appropriate response can be provided by adjusting the timing of the response according to the user's emotions.
é³å£°åéšã¯ãçæãããé³å£°ãæäŸããéã«ããŠãŒã¶ã®èŽèŠç¹æ§ãèæ ®ããŠé³å£°ã®åšæ³¢æ°åž¯åã調æŽããããšãã§ãããé³å£°åéšã¯ãäŸãã°ããŠãŒã¶ãé«é³åãèãåãã«ããå Žåãäœé³åã匷調ããé³å£°ãæäŸããããŸãããŠãŒã¶ãäœé³åãèãåãã«ããå Žåãé«é³åã匷調ããé³å£°ãæäŸããããšãã§ãããããã«ããŠãŒã¶ã®èŽèŠç¹æ§ã«å¿ããŠãç¹å®ã®åšæ³¢æ°åž¯åã匷調ãŸãã¯æå¶ããããšãã§ãããããã«ããããŠãŒã¶ã®èŽèŠç¹æ§ãèæ ®ããããšã§ãæé©ãªé³å£°æäŸãå¯èœãšãªãã When providing the generated voice, the voice generation unit can adjust the frequency band of the voice taking into account the user's hearing characteristics. For example, if the user has difficulty hearing high-pitched sounds, the voice generation unit can provide voice with emphasis on low-pitched sounds. Also, if the user has difficulty hearing low-pitched sounds, the voice generation unit can provide voice with emphasis on high-pitched sounds. Furthermore, specific frequency bands can be emphasized or suppressed depending on the user's hearing characteristics. This makes it possible to provide optimal voice by taking into account the user's hearing characteristics.
è§£æéšã¯ãé³å£°ããŒã¿ã®è§£ææã«ããŠãŒã¶ã®çºè©±å 容ã«åºã¥ããŠææ ãæšå®ããæšå®ããææ ã«å¿ããŠè§£æã®æ·±ãã調æŽããããšãã§ãããè§£æéšã¯ãäŸãã°ããŠãŒã¶ãææ çãªçºèšãããŠããå Žåã詳现ãªè§£æãè¡ãããŸãããŠãŒã¶ãå·éãªçºèšãããŠããå Žåãç°¡ç¥ãªè§£æãè¡ãããšãã§ãããããã«ããŠãŒã¶ã®ææ ãå€åããå Žåãè§£æã®æ·±ããåçã«èª¿æŽããããšãã§ãããããã«ããããŠãŒã¶ã®çºè©±å 容ã«åºã¥ããŠææ ãæšå®ããè§£æã®æ·±ãã調æŽããããšã§ãããé©åãªè§£æãå¯èœãšãªãã When analyzing the voice data, the analysis unit can estimate emotions based on the content of the user's speech and adjust the depth of the analysis depending on the estimated emotion. For example, if the user makes an emotional statement, the analysis unit can perform a detailed analysis. Also, if the user makes a calm statement, the analysis unit can perform a simplified analysis. Furthermore, if the user's emotions fluctuate, the analysis depth can be dynamically adjusted. In this way, more appropriate analysis is possible by estimating emotions based on the content of the user's speech and adjusting the depth of the analysis.
çæéšã¯ãè¿ççææã«ããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãåç §ããŠè¿çã®äžè²«æ§ãä¿ã€ããšãã§ãããçæéšã¯ãäŸãã°ãéå»ã®åãåããå 容ãšäžèŽããè¿çãçæããããŸããéå»ã®åãåããå±¥æŽãåºã«ããŠãŒã¶ã®å¥œã¿ãåŸåãåæ ããè¿çãçæããããšãã§ãããããã«ãéå»ã®åãåããå±¥æŽãåç §ããããšã§ãççŸã®ãªãè¿çãçæããããšãã§ãããããã«ããããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãåç §ããããšã§ãè¿çã®äžè²«æ§ãä¿ã¡ãããé©åãªå¯Ÿå¿ãå¯èœãšãªãã When generating a response, the generation unit can maintain consistency in the response by referring to the user's past inquiry history. For example, the generation unit generates a response that matches the content of the past inquiry. In addition, the generation unit can generate a response that reflects the user's preferences and tendencies based on the past inquiry history. Furthermore, by referring to the past inquiry history, a response without inconsistencies can be generated. In this way, by referring to the user's past inquiry history, consistency in the response can be maintained, enabling a more appropriate response.
以äžã«ã圢æ äŸïŒã®åŠçã®æµãã«ã€ããŠç°¡åã«èª¬æããã The process flow for Example 2 is briefly explained below.
ã¹ãããïŒïŒè§£æéšã¯ãé³å£°ããŒã¿ãè§£æãããè§£æéšã¯ãäŸãã°ãé³å£°èªèæè¡ãçšããŠé³å£°ããŒã¿ãããã¹ãããŒã¿ã«å€æããããŸããè§£æéšã¯ãèªç¶èšèªåŠçæè¡ãçšããŠé³å£°ããŒã¿ã®å
容ãè§£æããããšãã§ãããäŸãã°ãè§£æéšã¯ãé³å£°ããŒã¿ã®é³çŽ ãé³é»ãè§£æããé³å£°ã®ãã³ããææãã¢ãã«åããã
ã¹ãããïŒïŒçæéšã¯ãçæïŒ¡ïŒ©ãçšããŠãè§£æéšã«ãã£ãŠè§£æãããããŒã¿ã«åºã¥ããŠè¿çãçæãããçæéšã¯ãäŸãã°ãããã¹ãçæïŒ¡ïŒ©ïŒäŸãã°ãLLMïŒãçšããŠè¿çãçæããããŸããçæéšã¯ãçæïŒ¡ïŒ©ãçšããŠãç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã€è¿çãçæããããšãã§ãããäŸãã°ãçæéšã¯ãã«ã¹ã¿ããŒãµããŒãã«é¢ããåãåããã«å¯ŸããŠãé©åãªè¿çãçæããã
ã¹ãããïŒïŒé³å£°åéšã¯ãçæéšã«ãã£ãŠçæãããè¿çãé³å£°åãããé³å£°åéšã¯ãäŸãã°ãé³å£°åææè¡ãçšããŠããã¹ãããŒã¿ãé³å£°ããŒã¿ã«å€æããããŸããé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ãé¡§å®¢ã«æäŸããããšãã§ãããäŸãã°ãé³å£°åéšã¯ãçæãããé³å£°ããŒã¿ãé»è©±ãã€ã³ã¿ãŒããããéããŠé¡§å®¢ã«æäŸããã
Step 1: The analysis unit analyzes the voice data. For example, the analysis unit converts the voice data into text data using a voice recognition technique. The analysis unit can also analyze the contents of the voice data using a natural language processing technique. For example, the analysis unit analyzes the phonemes and phonology of the voice data and models the tempo and intonation of the voice.
Step 2: The generation unit uses the generation AI to generate a response based on the data analyzed by the analysis unit. The generation unit generates a response, for example, using a text generation AI (e.g., LLM). The generation unit can also use the generation AI to generate a response with knowledge about a specific business or service. For example, the generation unit generates an appropriate response to a customer support inquiry.
Step 3: The voice conversion unit converts the response generated by the generation unit into voice. The voice conversion unit converts the text data into voice data, for example, using a voice synthesis technique. The voice conversion unit can also provide the generated voice data to the customer. For example, the voice conversion unit provides the generated voice data to the customer over the telephone or the Internet.
ç¹å®åŠçéšïŒïŒïŒã¯ãç¹å®åŠçã®çµæãã¹ããŒãããã€ã¹ïŒïŒã«éä¿¡ãããã¹ããŒãããã€ã¹ïŒïŒã§ã¯ãå¶åŸ¡éšïŒïŒïŒ¡ããåºåè£
眮ïŒïŒã«å¯ŸããŠç¹å®åŠçã®çµæãåºåãããããã€ã¯ããã©ã³ïŒïŒïŒ¢ã¯ãç¹å®åŠçã®çµæã«å¯ŸãããŠãŒã¶å
¥åã瀺ãé³å£°ãååŸãããå¶åŸ¡éšïŒïŒïŒ¡ã¯ããã€ã¯ããã©ã³ïŒïŒïŒ¢ã«ãã£ãŠååŸããããŠãŒã¶å
¥åã瀺ãé³å£°ããŒã¿ãããŒã¿åŠçè£
眮ïŒïŒã«éä¿¡ãããããŒã¿åŠçè£
眮ïŒïŒã§ã¯ãç¹å®åŠçéšïŒïŒïŒãé³å£°ããŒã¿ãååŸããã
The
ããŒã¿çæã¢ãã«ïŒïŒã¯ãããããçæïŒ¡ïŒ©ïŒArtificial IntelligenceïŒã§ãããããŒã¿çæã¢ãã«ïŒïŒã®äžäŸãšããŠã¯ãïœïœïœïŒ§ïŒ°ïŒŽïŒç»é²åæšïŒïŒã€ã³ã¿ãŒãããæ€çŽ¢ïŒURL: https://openai.com/blog/chatgptïŒïŒãªã©ã®çæïŒ¡ïŒ©ãæãããããããŒã¿çæã¢ãã«ïŒïŒã¯ããã¥ãŒã©ã«ãããã¯ãŒã¯ã«å¯ŸããŠæ·±å±€åŠç¿ãè¡ãããããšã«ãã£ãŠåŸããããããŒã¿çæã¢ãã«ïŒïŒã«ã¯ãæç€ºãå«ãããã³ãããå
¥åããããã€ãé³å£°ã瀺ãé³å£°ããŒã¿ãããã¹ãã瀺ãããã¹ãããŒã¿ãããã³ç»åã瀺ãç»åããŒã¿ïŒäŸãã°ã鿢ç»ã®ããŒã¿ãŸãã¯åç»ã®ããŒã¿ïŒãªã©ã®æšè«çšããŒã¿ãå
¥åããããããŒã¿çæã¢ãã«ïŒïŒã¯ãå
¥åãããæšè«çšããŒã¿ãããã³ããã«ãã瀺ãããæç€ºã«åŸã£ãŠæšè«ããæšè«çµæãé³å£°ããŒã¿ãããã¹ãããŒã¿ãããã³ç»åããŒã¿ãªã©ã®ãã¡ã®ïŒä»¥äžã®ããŒã¿åœ¢åŒã§åºåãããããŒã¿çæã¢ãã«ïŒïŒã¯ãäŸãã°ãããã¹ãçæïŒ¡ïŒ©ãç»åçæïŒ¡ïŒ©ããã«ãã¢ãŒãã«çæïŒ¡ïŒ©ãªã©ãå«ããããã§ãæšè«ãšã¯ãäŸãã°ãåæãåé¡ãäºæž¬ãããã³ïŒãŸãã¯èŠçŽãªã©ãæããç¹å®åŠçéšïŒïŒïŒã¯ãããŒã¿çæã¢ãã«ïŒïŒãçšããªãããäžè¿°ããç¹å®åŠçãè¡ããããŒã¿çæã¢ãã«ïŒïŒã¯ãæç€ºãå«ãŸãªãããã³ããããæšè«çµæãåºåããããã«ããã¡ã€ã³ãã¥ãŒãã³ã°ãããã¢ãã«ã§ãã£ãŠãããããã®å ŽåãããŒã¿çæã¢ãã«ïŒïŒã¯ãæç€ºãå«ãŸãªãããã³ããããæšè«çµæãåºåããããšãã§ãããããŒã¿åŠçè£
眮ïŒïŒãªã©ã«ãããŠãããŒã¿çæã¢ãã«ïŒïŒã¯è€æ°çš®é¡å«ãŸããŠãããããŒã¿çæã¢ãã«ïŒïŒã¯ãçæïŒ¡ïŒ©ä»¥å€ã®ïŒ¡ïŒ©ãå«ããçæïŒ¡ïŒ©ä»¥å€ã®ïŒ¡ïŒ©ã¯ãäŸãã°ãç·åœ¢ååž°ãããžã¹ãã£ãã¯ååž°ãæ±ºå®æšãã©ã³ãã ãã©ã¬ã¹ãããµããŒããã¯ã¿ãŒãã·ã³ïŒïŒ³ïŒ¶ïŒïŒãïœïŒïœïœ
ïœïœïœã¯ã©ã¹ã¿ãªã³ã°ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒïŒ£ïŒ®ïŒ®ïŒããªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ïŒïŒ²ïŒ®ïŒ®ïŒãçæçæµå¯Ÿçãããã¯ãŒã¯ïŒïŒ§ïŒ¡ïŒ®ïŒããŸãã¯ãã€ãŒããã€ãºãªã©ã§ãããçš®ã
ã®åŠçãè¡ãããšãã§ãããããããäŸã«éå®ãããªãããŸããã¯ããšãŒãžã§ã³ãã§ãã£ãŠãããããŸããäžè¿°ããåéšã®åŠçãã§è¡ãããå Žåããã®åŠçã¯ãã§äžéšãŸãã¯å
šéšãè¡ããããããããäŸã«éå®ãããªãããŸããçæïŒ¡ïŒ©ãå«ãã§å®æœãããåŠçã¯ãã«ãŒã«ããŒã¹ã§ã®åŠçã«çœ®ãæããŠããããã«ãŒã«ããŒã¹ã®åŠçã¯ãçæïŒ¡ïŒ©ãå«ãã§å®æœãããåŠçã«çœ®ãæããŠãããã
The
ãŸããäžè¿°ããããŒã¿åŠçã·ã¹ãã ïŒïŒã«ããåŠçã¯ãããŒã¿åŠçè£
眮ïŒïŒã®ç¹å®åŠçéšïŒïŒïŒãŸãã¯ã¹ããŒãããã€ã¹ïŒïŒã®å¶åŸ¡éšïŒïŒïŒ¡ã«ãã£ãŠå®è¡ãããããããŒã¿åŠçè£
眮ïŒïŒã®ç¹å®åŠçéšïŒïŒïŒãšã¹ããŒãããã€ã¹ïŒïŒã®å¶åŸ¡éšïŒïŒïŒ¡ãšã«ãã£ãŠå®è¡ãããŠãããããŸããããŒã¿åŠçè£
眮ïŒïŒã®ç¹å®åŠçéšïŒïŒïŒã¯ãåŠçã«å¿
èŠãªæ
å ±ãã¹ããŒãããã€ã¹ïŒïŒãŸãã¯å€éšã®è£
眮ãªã©ããååŸãããåéãããããã¹ããŒãããã€ã¹ïŒïŒã¯ãåŠçã«å¿
èŠãªæ
å ±ãããŒã¿åŠçè£
眮ïŒïŒãŸãã¯å€éšã®è£
眮ãªã©ããååŸãããåéãããããã
The processing by the
äžè¿°ããè§£æéšãçæéšãããã³é³å£°åéšãå«ãè€æ°ã®èŠçŽ ã®åã
ã¯ãäŸãã°ãã¹ããŒãããã€ã¹ïŒïŒããã³ããŒã¿åŠçè£
眮ïŒïŒã®ãã¡ã®å°ãªããšãäžæ¹ã§å®çŸããããäŸãã°ãè§£æéšã¯ãã¹ããŒãããã€ã¹ïŒïŒã®ããã»ããµïŒïŒã«ãã£ãŠå®çŸãããé³å£°ããŒã¿ãè§£æããããã¹ãããŒã¿ã«å€æãããçæéšã¯ãäŸãã°ãããŒã¿åŠçè£
眮ïŒïŒã®ç¹å®åŠçéšïŒïŒïŒã«ãã£ãŠå®çŸãããè§£æãããããŒã¿ã«åºã¥ããŠè¿çãçæãããé³å£°åéšã¯ãäŸãã°ãã¹ããŒãããã€ã¹ïŒïŒã®å¶åŸ¡éšïŒïŒïŒ¡ã«ãã£ãŠå®çŸãããçæãããè¿çãé³å£°ããŒã¿ã«å€æããé¡§å®¢ã«æäŸãããåéšãšè£
眮ãå¶åŸ¡éšãšã®å¯Ÿå¿é¢ä¿ã¯ãäžè¿°ããäŸã«éå®ããããçš®ã
ã®å€æŽãå¯èœã§ããã
Each of the multiple elements including the above-mentioned analysis unit, generation unit, and voice conversion unit is realized, for example, by at least one of the
第ïŒå®æœåœ¢æ

å³ïŒã«ã¯ã第ïŒå®æœåœ¢æ
ã«ä¿ãããŒã¿åŠçã·ã¹ãã ïŒïŒïŒã®æ§æã®äžäŸã瀺ãããŠããã
[Second embodiment]
FIG. 3 shows an example of the configuration of a
å³ïŒã«ç€ºãããã«ãããŒã¿åŠçã·ã¹ãã ïŒïŒïŒã¯ãããŒã¿åŠçè£
眮ïŒïŒããã³ã¹ããŒãçŒé¡ïŒïŒïŒãåããŠãããããŒã¿åŠçè£
眮ïŒïŒã®äžäŸãšããŠã¯ããµãŒããæããããã
As shown in FIG. 3, the
ããŒã¿åŠçè£
眮ïŒïŒã¯ãã³ã³ãã¥ãŒã¿ïŒïŒãããŒã¿ããŒã¹ïŒïŒãããã³é信ïŒïŒŠïŒïŒãåããŠãããã³ã³ãã¥ãŒã¿ïŒïŒã¯ãããã»ããµïŒïŒãïŒïŒïŒãããã³ã¹ãã¬ãŒãžïŒïŒãåããŠãããããã»ããµïŒïŒãïŒïŒïŒãããã³ã¹ãã¬ãŒãžïŒïŒã¯ããã¹ïŒïŒã«æ¥ç¶ãããŠããããŸããããŒã¿ããŒã¹ïŒïŒããã³é信ïŒïŒŠïŒïŒãããã¹ïŒïŒã«æ¥ç¶ãããŠãããé信ïŒïŒŠïŒïŒã¯ããããã¯ãŒã¯ïŒïŒã«æ¥ç¶ãããŠããããããã¯ãŒã¯ïŒïŒã®äžäŸãšããŠã¯ãããã³ïŒãŸãã¯ïŒ¬ïŒ¡ïŒ®ãªã©ãæããããã
The
ã¹ããŒãçŒé¡ïŒïŒïŒã¯ãã³ã³ãã¥ãŒã¿ïŒïŒããã€ã¯ããã©ã³ïŒïŒïŒãã¹ããŒã«ïŒïŒïŒãã«ã¡ã©ïŒïŒãããã³é信ïŒïŒŠïŒïŒãåããŠãããã³ã³ãã¥ãŒã¿ïŒïŒã¯ãããã»ããµïŒïŒãïŒïŒïŒãããã³ã¹ãã¬ãŒãžïŒïŒãåããŠãããããã»ããµïŒïŒãïŒïŒïŒãããã³ã¹ãã¬ãŒãžïŒïŒã¯ããã¹ïŒïŒã«æ¥ç¶ãããŠããããŸãããã€ã¯ããã©ã³ïŒïŒïŒãã¹ããŒã«ïŒïŒïŒãããã³ã«ã¡ã©ïŒïŒãããã¹ïŒïŒã«æ¥ç¶ãããŠããã
The
ãã€ã¯ããã©ã³ïŒïŒïŒã¯ããŠãŒã¶ãçºããé³å£°ãåãä»ããããšã§ããŠãŒã¶ããæç€ºãªã©ãåãä»ããããã€ã¯ããã©ã³ïŒïŒïŒã¯ããŠãŒã¶ãçºããé³å£°ãææããææããé³å£°ãé³å£°ããŒã¿ã«å€æããŠããã»ããµïŒïŒã«åºåãããã¹ããŒã«ïŒïŒïŒã¯ãããã»ããµïŒïŒããã®æç€ºã«åŸã£ãŠé³å£°ãåºåããã
The
ã«ã¡ã©ïŒïŒã¯ãã¬ã³ãºãçµããããã³ã·ã£ãã¿ãªã©ã®å
åŠç³»ãšãïŒïŒ¯ïŒ³ïŒComplementary Metal-Oxide-SemiconductorïŒã€ã¡ãŒãžã»ã³ãµãŸãã¯ïŒ£ïŒ£ïŒ€ïŒCharge Coupled DeviceïŒã€ã¡ãŒãžã»ã³ãµãªã©ã®æ®åçŽ åãšãæèŒãããå°åããžã¿ã«ã«ã¡ã©ã§ããããŠãŒã¶ã®åšå²ïŒäŸãã°ãäžè¬çãªå¥åžžè
ã®èŠçã®åºãã«çžåœããç»è§ã§èŠå®ãããæ®åç¯å²ïŒãæ®åããã
é信ïŒïŒŠïŒïŒã¯ããããã¯ãŒã¯ïŒïŒã«æ¥ç¶ãããŠãããé信ïŒïŒŠïŒïŒããã³ïŒïŒã¯ããããã¯ãŒã¯ïŒïŒãä»ããŠããã»ããµïŒïŒãšããã»ããµïŒïŒãšã®éã®åçš®æ
å ±ã®æåãåžããé信ïŒïŒŠïŒïŒããã³ïŒïŒãçšããããã»ããµïŒïŒãšããã»ããµïŒïŒãšã®éã®åçš®æ
å ±ã®æåã¯ã»ãã¥ã¢ãªç¶æ
ã§è¡ãããã
The communication I/
å³ïŒã«ã¯ãããŒã¿åŠçè£
眮ïŒïŒããã³ã¹ããŒãçŒé¡ïŒïŒïŒã®èŠéšæ©èœã®äžäŸã瀺ãããŠãããå³ïŒã«ç€ºãããã«ãããŒã¿åŠçè£
眮ïŒïŒã§ã¯ãããã»ããµïŒïŒã«ãã£ãŠç¹å®åŠçãè¡ããããã¹ãã¬ãŒãžïŒïŒã«ã¯ãç¹å®åŠçããã°ã©ã ïŒïŒãæ ŒçŽãããŠããã
Figure 4 shows an example of the main functions of the
ããã»ããµïŒïŒã¯ãã¹ãã¬ãŒãžïŒïŒããç¹å®åŠçããã°ã©ã ïŒïŒãèªã¿åºããèªã¿åºããç¹å®åŠçããã°ã©ã ïŒïŒãïŒïŒïŒäžã§å®è¡ãããç¹å®åŠçã¯ãããã»ããµïŒïŒãïŒïŒïŒäžã§å®è¡ããç¹å®åŠçããã°ã©ã ïŒïŒã«åŸã£ãŠãç¹å®åŠçéšïŒïŒïŒãšããŠåäœããããšã«ãã£ãŠå®çŸãããã
The
ã¹ãã¬ãŒãžïŒïŒã«ã¯ãããŒã¿çæã¢ãã«ïŒïŒããã³ææ
ç¹å®ã¢ãã«ïŒïŒãæ ŒçŽãããŠãããããŒã¿çæã¢ãã«ïŒïŒããã³ææ
ç¹å®ã¢ãã«ïŒïŒã¯ãç¹å®åŠçéšïŒïŒïŒã«ãã£ãŠçšãããããç¹å®åŠçéšïŒïŒïŒã¯ãææ
ç¹å®ã¢ãã«ïŒïŒãçšããŠãŠãŒã¶ã®ææ
ãæšå®ãããŠãŒã¶ã®ææ
ãçšããç¹å®åŠçãè¡ãããšãã§ãããææ
ç¹å®ã¢ãã«ïŒïŒãçšããææ
æšå®æ©èœïŒææ
ç¹å®æ©èœïŒã§ã¯ããŠãŒã¶ã®ææ
ã®æšå®ãäºæž¬ãªã©ãå«ãããŠãŒã¶ã®ææ
ã«é¢ããçš®ã
ã®æšå®ãäºæž¬ãªã©ãè¡ããããããããäŸã«éå®ãããªãããŸããææ
ã®æšå®ãäºæž¬ã«ã¯ãäŸãã°ãææ
ã®åæïŒè§£æïŒãªã©ãå«ãŸããã
The
ã¹ããŒãçŒé¡ïŒïŒïŒã§ã¯ãããã»ããµïŒïŒã«ãã£ãŠç¹å®åŠçãè¡ããããã¹ãã¬ãŒãžïŒïŒã«ã¯ãç¹å®åŠçããã°ã©ã ïŒïŒãæ ŒçŽãããŠãããããã»ããµïŒïŒã¯ãã¹ãã¬ãŒãžïŒïŒããç¹å®åŠçããã°ã©ã ïŒïŒãèªã¿åºããèªã¿åºããç¹å®åŠçããã°ã©ã ïŒïŒãïŒïŒïŒäžã§å®è¡ãããç¹å®åŠçã¯ãããã»ããµïŒïŒãïŒïŒïŒäžã§å®è¡ããç¹å®åŠçããã°ã©ã ïŒïŒã«åŸã£ãŠãå¶åŸ¡éšïŒïŒïŒ¡ãšããŠåäœããããšã«ãã£ãŠå®çŸãããããªããã¹ããŒãçŒé¡ïŒïŒïŒã«ã¯ãããŒã¿çæã¢ãã«ïŒïŒããã³ææ
ç¹å®ã¢ãã«ïŒïŒãšåæ§ã®ããŒã¿çæã¢ãã«ããã³ææ
ç¹å®ã¢ãã«ãæãããããã¢ãã«ãçšããŠç¹å®åŠçéšïŒïŒïŒãšåæ§ã®åŠçãè¡ãããšãã§ããã
In the
ãªããããŒã¿åŠçè£
眮ïŒïŒä»¥å€ã®ä»ã®è£
眮ãããŒã¿çæã¢ãã«ïŒïŒãæããŠããããäŸãã°ããµãŒãè£
眮ãããŒã¿çæã¢ãã«ïŒïŒãæããŠãããããã®å ŽåãããŒã¿åŠçè£
眮ïŒïŒã¯ãããŒã¿çæã¢ãã«ïŒïŒãæãããµãŒãè£
眮ãšéä¿¡ãè¡ãããšã§ãããŒã¿çæã¢ãã«ïŒïŒãçšããããåŠççµæïŒäºæž¬çµæãªã©ïŒãåŸãããŸããããŒã¿åŠçè£
眮ïŒïŒã¯ããµãŒãè£
眮ã§ãã£ãŠããããããŠãŒã¶ãä¿æãã端æ«è£
眮ïŒäŸãã°ãæºåž¯é»è©±ããããããå®¶é»ãªã©ïŒã§ãã£ãŠãããã
Note that a device other than the
ç¹å®åŠçéšïŒïŒïŒã¯ãç¹å®åŠçã®çµæãã¹ããŒãçŒé¡ïŒïŒïŒã«éä¿¡ãããã¹ããŒãçŒé¡ïŒïŒïŒã§ã¯ãå¶åŸ¡éšïŒïŒïŒ¡ããã¹ããŒã«ïŒïŒïŒã«å¯ŸããŠç¹å®åŠçã®çµæãåºåãããããã€ã¯ããã©ã³ïŒïŒïŒã¯ãç¹å®åŠçã®çµæã«å¯ŸãããŠãŒã¶å
¥åã瀺ãé³å£°ãååŸãããå¶åŸ¡éšïŒïŒïŒ¡ã¯ããã€ã¯ããã©ã³ïŒïŒïŒã«ãã£ãŠååŸããããŠãŒã¶å
¥åã瀺ãé³å£°ããŒã¿ãããŒã¿åŠçè£
眮ïŒïŒã«éä¿¡ãããããŒã¿åŠçè£
眮ïŒïŒã§ã¯ãç¹å®åŠçéšïŒïŒïŒãé³å£°ããŒã¿ãååŸããã
The
ããŒã¿çæã¢ãã«ïŒïŒã¯ãããããçæïŒ¡ïŒ©ã§ãããããŒã¿çæã¢ãã«ïŒïŒã®äžäŸãšããŠã¯ãïœïœïœïŒ§ïŒ°ïŒŽãªã©ã®çæïŒ¡ïŒ©ãæãããããããŒã¿çæã¢ãã«ïŒïŒã¯ããã¥ãŒã©ã«ãããã¯ãŒã¯ã«å¯ŸããŠæ·±å±€åŠç¿ãè¡ãããããšã«ãã£ãŠåŸããããããŒã¿çæã¢ãã«ïŒïŒã«ã¯ãæç€ºãå«ãããã³ãããå
¥åããããã€ãé³å£°ã瀺ãé³å£°ããŒã¿ãããã¹ãã瀺ãããã¹ãããŒã¿ãããã³ç»åã瀺ãç»åããŒã¿ïŒäŸãã°ã鿢ç»ã®ããŒã¿ãŸãã¯åç»ã®ããŒã¿ïŒãªã©ã®æšè«çšããŒã¿ãå
¥åããããããŒã¿çæã¢ãã«ïŒïŒã¯ãå
¥åãããæšè«çšããŒã¿ãããã³ããã«ãã瀺ãããæç€ºã«åŸã£ãŠæšè«ããæšè«çµæãé³å£°ããŒã¿ãããã¹ãããŒã¿ãããã³ç»åããŒã¿ãªã©ã®ãã¡ã®ïŒä»¥äžã®ããŒã¿åœ¢åŒã§åºåãããããŒã¿çæã¢ãã«ïŒïŒã¯ãäŸãã°ãããã¹ãçæïŒ¡ïŒ©ãç»åçæïŒ¡ïŒ©ããã«ãã¢ãŒãã«çæïŒ¡ïŒ©ãªã©ãå«ããããã§ãæšè«ãšã¯ãäŸãã°ãåæãåé¡ãäºæž¬ãããã³ïŒãŸãã¯èŠçŽãªã©ãæããç¹å®åŠçéšïŒïŒïŒã¯ãããŒã¿çæã¢ãã«ïŒïŒãçšããªãããäžè¿°ããç¹å®åŠçãè¡ããããŒã¿çæã¢ãã«ïŒïŒã¯ãæç€ºãå«ãŸãªãããã³ããããæšè«çµæãåºåããããã«ããã¡ã€ã³ãã¥ãŒãã³ã°ãããã¢ãã«ã§ãã£ãŠãããããã®å ŽåãããŒã¿çæã¢ãã«ïŒïŒã¯ãæç€ºãå«ãŸãªãããã³ããããæšè«çµæãåºåããããšãã§ãããããŒã¿åŠçè£
眮ïŒïŒãªã©ã«ãããŠãããŒã¿çæã¢ãã«ïŒïŒã¯è€æ°çš®é¡å«ãŸããŠãããããŒã¿çæã¢ãã«ïŒïŒã¯ãçæïŒ¡ïŒ©ä»¥å€ã®ïŒ¡ïŒ©ãå«ããçæïŒ¡ïŒ©ä»¥å€ã®ïŒ¡ïŒ©ã¯ãäŸãã°ãç·åœ¢ååž°ãããžã¹ãã£ãã¯ååž°ãæ±ºå®æšãã©ã³ãã ãã©ã¬ã¹ãããµããŒããã¯ã¿ãŒãã·ã³ïŒïŒ³ïŒ¶ïŒïŒãïœïŒïœïœ
ïœïœïœã¯ã©ã¹ã¿ãªã³ã°ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒïŒ£ïŒ®ïŒ®ïŒããªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ïŒïŒ²ïŒ®ïŒ®ïŒãçæçæµå¯Ÿçãããã¯ãŒã¯ïŒïŒ§ïŒ¡ïŒ®ïŒããŸãã¯ãã€ãŒããã€ãºãªã©ã§ãããçš®ã
ã®åŠçãè¡ãããšãã§ãããããããäŸã«éå®ãããªãããŸããã¯ããšãŒãžã§ã³ãã§ãã£ãŠãããããŸããäžè¿°ããåéšã®åŠçãã§è¡ãããå Žåããã®åŠçã¯ãã§äžéšãŸãã¯å
šéšãè¡ããããããããäŸã«éå®ãããªãããŸããçæïŒ¡ïŒ©ãå«ãã§å®æœãããåŠçã¯ãã«ãŒã«ããŒã¹ã§ã®åŠçã«çœ®ãæããŠããããã«ãŒã«ããŒã¹ã®åŠçã¯ãçæïŒ¡ïŒ©ãå«ãã§å®æœãããåŠçã«çœ®ãæããŠãããã
The
第ïŒå®æœåœ¢æ
ã«ä¿ãããŒã¿åŠçã·ã¹ãã ïŒïŒïŒã¯ã第ïŒå®æœåœ¢æ
ã«ä¿ãããŒã¿åŠçã·ã¹ãã ïŒïŒãšåæ§ã®åŠçãè¡ããããŒã¿åŠçã·ã¹ãã ïŒïŒïŒã«ããåŠçã¯ãããŒã¿åŠçè£
眮ïŒïŒã®ç¹å®åŠçéšïŒïŒïŒãŸãã¯ã¹ããŒãçŒé¡ïŒïŒïŒã®å¶åŸ¡éšïŒïŒïŒ¡ã«ãã£ãŠå®è¡ãããããããŒã¿åŠçè£
眮ïŒïŒã®ç¹å®åŠçéšïŒïŒïŒãšã¹ããŒãçŒé¡ïŒïŒïŒã®å¶åŸ¡éšïŒïŒïŒ¡ãšã«ãã£ãŠå®è¡ãããŠãããããŸããããŒã¿åŠçè£
眮ïŒïŒã®ç¹å®åŠçéšïŒïŒïŒã¯ãåŠçã«å¿
èŠãªæ
å ±ãã¹ããŒãçŒé¡ïŒïŒïŒãŸãã¯å€éšã®è£
眮ãªã©ããååŸãããåéãããããã¹ããŒãçŒé¡ïŒïŒïŒã¯ãåŠçã«å¿
èŠãªæ
å ±ãããŒã¿åŠçè£
眮ïŒïŒãŸãã¯å€éšã®è£
眮ãªã©ããååŸãããåéãããããã
The
äžè¿°ããè§£æéšãçæéšãããã³é³å£°åéšãå«ãè€æ°ã®èŠçŽ ã®åã
ã¯ãäŸãã°ãã¹ããŒãçŒé¡ïŒïŒïŒããã³ããŒã¿åŠçè£
眮ïŒïŒã®ãã¡ã®å°ãªããšãäžæ¹ã§å®çŸããããäŸãã°ãè§£æéšã¯ãã¹ããŒãçŒé¡ïŒïŒïŒã®ããã»ããµïŒïŒã«ãã£ãŠå®çŸãããé³å£°ããŒã¿ãè§£æããããã¹ãããŒã¿ã«å€æãããçæéšã¯ãäŸãã°ãããŒã¿åŠçè£
眮ïŒïŒã®ç¹å®åŠçéšïŒïŒïŒã«ãã£ãŠå®çŸãããè§£æãããããŒã¿ã«åºã¥ããŠè¿çãçæãããé³å£°åéšã¯ãäŸãã°ãã¹ããŒãçŒé¡ïŒïŒïŒã®å¶åŸ¡éšïŒïŒïŒ¡ã«ãã£ãŠå®çŸãããçæãããè¿çãé³å£°ããŒã¿ã«å€æããé¡§å®¢ã«æäŸãããåéšãšè£
眮ãå¶åŸ¡éšãšã®å¯Ÿå¿é¢ä¿ã¯ãäžè¿°ããäŸã«éå®ããããçš®ã
ã®å€æŽãå¯èœã§ããã
Each of the multiple elements including the above-mentioned analysis unit, generation unit, and voice conversion unit is realized, for example, by at least one of the
第ïŒå®æœåœ¢æ

å³ïŒã«ã¯ã第ïŒå®æœåœ¢æ
ã«ä¿ãããŒã¿åŠçã·ã¹ãã ïŒïŒïŒã®æ§æã®äžäŸã瀺ãããŠããã
[Third embodiment]
FIG. 5 shows an example of the configuration of a
å³ïŒã«ç€ºãããã«ãããŒã¿åŠçã·ã¹ãã ïŒïŒïŒã¯ãããŒã¿åŠçè£
眮ïŒïŒããã³ãããã»ããå端æ«ïŒïŒïŒãåããŠãããããŒã¿åŠçè£
眮ïŒïŒã®äžäŸãšããŠã¯ããµãŒããæããããã
As shown in FIG. 5, the
ããŒã¿åŠçè£
眮ïŒïŒã¯ãã³ã³ãã¥ãŒã¿ïŒïŒãããŒã¿ããŒã¹ïŒïŒãããã³é信ïŒïŒŠïŒïŒãåããŠãããã³ã³ãã¥ãŒã¿ïŒïŒã¯ãããã»ããµïŒïŒãïŒïŒïŒãããã³ã¹ãã¬ãŒãžïŒïŒãåããŠãããããã»ããµïŒïŒãïŒïŒïŒãããã³ã¹ãã¬ãŒãžïŒïŒã¯ããã¹ïŒïŒã«æ¥ç¶ãããŠããããŸããããŒã¿ããŒã¹ïŒïŒããã³é信ïŒïŒŠïŒïŒãããã¹ïŒïŒã«æ¥ç¶ãããŠãããé信ïŒïŒŠïŒïŒã¯ããããã¯ãŒã¯ïŒïŒã«æ¥ç¶ãããŠããããããã¯ãŒã¯ïŒïŒã®äžäŸãšããŠã¯ãããã³ïŒãŸãã¯ïŒ¬ïŒ¡ïŒ®ãªã©ãæããããã
The
ãããã»ããå端æ«ïŒïŒïŒã¯ãã³ã³ãã¥ãŒã¿ïŒïŒããã€ã¯ããã©ã³ïŒïŒïŒãã¹ããŒã«ïŒïŒïŒãã«ã¡ã©ïŒïŒãé信ïŒïŒŠïŒïŒãããã³ãã£ã¹ãã¬ã€ïŒïŒïŒãåããŠãããã³ã³ãã¥ãŒã¿ïŒïŒã¯ãããã»ããµïŒïŒãïŒïŒïŒãããã³ã¹ãã¬ãŒãžïŒïŒãåããŠãããããã»ããµïŒïŒãïŒïŒïŒãããã³ã¹ãã¬ãŒãžïŒïŒã¯ããã¹ïŒïŒã«æ¥ç¶ãããŠããããŸãããã€ã¯ããã©ã³ïŒïŒïŒãã¹ããŒã«ïŒïŒïŒãã«ã¡ã©ïŒïŒãããã³ãã£ã¹ãã¬ã€ïŒïŒïŒãããã¹ïŒïŒã«æ¥ç¶ãããŠããã
The
ãã€ã¯ããã©ã³ïŒïŒïŒã¯ããŠãŒã¶ãçºããé³å£°ãåãä»ããããšã§ããŠãŒã¶ããæç€ºãªã©ãåãä»ããããã€ã¯ããã©ã³ïŒïŒïŒã¯ããŠãŒã¶ãçºããé³å£°ãææããææããé³å£°ãé³å£°ããŒã¿ã«å€æããŠããã»ããµïŒïŒã«åºåãããã¹ããŒã«ïŒïŒïŒã¯ãããã»ããµïŒïŒããã®æç€ºã«åŸã£ãŠé³å£°ãåºåããã
The
ã«ã¡ã©ïŒïŒã¯ãã¬ã³ãºãçµããããã³ã·ã£ãã¿ãªã©ã®å
åŠç³»ãšãïŒïŒ¯ïŒ³ïŒComplementary Metal-Oxide-SemiconductorïŒã€ã¡ãŒãžã»ã³ãµãŸãã¯ïŒ£ïŒ£ïŒ€ïŒCharge Coupled DeviceïŒã€ã¡ãŒãžã»ã³ãµãªã©ã®æ®åçŽ åãšãæèŒãããå°åããžã¿ã«ã«ã¡ã©ã§ããããŠãŒã¶ã®åšå²ïŒäŸãã°ãäžè¬çãªå¥åžžè
ã®èŠçã®åºãã«çžåœããç»è§ã§èŠå®ãããæ®åç¯å²ïŒãæ®åããã
é信ïŒïŒŠïŒïŒã¯ããããã¯ãŒã¯ïŒïŒã«æ¥ç¶ãããŠãããé信ïŒïŒŠïŒïŒããã³ïŒïŒã¯ããããã¯ãŒã¯ïŒïŒãä»ããŠããã»ããµïŒïŒãšããã»ããµïŒïŒãšã®éã®åçš®æ
å ±ã®æåãåžããé信ïŒïŒŠïŒïŒããã³ïŒïŒãçšããããã»ããµïŒïŒãšããã»ããµïŒïŒãšã®éã®åçš®æ
å ±ã®æåã¯ã»ãã¥ã¢ãªç¶æ
ã§è¡ãããã
The communication I/
å³ïŒã«ã¯ãããŒã¿åŠçè£
眮ïŒïŒããã³ãããã»ããå端æ«ïŒïŒïŒã®èŠéšæ©èœã®äžäŸã瀺ãããŠãããå³ïŒã«ç€ºãããã«ãããŒã¿åŠçè£
眮ïŒïŒã§ã¯ãããã»ããµïŒïŒã«ãã£ãŠç¹å®åŠçãè¡ããããã¹ãã¬ãŒãžïŒïŒã«ã¯ãç¹å®åŠçããã°ã©ã ïŒïŒãæ ŒçŽãããŠããã
Figure 6 shows an example of the main functions of the
ããã»ããµïŒïŒã¯ãã¹ãã¬ãŒãžïŒïŒããç¹å®åŠçããã°ã©ã ïŒïŒãèªã¿åºããèªã¿åºããç¹å®åŠçããã°ã©ã ïŒïŒãïŒïŒïŒäžã§å®è¡ãããç¹å®åŠçã¯ãããã»ããµïŒïŒãïŒïŒïŒäžã§å®è¡ããç¹å®åŠçããã°ã©ã ïŒïŒã«åŸã£ãŠãç¹å®åŠçéšïŒïŒïŒãšããŠåäœããããšã«ãã£ãŠå®çŸãããã
The
ã¹ãã¬ãŒãžïŒïŒã«ã¯ãããŒã¿çæã¢ãã«ïŒïŒããã³ææ
ç¹å®ã¢ãã«ïŒïŒãæ ŒçŽãããŠãããããŒã¿çæã¢ãã«ïŒïŒããã³ææ
ç¹å®ã¢ãã«ïŒïŒã¯ãç¹å®åŠçéšïŒïŒïŒã«ãã£ãŠçšãããããç¹å®åŠçéšïŒïŒïŒã¯ãææ
ç¹å®ã¢ãã«ïŒïŒãçšããŠãŠãŒã¶ã®ææ
ãæšå®ãããŠãŒã¶ã®ææ
ãçšããç¹å®åŠçãè¡ãããšãã§ãããææ
ç¹å®ã¢ãã«ïŒïŒãçšããææ
æšå®æ©èœïŒææ
ç¹å®æ©èœïŒã§ã¯ããŠãŒã¶ã®ææ
ã®æšå®ãäºæž¬ãªã©ãå«ãããŠãŒã¶ã®ææ
ã«é¢ããçš®ã
ã®æšå®ãäºæž¬ãªã©ãè¡ããããããããäŸã«éå®ãããªãããŸããææ
ã®æšå®ãäºæž¬ã«ã¯ãäŸãã°ãææ
ã®åæïŒè§£æïŒãªã©ãå«ãŸããã
The
ãããã»ããå端æ«ïŒïŒïŒã§ã¯ãããã»ããµïŒïŒã«ãã£ãŠç¹å®åŠçãè¡ããããã¹ãã¬ãŒãžïŒïŒã«ã¯ãç¹å®ããã°ã©ã ïŒïŒãæ ŒçŽãããŠãããããã»ããµïŒïŒã¯ãã¹ãã¬ãŒãžïŒïŒããç¹å®ããã°ã©ã ïŒïŒãèªã¿åºããèªã¿åºããç¹å®ããã°ã©ã ïŒïŒãïŒïŒïŒäžã§å®è¡ãããç¹å®åŠçã¯ãããã»ããµïŒïŒãïŒïŒïŒäžã§å®è¡ããç¹å®ããã°ã©ã ïŒïŒã«åŸã£ãŠãå¶åŸ¡éšïŒïŒïŒ¡ãšããŠåäœããããšã«ãã£ãŠå®çŸãããããªãããããã»ããå端æ«ïŒïŒïŒã«ã¯ãããŒã¿çæã¢ãã«ïŒïŒããã³ææ
ç¹å®ã¢ãã«ïŒïŒãšåæ§ã®ããŒã¿çæã¢ãã«ããã³ææ
ç¹å®ã¢ãã«ãæãããããã¢ãã«ãçšããŠç¹å®åŠçéšïŒïŒïŒãšåæ§ã®åŠçãè¡ãããšãã§ããã
In the
ãªããããŒã¿åŠçè£
眮ïŒïŒä»¥å€ã®ä»ã®è£
眮ãããŒã¿çæã¢ãã«ïŒïŒãæããŠããããäŸãã°ããµãŒãè£
眮ãããŒã¿çæã¢ãã«ïŒïŒãæããŠãããããã®å ŽåãããŒã¿åŠçè£
眮ïŒïŒã¯ãããŒã¿çæã¢ãã«ïŒïŒãæãããµãŒãè£
眮ãšéä¿¡ãè¡ãããšã§ãããŒã¿çæã¢ãã«ïŒïŒãçšããããåŠççµæïŒäºæž¬çµæãªã©ïŒãåŸãããŸããããŒã¿åŠçè£
眮ïŒïŒã¯ããµãŒãè£
眮ã§ãã£ãŠããããããŠãŒã¶ãä¿æãã端æ«è£
眮ïŒäŸãã°ãæºåž¯é»è©±ããããããå®¶é»ãªã©ïŒã§ãã£ãŠãããã
Note that a device other than the
ç¹å®åŠçéšïŒïŒïŒã¯ãç¹å®åŠçã®çµæããããã»ããå端æ«ïŒïŒïŒã«éä¿¡ããããããã»ããå端æ«ïŒïŒïŒã§ã¯ãå¶åŸ¡éšïŒïŒïŒ¡ããã¹ããŒã«ïŒïŒïŒããã³ãã£ã¹ãã¬ã€ïŒïŒïŒã«å¯ŸããŠç¹å®åŠçã®çµæãåºåãããããã€ã¯ããã©ã³ïŒïŒïŒã¯ãç¹å®åŠçã®çµæã«å¯ŸãããŠãŒã¶å
¥åã瀺ãé³å£°ãååŸãããå¶åŸ¡éšïŒïŒïŒ¡ã¯ããã€ã¯ããã©ã³ïŒïŒïŒã«ãã£ãŠååŸããããŠãŒã¶å
¥åã瀺ãé³å£°ããŒã¿ãããŒã¿åŠçè£
眮ïŒïŒã«éä¿¡ãããããŒã¿åŠçè£
眮ïŒïŒã§ã¯ãç¹å®åŠçéšïŒïŒïŒãé³å£°ããŒã¿ãååŸããã
The
ããŒã¿çæã¢ãã«ïŒïŒã¯ãããããçæïŒ¡ïŒ©ã§ãããããŒã¿çæã¢ãã«ïŒïŒã®äžäŸãšããŠã¯ãïœïœïœïŒ§ïŒ°ïŒŽãªã©ã®çæïŒ¡ïŒ©ãæãããããããŒã¿çæã¢ãã«ïŒïŒã¯ããã¥ãŒã©ã«ãããã¯ãŒã¯ã«å¯ŸããŠæ·±å±€åŠç¿ãè¡ãããããšã«ãã£ãŠåŸããããããŒã¿çæã¢ãã«ïŒïŒã«ã¯ãæç€ºãå«ãããã³ãããå
¥åããããã€ãé³å£°ã瀺ãé³å£°ããŒã¿ãããã¹ãã瀺ãããã¹ãããŒã¿ãããã³ç»åã瀺ãç»åããŒã¿ïŒäŸãã°ã鿢ç»ã®ããŒã¿ãŸãã¯åç»ã®ããŒã¿ïŒãªã©ã®æšè«çšããŒã¿ãå
¥åããããããŒã¿çæã¢ãã«ïŒïŒã¯ãå
¥åãããæšè«çšããŒã¿ãããã³ããã«ãã瀺ãããæç€ºã«åŸã£ãŠæšè«ããæšè«çµæãé³å£°ããŒã¿ãããã¹ãããŒã¿ãããã³ç»åããŒã¿ãªã©ã®ãã¡ã®ïŒä»¥äžã®ããŒã¿åœ¢åŒã§åºåãããããŒã¿çæã¢ãã«ïŒïŒã¯ãäŸãã°ãããã¹ãçæïŒ¡ïŒ©ãç»åçæïŒ¡ïŒ©ããã«ãã¢ãŒãã«çæïŒ¡ïŒ©ãªã©ãå«ããããã§ãæšè«ãšã¯ãäŸãã°ãåæãåé¡ãäºæž¬ãããã³ïŒãŸãã¯èŠçŽãªã©ãæããç¹å®åŠçéšïŒïŒïŒã¯ãããŒã¿çæã¢ãã«ïŒïŒãçšããªãããäžè¿°ããç¹å®åŠçãè¡ããããŒã¿çæã¢ãã«ïŒïŒã¯ãæç€ºãå«ãŸãªãããã³ããããæšè«çµæãåºåããããã«ããã¡ã€ã³ãã¥ãŒãã³ã°ãããã¢ãã«ã§ãã£ãŠãããããã®å ŽåãããŒã¿çæã¢ãã«ïŒïŒã¯ãæç€ºãå«ãŸãªãããã³ããããæšè«çµæãåºåããããšãã§ãããããŒã¿åŠçè£
眮ïŒïŒãªã©ã«ãããŠãããŒã¿çæã¢ãã«ïŒïŒã¯è€æ°çš®é¡å«ãŸããŠãããããŒã¿çæã¢ãã«ïŒïŒã¯ãçæïŒ¡ïŒ©ä»¥å€ã®ïŒ¡ïŒ©ãå«ããçæïŒ¡ïŒ©ä»¥å€ã®ïŒ¡ïŒ©ã¯ãäŸãã°ãç·åœ¢ååž°ãããžã¹ãã£ãã¯ååž°ãæ±ºå®æšãã©ã³ãã ãã©ã¬ã¹ãããµããŒããã¯ã¿ãŒãã·ã³ïŒïŒ³ïŒ¶ïŒïŒãïœïŒïœïœ
ïœïœïœã¯ã©ã¹ã¿ãªã³ã°ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒïŒ£ïŒ®ïŒ®ïŒããªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ïŒïŒ²ïŒ®ïŒ®ïŒãçæçæµå¯Ÿçãããã¯ãŒã¯ïŒïŒ§ïŒ¡ïŒ®ïŒããŸãã¯ãã€ãŒããã€ãºãªã©ã§ãããçš®ã
ã®åŠçãè¡ãããšãã§ãããããããäŸã«éå®ãããªãããŸããã¯ããšãŒãžã§ã³ãã§ãã£ãŠãããããŸããäžè¿°ããåéšã®åŠçãã§è¡ãããå Žåããã®åŠçã¯ãã§äžéšãŸãã¯å
šéšãè¡ããããããããäŸã«éå®ãããªãããŸããçæïŒ¡ïŒ©ãå«ãã§å®æœãããåŠçã¯ãã«ãŒã«ããŒã¹ã§ã®åŠçã«çœ®ãæããŠããããã«ãŒã«ããŒã¹ã®åŠçã¯ãçæïŒ¡ïŒ©ãå«ãã§å®æœãããåŠçã«çœ®ãæããŠãããã
The
第ïŒå®æœåœ¢æ
ã«ä¿ãããŒã¿åŠçã·ã¹ãã ïŒïŒïŒã¯ã第ïŒå®æœåœ¢æ
ã«ä¿ãããŒã¿åŠçã·ã¹ãã ïŒïŒãšåæ§ã®åŠçãè¡ããããŒã¿åŠçã·ã¹ãã ïŒïŒïŒã«ããåŠçã¯ãããŒã¿åŠçè£
眮ïŒïŒã®ç¹å®åŠçéšïŒïŒïŒãŸãã¯ãããã»ããå端æ«ïŒïŒïŒã®å¶åŸ¡éšïŒïŒïŒ¡ã«ãã£ãŠå®è¡ãããããããŒã¿åŠçè£
眮ïŒïŒã®ç¹å®åŠçéšïŒïŒïŒãšãããã»ããå端æ«ïŒïŒïŒã®å¶åŸ¡éšïŒïŒïŒ¡ãšã«ãã£ãŠå®è¡ãããŠãããããŸããããŒã¿åŠçè£
眮ïŒïŒã®ç¹å®åŠçéšïŒïŒïŒã¯ãåŠçã«å¿
èŠãªæ
å ±ããããã»ããå端æ«ïŒïŒïŒãŸãã¯å€éšã®è£
眮ãªã©ããååŸãããåéããããããããã»ããå端æ«ïŒïŒïŒã¯ãåŠçã«å¿
èŠãªæ
å ±ãããŒã¿åŠçè£
眮ïŒïŒãŸãã¯å€éšã®è£
眮ãªã©ããååŸãããåéãããããã
The
äžè¿°ããè§£æéšãçæéšãããã³é³å£°åéšãå«ãè€æ°ã®èŠçŽ ã®åã
ã¯ãäŸãã°ããããã»ããå端æ«ïŒïŒïŒããã³ããŒã¿åŠçè£
眮ïŒïŒã®ãã¡ã®å°ãªããšãäžæ¹ã§å®çŸããããäŸãã°ãè§£æéšã¯ããããã»ããå端æ«ïŒïŒïŒã®ããã»ããµïŒïŒã«ãã£ãŠå®çŸãããé³å£°ããŒã¿ãè§£æããããã¹ãããŒã¿ã«å€æãããçæéšã¯ãäŸãã°ãããŒã¿åŠçè£
眮ïŒïŒã®ç¹å®åŠçéšïŒïŒïŒã«ãã£ãŠå®çŸãããè§£æãããããŒã¿ã«åºã¥ããŠè¿çãçæãããé³å£°åéšã¯ãäŸãã°ããããã»ããå端æ«ïŒïŒïŒã®å¶åŸ¡éšïŒïŒïŒ¡ã«ãã£ãŠå®çŸãããçæãããè¿çãé³å£°ããŒã¿ã«å€æããé¡§å®¢ã«æäŸãããåéšãšè£
眮ãå¶åŸ¡éšãšã®å¯Ÿå¿é¢ä¿ã¯ãäžè¿°ããäŸã«éå®ããããçš®ã
ã®å€æŽãå¯èœã§ããã
Each of the multiple elements including the above-mentioned analysis unit, generation unit, and voice conversion unit is realized, for example, by at least one of the
第ïŒå®æœåœ¢æ

å³ïŒã«ã¯ã第ïŒå®æœåœ¢æ
ã«ä¿ãããŒã¿åŠçã·ã¹ãã ïŒïŒïŒã®æ§æã®äžäŸã瀺ãããŠããã
[Fourth embodiment]
FIG. 7 shows an example of the configuration of a
å³ïŒã«ç€ºãããã«ãããŒã¿åŠçã·ã¹ãã ïŒïŒïŒã¯ãããŒã¿åŠçè£
眮ïŒïŒããã³ããããïŒïŒïŒãåããŠãããããŒã¿åŠçè£
眮ïŒïŒã®äžäŸãšããŠã¯ããµãŒããæããããã
As shown in FIG. 7, the
ããŒã¿åŠçè£
眮ïŒïŒã¯ãã³ã³ãã¥ãŒã¿ïŒïŒãããŒã¿ããŒã¹ïŒïŒãããã³é信ïŒïŒŠïŒïŒãåããŠãããã³ã³ãã¥ãŒã¿ïŒïŒã¯ãããã»ããµïŒïŒãïŒïŒïŒãããã³ã¹ãã¬ãŒãžïŒïŒãåããŠãããããã»ããµïŒïŒãïŒïŒïŒãããã³ã¹ãã¬ãŒãžïŒïŒã¯ããã¹ïŒïŒã«æ¥ç¶ãããŠããããŸããããŒã¿ããŒã¹ïŒïŒããã³é信ïŒïŒŠïŒïŒãããã¹ïŒïŒã«æ¥ç¶ãããŠãããé信ïŒïŒŠïŒïŒã¯ããããã¯ãŒã¯ïŒïŒã«æ¥ç¶ãããŠããããããã¯ãŒã¯ïŒïŒã®äžäŸãšããŠã¯ãããã³ïŒãŸãã¯ïŒ¬ïŒ¡ïŒ®ãªã©ãæããããã
The
ããããïŒïŒïŒã¯ãã³ã³ãã¥ãŒã¿ïŒïŒããã€ã¯ããã©ã³ïŒïŒïŒãã¹ããŒã«ïŒïŒïŒãã«ã¡ã©ïŒïŒãé信ïŒïŒŠïŒïŒãããã³å¶åŸ¡å¯Ÿè±¡ïŒïŒïŒãåããŠãããã³ã³ãã¥ãŒã¿ïŒïŒã¯ãããã»ããµïŒïŒãïŒïŒïŒãããã³ã¹ãã¬ãŒãžïŒïŒãåããŠãããããã»ããµïŒïŒãïŒïŒïŒãããã³ã¹ãã¬ãŒãžïŒïŒã¯ããã¹ïŒïŒã«æ¥ç¶ãããŠããããŸãããã€ã¯ããã©ã³ïŒïŒïŒãã¹ããŒã«ïŒïŒïŒãã«ã¡ã©ïŒïŒãããã³å¶åŸ¡å¯Ÿè±¡ïŒïŒïŒãããã¹ïŒïŒã«æ¥ç¶ãããŠããã
The
ãã€ã¯ããã©ã³ïŒïŒïŒã¯ããŠãŒã¶ãçºããé³å£°ãåãä»ããããšã§ããŠãŒã¶ããæç€ºãªã©ãåãä»ããããã€ã¯ããã©ã³ïŒïŒïŒã¯ããŠãŒã¶ãçºããé³å£°ãææããææããé³å£°ãé³å£°ããŒã¿ã«å€æããŠããã»ããµïŒïŒã«åºåãããã¹ããŒã«ïŒïŒïŒã¯ãããã»ããµïŒïŒããã®æç€ºã«åŸã£ãŠé³å£°ãåºåããã
The
ã«ã¡ã©ïŒïŒã¯ãã¬ã³ãºãçµããããã³ã·ã£ãã¿ãªã©ã®å
åŠç³»ãšãïŒïŒ¯ïŒ³ã€ã¡ãŒãžã»ã³ãµãŸãã¯ïŒ£ïŒ£ïŒ€ã€ã¡ãŒãžã»ã³ãµãªã©ã®æ®åçŽ åãšãæèŒãããå°åããžã¿ã«ã«ã¡ã©ã§ããããŠãŒã¶ã®åšå²ïŒäŸãã°ãäžè¬çãªå¥åžžè
ã®èŠçã®åºãã«çžåœããç»è§ã§èŠå®ãããæ®åç¯å²ïŒãæ®åããã
é信ïŒïŒŠïŒïŒã¯ããããã¯ãŒã¯ïŒïŒã«æ¥ç¶ãããŠãããé信ïŒïŒŠïŒïŒããã³ïŒïŒã¯ããããã¯ãŒã¯ïŒïŒãä»ããŠããã»ããµïŒïŒãšããã»ããµïŒïŒãšã®éã®åçš®æ
å ±ã®æåãåžããé信ïŒïŒŠïŒïŒããã³ïŒïŒãçšããããã»ããµïŒïŒãšããã»ããµïŒïŒãšã®éã®åçš®æ
å ±ã®æåã¯ã»ãã¥ã¢ãªç¶æ
ã§è¡ãããã
The communication I/
å¶åŸ¡å¯Ÿè±¡ïŒïŒïŒã¯ã衚瀺è£
眮ãç®éšã®ïŒ¬ïŒ¥ïŒ€ã䞊ã³ã«ãè
ãæããã³è¶³ãªã©ãé§åããã¢ãŒã¿ãªã©ãå«ããããããïŒïŒïŒã®å§¿å¢ãä»èã¯ãè
ãæããã³è¶³ãªã©ã®ã¢ãŒã¿ãå¶åŸ¡ããããšã«ããå¶åŸ¡ããããããããïŒïŒïŒã®ææ
ã®äžéšã¯ããããã®ã¢ãŒã¿ãå¶åŸ¡ããããšã«ãã衚çŸã§ããããŸããããããïŒïŒïŒã®ç®éšã®ïŒ¬ïŒ¥ïŒ€ã®çºå
ç¶æ
ãå¶åŸ¡ããããšã«ãã£ãŠããããããïŒïŒïŒã®è¡šæ
ã衚çŸã§ããã
The controlled
å³ïŒã«ã¯ãããŒã¿åŠçè£
眮ïŒïŒããã³ããããïŒïŒïŒã®èŠéšæ©èœã®äžäŸã瀺ãããŠãããå³ïŒã«ç€ºãããã«ãããŒã¿åŠçè£
眮ïŒïŒã§ã¯ãããã»ããµïŒïŒã«ãã£ãŠç¹å®åŠçãè¡ããããã¹ãã¬ãŒãžïŒïŒã«ã¯ãç¹å®åŠçããã°ã©ã ïŒïŒãæ ŒçŽãããŠããã
Figure 8 shows an example of the main functions of the
ããã»ããµïŒïŒã¯ãã¹ãã¬ãŒãžïŒïŒããç¹å®åŠçããã°ã©ã ïŒïŒãèªã¿åºããèªã¿åºããç¹å®åŠçããã°ã©ã ïŒïŒãïŒïŒïŒäžã§å®è¡ãããç¹å®åŠçã¯ãããã»ããµïŒïŒãïŒïŒïŒäžã§å®è¡ããç¹å®åŠçããã°ã©ã ïŒïŒã«åŸã£ãŠãç¹å®åŠçéšïŒïŒïŒãšããŠåäœããããšã«ãã£ãŠå®çŸãããã
The
ã¹ãã¬ãŒãžïŒïŒã«ã¯ãããŒã¿çæã¢ãã«ïŒïŒããã³ææ
ç¹å®ã¢ãã«ïŒïŒãæ ŒçŽãããŠãããããŒã¿çæã¢ãã«ïŒïŒããã³ææ
ç¹å®ã¢ãã«ïŒïŒã¯ãç¹å®åŠçéšïŒïŒïŒã«ãã£ãŠçšãããããç¹å®åŠçéšïŒïŒïŒã¯ãææ
ç¹å®ã¢ãã«ïŒïŒãçšããŠãŠãŒã¶ã®ææ
ãæšå®ãããŠãŒã¶ã®ææ
ãçšããç¹å®åŠçãè¡ãããšãã§ãããææ
ç¹å®ã¢ãã«ïŒïŒãçšããææ
æšå®æ©èœïŒææ
ç¹å®æ©èœïŒã§ã¯ããŠãŒã¶ã®ææ
ã®æšå®ãäºæž¬ãªã©ãå«ãããŠãŒã¶ã®ææ
ã«é¢ããçš®ã
ã®æšå®ãäºæž¬ãªã©ãè¡ããããããããäŸã«éå®ãããªãããŸããææ
ã®æšå®ãäºæž¬ã«ã¯ãäŸãã°ãææ
ã®åæïŒè§£æïŒãªã©ãå«ãŸããã
The
ããããïŒïŒïŒã§ã¯ãããã»ããµïŒïŒã«ãã£ãŠç¹å®åŠçãè¡ããããã¹ãã¬ãŒãžïŒïŒã«ã¯ãç¹å®ããã°ã©ã ïŒïŒãæ ŒçŽãããŠãããããã»ããµïŒïŒã¯ãã¹ãã¬ãŒãžïŒïŒããç¹å®ããã°ã©ã ïŒïŒãèªã¿åºããèªã¿åºããç¹å®ããã°ã©ã ïŒïŒãïŒïŒïŒäžã§å®è¡ãããç¹å®åŠçã¯ãããã»ããµïŒïŒãïŒïŒïŒäžã§å®è¡ããç¹å®ããã°ã©ã ïŒïŒã«åŸã£ãŠãå¶åŸ¡éšïŒïŒïŒ¡ãšããŠåäœããããšã«ãã£ãŠå®çŸãããããªããããããïŒïŒïŒã«ã¯ãããŒã¿çæã¢ãã«ïŒïŒããã³ææ
ç¹å®ã¢ãã«ïŒïŒãšåæ§ã®ããŒã¿çæã¢ãã«ããã³ææ
ç¹å®ã¢ãã«ãæãããããã¢ãã«ãçšããŠç¹å®åŠçéšïŒïŒïŒãšåæ§ã®åŠçãè¡ãããšãã§ããã
In the
ãªããããŒã¿åŠçè£
眮ïŒïŒä»¥å€ã®ä»ã®è£
眮ãããŒã¿çæã¢ãã«ïŒïŒãæããŠããããäŸãã°ããµãŒãè£
眮ãããŒã¿çæã¢ãã«ïŒïŒãæããŠãããããã®å ŽåãããŒã¿åŠçè£
眮ïŒïŒã¯ãããŒã¿çæã¢ãã«ïŒïŒãæãããµãŒãè£
眮ãšéä¿¡ãè¡ãããšã§ãããŒã¿çæã¢ãã«ïŒïŒãçšããããåŠççµæïŒäºæž¬çµæãªã©ïŒãåŸãããŸããããŒã¿åŠçè£
眮ïŒïŒã¯ããµãŒãè£
眮ã§ãã£ãŠããããããŠãŒã¶ãä¿æãã端æ«è£
眮ïŒäŸãã°ãæºåž¯é»è©±ããããããå®¶é»ãªã©ïŒã§ãã£ãŠãããã
Note that a device other than the
ç¹å®åŠçéšïŒïŒïŒã¯ãç¹å®åŠçã®çµæãããããïŒïŒïŒã«éä¿¡ãããããããïŒïŒïŒã§ã¯ãå¶åŸ¡éšïŒïŒïŒ¡ããã¹ããŒã«ïŒïŒïŒããã³å¶åŸ¡å¯Ÿè±¡ïŒïŒïŒã«å¯ŸããŠç¹å®åŠçã®çµæãåºåãããããã€ã¯ããã©ã³ïŒïŒïŒã¯ãç¹å®åŠçã®çµæã«å¯ŸãããŠãŒã¶å
¥åã瀺ãé³å£°ãååŸãããå¶åŸ¡éšïŒïŒïŒ¡ã¯ããã€ã¯ããã©ã³ïŒïŒïŒã«ãã£ãŠååŸããããŠãŒã¶å
¥åã瀺ãé³å£°ããŒã¿ãããŒã¿åŠçè£
眮ïŒïŒã«éä¿¡ãããããŒã¿åŠçè£
眮ïŒïŒã§ã¯ãç¹å®åŠçéšïŒïŒïŒãé³å£°ããŒã¿ãååŸããã
The
ããŒã¿çæã¢ãã«ïŒïŒã¯ãããããçæïŒ¡ïŒ©ã§ãããããŒã¿çæã¢ãã«ïŒïŒã®äžäŸãšããŠã¯ãïœïœïœïŒ§ïŒ°ïŒŽãªã©ã®çæïŒ¡ïŒ©ãæãããããããŒã¿çæã¢ãã«ïŒïŒã¯ããã¥ãŒã©ã«ãããã¯ãŒã¯ã«å¯ŸããŠæ·±å±€åŠç¿ãè¡ãããããšã«ãã£ãŠåŸããããããŒã¿çæã¢ãã«ïŒïŒã«ã¯ãæç€ºãå«ãããã³ãããå
¥åããããã€ãé³å£°ã瀺ãé³å£°ããŒã¿ãããã¹ãã瀺ãããã¹ãããŒã¿ãããã³ç»åã瀺ãç»åããŒã¿ïŒäŸãã°ã鿢ç»ã®ããŒã¿ãŸãã¯åç»ã®ããŒã¿ïŒãªã©ã®æšè«çšããŒã¿ãå
¥åããããããŒã¿çæã¢ãã«ïŒïŒã¯ãå
¥åãããæšè«çšããŒã¿ãããã³ããã«ãã瀺ãããæç€ºã«åŸã£ãŠæšè«ããæšè«çµæãé³å£°ããŒã¿ãããã¹ãããŒã¿ãããã³ç»åããŒã¿ãªã©ã®ãã¡ã®ïŒä»¥äžã®ããŒã¿åœ¢åŒã§åºåãããããŒã¿çæã¢ãã«ïŒïŒã¯ãäŸãã°ãããã¹ãçæïŒ¡ïŒ©ãç»åçæïŒ¡ïŒ©ããã«ãã¢ãŒãã«çæïŒ¡ïŒ©ãªã©ãå«ããããã§ãæšè«ãšã¯ãäŸãã°ãåæãåé¡ãäºæž¬ãããã³ïŒãŸãã¯èŠçŽãªã©ãæããç¹å®åŠçéšïŒïŒïŒã¯ãããŒã¿çæã¢ãã«ïŒïŒãçšããªãããäžè¿°ããç¹å®åŠçãè¡ããããŒã¿çæã¢ãã«ïŒïŒã¯ãæç€ºãå«ãŸãªãããã³ããããæšè«çµæãåºåããããã«ããã¡ã€ã³ãã¥ãŒãã³ã°ãããã¢ãã«ã§ãã£ãŠãããããã®å ŽåãããŒã¿çæã¢ãã«ïŒïŒã¯ãæç€ºãå«ãŸãªãããã³ããããæšè«çµæãåºåããããšãã§ãããããŒã¿åŠçè£
眮ïŒïŒãªã©ã«ãããŠãããŒã¿çæã¢ãã«ïŒïŒã¯è€æ°çš®é¡å«ãŸããŠãããããŒã¿çæã¢ãã«ïŒïŒã¯ãçæïŒ¡ïŒ©ä»¥å€ã®ïŒ¡ïŒ©ãå«ããçæïŒ¡ïŒ©ä»¥å€ã®ïŒ¡ïŒ©ã¯ãäŸãã°ãç·åœ¢ååž°ãããžã¹ãã£ãã¯ååž°ãæ±ºå®æšãã©ã³ãã ãã©ã¬ã¹ãããµããŒããã¯ã¿ãŒãã·ã³ïŒïŒ³ïŒ¶ïŒïŒãïœïŒïœïœ
ïœïœïœã¯ã©ã¹ã¿ãªã³ã°ãç³ã¿èŸŒã¿ãã¥ãŒã©ã«ãããã¯ãŒã¯ïŒïŒ£ïŒ®ïŒ®ïŒããªã«ã¬ã³ããã¥ãŒã©ã«ãããã¯ãŒã¯ïŒïŒ²ïŒ®ïŒ®ïŒãçæçæµå¯Ÿçãããã¯ãŒã¯ïŒïŒ§ïŒ¡ïŒ®ïŒããŸãã¯ãã€ãŒããã€ãºãªã©ã§ãããçš®ã
ã®åŠçãè¡ãããšãã§ãããããããäŸã«éå®ãããªãããŸããã¯ããšãŒãžã§ã³ãã§ãã£ãŠãããããŸããäžè¿°ããåéšã®åŠçãã§è¡ãããå Žåããã®åŠçã¯ãã§äžéšãŸãã¯å
šéšãè¡ããããããããäŸã«éå®ãããªãããŸããçæïŒ¡ïŒ©ãå«ãã§å®æœãããåŠçã¯ãã«ãŒã«ããŒã¹ã§ã®åŠçã«çœ®ãæããŠããããã«ãŒã«ããŒã¹ã®åŠçã¯ãçæïŒ¡ïŒ©ãå«ãã§å®æœãããåŠçã«çœ®ãæããŠãããã
The
第ïŒå®æœåœ¢æ
ã«ä¿ãããŒã¿åŠçã·ã¹ãã ïŒïŒïŒã¯ã第ïŒå®æœåœ¢æ
ã«ä¿ãããŒã¿åŠçã·ã¹ãã ïŒïŒãšåæ§ã®åŠçãè¡ããããŒã¿åŠçã·ã¹ãã ïŒïŒïŒã«ããåŠçã¯ãããŒã¿åŠçè£
眮ïŒïŒã®ç¹å®åŠçéšïŒïŒïŒãŸãã¯ããããïŒïŒïŒã®å¶åŸ¡éšïŒïŒïŒ¡ã«ãã£ãŠå®è¡ãããããããŒã¿åŠçè£
眮ïŒïŒã®ç¹å®åŠçéšïŒïŒïŒãšããããïŒïŒïŒã®å¶åŸ¡éšïŒïŒïŒ¡ãšã«ãã£ãŠå®è¡ãããŠãããããŸããããŒã¿åŠçè£
眮ïŒïŒã®ç¹å®åŠçéšïŒïŒïŒã¯ãåŠçã«å¿
èŠãªæ
å ±ãããããïŒïŒïŒãŸãã¯å€éšã®è£
眮ãªã©ããååŸãããåéãããããããããïŒïŒïŒã¯ãåŠçã«å¿
èŠãªæ
å ±ãããŒã¿åŠçè£
眮ïŒïŒãŸãã¯å€éšã®è£
眮ãªã©ããååŸãããåéãããããã
The
äžè¿°ããè§£æéšãçæéšãããã³é³å£°åéšãå«ãè€æ°ã®èŠçŽ ã®åã
ã¯ãäŸãã°ãããããïŒïŒïŒããã³ããŒã¿åŠçè£
眮ïŒïŒã®ãã¡ã®å°ãªããšãäžæ¹ã§å®çŸããããäŸãã°ãè§£æéšã¯ãããããïŒïŒïŒã®ããã»ããµïŒïŒã«ãã£ãŠå®çŸãããé³å£°ããŒã¿ãè§£æããããã¹ãããŒã¿ã«å€æãããçæéšã¯ãäŸãã°ãããŒã¿åŠçè£
眮ïŒïŒã®ç¹å®åŠçéšïŒïŒïŒã«ãã£ãŠå®çŸãããè§£æãããããŒã¿ã«åºã¥ããŠè¿çãçæãããé³å£°åéšã¯ãäŸãã°ãããããïŒïŒïŒã®å¶åŸ¡éšïŒïŒïŒ¡ã«ãã£ãŠå®çŸãããçæãããè¿çãé³å£°ããŒã¿ã«å€æããé¡§å®¢ã«æäŸãããåéšãšè£
眮ãå¶åŸ¡éšãšã®å¯Ÿå¿é¢ä¿ã¯ãäžè¿°ããäŸã«éå®ããããçš®ã
ã®å€æŽãå¯èœã§ããã
Each of the multiple elements including the above-mentioned analysis unit, generation unit, and voice conversion unit is realized, for example, by at least one of the
ãªããææ
ãšã³ãžã³ãšããŠã®ææ
ç¹å®ã¢ãã«ïŒïŒã¯ãç¹å®ã®ãããã³ã°ã«åŸãããŠãŒã¶ã®ææ
ãæ±ºå®ããŠãããå
·äœçã«ã¯ãææ
ç¹å®ã¢ãã«ïŒïŒã¯ãç¹å®ã®ãããã³ã°ã§ããææ
ãããïŒå³ïŒåç
§ïŒã«åŸãããŠãŒã¶ã®ææ
ãæ±ºå®ããŠããããŸããææ
ç¹å®ã¢ãã«ïŒïŒã¯ãåæ§ã«ãããããã®ææ
ãæ±ºå®ããç¹å®åŠçéšïŒïŒïŒã¯ãããããã®ææ
ãçšããç¹å®åŠçãè¡ãããã«ããŠãããã
The emotion identification model 59, which serves as an emotion engine, may determine the emotion of the user according to a specific mapping. Specifically, the emotion identification model 59 may determine the emotion of the user according to an emotion map (see FIG. 9), which is a specific mapping. Similarly, the emotion identification model 59 may determine the emotion of the robot, and the
å³ïŒã¯ãè€æ°ã®ææ
ããããã³ã°ãããææ
ãããïŒïŒïŒã瀺ãå³ã§ãããææ
ãããïŒïŒïŒã«ãããŠãææ
ã¯ãäžå¿ããæŸå°ç¶ã«åå¿åã«é
眮ãããŠãããåå¿åã®äžå¿ã«è¿ãã»ã©ãåå§çç¶æ
ã®ææ
ãé
眮ãããŠãããåå¿åã®ããå€åŽã«ã¯ãå¿å¢ããçãŸããç¶æ
ãè¡åãè¡šãææ
ãé
眮ãããŠãããææ
ãšã¯ãæ
åãå¿çç¶æ
ãå«ãæŠå¿µã§ãããåå¿åã®å·ŠåŽã«ã¯ãæŠããŠè³å
ã§èµ·ããåå¿ããçæãããææ
ãé
眮ãããŠãããåå¿åã®å³åŽã«ã¯æŠããŠãç¶æ³å€æã§èªå°ãããææ
ãé
眮ãããŠãããåå¿åã®äžæ¹åããã³äžæ¹åã«ã¯ãæŠããŠè³å
ã§èµ·ããåå¿ããçæããããã€ãç¶æ³å€æã§èªå°ãããææ
ãé
眮ãããŠããããŸããåå¿åã®äžåŽã«ã¯ããå¿«ãã®ææ
ãé
眮ãããäžåŽã«ã¯ããäžå¿«ãã®ææ
ãé
眮ãããŠããããã®ããã«ãææ
ãããïŒïŒïŒã§ã¯ãææ
ãçãŸããæ§é ã«åºã¥ããŠè€æ°ã®ææ
ããããã³ã°ãããŠãããåæã«çããããææ
ããè¿ãã«ãããã³ã°ãããŠããã
9 is a diagram showing an
ãããã®ææ
ã¯ãææ
ãããïŒïŒïŒã®ïŒæã®æ¹åã«ååžããŠãããæ®æ®µã¯å®å¿ãšäžå®ã®ããããè¡ãæ¥ãããææ
ãããïŒïŒïŒã®å³ååã§ã¯ãå
éšçãªæèŠãããç¶æ³èªèã®æ¹ãåªäœã«ç«ã€ãããèœã¡çããå°è±¡ã«ãªãã
These emotions are distributed in the three o'clock direction of
ææ
ãããïŒïŒïŒã®å
åŽã¯å¿ã®äžãææ
ãããïŒïŒïŒã®å€åŽã¯è¡åã衚ããããææ
ãããïŒïŒïŒã®å€åŽã«è¡ãã»ã©ãææ
ãç®ã«èŠããïŒè¡åã«è¡šããïŒããã«ãªãã
The inside of
ããã§ãäººã®ææ ã¯ãå§¿å¢ãè¡ç³å€ã®ãããªæ§ã ãªãã©ã³ã¹ãåºç€ãšããŠããããããã®ãã©ã³ã¹ãçæ³ããé ããããšäžå¿«ãçæ³ã«è¿ã¥ããšå¿«ãšããç¶æ ã瀺ãããããããèªåè»ããã€ã¯ãªã©ã«ãããŠããå§¿å¢ãããããªãŒæ®éã®ãããªæ§ã ãªãã©ã³ã¹ãåºç€ãšããŠããããã®ãã©ã³ã¹ãçæ³ããé ããããšäžå¿«ãçæ³ã«è¿ã¥ããšå¿«ãšããç¶æ ã瀺ãããã«ææ ãäœãããšãã§ãããææ ãããã¯ãäŸãã°ãå ååå£«ã®ææ å°å³ïŒé³å£°ææ èªèããã³æ åã®è³ççä¿¡å·åæã·ã¹ãã ã«é¢ããç ç©¶ã埳島倧åŠãåå£«è«æïŒhttps://ci.nii.ac.jp/naid/500000375379ïŒã«åºã¥ããŠçæãããŠãããææ å°å³ã®å·Šååã«ã¯ãæèŠãåªäœã«ãã€ãåå¿ããšåŒã°ããé åã«å±ããææ ã䞊ã¶ããŸããææ å°å³ã®å³ååã«ã¯ãç¶æ³èªèãåªäœã«ãã€ãç¶æ³ããšåŒã°ããé åã«å±ããææ ã䞊ã¶ã Here, human emotions are based on various balances such as posture and blood sugar level, and when these balances are far from the ideal, it indicates an unpleasant state, and when they are close to the ideal, it indicates a pleasant state. Emotions can also be created for robots, cars, motorcycles, etc., based on various balances such as posture and remaining battery power, so that when these balances are far from the ideal, it indicates an unpleasant state, and when they are close to the ideal, it indicates a pleasant state. The emotion map may be generated, for example, based on the emotion map of Dr. Mitsuyoshi (Research on speech emotion recognition and emotion brain physiological signal analysis system, Tokushima University, doctoral dissertation: https://ci.nii.ac.jp/naid/500000375379). The left half of the emotion map is lined with emotions that belong to an area called "reaction" where sensation is dominant. The right half of the emotion map is lined with emotions that belong to an area called "situation" where situation recognition is dominant.
ææ ãããã§ã¯åŠç¿ãä¿ãææ ãïŒã€å®çŸ©ããããïŒã€ã¯ãç¶æ³åŽã«ãããã¬ãã£ããªãæºæãããåçãã®çãäžåšèŸºã®ææ ã§ãããã€ãŸãããããïŒåºŠãšãããªæ³ãã¯ããããªãããããå±ãããããªãããšãããã¬ãã£ããªææ ãããããã«çãããšãã§ãããããïŒã€ã¯ãåå¿åŽã«ããããžãã£ããªã欲ãã®ãããã®ææ ã§ãããã€ãŸããããã£ã𿬲ãããããã£ãšç¥ãããããšããããžãã£ããªæ°æã¡ã®ãšãã§ããã The emotion map defines two emotions that encourage learning. The first is the negative emotion around the middle of "repentance" or "reflection" on the situation side. In other words, this is when the robot experiences negative emotions such as "I never want to feel this way again" or "I don't want to be scolded again." The other is the positive emotion around "desire" on the response side. In other words, this is when the robot has positive feelings such as "I want more" or "I want to know more."
ææ
ç¹å®ã¢ãã«ïŒïŒã¯ããŠãŒã¶å
¥åããäºãåŠç¿ããããã¥ãŒã©ã«ãããã¯ãŒã¯ã«å
¥åããææ
ãããïŒïŒïŒã«ç€ºãåææ
ãç€ºãææ
å€ãååŸãããŠãŒã¶ã®ææ
ãæ±ºå®ããããã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ããŠãŒã¶å
¥åãšãææ
ãããïŒïŒïŒã«ç€ºãåææ
ãç€ºãææ
å€ãšã®çµã¿åããã§ããè€æ°ã®åŠç¿ããŒã¿ã«åºã¥ããŠäºãåŠç¿ããããã®ã§ããããŸãããã®ãã¥ãŒã©ã«ãããã¯ãŒã¯ã¯ãå³ïŒïŒã«ç€ºãææ
ãããïŒïŒïŒã®ããã«ãè¿ãã«é
眮ãããŠããææ
å士ã¯ãè¿ãå€ãæã€ããã«åŠç¿ããããå³ïŒïŒã§ã¯ããå®å¿ãããå®ç©ãããå¿åŒ·ãããšããè€æ°ã®ææ
ããè¿ãææ
å€ãšãªãäŸã瀺ããŠããã
The emotion identification model 59 inputs user input to a pre-trained neural network, obtains emotion values indicating each emotion shown in the
äžèšå®æœåœ¢æ
ã§ã¯ãïŒå°ã®ã³ã³ãã¥ãŒã¿ïŒïŒã«ãã£ãŠç¹å®åŠçãè¡ããã圢æ
äŸãæããããæ¬éç€ºã®æè¡ã¯ããã«éå®ããããã³ã³ãã¥ãŒã¿ïŒïŒãå«ããè€æ°ã®ã³ã³ãã¥ãŒã¿ã«ããç¹å®åŠçã«å¯Ÿãã忣åŠçãè¡ãããããã«ããŠãããã
In the above embodiment, an example was given in which a specific process is performed by one
äžèšå®æœåœ¢æ
ã§ã¯ãã¹ãã¬ãŒãžïŒïŒã«ç¹å®åŠçããã°ã©ã ïŒïŒãæ ŒçŽãããŠãã圢æ
äŸãæããŠèª¬æããããæ¬éç€ºã®æè¡ã¯ããã«éå®ãããªããäŸãã°ãç¹å®åŠçããã°ã©ã ïŒïŒãïŒUniversal Serial BusïŒã¡ã¢ãªãªã©ã®å¯æ¬åã®ã³ã³ãã¥ãŒã¿èªã¿åãå¯èœãªéäžæçæ ŒçŽåªäœã«æ ŒçŽãããŠããŠããããéäžæçæ ŒçŽåªäœã«æ ŒçŽãããŠããç¹å®åŠçããã°ã©ã ïŒïŒã¯ãããŒã¿åŠçè£
眮ïŒïŒã®ã³ã³ãã¥ãŒã¿ïŒïŒã«ã€ã³ã¹ããŒã«ããããããã»ããµïŒïŒã¯ãç¹å®åŠçããã°ã©ã ïŒïŒã«åŸã£ãŠç¹å®åŠçãå®è¡ããã
In the above embodiment, an example has been described in which the
ãŸãããããã¯ãŒã¯ïŒïŒãä»ããŠããŒã¿åŠçè£
眮ïŒïŒã«æ¥ç¶ããããµãŒããªã©ã®æ ŒçŽè£
眮ã«ç¹å®åŠçããã°ã©ã ïŒïŒãæ ŒçŽãããŠãããããŒã¿åŠçè£
眮ïŒïŒã®èŠæ±ã«å¿ããŠç¹å®åŠçããã°ã©ã ïŒïŒãããŠã³ããŒããããã³ã³ãã¥ãŒã¿ïŒïŒã«ã€ã³ã¹ããŒã«ãããããã«ããŠãããã
The
ãªãããããã¯ãŒã¯ïŒïŒãä»ããŠããŒã¿åŠçè£
眮ïŒïŒã«æ¥ç¶ããããµãŒããªã©ã®æ ŒçŽè£
眮ã«ç¹å®åŠçããã°ã©ã ïŒïŒã®å
šãŠãæ ŒçŽãããŠãããããã¹ãã¬ãŒãžïŒïŒã«ç¹å®åŠçããã°ã©ã ïŒïŒã®å
šãŠãèšæ¶ããããããŠããå¿
èŠã¯ãªããç¹å®åŠçããã°ã©ã ïŒïŒã®äžéšãæ ŒçŽãããŠãããŠãããã
It is not necessary to store all of the
ç¹å®åŠçãå®è¡ããããŒããŠã§ã¢è³æºãšããŠã¯ã次ã«ç€ºãåçš®ã®ããã»ããµãçšããããšãã§ãããããã»ããµãšããŠã¯ãäŸãã°ããœãããŠã§ã¢ãããªãã¡ãããã°ã©ã ãå®è¡ããããšã§ãç¹å®åŠçãå®è¡ããããŒããŠã§ã¢è³æºãšããŠæ©èœããæ±çšçãªããã»ããµã§ãããæããããããŸããããã»ããµãšããŠã¯ãäŸãã°ãïŒField-Programmable Gate ArrayïŒãïŒProgrammable Logic DeviceïŒããŸãã¯ïŒ¡ïŒ³ïŒ©ïŒ£ïŒApplication Specific Integrated CircuitïŒãªã©ã®ç¹å®ã®åŠçãå®è¡ãããããã«å°çšã«èšèšãããåè·¯æ§æãæããããã»ããµã§ããå°çšé»æ°åè·¯ãæãããããäœãã®ããã»ããµã«ãã¡ã¢ãªãå èµãŸãã¯æ¥ç¶ãããŠãããäœãã®ããã»ããµãã¡ã¢ãªã䜿çšããããšã§ç¹å®åŠçãå®è¡ããã The various processors listed below can be used as hardware resources for executing specific processes. Examples of processors include a CPU, which is a general-purpose processor that functions as a hardware resource for executing specific processes by executing software, i.e., a program. Examples of processors include dedicated electrical circuits, such as FPGAs (Field-Programmable Gate Arrays), PLDs (Programmable Logic Devices), or ASICs (Application Specific Integrated Circuits), which are processors with a circuit configuration designed specifically to execute specific processes. All of these processors have built-in or connected memory, and all of these processors execute specific processes by using the memory.
ç¹å®åŠçãå®è¡ããããŒããŠã§ã¢è³æºã¯ããããã®åçš®ã®ããã»ããµã®ãã¡ã®ïŒã€ã§æ§æãããŠãããããåçš®ãŸãã¯ç°çš®ã®ïŒã€ä»¥äžã®ããã»ããµã®çµã¿åããïŒäŸãã°ãè€æ°ã®ïŒŠïŒ°ïŒ§ïŒ¡ã®çµã¿åããããŸãã¯ïŒ£ïŒ°ïŒµãšïŒŠïŒ°ïŒ§ïŒ¡ãšã®çµã¿åããïŒã§æ§æãããŠãããããŸããç¹å®åŠçãå®è¡ããããŒããŠã§ã¢è³æºã¯ïŒã€ã®ããã»ããµã§ãã£ãŠãããã The hardware resource that executes the specific process may be composed of one of these various processors, or may be composed of a combination of two or more processors of the same or different types (e.g., a combination of multiple FPGAs, or a combination of a CPU and an FPGA). The hardware resource that executes the specific process may also be a single processor.
ïŒã€ã®ããã»ããµã§æ§æããäŸãšããŠã¯ã第ïŒã«ãïŒã€ä»¥äžã®ïŒ£ïŒ°ïŒµãšãœãããŠã§ã¢ã®çµã¿åããã§ïŒã€ã®ããã»ããµãæ§æãããã®ããã»ããµããç¹å®åŠçãå®è¡ããããŒããŠã§ã¢è³æºãšããŠæ©èœãã圢æ ãããã第ïŒã«ãïœïŒ£ïŒSystem-on-a-chipïŒãªã©ã«ä»£è¡šãããããã«ãç¹å®åŠçãå®è¡ããè€æ°ã®ããŒããŠã§ã¢è³æºãå«ãã·ã¹ãã å šäœã®æ©èœãïŒã€ã®ïŒ©ïŒ£ãããã§å®çŸããããã»ããµã䜿çšãã圢æ ãããããã®ããã«ãç¹å®åŠçã¯ãããŒããŠã§ã¢è³æºãšããŠãäžèšåçš®ã®ããã»ããµã®ïŒã€ä»¥äžãçšããŠå®çŸãããã As an example of a configuration using a single processor, first, there is a configuration in which one processor is configured by combining one or more CPUs with software, and this processor functions as a hardware resource that executes a specific process. Secondly, there is a configuration in which a processor is used that realizes the functions of the entire system, including multiple hardware resources that execute a specific process, on a single IC chip, as typified by SoC (System-on-a-chip). In this way, a specific process is realized using one or more of the various processors mentioned above as hardware resources.
æŽã«ããããã®åçš®ã®ããã»ããµã®ããŒããŠã§ã¢çãªæ§é ãšããŠã¯ãããå ·äœçã«ã¯ãåå°äœçŽ åãªã©ã®åè·¯çŽ åãçµã¿åããã黿°åè·¯ãçšããããšãã§ããããŸããäžèšã®ç¹å®åŠçã¯ãããŸã§ãäžäŸã§ãããåŸã£ãŠãäž»æšãéžè±ããªãç¯å²å ã«ãããŠäžèŠãªã¹ããããåé€ããããæ°ããªã¹ãããã远å ããããåŠçé åºãå ¥ãæ¿ãããããŠãããããšã¯èšããŸã§ããªãã More specifically, the hardware structure of these various processors can be an electric circuit that combines circuit elements such as semiconductor elements. The specific processing described above is merely an example. It goes without saying that unnecessary steps can be deleted, new steps can be added, and the processing order can be changed without departing from the spirit of the invention.
ãŸããäžè¿°ããäŸã§ã¯ã第ïŒå®æœåœ¢æ
ãã第ïŒå®æœåœ¢æ
ã«åããŠèª¬æãããããããã®å®æœåœ¢æ
ã®äžéšãŸãã¯å
šéšã¯çµã¿åããããŠãããããŸããã¹ããŒãããã€ã¹ïŒïŒãã¹ããŒãçŒé¡ïŒïŒïŒããããã»ããå端æ«ïŒïŒïŒãããã³ããããïŒïŒïŒã¯äžäŸã§ãã£ãŠããããããçµã¿åãããŠãããããã以å€ã®è£
眮ã§ãã£ãŠãããããŸããäžè¿°ããäŸã§ã¯ã圢æ
äŸïŒãšåœ¢æ
äŸïŒã«åããŠèª¬æãããããããã¯çµã¿åãããŠãããã
In the above example, the first to fourth embodiments have been described separately, but some or all of these embodiments may be combined. Also, the
以äžã«ç€ºããèšèŒå 容ããã³å³ç€ºå 容ã¯ãæ¬éç€ºã®æè¡ã«ä¿ãéšåã«ã€ããŠã®è©³çްãªèª¬æã§ãããæ¬éç€ºã®æè¡ã®äžäŸã«éããªããäŸãã°ãäžèšã®æ§æãæ©èœãäœçšãããã³å¹æã«é¢ãã説æã¯ãæ¬éç€ºã®æè¡ã«ä¿ãéšåã®æ§æãæ©èœãäœçšãããã³å¹æã®äžäŸã«é¢ãã説æã§ããããã£ãŠãæ¬éç€ºã®æè¡ã®äž»æšãéžè±ããªãç¯å²å ã«ãããŠã以äžã«ç€ºããèšèŒå 容ããã³å³ç€ºå 容ã«å¯ŸããŠãäžèŠãªéšåãåé€ããããæ°ããªèŠçŽ ã远å ãããã眮ãæãããããŠãããããšã¯èšããŸã§ããªãããŸããé¯ç¶ãåé¿ããæ¬éç€ºã®æè¡ã«ä¿ãéšåã®çè§£ã容æã«ããããã«ã以äžã«ç€ºããèšèŒå 容ããã³å³ç€ºå 容ã§ã¯ãæ¬éç€ºã®æè¡ã®å®æœãå¯èœã«ããäžã§ç¹ã«èª¬æãèŠããªãæè¡åžžèçã«é¢ãã説æã¯çç¥ãããŠããã The above description and illustrations are a detailed explanation of the parts related to the technology of the present disclosure, and are merely an example of the technology of the present disclosure. For example, the above explanation of the configuration, function, action, and effect is an explanation of an example of the configuration, function, action, and effect of the parts related to the technology of the present disclosure. Therefore, it goes without saying that unnecessary parts may be deleted, new elements may be added, or replacements may be made to the above description and illustrations, within the scope of the gist of the technology of the present disclosure. Also, in order to avoid confusion and to make it easier to understand the parts related to the technology of the present disclosure, the above description and illustrations omit explanations of technical common sense that do not require particular explanation to enable the implementation of the technology of the present disclosure.
æ¬æçŽ°æžã«èšèŒãããå šãŠã®æç®ãç¹èš±åºé¡ããã³æè¡èŠæ Œã¯ãåã ã®æç®ãç¹èš±åºé¡ããã³æè¡èŠæ Œãåç §ã«ããåã蟌ãŸããããšãå ·äœçãã€åã ã«èšãããå ŽåãšåçšåºŠã«ãæ¬æçŽ°æžäžã«åç §ã«ããåã蟌ãŸããã All publications, patent applications, and technical standards mentioned in this specification are incorporated by reference into this specification to the same extent as if each individual publication, patent application, and technical standard was specifically and individually indicated to be incorporated by reference.
ïŒä»èšïŒïŒ
é³å£°ããŒã¿ãè§£æããè§£æéšãšã
åèšè§£æéšã«ãã£ãŠè§£æãããããŒã¿ã«åºã¥ããŠè¿çãçæããçæéšãšã
åèšçæéšã«ãã£ãŠçæãããè¿çãé³å£°åããé³å£°åéšãšã
ãåãã
ããšãç¹åŸŽãšããã·ã¹ãã ã
ïŒä»èšïŒïŒ
åèšçæéšã¯ã
ãã¡ã€ã³ãã¥ãŒãã³ã°ãè¡ã調æŽéšãåãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒ
åèšé³å£°åéšã¯ã
çæãããé³å£°ãé¡§å®¢ã«æäŸããæäŸéšãåãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒ
åèšè§£æéšã¯ã
è€æ°ã®é³å£°ããŒã¿ãè§£æãã声ã®ãã³ããææãã¢ãã«åãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒ
åèšçæéšã¯ã
ç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã€çæïŒ¡ïŒ©ãçšãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒ
åèšè§£æéšã¯ã
ãŠãŒã¶ã®ææ
ãæšå®ããæšå®ãããŠãŒã¶ã®ææ
ã«åºã¥ããŠé³å£°ããŒã¿ã®è§£ææ¹æ³ã調æŽãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒ
åèšè§£æéšã¯ã
é³å£°ããŒã¿ã®è§£ææã«ãç¹å®ã®ã¢ã¯ã»ã³ããŸãã¯æ¹èšãèæ
®ããŠè§£æç²ŸåºŠãåäžããã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒ
åèšè§£æéšã¯ã
é³å£°ããŒã¿ã®è§£ææã«ãèæ¯ãã€ãºãé€å»ããããã®ãã£ã«ã¿åŠçãè¡ã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒ
åèšè§£æéšã¯ã
ãŠãŒã¶ã®ææ
ãæšå®ããæšå®ãããŠãŒã¶ã®ææ
ã«åºã¥ããŠè§£æããé³å£°ããŒã¿ã®åªå
é äœã決å®ãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšè§£æéšã¯ã
é³å£°ããŒã¿ã®è§£ææã«ããŠãŒã¶ã®å°ççäœçœ®æ
å ±ã«åºã¥ããŠè§£ææ¹æ³ã調æŽãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšè§£æéšã¯ã
é³å£°ããŒã¿ã®è§£ææã«ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åã«åºã¥ããŠãé¢é£ããé³å£°ããŒã¿ãåªå
çã«è§£æãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšçæéšã¯ã
ãŠãŒã¶ã®ææ
ãæšå®ããæšå®ãããŠãŒã¶ã®ææ
ã«åºã¥ããŠè¿çã®è¡šçŸæ¹æ³ã調æŽãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšçæéšã¯ã
è¿ççææã«ãåãåããå
容ã®éèŠåºŠã«åºã¥ããŠè¿çã®è©³çŽ°åºŠã調æŽãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšçæéšã¯ã
è¿ççææã«ãåãåããã®ã«ããŽãªã«å¿ããŠç°ãªãçæã¢ã«ãŽãªãºã ãé©çšãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšçæéšã¯ã
ãŠãŒã¶ã®ææ
ãæšå®ããæšå®ãããŠãŒã¶ã®ææ
ã«åºã¥ããŠè¿çã®é·ãã調æŽãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšçæéšã¯ã
è¿ççææã«ãåãåããã®æåºææã«åºã¥ããŠè¿çã®åªå
é äœã決å®ãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšçæéšã¯ã
è¿ççææã«ãåãåããã®é¢é£æ§ã«åºã¥ããŠè¿çã®é åºã調æŽãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšé³å£°åéšã¯ã
ãŠãŒã¶ã®ææ
ãæšå®ããæšå®ãããŠãŒã¶ã®ææ
ã«åºã¥ããŠé³å£°åã®è¡šçŸæ¹æ³ã調æŽãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšé³å£°åéšã¯ã
é³å£°åæã«ãçæãããé³å£°ã®èªç¶ããåäžãããããã®é³å£°ãã£ã«ã¿ãªã³ã°ãè¡ã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšé³å£°åéšã¯ã
é³å£°åæã«ãç¹å®ã®ã¢ã¯ã»ã³ããæ¹èšãèæ
®ããŠé³å£°åã®ç²ŸåºŠãåäžããã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšé³å£°åéšã¯ã
ãŠãŒã¶ã®ææ
ãæšå®ããæšå®ãããŠãŒã¶ã®ææ
ã«åºã¥ããŠé³å£°åã®åªå
é äœã決å®ãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšé³å£°åéšã¯ã
é³å£°åæã«ããŠãŒã¶ã®å°ççäœçœ®æ
å ±ãèæ
®ããŠé³å£°åæ¹æ³ã調æŽãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšé³å£°åéšã¯ã
é³å£°åæã«ããŠãŒã¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æŽ»åãåæããé¢é£ããé³å£°ããŒã¿ãåªå
çã«é³å£°åãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšèª¿æŽéšã¯ã
ãŠãŒã¶ã®ææ
ãæšå®ããæšå®ãããŠãŒã¶ã®ææ
ã«åºã¥ããŠãã¡ã€ã³ãã¥ãŒãã³ã°ã®ãã©ã¡ãŒã¿ã調æŽãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšèª¿æŽéšã¯ã
ãã¡ã€ã³ãã¥ãŒãã³ã°æã«ãéå»ã®åãåããããŒã¿ãåç
§ããŠçæã¢ã«ãŽãªãºã ãæé©åãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšèª¿æŽéšã¯ã
ãŠãŒã¶ã®ææ
ãæšå®ããæšå®ãããŠãŒã¶ã®ææ
ã«åºã¥ããŠãã¡ã€ã³ãã¥ãŒãã³ã°ã®é »åºŠã調æŽãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšèª¿æŽéšã¯ã
ãã¡ã€ã³ãã¥ãŒãã³ã°æã«ãåãåããã®æåºææã«åºã¥ããŠåŠç¿ããŒã¿ã®éã¿ä»ããè¡ã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšæäŸéšã¯ã
ãŠãŒã¶ã®ææ
ãæšå®ããæšå®ãããŠãŒã¶ã®ææ
ã«åºã¥ããŠé³å£°æäŸã®æ¹æ³ã調æŽãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšæäŸéšã¯ã
é³å£°æäŸæã«ããŠãŒã¶ã®éå»ã®åãåããå±¥æŽãåç
§ããŠæé©ãªæäŸæ¹æ³ãéžå®ãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšæäŸéšã¯ã
ãŠãŒã¶ã®ææ
ãæšå®ããæšå®ãããŠãŒã¶ã®ææ
ã«åºã¥ããŠé³å£°æäŸã®åªå
é äœã決å®ãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
ïŒä»èšïŒïŒïŒ
åèšæäŸéšã¯ã
é³å£°æäŸæã«ããŠãŒã¶ã®ããã€ã¹æ
å ±ãèæ
®ããŠæé©ãªæäŸæ¹æ³ãéžå®ãã
ããšãç¹åŸŽãšããä»èšïŒã«èšèŒã®ã·ã¹ãã ã
(Appendix 1)
an analysis unit that analyzes the voice data;
a generation unit that generates a response based on the data analyzed by the analysis unit;
a voice generation unit that voices the response generated by the generation unit;
A system comprising:
(Appendix 2)
The generation unit is
The system according to claim 1, further comprising an adjustment unit for fine tuning.
(Appendix 3)
The voice conversion unit is
The system according to claim 1, further comprising a providing unit for providing the generated voice to a customer.
(Appendix 4)
The analysis unit is
2. The system according to claim 1, further comprising: analyzing a plurality of pieces of voice data and modeling the tempo and intonation of the voice.
(Appendix 5)
The generation unit is
The system described in claim 1, characterized in that it uses a generative AI that has knowledge about a specific business or service.
(Appendix 6)
The analysis unit is
The system according to claim 1, further comprising: estimating a user's emotion; and adjusting a method of analyzing the voice data based on the estimated user's emotion.
(Appendix 7)
The analysis unit is
2. The system of claim 1, further comprising: a processor configured to generate a speech data stream for speech recognition based on a particular accent or dialect;
(Appendix 8)
The analysis unit is
2. The system according to claim 1, further comprising a filter process for removing background noise when analyzing voice data.
(Appendix 9)
The analysis unit is
The system according to claim 1, further comprising: estimating a user's emotion; and determining a priority order of voice data to be analyzed based on the estimated user's emotion.
(Appendix 10)
The analysis unit is
The system of claim 1, further comprising: adjusting an analysis method based on a user's geographic location information when analyzing voice data.
(Appendix 11)
The analysis unit is
The system of claim 1, further comprising: when analyzing voice data, analyzing relevant voice data preferentially based on the user's social media activity.
(Appendix 12)
The generation unit is
The system according to claim 1, further comprising: estimating a user's emotion; and adjusting a reply expression method based on the estimated user's emotion.
(Appendix 13)
The generation unit is
The system according to claim 1, further comprising: a step of adjusting a level of detail of a reply based on the importance of the inquiry content when generating the reply.
(Appendix 14)
The generation unit is
2. The system of claim 1, wherein when generating a response, different generation algorithms are applied depending on the category of the query.
(Appendix 15)
The generation unit is
The system of claim 1, further comprising: estimating a user's emotion; and adjusting a length of the reply based on the estimated user's emotion.
(Appendix 16)
The generation unit is
2. The system of claim 1, wherein when generating a response, the response is prioritized based on when the query was submitted.
(Appendix 17)
The generation unit is
2. The system of claim 1, wherein when generating responses, the order of responses is adjusted based on the relevance of the query.
(Appendix 18)
The voice conversion unit is
2. The system of claim 1, further comprising: estimating a user's emotion; and adjusting a voice expression method based on the estimated user's emotion.
(Appendix 19)
The voice conversion unit is
2. The system of claim 1, further comprising: performing voice filtering during voice generation to improve the naturalness of the generated voice.
(Appendix 20)
The voice conversion unit is
2. The system of claim 1, further comprising: a voice generating system that takes into account specific accents or dialects to improve voice generation accuracy.
(Appendix 21)
The voice conversion unit is
The system of claim 1, further comprising: estimating a user's emotion; and determining a priority of speech generation based on the estimated user's emotion.
(Appendix 22)
The voice conversion unit is
The system according to claim 1, further comprising: a voice generation method that takes into account a user's geographic location information during voice generation.
(Appendix 23)
The voice conversion unit is
The system of claim 1, further comprising: analyzing a user's social media activity and prioritizing the conversion of relevant audio data to audio during conversion.
(Appendix 24)
The adjustment unit is
3. The system of claim 2, further comprising: estimating a user's emotion; and adjusting fine-tuning parameters based on the estimated user's emotion.
(Appendix 25)
The adjustment unit is
The system according to claim 2, wherein during fine tuning, the generation algorithm is optimized by referring to past query data.
(Appendix 26)
The adjustment unit is
3. The system of claim 2, further comprising: estimating a user's emotion; and adjusting a frequency of fine-tuning based on the estimated user's emotion.
(Appendix 27)
The adjustment unit is
3. The system of claim 2, wherein during fine tuning, the training data is weighted based on the time of query submission.
(Appendix 28)
The providing unit is
The system of claim 3, further comprising: estimating a user's emotion; and adjusting a manner of providing audio based on the estimated user's emotion.
(Appendix 29)
The providing unit is
The system according to claim 3, wherein when providing voice, the system refers to the user's past inquiry history to select the optimal method of providing the voice.
(Appendix 30)
The providing unit is
The system according to claim 3, further comprising: estimating a user's emotion; and determining a priority of audio provision based on the estimated user's emotion.
(Appendix 31)
The providing unit is
The system according to claim 3, wherein when providing voice, the system selects an optimal method of providing voice by taking into consideration device information of the user.
ïŒïŒãïŒïŒïŒãïŒïŒïŒãïŒïŒïŒ ããŒã¿åŠçã·ã¹ãã
ïŒïŒ ããŒã¿åŠçè£
眮
ïŒïŒ ã¹ããŒãããã€ã¹
ïŒïŒïŒ ã¹ããŒãçŒé¡
ïŒïŒïŒ ãããã»ããå端æ«
ïŒïŒïŒ ãããã
10, 210, 310, 410
Claims (10)
åèšè§£æéšã«ãã£ãŠè§£æãããããŒã¿ã«åºã¥ããŠè¿çãçæããçæéšãšã
åèšçæéšã«ãã£ãŠçæãããè¿çãé³å£°åããé³å£°åéšãšã
ãåãã
ããšãç¹åŸŽãšããã·ã¹ãã ã an analysis unit that analyzes the voice data;
a generation unit that generates a response based on the data analyzed by the analysis unit;
a voice generation unit that voices the response generated by the generation unit;
A system comprising:
ãã¡ã€ã³ãã¥ãŒãã³ã°ãè¡ã調æŽéšãåãã
ããšãç¹åŸŽãšããè«æ±é ïŒã«èšèŒã®ã·ã¹ãã ã The generation unit is
The system according to claim 1 , further comprising an adjustment unit for fine tuning.
çæãããé³å£°ãé¡§å®¢ã«æäŸããæäŸéšãåãã
ããšãç¹åŸŽãšããè«æ±é ïŒã«èšèŒã®ã·ã¹ãã ã The voice conversion unit is
The system according to claim 1 , further comprising a providing unit for providing the generated voice to a customer.
è€æ°ã®é³å£°ããŒã¿ãè§£æãã声ã®ãã³ããææãã¢ãã«åãã
ããšãç¹åŸŽãšããè«æ±é ïŒã«èšèŒã®ã·ã¹ãã ã The analysis unit is
2. The system according to claim 1, further comprising: analyzing a plurality of pieces of voice data to model the tempo and intonation of the voice.
ç¹å®ã®æ¥åããµãŒãã¹ã«é¢ããç¥èãæã€çæïŒ¡ïŒ©ãçšãã
ããšãç¹åŸŽãšããè«æ±é ïŒã«èšèŒã®ã·ã¹ãã ã The generation unit is
The system of claim 1, further comprising: a generative AI having knowledge of a particular business or service.
ãŠãŒã¶ã®ææ ãæšå®ããæšå®ãããŠãŒã¶ã®ææ ã«åºã¥ããŠé³å£°ããŒã¿ã®è§£ææ¹æ³ã調æŽãã
ããšãç¹åŸŽãšããè«æ±é ïŒã«èšèŒã®ã·ã¹ãã ã The analysis unit is
The system according to claim 1 , further comprising: estimating a user's emotion; and adjusting a method of analyzing the voice data based on the estimated user's emotion.
é³å£°ããŒã¿ã®è§£ææã«ãç¹å®ã®ã¢ã¯ã»ã³ããŸãã¯æ¹èšãèæ ®ããŠè§£æç²ŸåºŠãåäžããã
ããšãç¹åŸŽãšããè«æ±é ïŒã«èšèŒã®ã·ã¹ãã ã The analysis unit is
2. The system of claim 1, wherein when analyzing speech data, a particular accent or dialect is taken into account to improve analysis accuracy.
é³å£°ããŒã¿ã®è§£ææã«ãèæ¯ãã€ãºãé€å»ããããã®ãã£ã«ã¿åŠçãè¡ã
ããšãç¹åŸŽãšããè«æ±é ïŒã«èšèŒã®ã·ã¹ãã ã The analysis unit is
2. The system according to claim 1, further comprising a filtering process for removing background noise when analyzing the voice data.
ãŠãŒã¶ã®ææ ãæšå®ããæšå®ãããŠãŒã¶ã®ææ ã«åºã¥ããŠè§£æããé³å£°ããŒã¿ã®åªå é äœã決å®ãã
ããšãç¹åŸŽãšããè«æ±é ïŒã«èšèŒã®ã·ã¹ãã ã The analysis unit is
The system according to claim 1 , further comprising: estimating a user's emotion; and determining a priority order of voice data to be analyzed based on the estimated user's emotion.
é³å£°ããŒã¿ã®è§£ææã«ããŠãŒã¶ã®å°ççäœçœ®æ å ±ã«åºã¥ããŠè§£ææ¹æ³ã調æŽãã
ããšãç¹åŸŽãšããè«æ±é ïŒã«èšèŒã®ã·ã¹ãã ã The analysis unit is
The system of claim 1, wherein when analyzing the voice data, the analysis method is adjusted based on the user's geographic location information.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023167987 | 2023-09-28 | ||
JP2023167987 | 2023-09-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2025059012A true JP2025059012A (en) | 2025-04-09 |
Family
ID=95288640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2024163174A Pending JP2025059012A (en) | 2023-09-28 | 2024-09-19 | system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2025059012A (en) |
-
2024
- 2024-09-19 JP JP2024163174A patent/JP2025059012A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2025058993A (en) | system | |
JP2025059012A (en) | system | |
JP2025051671A (en) | system | |
JP2025048940A (en) | system | |
JP2025051743A (en) | system | |
JP2025044159A (en) | system | |
JP2025048887A (en) | system | |
JP2025048871A (en) | system | |
JP2025048852A (en) | system | |
JP2025055466A (en) | system | |
JP2025060516A (en) | system | |
JP2025048878A (en) | system | |
JP2025051723A (en) | system | |
JP2025055761A (en) | system | |
JP2025048920A (en) | system | |
JP2025053736A (en) | system | |
JP2025051665A (en) | system | |
JP2025048941A (en) | system | |
JP2025048829A (en) | system | |
JP2025054260A (en) | system | |
JP2025051674A (en) | system | |
JP2025055823A (en) | system | |
JP2025048916A (en) | system | |
JP2025051336A (en) | system | |
JP2025048860A (en) | system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20250307 |