JP2018149168A - 生体機能についての医学的検査の得点判定装置、及びプログラム - Google Patents
生体機能についての医学的検査の得点判定装置、及びプログラム Download PDFInfo
- Publication number
- JP2018149168A JP2018149168A JP2017048625A JP2017048625A JP2018149168A JP 2018149168 A JP2018149168 A JP 2018149168A JP 2017048625 A JP2017048625 A JP 2017048625A JP 2017048625 A JP2017048625 A JP 2017048625A JP 2018149168 A JP2018149168 A JP 2018149168A
- Authority
- JP
- Japan
- Prior art keywords
- data
- determination
- score
- weight
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010339 medical test Methods 0.000 title claims description 14
- 238000012360 testing method Methods 0.000 claims abstract description 56
- 238000004364 calculation method Methods 0.000 claims abstract description 49
- 230000008827 biological function Effects 0.000 claims abstract description 15
- 238000009534 blood test Methods 0.000 claims description 26
- 230000007177 brain activity Effects 0.000 claims description 23
- 238000005259 measurement Methods 0.000 claims description 22
- 206010012289 Dementia Diseases 0.000 claims description 11
- 238000010801 machine learning Methods 0.000 claims description 6
- 230000006870 function Effects 0.000 description 30
- 238000000034 method Methods 0.000 description 28
- 238000013528 artificial neural network Methods 0.000 description 22
- 210000004556 brain Anatomy 0.000 description 19
- 102000001554 Hemoglobins Human genes 0.000 description 13
- 108010054147 Hemoglobins Proteins 0.000 description 13
- 238000007689 inspection Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 230000004913 activation Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 230000006996 mental state Effects 0.000 description 5
- 238000013135 deep learning Methods 0.000 description 4
- 210000000265 leukocyte Anatomy 0.000 description 4
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 3
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000011478 gradient descent method Methods 0.000 description 3
- 229940116269 uric acid Drugs 0.000 description 3
- 102000009027 Albumins Human genes 0.000 description 2
- 108010088751 Albumins Proteins 0.000 description 2
- 208000008589 Obesity Diseases 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000004820 blood count Methods 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 2
- 235000020824 obesity Nutrition 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 208000019901 Anxiety disease Diseases 0.000 description 1
- 102100039856 Histone H1.1 Human genes 0.000 description 1
- 102100039855 Histone H1.2 Human genes 0.000 description 1
- 101001035402 Homo sapiens Histone H1.1 Proteins 0.000 description 1
- 101001035375 Homo sapiens Histone H1.2 Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- PNNCWTXUWKENPE-UHFFFAOYSA-N [N].NC(N)=O Chemical compound [N].NC(N)=O PNNCWTXUWKENPE-UHFFFAOYSA-N 0.000 description 1
- 230000036506 anxiety Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 229940109239 creatinine Drugs 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013421 nuclear magnetic resonance imaging Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Instruments for taking body samples for diagnostic purposes; Other methods or instruments for diagnosis, e.g. for vaccination diagnosis, sex determination or ovulation-period determination; Throat striking implements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/026—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Hematology (AREA)
- Cardiology (AREA)
- Physiology (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Description
以下、図面を参照しながら本発明の実施形態について詳しく説明する。図1は本実施形態の判定システム1の機能構成の一例を示す図である。
判定システム1は、被験者の身体的特徴を表す身体データPDや、生体機能についての医学的検査の検査結果を表す検査結果データMTに基づいて、当該被験者の生体機能についての自己申告に基づく医学的検査の判定得点を判定する。
生体機能についての自己申告に基づく医学的検査とは、例えば、認知症の判定に一般的に用いられているいわゆる「ミニメンタルステート検査」(MMSE;Mini Mental State Examination)である。ミニメンタルステート検査は、見当識、記憶力、計算力、言語的能力、図形的能力などをカバーする30点満点の11の質問からなる。ミニメンタルステート検査の質問に対する被験者の回答の得点が、24点以上で正常、20点未満では中等度の知能低下、10点未満では高度な知能低下、などと判定される。
判定システム1は、被験者の身体的特徴を表す身体データPDや医学的検査の検査結果を表す検査結果データMTを参照することにより、これら対面による質問及び回答等の作業を行うことなく、ミニメンタルステート検査の得点に相当する判定得点を判定する。
したがって、判定システム1は、質問及び回答が対面で行われることによる労力や時間を低減することができる。
以下、対面による質問及び回答等の作業を行わずに判定得点を判定することを実現する、判定システム1の機能構成について図1を参照して説明する。
判定システム1は、教師データ供給部10、判定装置20、判定データ供給部30、及び、提示部40を含んで構成される。
判定装置20は、深層学習と呼ばれる機械学習の手法により重みWを算出する。深層学習は、多層ニューラルネットワーク(隠れ層の数が2以上であるニューラルネットワーク)を用いた機械学習の手法である。
判定装置20は、教師データ供給部10から供給される教師データに基づき重みWを算出する。判定装置20は、判定データ供給部30から供給される判定データと、算出した重みWとに基づき判定得点を判定する。
判定データ供給部30は、判定装置20に対して判定データを供給する。判定データとは、検査結果データMTと、身体データPDとの組からなるデータである。
教師検査結果データLMTに含まれるデータの種類と、検査結果データMTに含まれるデータの種類とは対応する。また、教師身体データLPDに含まれるデータの種類は、身体データPDに含まれるデータの種類と対応する。以下では、検査結果データMTと、身体データPDとを合わせて説明変数と呼ぶ場合がある。
教師データ供給部10、及び判定データ供給部30は、例えば、キーボードやタブレット、スキャナなどのヒューマンインタフェイス装置であってもよいし、サーバなどの情報記憶装置であってもよい。
検査結果データMTとは、被験者の医学的検査の検査結果を示す情報である。検査結果データMTには、例えば、血液検査情報GBTや、脳活動測定結果情報BAが含まれる。
ここで血液検査情報GBTとは、当該被験者の一般血液検査の検査結果を示す情報である。一般血液検査とは、検査項目が一般的である血液検査であり、例えば一般的な健康診断等において行われる血液検査である。一般血液検査の項目の一例について、図2を参照して説明する。脳活動測定結果情報BAとは、非侵襲脳活動測定装置による被験者の脳活動の測定結果の結果である。
身体データPDとは、例えば、被験者の年齢を示すデータである年齢情報AGである。
血液検査情報GBTには、検査項目と、検査項目ごとの基準値と、検査値と、基準値及び検査値の単位とが、互いに対応づけられている。同図に示すある被験者についての具体例の場合、血液検査情報GBTには、白血球数(WBC)が基準値4000〜9000[個/μL]に対して検査値5000[個/μL]、MCVが基準値84〜99[fl]に対して検査値90[fl]…という情報が含まれている。
非侵襲脳活動測定装置(不図示)は、近赤外線などの人体に対して非侵襲的な検出手段を用いて、脳の血流などを測定することにより、被験者の脳活動を測定する。この非侵襲脳活動測定装置は、例えば、ヘモグロビン濃度(Hb)、酸素化ヘモグロビン濃度(HbO2)、脱酸素化ヘモグロビン濃度(HbDO2)、酸素飽和度(SO2)などの測定対象項目について測定する。この場合、非侵襲脳活動測定装置は、左脳側、右脳側について上述の測定対象項目をそれぞれ測定する。この一例の場合、判定データ供給部30は、左脳側ヘモグロビン濃度L_Hb、右脳側ヘモグロビン濃度R_Hb、左脳側酸素化ヘモグロビン濃度L_HbO2、右脳側酸素化ヘモグロビン濃度R_HbO2、左脳側脱酸素化ヘモグロビン濃度L_HbDO2、右脳側脱酸素化ヘモグロビン濃度R_HbDO2、左脳側酸素飽和度L_SO2及び右脳側酸素飽和度R_SO2を、検査結果データMTの一部として判定装置20に供給する。
教師検査結果データ取得部220は、教師データ供給部10が供給する教師検査結果データLMTを取得する。教師検査結果データ取得部220は、取得した教師検査結果データLMTを重み算出部240に供給する。
教師身体データ取得部230は、教師データ供給部10が供給する教師身体データLPDを取得する。教師身体データ取得部230は、取得した教師身体データLPDを重み算出部240に供給する。
身体データ取得部260は、判定データ供給部30が供給する身体データPDを取得する。身体データ取得部260は、取得した身体データPDを得点判定部270に供給する。
なお、提示部40は、ネットワークサーバなどの記憶装置であってもよい。この場合には、提示部40は、得点判定部270から供給される判定結果SCを記憶し、記憶した判定結果SCを他の装置に供給する。
次に、図3を参照して判定装置20の学習工程の一例について説明する。
図3は、本実施形態に係る判定装置20の学習工程の一例を示す図である。
(ステップS20)教師検査結果データ取得部220は、教師データ供給部10から教師検査結果データLMTを取得する。
(ステップS30)教師身体データ取得部230は、教師データ供給部10から教師身体データLPDを取得する。
(ステップS40)重み算出部240は、ステップS10において取得した教師判定得点LSCと、ステップS20において取得した教師検査結果データLMTと、ステップS30において取得した教師身体データLPDとに基づいて重みWを算出する。
深層学習では、目的とする予測が得られるように、ネットワークのユニット間結合度とバイアス項を調整する。ユニット間結合度とは、重みWのことである。以下では、ユニット間結合度とバイアス項とを合わせて重みWと呼ぶ場合がある。また、重みWを算出することを、学習を行うと呼ぶ場合がある。
機械学習の手法を用いる場合、一般には、余計な説明変数を使うことで、予測が劣化することが懸念される。ここで、本実施形態における説明変数とは、検査結果データMTと、身体データPDとに各々含まれるデータのことである。本実施形態で深層学習を用いる利点の1つは、説明変数が多くなったとしても、重みWは学習により自動的に選択されることである。
図4は、本実施形態のニューラルネットワークNNの一例を示す図である。
ニューラルネットワークNNは、入力層ILと、隠れ層HL1、HL2、HL3、HL4と、出力層OLとから構成される。入力層ILと、隠れ層HL1、HL2、HL3、HL4と、出力層OLとは、各々一列に並んだユニットから構成される。
ニューラルネットワークNNは、フィードフォワードネットワークと呼ばれるニューラルネットワークである。フィードフォワードネットワークとは、情報が入力層から出力層へと一方向に伝搬するニューラルネットワークのことである。本実施形態では、隠れ層の数が4層、各隠れ層のユニット数が2であるフィードフォワードネットワークを用いる。
隠れ層HL1は、ユニットH1−1と、ユニットH1−2とから構成される。隠れ層HL2は、ユニットH2−1と、ユニットH2−2とから構成される。隠れ層HL3は、ユニットH3−1と、ユニットH3−2とから構成される。隠れ層HL4は、ユニットH4−1と、ユニットH4−2とから構成される。
出力層OLは、ユニットO−1と、ユニットO−2とから構成される。出力層OLのユニット数が2であることは、判定装置20が、被験者を2つのクラスに分類するための判定を行うことに対応する。ここで2つのクラスは、MMSEの回答の得点が24点以上(正常)のクラスと、24点未満のクラスとからなる。
隠れ層HL1、HL2、HL3、HL4、及び出力層OLを構成する各ユニットは、自身が構成する各層と隣接する、入力層IL側の層を構成する複数のユニットからの出力に、ユニット間結合度を乗じバイアス項を加えたものを入力として受け取る。ここでユニット間結合度(重みW)、及びバイアス項は、出力するユニットと、入力されるユニットとの組毎に異なる。隠れ層HL1、HL2、HL3、HL4、及び出力層OLを構成する各ユニットは、入力を受け取ると、入力の値を活性化関数(後述する)に代入した値を、出力とする。
重み算出部240が重みWを算出する手順の詳細については後述する。
図5は、本実施形態に係る判定装置20の判定工程の一例を示す図である。
(ステップS60)身体データ取得部260は、判定データ供給部30から身体データPDを取得する。
(ステップS70)得点判定部270は、ステップS50において取得した検査結果データMTと、ステップS60において取得した身体データPDと、図3のステップS40において算出した重みWに基づいて判定得点を判定する。判定結果SCは、被験者のMMSEの回答の得点が24点以上であるか、被験者のMMSEの回答の得点が24点未満であるかのいずれかを示す。
(ステップS80)得点判定部270は、判定結果SCを提示部40に出力して、一連の処理を終了する。
判定装置20の判定精度について説明する。
判定装置20の判定精度を検証する際、十分な数の判定データが入手できない場合がある。そこで、教師データの一部のデータを取り出し判定データとして用い、残りのデータを重みWの算出に用いることで判定精度を検証する。本実施形態では、Leave−One−Out交差検証という手法を用いる。教師データのデータ数をN(Nは自然数)とする。
判定装置20は、教師データから1個のデータを取り出し判定データとして用い、残りのN−1個のデータを用いて重みWを算出する。判定装置20は、判定データと、算出した重みWとに基づいて判定得点を判定する。判定装置20は、当該判定得点の判定結果SCと、判定データとして用いた教師データに対応する教師判定得点LSCとを比較することで、判定結果SCが正しいか否かを判定する。
判定装置20は、この処理を、教師データの各々全てが判定データとして用いられるまでN回繰り返す。
本実施形態によれば、40歳以上の被験者98名の、一般血液検査の検査結果、非侵襲脳活動測定装置による被験者の脳活動の測定結果、年齢、及びMMSEの回答の得点を教師データとして用いたところ、判定装置20は、96個の判定データに対して正しい判定結果SCを出力することが検証されている。つまり、上記の場合に、判定装置20の判定精度が、98パーセントであることが検証されている。
したがって、本実施形態の判定装置20によれば、従来、自己申告に基づく医学的検査において質問及び回答が対面で行われることによって生じていた労力や時間を低減することができる。
図6は、本実施形態の重みWを算出する手順の一例を示す図である。
ここでは、ユニット間結合度とバイアス項とを合わせて重みWと呼ぶ。
重みWの算出手順の開始時には、ニューラルネットワークNNは、入力層と、第1の隠れ層、出力層から構成される。重み算出部240は、第1の隠れ層についての重みWの算出を行う。その後、重み算出部240は、ニューラルネットワークNNに第1の隠れ層と出力層との間に第2の隠れ層を追加する。重み算出部240は、第2の隠れ層についての重みWの算出を行う。重み算出部240は、以上の手順を繰り返すことで、各隠れ層毎に重みWの算出を行う。重み算出部240は、第4の隠れ層についての重みWの算出が完了した時点で、重みWの算出を終了する。
なお、重み算出部240は、ニューラルネットワークNNの学習を全ての隠れ層について行ってもよい。
以下、重みWの算出の具体的な手順について説明する。なお、この演算手順は、コンピュータによって実行可能である。
重み算出部240は、N個の教師データをランダムに並べ変える。
重み算出部240は、入力層、及び隠れ層の各々について、各層を構成するユニットをある確率p(pは0から1までの実数)で無効化する。ここで、ユニットを無効化するとは、当該ユニットからの出力を一時的にゼロとして扱うという意味である。本実施形態では、一例として、pの値を0.5とするが、pの値はこれに限らない。なお、確率pは、各層毎に異なってもよい。
また、得点判定部270は、判定得点を判定する際、ニューラルネットワークNNの入力層、及び隠れ層の各々の出力を、無効化した確率pに応じてp倍する。
重み算出部240は、入力xiに各々重みwji(ここではj=1)を乗じ、バイアスbji(ここではj=1)を加えたものを、第1の隠れ層へのあるユニットへの入力とする。重み算出部240は、当該ユニットへの入力を活性化関数に代入した値を算出し、当該ユニットからの出力hk(k=1,2)とする。本実施形態では、一例として、Tanh関数を活性化関数に用いる。なお、活性化関数は、Tanh関数以外の関数であってもよい。活性化関数は、例えば、ロジスティック関数や正規化線形関数であってもよい。
重み算出部240は、第1の隠れ層の各ユニットからの出力hk(k=1,2)に各々重みwji(ここではj=2)を乗じ、バイアスbji(ここではj=2)を加えたものを第2の隠れ層への各ユニットへの入力とする。重み算出部240は、第1の隠れ層と同様に、当該入力を活性化関数に代入することで第2の隠れ層の各ユニットからの出力を算出する。
重み算出部240は、以上の処理を出力層まで繰り返し、出力層からの出力yk(k=1,2)を算出する。
ここで目的関数は、式(1)で与えられる。
目的関数は、教師データ毎に与えられる損失関数lの平均である。ここで、損失関数lは、出力yと、教師データから得られるyi(i=1、2、・・・、N:Nは教師データのデータ数)との二乗誤差で与えられる。ここで、yiは、2成分のベクトルである。yiは、教師判定得点LSCが24点以上である場合、yi=(1、0)で与えられる。一方、教師判定得点LSCが24点未満である場合、yi=(0、1)で与えられる。
なお、損失関数lは、一例として二乗誤差を用いたが、これに限らない。損失関数lは、例えば、エントロピー誤差であってもよい。
具体的には、重み算出部240は、式(2)に従って重みWの更新を行う。
確率的勾配降下法を使用して学習を行うことの理由の一つは、目的関数が収束する最適解より前に、重みWが局所解に陥ってしまうことを防ぐためである。
また、別の例として、説明変数として、年齢情報AGと、左脳側ヘモグロビン濃度L_Hbと、右脳側ヘモグロビン濃度R_Hbと、左脳側酸素飽和度L_SO2と、右脳側酸素飽和度R_SO2とのみを用いてもよい。
また、説明変数として、検査結果データMTに、血液検査情報GBTと、脳活動測定結果情報BAと以外の被験者の医学的検査の検査結果を示す他の情報を加えてもよいし、血液検査情報GBTと、脳活動測定結果情報BAとの代わりに、被験者の医学的検査の検査結果を示す他の情報を用いてもよい。
また、本実施形態においては、ニューラルネットワークNNの出力層のユニット数が2である場合を説明したが、出力層のユニット数はこれに限らない。判定装置20は、例えば、出力層のユニット数を1つにしてもよい。その場合、判定装置20は、出力層の出力の1つの値に応じて、判定得点を判定する。また、判定装置20は、ニューラルネットワークNNの出力層のユニット数を3以上にして、判定得点をより細かく分類してもよい。
上述した実施形態に係る判定装置20によれば、重み算出部240により算出された重みWと、被験者に関するデータのうち、検査結果データMTと、身体データPDを含む判定データとに基づいて、当該被験者の判定得点を判定する。ここで判定装置20は、当該被験者に関するデータのうち、教師判定得点LSCと、教師検査結果データLMTと、教師身体データLPDとに基づいて、重みWを算出する。したがって、判定装置20によれば、自己申告に基づく医学的検査の判定を簡便に行うことができる。
なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
Claims (6)
- 第1被験者に関するデータのうち、自己申告に基づく医学的検査の判定得点を含み、医学的検査の検査結果を表すデータと、身体的特徴を表すデータとのうち少なくとも一方を含む第1データに基づいて重みを算出する重み算出部と、
前記重み算出部により算出された前記重みと、第2被験者に関するデータのうち、医学的検査の検査結果を表すデータと、身体的特徴を表すデータとのうち少なくとも一方を含む第2データとに基づいて、前記第2被験者の前記判定得点を判定する得点判定部と、
を備える生体機能についての医学的検査の得点判定装置。 - 前記判定得点とは自己申告に基づく認知症の検査の得点である請求項1に記載の生体機能についての医学的検査の得点判定装置。
- 前記重み算出部は、前記第1データに基づいて機械学習により前記重みを算出する請求項1または請求項2に記載の生体機能についての医学的検査の得点判定装置。
- 前記医学的検査の検査結果を表すデータは、前記第1被験者の一般血液検査の結果を示す血液検査情報を少なくとも含むデータである請求項1から請求項3のいずれか一項に記載の生体機能についての医学的検査の得点判定装置。
- 前記医学的検査の検査結果を表すデータは、非侵襲脳活動測定装置による前記第1被験者の脳活動の測定結果を少なくとも含むデータである請求項1から請求項4のいずれか一項に記載の生体機能についての医学的検査の得点判定装置。
- コンピュータに、
第1被験者に関するデータのうち、自己申告に基づく医学的検査の判定得点を含み、医学的検査の検査結果を表すデータと、身体的特徴を表すデータとのうち少なくとも一方を含む第1データに基づいて重みを算出する重み算出ステップと、
前記重み算出ステップにより算出された前記重みと、第2被験者に関するデータのうち、医学的検査の検査結果を表すデータと、身体的特徴を表すデータとのうち少なくとも一方を含む第2データとに基づいて、前記第2被験者の前記判定得点を判定する得点判定ステップと
を実行させるためのプログラム。
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017048625A JP6845716B2 (ja) | 2017-03-14 | 2017-03-14 | 生体機能についての医学的検査の得点判定装置、及びプログラム |
| PCT/JP2018/009933 WO2018168915A1 (ja) | 2017-03-14 | 2018-03-14 | 生体機能についての医学的検査の得点判定装置、及びプログラム |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017048625A JP6845716B2 (ja) | 2017-03-14 | 2017-03-14 | 生体機能についての医学的検査の得点判定装置、及びプログラム |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JP2018149168A true JP2018149168A (ja) | 2018-09-27 |
| JP6845716B2 JP6845716B2 (ja) | 2021-03-24 |
Family
ID=63522283
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2017048625A Active JP6845716B2 (ja) | 2017-03-14 | 2017-03-14 | 生体機能についての医学的検査の得点判定装置、及びプログラム |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP6845716B2 (ja) |
| WO (1) | WO2018168915A1 (ja) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2021187150A1 (ja) * | 2020-03-19 | 2021-09-23 | オムロンヘルスケア株式会社 | 生体情報取得装置及び生体情報取得方法 |
| WO2022075461A1 (ja) | 2020-10-09 | 2022-04-14 | 国立大学法人東京大学 | 疾患診断結果判定装置、疾患診断結果判定方法、及びプログラム |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP7063426B1 (ja) * | 2020-06-16 | 2022-05-09 | コニカミノルタ株式会社 | 予測スコア算出装置、予測スコア算出方法および予測スコア算出プログラム |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011255106A (ja) * | 2010-06-11 | 2011-12-22 | Nagoya Institute Of Technology | 認知機能障害危険度算出装置、認知機能障害危険度算出システム、及びプログラム |
| WO2012165602A1 (ja) * | 2011-05-31 | 2012-12-06 | 国立大学法人名古屋工業大学 | 認知機能障害判別装置、認知機能障害判別システム、およびプログラム |
| JP2014506150A (ja) * | 2010-12-20 | 2014-03-13 | コーニンクレッカ フィリップス エヌ ヴェ | アルツハイマー病へ進行するリスクのある軽度認知障害患者を識別するための方法およびシステム |
| US20150112899A1 (en) * | 2013-10-22 | 2015-04-23 | Mindstrong, LLC | Method and system for assessment of cognitive function based on electronic device usage |
| JP2018055333A (ja) * | 2016-09-28 | 2018-04-05 | 学校法人日本大学 | 認知症判定得点算出装置及びそのプログラム |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5249420B2 (ja) * | 2008-09-04 | 2013-07-31 | レドックス−リアクティブ リエイジェンツ リミテッド ライアビリティー カンパニー | アルツハイマー病の診断、モニタリングおよび/または病期診断のための、バイオマーカー、キットおよび方法 |
| CA3125883C (en) * | 2011-09-16 | 2023-02-14 | Mcgill University | Grading of structures for state determination |
| US10478114B2 (en) * | 2013-09-11 | 2019-11-19 | Maxell, Ltd. | Brain dysfunction assessment method, brain dysfunction assessment device, and program thereof |
-
2017
- 2017-03-14 JP JP2017048625A patent/JP6845716B2/ja active Active
-
2018
- 2018-03-14 WO PCT/JP2018/009933 patent/WO2018168915A1/ja not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2011255106A (ja) * | 2010-06-11 | 2011-12-22 | Nagoya Institute Of Technology | 認知機能障害危険度算出装置、認知機能障害危険度算出システム、及びプログラム |
| JP2014506150A (ja) * | 2010-12-20 | 2014-03-13 | コーニンクレッカ フィリップス エヌ ヴェ | アルツハイマー病へ進行するリスクのある軽度認知障害患者を識別するための方法およびシステム |
| WO2012165602A1 (ja) * | 2011-05-31 | 2012-12-06 | 国立大学法人名古屋工業大学 | 認知機能障害判別装置、認知機能障害判別システム、およびプログラム |
| US20150112899A1 (en) * | 2013-10-22 | 2015-04-23 | Mindstrong, LLC | Method and system for assessment of cognitive function based on electronic device usage |
| JP2018055333A (ja) * | 2016-09-28 | 2018-04-05 | 学校法人日本大学 | 認知症判定得点算出装置及びそのプログラム |
Non-Patent Citations (2)
| Title |
|---|
| "第2章 認知症の診断", 認知症疾患治療ガイドライン2010, JPN6020036241, 2013, pages 44, ISSN: 0004353047 * |
| 荒木 厚: "低血糖による認知機能障害", 日本臨床(増刊), vol. 第70巻増刊号5, JPN6020036242, 2012, pages 671 - 675, ISSN: 0004353048 * |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2021187150A1 (ja) * | 2020-03-19 | 2021-09-23 | オムロンヘルスケア株式会社 | 生体情報取得装置及び生体情報取得方法 |
| JP2021145985A (ja) * | 2020-03-19 | 2021-09-27 | オムロンヘルスケア株式会社 | 生体情報取得装置及び生体情報取得方法 |
| JP7508820B2 (ja) | 2020-03-19 | 2024-07-02 | オムロンヘルスケア株式会社 | 生体情報取得装置及び生体情報取得方法 |
| WO2022075461A1 (ja) | 2020-10-09 | 2022-04-14 | 国立大学法人東京大学 | 疾患診断結果判定装置、疾患診断結果判定方法、及びプログラム |
| KR20230079202A (ko) | 2020-10-09 | 2023-06-05 | 고쿠리츠다이가쿠호우진 도쿄다이가쿠 | 질병 진단 결과 판정 장치, 질병 진단 결과 판정 방법 및 프로그램 |
Also Published As
| Publication number | Publication date |
|---|---|
| JP6845716B2 (ja) | 2021-03-24 |
| WO2018168915A1 (ja) | 2018-09-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Varadaraj et al. | Association of vision impairment with cognitive decline across multiple domains in older adults | |
| Vingerhoets et al. | Laterality indices consensus initiative (LICI): A Delphi expert survey report on recommendations to record, assess, and report asymmetry in human behavioural and brain research | |
| Crane et al. | Routine collection of patient-reported outcomes in an HIV clinic setting: the first 100 patients | |
| Schuman et al. | Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography: a pilot study | |
| Tsai et al. | Cultural influences on emotional responding: Chinese American and European American dating couples during interpersonal conflict | |
| Conron et al. | A longitudinal study of maternal depression and child maltreatment in a national sample of families investigated by child protective services | |
| Ferguson et al. | Shoulder muscle fatigue during repetitive tasks as measured by electromyography and near-infrared spectroscopy | |
| Hoffman et al. | Virtual reality bringing a new reality to postthoracotomy lung cancer patients via a home-based exercise intervention targeting fatigue while undergoing adjuvant treatment | |
| KR20220095104A (ko) | 빅데이터 및 클라우드 시스템 기반 인공지능 응급의료 의사결정 및 응급환자 이송 시스템과 그 방법 | |
| Zadro et al. | Does Reiki benefit mental health symptoms above placebo? | |
| CN108135507A (zh) | 用于预测心力衰竭代偿失调的系统和方法 | |
| Cote et al. | Reference values for physical performance measures in the aging working population | |
| Filshtein et al. | Differential item functioning of the everyday cognition (ECoG) scales in relation to racial/ethnic groups | |
| WO2018168915A1 (ja) | 生体機能についての医学的検査の得点判定装置、及びプログラム | |
| Rowe | The impact of internal and external resources on functional outcomes in chronic illness | |
| Lindahl et al. | Effects of context-aware patient guidance on blood pressure self-measurement adherence levels | |
| Groth et al. | Psychotherapy techniques related to therapist alliance among adolescents with eating disorders: The utility of integration. | |
| US12290379B2 (en) | Quantification and estimation based on digital twin output | |
| JP6702836B2 (ja) | 認知症判定得点算出装置及びそのプログラム | |
| Ljungman et al. | Study protocol for the Fex-Can Childhood project: An observational study and a randomized controlled trial focusing on sexual dysfunction and fertility-related distress in young adult survivors of childhood cancer | |
| Rahayu et al. | Psychometric testing of an Indonesian-version diabetes self-management instrument | |
| Akbulut et al. | Support vector machines combined with feature selection for diabetes diagnosis | |
| Nascimben et al. | Technical aspects and validation of custom digital algorithms for hand volumetry | |
| Rietkötter | Ending the war in multi-criteria decision analysis: Taking the best from two worlds: the development and evaluation of guidelines for the use of MACBETH in multi-criteria group decision making for the assessment of new medical products | |
| JP7109499B2 (ja) | 認知症判定得点算出装置及びそのプログラム |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20181109 |
|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20191203 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20191203 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200305 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200929 |
|
| A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20201125 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201130 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20201125 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210209 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210226 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 6845716 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
| S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
| S804 | Written request for registration of cancellation of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314803 |
|
| R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
| S804 | Written request for registration of cancellation of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314803 |
|
| R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |