[go: up one dir, main page]

JP2018185228A - 移動型探傷装置 - Google Patents

移動型探傷装置 Download PDF

Info

Publication number
JP2018185228A
JP2018185228A JP2017087183A JP2017087183A JP2018185228A JP 2018185228 A JP2018185228 A JP 2018185228A JP 2017087183 A JP2017087183 A JP 2017087183A JP 2017087183 A JP2017087183 A JP 2017087183A JP 2018185228 A JP2018185228 A JP 2018185228A
Authority
JP
Japan
Prior art keywords
point group
pixel point
dimensional
group
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017087183A
Other languages
English (en)
Other versions
JP6708163B2 (ja
Inventor
高英 後藤
Takahide Goto
高英 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017087183A priority Critical patent/JP6708163B2/ja
Publication of JP2018185228A publication Critical patent/JP2018185228A/ja
Application granted granted Critical
Publication of JP6708163B2 publication Critical patent/JP6708163B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Radiation Pyrometers (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】移動しながら、構造物に内在する傷や欠陥を精度よく、効率的に検出可能な移動型探傷装置を提供する。
【解決手段】測位衛星から測位信号を受信する受信部と、レーザスキャナと、赤外カメラと、計算部とを備え、計算部は、移動体の位置とレーザスキャナで取得する周囲の構造物までの距離と方位とを用いて生成した前記周囲の構造物の三次元位置情報を含む三次元点群データと、前記三次元点群に対応する赤外画像データと、を用いて前記三次元点群に温度情報を付加した画素点群データを生成し、前記画素点群データの三次元座標値と温度情報から構造物の欠陥を検出する。
【選択図】図3

Description

この発明は、車両で移動しながら道路周辺の構造物等の位置および温度を計測し、構造物に内在する傷や欠陥を検出する移動型探傷装置に関する。
従来、建物等の構造物に内在する傷や欠陥を検出する方法として、その構造物の表面温度を計測することが有効であることが知られている。
屋外に設置されたコンクリート製構造物は、日中は直射日光の影響により表面温度が上昇するが、構造物の内部にひび割れや剥離などの欠陥が生じている部分については周囲と比較してその部分は温度が上昇せず、構造物の表面に温度差が生じるという特徴がある。
この特徴を利用して、赤外カメラを用いて表面の温度分布をサーモグラフィ(赤外線サーモグラフィ)として可視化することで、構造物に内在する傷や欠陥を検出する技術が開示されている(例えば、特許文献1参照)。
特許第1515973号公報 特許第5522789号公報 特許第4344869号公報
「モービルマッピングシステム(MMS)の進化」三菱電機技報 Vol.90・No.2・2016
赤外線サーモグラフィによれば、コンクリート構造物に発生する浮き・剥離・空洞など、表面形状に現れにくい「内部欠陥」の存在を推定することが可能である。
しかしながら、温度差は構造物表面以外にも生じる可能性がある他、構造物表面の温度差についても欠陥以外の原因も考えられる。そのため、温度を複数回計測したり、他の計測手法、例えば目視や打音法を併用したりするなどして、欠陥の有無を総合的に判断する必要があり、構造物に内在する傷や欠陥を検出する検出作業が煩雑で、時間を要する。
このため、コンクリート構造物の中でも道路付近の構造物、例えばトンネル壁面や道路の側壁や、道路自体に内在する傷や欠陥を検出する際は、一旦車両の通行を止め、通行規制を行ったうえで検出作業を実施することになり、一般の通行車両への影響が大きいという課題があった。
本発明は係る課題を解決するためになされたものであり、通行規制など一般の通行車両への影響を与えることなく、道路周辺の構造物、たとえばトンネルや橋梁をはじめとする構造物に内在する傷や欠陥を、効率的に精度良く検出できる移動型探傷装置を提供することを目標とする。
この発明に係る移動型探傷装置は、移動体に搭載され、周囲の構造物の欠陥を検出する移動型探傷装置であって、測位衛星から測位信号を受信する受信部と、レーザスキャナと、赤外カメラと、計算部とを備え、
前記計算部は、前記受信部で受信した測位信号から算出した前記移動体の位置と、前記レーザスキャナで取得する周囲の構造物までの距離と方位とを用いて生成した前記周囲の構造物の三次元位置情報を含む三次元点群データと、前記三次元点群に対応する前記赤外カメラで取得した前記周囲の構造物の赤外画像データとを用いて前記三次元点群に温度情報を付加した画素点群データを生成し、前記画素点群データの三次元点群と温度情報を用いて、周囲の構造物の欠陥を検出する。
この発明に係る移動型探傷装置によれば、道路周辺の構造物表面の3次元形状情報と温度情報を統合することで、道路周辺の構造物の診断を従来よりも精度良く効率的に行うことができる。
実施の形態1に係る移動型探傷装置100の構成を示す概略図である。 実施の形態1に係る計測架台10の構成を示す概略図である。 実施の形態1に係る移動型探傷装置100の構成を示すブロック図である。 実施の形態1に係る構造物三次元モデル生成方法を示すフローチャートである。 実施の形態1に係る構造物三次元モデル生成部22の機能構成図である。 実子の形態1に係る構造物三次元モデル生成処理(S300)のフローチャート図である。 実施の形態1に係る構造物表面の欠陥を検出する検出処理を示すフロー図である。 実施の形態1に係る車道壁面表面の温度分布の一例を示す図である。 実施の形態2に係る車道壁面表面の温度分布の一例を示す図である。
実施の形態1.
図1は実施の形態1に係る移動型探傷装置100の構成を示す概略図である。
移動型探傷装置100は計測架台10と計算機20からなり、計測架台10と計算機20はともに車両200に搭載される。
図2は、実施の形態1に係る計測架台10の構成を示す概略図である。
計測架台10は、レーザスキャナ11、赤外カメラ12、IMU(Inertial Measurement Unit。慣性計測装置)13、数組のGPS受信機14およびGPSアンテナ15から構成される。
図3は、実施の形態1に係る移動型探傷装置100の構成を示すブロック図である。
計算機20は、計測架台10のIMU13やGPS受信機14から入力する情報に基づいて、車両200の自己位置や姿勢を計算するための位置標定部21と、計測架台10のレーザスキャナ11や赤外カメラ12と位置標定部21から入力する情報に基づいて、温度情報付きの構造物三次元モデルを生成する構造物三次元モデル生成部22と、温度情報付きの構造物三次元モデルを保存する記憶装置23と、記憶装置23に保存された構造物三次元モデルから構造物内部の傷や欠陥を検出する構造物傷欠陥検出処理部24から構成される。
レーザスキャナ11は、車両200の周囲に存在する構造物までの距離を計測し、そのデータを3次元点群データ生成部21に出力する装置である。レーザスキャナ11は、レーザレーダ、LRF(レーザレンジファインダ)ともいう。
レーザスキャナ11は、レーザの出射面を左右180度に繰り返し振りながら、レーザを短周期で繰り返し出射すると共に地物(例えば、道路面)に反射して戻ってきた各レーザを受信する。そして、レーザスキャナ11は、レーザを出射または受信した「計測時刻」と、レーザを出射した「方位」と、レーザを出射してから受信するまでの時間に基づく「距離」とを「距離方位点」として計測する。
レーザスキャナ11により計測された複数の距離方位点を示すデータが後述する距離方位点群291である。
赤外カメラ12は、車両200の周囲に存在する構造物の表面温度を計測し、その温度データ(温度情報)をカメラの画素毎に3次元点群データ生成部22に出力する装置である。
赤外カメラ12は所定のタイミング(時間間隔、走行距離間隔など)で繰り返し撮像を行う。
赤外カメラ12により撮像された複数の「カメラ画像」と各カメラ画像の「撮像時刻」とを含んだデータが後述する赤外画像データ293である。
IMU13は、慣性信号データを取得し、位置標定部21に出力する装置である。慣性信号データには、慣性加速度情報、および角速度情報が含まれている。慣性信号データは計測時刻に対応付けられている。
GPS受信機14は、例えばGPS衛星等の衛星が出力した信号を、GPSアンテナ15で受信し、GPS信号処理結果を位置標定部21に出力する装置である。
GPS受信機14により得られた観測情報、IMU13により計測された3軸の角速度を含んだデータが後述する位置データ292である。
図4は、実施の形態1における構造物三次元モデル生成方法を示すフローチャートである。以下では、実施の形態1における構造物三次元モデル生成方法について、図4に基づいて説明する。
なお、実施の形態1に係る構造物三次元モデルに相当する道路三次元モデル生成方法については特許文献2に詳細が記載されており、ここでは、主要な部分のみを記載する。
車両200は、道路(道路面)の距離方位点群291、位置データ292および赤外画像データ293を取得する(S100)。
構造物三次元モデル生成部22は、S100において取得された距離方位点群291と位置データ292に基づいて道路および周辺の構造物の多数点の三次元座標値を示す三次元点群198を生成する(S200)。
構造物三次元モデル生成部22は、S200において生成された三次元点群198とS100において取得された赤外画像データ293とに基づいて構造物三次元モデル194を生成する(S300)。
図5は、実施の形態1における構造物三次元モデル生成部22の機能構成図である。
実施の形態1における構造物三次元モデル生成部22の機能構成について、図5に基づいて以下に説明する。
構造物三次元モデル生成部22は、赤外画像処理部110(画像範囲抽出部の一例)、画素点群生成部120、三次元モデル生成部140(モデル記憶部の一例)、三次元点群生成部180および処理エリア190を備える。
車両200により取得された距離方位点群291、位置データ292および赤外画像データ293は処理エリア190に一旦記憶される。
また、車両200の計測条件(レーザスキャナ11や赤外カメラ12の取り付け位置・姿勢など)を示すパラメータデータ299も処理エリア190に一旦記憶される。
三次元点群生成部180は、距離方位点群291、位置データ292およびパラメータデータ299に基づいて、道路および道路周辺の構造物の多数点の三次元座標値を示す三次元点群198(座標点群の一例)をCPU(Central Processing Unit)を用いて生成する。
赤外画像処理部110は、赤外画像データ293とパラメータデータ299とに基づいて、道路や道路周辺の構造物が映った範囲であり、且つ画像の解像度が高い範囲を各カメラ画像から処理範囲画像191としてCPUを用いて抽出する。
例えば、赤外画像処理部110は、カメラ画像の視点側の所定範囲(視点手前の所定範囲)を処理範囲画像191として抽出する。
画素点群生成部120は、処理範囲画像191、三次元点群198およびパラメータデータ299に基づいて、処理範囲画像191の画素に映った道路および道路周辺の構造物の部分(特定地点の一例)の三次元座標値をCPUを用いて画素毎に算出する。
画素点群生成部120は、処理範囲画像191の複数画素それぞれの道路や道路周辺の構造物部分の三次元座標値と、処理範囲画像191の複数画素それぞれの温度情報とを示す画素点群192をCPUを用いて生成する。温度情報は、赤外カメラ12により撮像対象を計測した撮像対象の画素毎の温度の情報である。
三次元モデル生成部140は、画素点群192を含んだデータをCPUを用いて構造物三次元モデル194(地域モデルの一例)として生成する。
処理エリア190は、構造物三次元モデル生成部22で使用されるデータを記憶媒体に記憶する。
距離方位点群291、位置データ292、赤外画像データ293、パラメータデータ299、三次元点群198、処理範囲画像191、画素点群192および構造物三次元モデル194は、処理エリア190に記憶されるデータの一例である。
パラメータデータ299には、例えば、以下の情報が含まれる。
(1)画像保存ディレクトリ:計測車両200で取得したカメラ画像が取得時間タグを付けて保存されているディレクトリ名(赤外画像データ293の記憶先)。
(2)赤外カメラ画像のID:カメラ画像を識別する情報。
(3)処理範囲:赤外カメラ画像の中で構造物三次元モデルの生成に使用する画素範囲。
(4)レーザ3次元点群ディレクトリ:道路および道路周辺の構造物の三次元点群198を保存したディレクトリ。
(6)赤外カメラ取得時刻・位置・姿勢:赤外カメラ画像を撮影した時の赤外カメラの位置姿勢を示す情報。
(7)赤外カメラ取付オフセット:車体中心からの赤外カメラ位置および姿勢を示した情報。
(8)レーザ取付オフセット:車体中心からのレーザ位置および姿勢を示した情報。
次に、構造物三次元モデル生成部22の三次元点群生成部180による三次元点群198の生成方法について説明する。
三次元点群生成部180は、距離方位点群291、位置データ292およびパラメータデータ299に基づいて、三次元点群198を生成する。
パラメータデータ299は、車体座標系におけるレーザスキャナ11の取付オフセットを含む。レーザスキャナ11の取付オフセットは、レーザスキャナ11が車両200のどの位置にどのような姿勢(傾き)で設置されているかを示す。
三次元点群198は、各距離方位点に対応する三次元座標値を世界座標系で示すデータである。
以下に、三次元点群198の生成方法について説明する。
三次元点群生成部180は、位置データ292に基づいて、各距離方位点を計測時の計測車両200の位置姿勢値を標定する。位置姿勢値は、三次元座標値(x、y、z)と三次元姿勢角(ロール角、ピッチ角、ヨー角)とを示す。
三次元点群生成部180は、レーザスキャナ11の取付オフセットに基づいて距離方位点群291を世界座標系に変換する。
三次元点群生成部180は、位置姿勢値と距離方位点群291とに基づいて、三次元点群198を生成する。三次元点群198の各三次元点は、位置姿勢値を基点として距離方位点で示される方位に距離方位点で示される距離だけ離れた地点の座標値で示される。三次元点の算出には同時刻の位置姿勢値および距離方位点が用いられる。
三次元点群198の生成方法の詳細は、例えば特許文献3に開示されている。
次に、三次元点群198に基づいて道路三次元モデル194を生成する道路三次元モデル生成処理(S300)について説明する。
図6は、実施の形態1における道路三次元モデル生成処理(S300)のフローチャートである。実施の形態1における道路三次元モデル生成処理(S300)について、図6に基づいて以下に説明する。
まず、道路三次元モデル生成処理(S300)の概要について説明する。
画像処理部110はカメラ画像を一つ選択し(S311)、選択画像から所定の処理範囲を処理範囲画像191として抽出する(S312)。
画素点群生成部120は、三次元点群198に基づいて、処理範囲画像191の各画素に対応する三次元座標値および温度情報を示す画素点群192を生成する(S320)。
未選択のカメラ画像が有る場合(S330「YES」)、処理はS311に戻る。
未選択のカメラ画像が無い場合(S330「NO」)、処理はS340に進む。
三次元モデル生成部140は、画素点群192を含んだデータを道路三次元モデル194として生成する(S340)。
次に、道路三次元モデル生成処理(S300)の詳細について説明する。
<S311>
画像処理部110は、赤外画像データ293に含まれる多数のカメラ画像から撮像時刻順にカメラ画像を一つ選択する。
以下、S311において選択されたカメラ画像を「選択画像」という。
S311の後、処理はS312に進む。
<S312>
画像処理部110は、選択画像から所定の処理範囲を処理範囲画像191として抽出する。
各カメラ画像には、建物、電柱、壁など道路以外の地物も映り込んでいる。
また、赤外カメラ12(視点)から近い範囲が映った部分の分解能(解像度)は高いが、赤外カメラ12から遠い範囲が映った部分の分解能は低い。
所定の処理範囲は、高分解能で映っている道路部分が選択画像から処理範囲画像191として抽出されるように、赤外カメラ12の仕様(画角や画像分解能など)や赤外カメラ12の取付オフセットなどに基づいて決定される。赤外カメラ12の仕様や取付オフセットはパラメータデータ299に含まれる情報である。また、処理の無駄を省くため、各カメラ画像の撮像範囲を赤外カメラ12の仕様や取付オフセットおよび撮像地点に基づいて特定し、各カメラ画像の重複範囲を除くように処理範囲が定められてもよい。
図6に戻り、道路三次元モデル生成処理(S300)の説明を続ける。
<S320>
画素点群生成部120は、三次元点群198に基づいて、処理範囲画像191の各画素に対応する三次元座標値および温度情報を示す画素点群192を生成する。
S320により、カメラ画像レベルの分解能を有する三次元点群(画素点群192)を生成することができる。
<S330>
画像処理部110は、未選択のカメラ画像が残っているか判定する。
未選択のカメラ画像が残っている場合(YES)、処理はS311に戻る。
未選択のカメラ画像が残っていない場合(NO)、処理はS340に進む。
<S340>
三次元モデル生成部140は、画素点群192と画素補間点群193とをまとめたデータを道路三次元モデル194として生成する。
三次元モデル生成部140は、生成した道路三次元モデル194を出力する(表示、印刷、記憶など)。
S340により、道路三次元モデル生成処理(S300)は終了する。
構造物三次元モデル194を構成する温度情報付きの各三次元点(画素点群192)をそれぞれの温度情報および三次元座標値に基づいて画面表示することで、車両200が走行した道路および道路周辺の構造物の温度分布を表すことができる。
構造物三次元点群データ生成部22は、レーザスキャナ11および赤外カメラ12から得られたデータと、位置標定部21から得られた車両の位置および姿勢を基に、温度情報を付与した3次元点群データを生成する。
温度情報が付与された3次元点群データは計測時刻とともに記憶装置23に蓄積される。
次に、構造物傷欠陥検出処理部24は、記憶装置23に蓄積された画素点群192と構造物三次元モデル194から、計測対象の構造物の欠陥を検出する処理を行う。
以下では、構造物の欠陥を検出する処理方法を、図7、図8を用いて説明する。
図7は、実施の形態1に係る構造物表面の欠陥を検出する検出処理を示すフロー図である。図8は、車道横の壁表面の温度分布の一例を示す図である。
<S241>
図7において、まず、構造物傷欠陥検出処理部24は、記憶装置23から予め指定した検査対象物の画素点群192、構造物三次元モデル194を抽出する(図7のS241)。
検査対象物は、モニタに表示された赤外カメラ12の画像を使って、利用者が予め指定することができる。あるいは、三次元座標値を使って、範囲を指定するようにしてもよい。また、検査対象を構造物として指定するのではなく、対象エリア(対象範囲)として指定するようにしてもよい。図8の例では、道路脇に設けられた壁面500を検査対象物としている。壁面500は例えば高速道路の遮音用に設けられたものであり、壁面500の傷や、欠陥を検出する検査である。壁面500はトンネルの内部壁であってもよい。
<S242>
次に、構造物傷欠陥検出処理部24は、抽出した画素点群192に付与された温度情報をもとに検査対象物の温度分布を作成する。構造物傷欠陥検出処理部24は作成した温度分布に基づき、周囲に比べスポット状に高温になっている画素点群を抽出する(S242)。
スポット状に高温になっているか否かは、周囲の画素点群192の温度情報との差分を取り、差分が所定の閾値以上であるか否かで判断する。閾値は利用者が赤外カメラの画像をみながら、モニタ画面からその都度設定することができる。
<S243>
構造物傷欠陥検出処理部24は、抽出された高温箇所のまとまり状況から、高温箇所をグルーピング化する(S243)。
図8の例では、白丸で表した画素点群192(白)は画素点群192に付与された温度情報から低温であることを視覚的に表しており、黒丸で表した画素点群192(黒)は画素点群192に付与された温度情報から高温であることを視覚的に表している。
構造物傷欠陥検出処理部24は、複数がまとまっている画素点群192(黒)をグループ化し、グループA150、グループB151、グループC152と定める。
<S244>、<S245>
次に、構造物傷欠陥検出処理部24はグループ化した画素点群192(黒)の三次元座標値と、その周囲の画素点群192の三次元座標値を取得し(S244)、グループ化した画素点群192(黒)と、その周囲の画素点群192とで、形状に変化があるか否かを判断する(S245)。
例えば図8の例では、画素点群192(黒)がまとまっているグループC152は、壁面500に設けられた突起物160の場所であることが、グループ化した画素点群192(黒)の三次元座標値と、その周囲の画素点群192の三次元座標値から判明する。
一方で、グループA150、グループB151は、高温部分の形状と高温部分の周囲の形状はともに平面であり、形状に変化がないことが、グループ化(グループA、グループB)した画素点群192(黒)の三次元座標値と、その周囲の画素点群192の三次元座標値から判明する。
<S246>
次に、構造物傷欠陥検出処理部24は、画素点群の三次元座標値に基づき、形状に変化がない画素点群192(黒)のグループを内部欠陥部分候補として抽出する(S246)。
図8の例では、グル―プA150と、グループB151を内部欠陥部分候補として抽出する。
先述のとおり、屋外に設置されたコンクリート製構造物等では、日中は直射日光の影響により表面温度が上昇するが、構造物の内部にひび割れや剥離などの欠陥が生じている部分については周囲と比較してその部分は温度が上昇せず、構造物の表面に温度差が生じるという特徴がある。図8のグル―プA150と、グループB151は、表面形状に変化がないにも関わらず、温度差が生じている。このため構造物の内部にひび割れや剥離などの欠陥が生じている可能性が高いとして、グル―プA150と、グループB151を「内部欠陥部分候補」として抽出している。
<S247>
構造物傷欠陥検出処理部24は、グル―プA150と、グループB151に含まれる画素点群192を用いた三次元モデル194をモニタ部(図示せず)に表示する(S247)。利用者はモニタ部でグル―プA150と、グループB151を確認可能である。
<S248>
次に、構造物傷欠陥検出処理部24は、画素点群の三次元座標値に基づき、形状に変化がある画素点群192(黒)のグループを判断保留部分として抽出する(S248)。
図8の例では、グル―プC152を判断保留部分として抽出する。
構造物表面になんらかの付着物がある場合、内部の欠陥ではなく、その付着物が温度差の原因となっている可能性が高い。図8の例では、突起物160が日射され構造物の表面温度が上昇していることが考えられる。そこで、構造物傷欠陥検出処理部24はグループCは内部欠陥部分候補ではなく、判断保留部分として抽出する。
<S249>
構造物傷欠陥検出処理部24は、グル―プC152に含まれる画素点群192を用いた三次元モデル194を、モニタ部(図示せず)に表示する(S249)。
利用者はモニタ部でグル―プC152を確認可能である。仮に、モニタ部での確認により欠陥でないと判断できれば、利用者はグループCを判断保留部分から削除することが可能である。また、利用者がモニタ部での確認により欠陥の可能性が高いと判断すれば、モニタ等の操作によりグループCを「判断保留部分」から「内部欠陥部分候補」に変更することも可能である。
このように、構造物傷欠陥検出処理部24は、画素点群の各々に付与される三次元座標値と温度情報に基づいて、内部にひび割れや剥離などの欠陥が生じている部分を、「内部欠陥部分候補」として、抽出することができる。
また構造物傷欠陥検出処理部24を含む計算機20は車両200に搭載されている。これにより、従来行っていた通行規制など、一般の通行車両への影響を与えることなく、道路周辺の構造物、たとえば壁面、トンネル、橋梁をはじめとする構造物に内在する傷や欠陥を、効率的に精度良く検出できる移動型探傷装置を提供することを目標とする。
実施の形態2.
実施の形態2では、検査対象となる構造物に日向部分と日陰部分がある場合に、内部に傷や欠陥を検出する検出方法について説明する。
図9は、実施の形態2に係る車道壁面表面の温度分布の一例を示す図である。実施の形態2では、表面に日向部分400と日陰部分410がある場合に構造物に内在する傷や欠陥を検出する。
実施の形態1では、先述の通り、画素点群の温度情報から周囲に比べスポット状に高温になっている画素点群を抽出していた(図7のS242)。高温になっているか否かの判断は例えば所定の閾値との比較により行うが、検査対象に日向部分と日陰部分がある場合、1つの閾値では高温か否かを正確に判断することが難しい。
そこで実施の形態2では、構造物傷欠陥検出処理部24は、日陰部分と日向部分とで各々閾値を設け、高温になっているか否かの判断は各々で設定した閾値を用いて判断するようにする。
これにより、道路周辺の構造物表面の3次元形状情報と温度情報を統合することで、道路周辺の構造物の欠陥診断をより精度良く効率的に行うことができる。
なお、日陰部分、日向部分が既に分かっている時は、画素点群192に付加されている三次元座標値、温度情報に、更に日向または日陰の情報を付加することで、対象部分が日向であるか、日陰であるかを判断することができる。また、日陰部分、日向部分であるかが不明の場合は、所定のエリア内の温度情報を平均処理し、その温度差によりそのエリアが日向であるか、日陰であるかを判断するようにしてもよい。
10 計測架台、11 レーザスキャナ、12 赤外カメラ、13 IMU、14 GPS受信機、15 GPSアンテナ、20 計算機、21 位置標定部、22 構造物3次元モデル生成部、23 記憶装置、24 構造物傷欠陥検出処理部、100 移動型探傷装置、110 赤外線画像処理部、120 画素点群生成部、140 三次元モデル生成部、150 グループA、151 グループB、152 グループC、153 グループD、160 突起物、180 三次元点群生成部、190 処理エリア、191 処理範囲画像、192 画素点群、192(黒) 画素点群(高温表示)、192(白) 画素点群(低温表示)、192(灰色) 画素点群(中温表示)、194 構造物三次元モデル、198 三次元点群、200 車両、291 距離方位点群、292 位置データ、293 赤外画像データ、299 パラメータデータ、400 日向部分、410 日陰部分、500 道路周辺の壁面、600 車道、610 車道の白線

Claims (4)

  1. 移動体に搭載され、周囲の構造物の欠陥を検出する移動型探傷装置であって、
    測位衛星から測位信号を受信する受信部と、
    レーザスキャナと、
    赤外カメラと、
    計算部と、
    を備え、
    前記計算部は、前記受信部で受信した測位信号から算出した前記移動体の位置と、前記レーザスキャナで取得する周囲の構造物までの距離と方位とを用いて生成した前記周囲の構造物の三次元位置情報を含む三次元点群データと、
    前記三次元点群に対応する前記赤外カメラで取得した前記周囲の構造物の赤外画像データと、
    を用いて前記三次元点群に温度情報を付加した画素点群データを生成し、
    前記画素点群データの三次元座標値と温度情報を用いて、周囲の構造物の欠陥を検出することを特徴とする移動型探傷装置。
  2. 前記計算部は、前記温度情報を用いて、周囲の温度に比べて高温である画素点群の集合を抽出し、
    前記三次元座標値を用いて、前記抽出した画素点群の集合の形状と、前記抽出した画素点群の集合の周囲の画素点群の形状とを比較し、周囲の構造物の欠陥を検出することを特徴とする請求項1記載の移動型探傷装置。
  3. 前記計算部は、前記抽出した画素点群の集合の形状と、前記抽出した画素点群の集合の周囲の画素点群の形状とがともに平坦である場合に、前記抽出した画素点群に対応する前記構造物に欠陥があると判断することを特徴とする請求項2記載の移動型探傷装置。
  4. 前記欠陥は、前記構造物の内部にある欠陥であることを特徴とする請求項1〜3いずれか記載の移動型探傷装置。
JP2017087183A 2017-04-26 2017-04-26 移動型探傷装置 Expired - Fee Related JP6708163B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017087183A JP6708163B2 (ja) 2017-04-26 2017-04-26 移動型探傷装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017087183A JP6708163B2 (ja) 2017-04-26 2017-04-26 移動型探傷装置

Publications (2)

Publication Number Publication Date
JP2018185228A true JP2018185228A (ja) 2018-11-22
JP6708163B2 JP6708163B2 (ja) 2020-06-10

Family

ID=64355607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017087183A Expired - Fee Related JP6708163B2 (ja) 2017-04-26 2017-04-26 移動型探傷装置

Country Status (1)

Country Link
JP (1) JP6708163B2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110146369A (zh) * 2019-05-13 2019-08-20 合肥工业大学 一种针对改性沥青路面的红外无损探伤一体两用装置
CN110450167A (zh) * 2019-08-27 2019-11-15 南京涵曦月自动化科技有限公司 一种机器人红外激光定位运动轨迹规划方法
KR102233351B1 (ko) * 2021-01-07 2021-03-30 주식회사 유오케이 3D LiDAR를 이용한 시설물 관리 시스템 및 방법
WO2021095382A1 (ja) 2019-11-15 2021-05-20 パナソニックIpマネジメント株式会社 センシングデバイスおよび情報処理装置
JPWO2021199730A1 (ja) * 2020-03-31 2021-10-07
JPWO2021241537A1 (ja) * 2020-05-29 2021-12-02
JP2022032540A (ja) * 2020-08-12 2022-02-25 武志 小畠 赤外線調査解析診断装置
JP2022042409A (ja) * 2020-09-02 2022-03-14 株式会社テナーク 連続温度比較方法、特定温度領域検定方法、情報処理装置、連続温度比較システム、特定温度領域検定システム、及びプログラム
JP2022089664A (ja) * 2020-12-04 2022-06-16 株式会社竹中工務店 情報処理装置
CN114739311A (zh) * 2022-06-15 2022-07-12 安徽大学 一种基于多传感器的井筒快速变形监测设备和方法
GB2610881A (en) * 2021-09-17 2023-03-22 Acad Of Robotics A method, vehicle and system for measuring a dimension of a road defect
US12235191B2 (en) 2020-05-29 2025-02-25 Fujifilm Corporation Flight imaging system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234383A (ja) * 2005-02-22 2006-09-07 Urban Sekkei:Kk コンクリート構造物の劣化診断方法
JP2013092403A (ja) * 2011-10-24 2013-05-16 Pasuko:Kk 液状化に伴う変状箇所検出支援装置及び液状化に伴う変状箇所検出支援プログラム
US20150330911A1 (en) * 2014-05-13 2015-11-19 Gs Engineering Services, Inc. Remote scanning and detection apparatus and method
JP2016070676A (ja) * 2014-09-26 2016-05-09 株式会社トプコン 演算装置、演算方法、およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234383A (ja) * 2005-02-22 2006-09-07 Urban Sekkei:Kk コンクリート構造物の劣化診断方法
JP2013092403A (ja) * 2011-10-24 2013-05-16 Pasuko:Kk 液状化に伴う変状箇所検出支援装置及び液状化に伴う変状箇所検出支援プログラム
US20150330911A1 (en) * 2014-05-13 2015-11-19 Gs Engineering Services, Inc. Remote scanning and detection apparatus and method
JP2016070676A (ja) * 2014-09-26 2016-05-09 株式会社トプコン 演算装置、演算方法、およびプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
小澤正、吉田光伸: "モービルマッピングシステム(MMS)の進化", 三菱電機技報, vol. 90, no. 2, JPN7020000144, February 2016 (2016-02-01), pages 51 - 54, ISSN: 0004198078 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110146369A (zh) * 2019-05-13 2019-08-20 合肥工业大学 一种针对改性沥青路面的红外无损探伤一体两用装置
CN110450167A (zh) * 2019-08-27 2019-11-15 南京涵曦月自动化科技有限公司 一种机器人红外激光定位运动轨迹规划方法
WO2021095382A1 (ja) 2019-11-15 2021-05-20 パナソニックIpマネジメント株式会社 センシングデバイスおよび情報処理装置
US20230154099A1 (en) * 2020-03-31 2023-05-18 Pioneer Corporation Information processing device, computer program, recording medium, and display data creation method
JPWO2021199730A1 (ja) * 2020-03-31 2021-10-07
WO2021199730A1 (ja) * 2020-03-31 2021-10-07 パイオニア株式会社 情報処理装置、コンピュータプログラム、記録媒体、表示データ作成方法
US12283033B2 (en) 2020-05-29 2025-04-22 Fujifilm Corporation Damage diagram creation support method and damage diagram creation support device
JPWO2021241537A1 (ja) * 2020-05-29 2021-12-02
WO2021241537A1 (ja) * 2020-05-29 2021-12-02 富士フイルム株式会社 損傷図作成支援方法及び装置
US12235191B2 (en) 2020-05-29 2025-02-25 Fujifilm Corporation Flight imaging system and method
JP7353485B2 (ja) 2020-05-29 2023-09-29 富士フイルム株式会社 損傷図作成支援方法及び装置
JP2022032540A (ja) * 2020-08-12 2022-02-25 武志 小畠 赤外線調査解析診断装置
JP7298921B2 (ja) 2020-08-12 2023-06-27 株式会社赤外線高精度技術利用機構 赤外線調査解析診断装置
JP2022042409A (ja) * 2020-09-02 2022-03-14 株式会社テナーク 連続温度比較方法、特定温度領域検定方法、情報処理装置、連続温度比較システム、特定温度領域検定システム、及びプログラム
JP2022089664A (ja) * 2020-12-04 2022-06-16 株式会社竹中工務店 情報処理装置
JP7594897B2 (ja) 2020-12-04 2024-12-05 株式会社竹中工務店 情報処理装置
KR102233351B1 (ko) * 2021-01-07 2021-03-30 주식회사 유오케이 3D LiDAR를 이용한 시설물 관리 시스템 및 방법
GB2610881A (en) * 2021-09-17 2023-03-22 Acad Of Robotics A method, vehicle and system for measuring a dimension of a road defect
CN114739311A (zh) * 2022-06-15 2022-07-12 安徽大学 一种基于多传感器的井筒快速变形监测设备和方法

Also Published As

Publication number Publication date
JP6708163B2 (ja) 2020-06-10

Similar Documents

Publication Publication Date Title
JP6708163B2 (ja) 移動型探傷装置
CN114444158B (zh) 一种基于三维重建的地下巷道形变预警方法及系统
KR100795396B1 (ko) 항공레이저 데이터와 수치정사영상을 이용한 도시 변화모니터링 방법
JP6950832B2 (ja) 位置座標推定装置、位置座標推定方法およびプログラム
CN114724110A (zh) 目标检测方法及设备
EP2588882B1 (en) Method for producing a digital photo wherein at least some of the pixels comprise position information, and such a digital photo
JP6178704B2 (ja) 計測点高付与システム、計測点高付与方法および計測点高付与プログラム
CN111912430A (zh) 高轨光学卫星的在轨几何定标方法、装置、设备及介质
JP5347006B2 (ja) 液状化に伴う変状箇所検出支援装置及び液状化に伴う変状箇所検出支援プログラム
Cho et al. Target-focused local workspace modeling for construction automation applications
JP6876445B2 (ja) データ圧縮装置、制御方法、プログラム及び記憶媒体
JP2019078700A (ja) 情報処理装置および情報処理システム
JP6715205B2 (ja) 作業機械の周囲画像表示装置
Potó et al. Laser scanned point clouds to support autonomous vehicles
JP7082227B1 (ja) 路面性状調査システム、路面性状調査装置、及び路面性状調査方法
JP7241948B2 (ja) 路面性状調査システム、路面性状調査装置、及び路面性状調査方法
JP2021070993A (ja) インフラ検査システム、及び、インフラ検査方法
Sharma et al. A method for extracting deformation features from terrestrial laser scanner 3d point clouds data in rgipt building
CN114239995B (zh) 全区域巡航路线生成方法、系统、电子设备及存储介质
JP4651397B2 (ja) 堆積監視方法、システム及びコンピュータプログラム
Luo et al. Mobile surveying system for road assets monitoring and management
JP7722462B2 (ja) 位置推定装置、移動体システム、位置推定方法、及びプログラム
Luo et al. Automatic road surface profiling with sensors fusion
Zuev et al. Mobile system for road inspection and 3D modelling
JP2011130255A (ja) 撮影対象情報生成装置及び撮影対象情報生成プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200504

R151 Written notification of patent or utility model registration

Ref document number: 6708163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees