[go: up one dir, main page]

JP2018032357A - Client analysis server, client analysis method, and client analysis program - Google Patents

Client analysis server, client analysis method, and client analysis program Download PDF

Info

Publication number
JP2018032357A
JP2018032357A JP2016166310A JP2016166310A JP2018032357A JP 2018032357 A JP2018032357 A JP 2018032357A JP 2016166310 A JP2016166310 A JP 2016166310A JP 2016166310 A JP2016166310 A JP 2016166310A JP 2018032357 A JP2018032357 A JP 2018032357A
Authority
JP
Japan
Prior art keywords
customer
purchase
purchase information
customers
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016166310A
Other languages
Japanese (ja)
Other versions
JP6094021B1 (en
Inventor
徹 向
Toru Mukai
徹 向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E-Grant Co Ltd
Original Assignee
E-Grant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E-Grant Co Ltd filed Critical E-Grant Co Ltd
Priority to JP2016166310A priority Critical patent/JP6094021B1/en
Application granted granted Critical
Publication of JP6094021B1 publication Critical patent/JP6094021B1/en
Publication of JP2018032357A publication Critical patent/JP2018032357A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a client analysis server, a client analysis method, and a client analysis program capable of executing a client analysis according to a purchase state after purchasing a merchandise and a service.SOLUTION: An input-output part 106 accepts an input of an analysis base date which is a base date for performing a client analysis. A client state determination part 104 determines a client situation using client purchase information stored in purchase information 120 for storing the client purchase information which associates a client purchase information for uniquely identifying the client, a purchase date on which the client purchases the merchandise or the service, and the number of purchase times which is the total number of purchase times of the client. A client purchase information generation part 103 generates the client purchase information applied with the determined client situation. A client number calculation part 105 calculates each of the number of clients of each of clients situation from the generated client purchase information. The input-output part 106 displays each of the number of clients of the calculated client situation for each number of purchase times.SELECTED DRAWING: Figure 1

Description

本発明は、顧客分析サーバ、顧客分析方法、および顧客分析プログラムに関する。   The present invention relates to a customer analysis server, a customer analysis method, and a customer analysis program.

従来、商品やサービスを提供する企業において顧客の購入履歴を分析し顧客の購入頻度や購入金額を最大化するための営業戦略を検討することは多く行なわれている。その一例として、EC(electronic commerce)サイトでの既存顧客の購入履歴から優良顧客のセグメントを見いだす顧客分析、例えばRFM分析等が実施されている。また、顧客分析結果に応じた営業戦略の結果を予め予測する技術も開示されている(特許文献1参照)。   2. Description of the Related Art Conventionally, companies that provide products and services often analyze a customer's purchase history and consider a sales strategy for maximizing the purchase frequency and purchase price of the customer. As an example, customer analysis, such as RFM analysis, is performed in which a segment of excellent customers is found from the purchase history of existing customers on an EC (electronic commerce) site. In addition, a technique for predicting in advance the results of sales strategies according to customer analysis results is also disclosed (see Patent Document 1).

特開2008-243090号公報JP 2008-243090 Gazette

しかしながら、上述した従来の顧客分析技術や特許文献1に記載した将来の営業戦略結果の予測技術は、顧客がその時々で商品やサービスを購入した結果に基づく顧客分析手法であり、顧客が購入を複数回繰り返すような顧客の購入行動を分析することができず、効果的な営業戦略を検討し採用することができないという問題があった。   However, the conventional customer analysis technology described above and the future sales strategy result prediction technology described in Patent Document 1 are customer analysis methods based on the result of the customer purchasing goods or services from time to time. There was a problem that it was not possible to analyze the purchase behavior of customers that would be repeated multiple times and to consider and adopt an effective sales strategy.

本発明は、上記に鑑みてなされたものであり、商品やサービスを複数回購入する顧客の購入行動に応じた顧客分析を実施することができる顧客分析サーバ、顧客分析方法、および顧客分析プログラムを提供することを目的とする。   The present invention has been made in view of the above, and includes a customer analysis server, a customer analysis method, and a customer analysis program capable of performing customer analysis according to purchase behavior of a customer who purchases a product or service multiple times. The purpose is to provide.

上述した課題を解決するために、本発明では、顧客分析する基準日である分析基準日の入力を受付け、顧客購入情報記憶手段に記憶する顧客購入情報および分析基準日を用い、顧客状況を判定し、判定した顧客状況を加えた顧客購入情報を生成し、生成した顧客購入情報から顧客状況それぞれの顧客数を算出し、算出した顧客状況それぞれの顧客数を購入回数ごとに表示することを特徴とする。   In order to solve the above-described problems, in the present invention, the input of an analysis reference date, which is a reference date for customer analysis, is accepted, and the customer purchase information and the analysis reference date stored in the customer purchase information storage means are used to determine the customer situation. Generating customer purchase information including the determined customer status, calculating the number of customers for each customer status from the generated customer purchase information, and displaying the calculated number of customers for each customer status for each number of purchases. And

上述したように構成した本発明によれば、商品やサービスを複数回購入する顧客の購入行動に応じた顧客分析を実施することができるという効果を奏する。   According to this invention comprised as mentioned above, there exists an effect that the customer analysis according to the purchase behavior of the customer who purchases goods and a service in multiple times can be implemented.

本実施例にかかる顧客分析システム10の構成を示すブロック図である。It is a block diagram which shows the structure of the customer analysis system 10 concerning a present Example. 購入履歴情報記憶部110のデータ構成の一例を示す説明図である。It is explanatory drawing which shows an example of a data structure of the purchase history information storage part. 顧客購入情報記憶部120のデータ構成の一例を示す説明図である。It is explanatory drawing which shows an example of a data structure of the customer purchase information storage part. 定期購入の顧客分析結果の一例を示す説明図である。It is explanatory drawing which shows an example of the customer analysis result of a regular purchase. すべての購入種別の顧客分析結果の一例を示す説明図である。It is explanatory drawing which shows an example of the customer analysis result of all the purchase types. 顧客分析サーバ100が実行する顧客分析処理手順を示すフローチャートである。It is a flowchart which shows the customer analysis processing procedure which the customer analysis server 100 performs. 顧客分析サーバ100が実行する顧客状況判定処理手順を示すフローチャートである。It is a flowchart which shows the customer condition determination processing procedure which the customer analysis server 100 performs. 顧客購入情報一覧を示す説明図である。It is explanatory drawing which shows a customer purchase information list. 顧客状況ごとの顧客数および顧客割合を時系列に示す説明図である。It is explanatory drawing which shows the number of customers for every customer condition, and a customer ratio in time series.

以下、添付図面を参照し本発明の実施例を説明する。なお、以下の説明は、実施の形態の一例であり、本発明は、これらの実施例に限定されるものではない。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In addition, the following description is an example of embodiment and this invention is not limited to these Examples.

図1は、本実施例にかかる顧客分析システム10の構成を示すブロック図である。顧客分析システム10は、顧客分析サーバ100と、ECサーバ200と、情報端末装置300とを備え、顧客分析サーバ100、ECサーバ200、情報端末装置300は、図1に示すように、ネットワークNを介して互いに通信可能に接続する。ネットワークNは、インターネット、イントラネット、LAN(Local Area Network)、移動体通信網等の通信ネットワークである。   FIG. 1 is a block diagram illustrating a configuration of a customer analysis system 10 according to the present embodiment. The customer analysis system 10 includes a customer analysis server 100, an EC server 200, and an information terminal device 300. The customer analysis server 100, the EC server 200, and the information terminal device 300, as shown in FIG. To communicate with each other. The network N is a communication network such as the Internet, an intranet, a LAN (Local Area Network), and a mobile communication network.

顧客分析サーバ100は、ECサーバ200において顧客が商品やサービスを購入し決済するごとに生成する購入履歴情報に基づき顧客分析を実行するサーバである。顧客分析サーバ100は、購入履歴情報記憶部110と、顧客購入情報記憶部120と、送受信部101と、顧客識別情報生成部102と、顧客購入情報生成部103と、顧客状況判定部104と、顧客数算出部105と、入出力部106とを備える。   The customer analysis server 100 is a server that performs customer analysis based on purchase history information generated every time a customer purchases and pays for a product or service in the EC server 200. The customer analysis server 100 includes a purchase history information storage unit 110, a customer purchase information storage unit 120, a transmission / reception unit 101, a customer identification information generation unit 102, a customer purchase information generation unit 103, a customer situation determination unit 104, A customer number calculation unit 105 and an input / output unit 106 are provided.

図2は、購入履歴情報記憶部110のデータ構成の一例を示す説明図である。購入履歴情報記憶部110は、ECサーバ200での電子商取引の際に生成した購入履歴情報をECサーバ200から取得し記憶する。購入履歴情報は、ECサーバ200からネットワークNを介し受信するか記憶媒体を介し受け取る。購入履歴情報記憶部110は、購入者識別情報と、購入日と、購入種別と、購入者名と、電話番号と、その他の情報とを対応付けて記憶する。その他の情報として、購入商品名、購入金額、流入経路等を対応付けて記憶してもよい。   FIG. 2 is an explanatory diagram illustrating an example of a data configuration of the purchase history information storage unit 110. The purchase history information storage unit 110 acquires and stores purchase history information generated at the time of electronic commerce on the EC server 200 from the EC server 200. The purchase history information is received from the EC server 200 via the network N or via a storage medium. The purchase history information storage unit 110 stores purchaser identification information, purchase date, purchase type, purchaser name, telephone number, and other information in association with each other. As other information, a purchase product name, a purchase price, an inflow route, and the like may be stored in association with each other.

ここでいう、購入者識別情報とは、ECサーバ200上のECサイトで購入者を識別する情報であり、例えば購入時に購入者によって入力されたユーザID等である。購入日は、商品やサービスを購入した日付であり、日付に時刻を加えてもよい。購入種別とは、顧客が商品やサービスを購入する方法であり、購入日や購入間隔を定めて繰り返し購入する“定期購入”、その都度購入する“通常購入”、試供品を配送する“サンプル”がある。さらに、購入者によって入力された購入者名、電話番号等を記憶する。   The purchaser identification information here is information for identifying the purchaser at the EC site on the EC server 200, and is, for example, a user ID input by the purchaser at the time of purchase. The purchase date is the date on which the product or service is purchased, and time may be added to the date. A purchase type is a method for a customer to purchase a product or service. A “regular purchase” in which purchases are made repeatedly with a purchase date or purchase interval, a “normal purchase” in which the purchase is made each time, and a “sample” in which a sample is delivered. There is. In addition, the purchaser name, telephone number, etc. entered by the purchaser are stored.

図3は、顧客購入情報記憶部120のデータ構成の一例を示す説明図である。顧客購入情報記憶部120は、購入履歴情報記憶部110に記憶する購入履歴情報から生成した、顧客分析サーバ100の顧客分析で用いる顧客の購入に関する情報を記憶する。顧客購入情報記憶部120は、購入者識別情報と、購入日と、購入種別と、購入者名と、電話番号と、顧客識別情報と、購入回数と、その他の情報とを対応付けて記憶する。その他の情報として、購入履歴情報記憶部110と同様に、購入商品名、購入金額、流入経路等を対応付けて記憶してもよい。   FIG. 3 is an explanatory diagram illustrating an example of a data configuration of the customer purchase information storage unit 120. The customer purchase information storage unit 120 stores information related to customer purchases used for customer analysis of the customer analysis server 100, generated from purchase history information stored in the purchase history information storage unit 110. The customer purchase information storage unit 120 stores purchaser identification information, purchase date, purchase type, purchaser name, telephone number, customer identification information, number of purchases, and other information in association with each other. . As other information, similarly to the purchase history information storage unit 110, a purchased product name, a purchase price, an inflow route, and the like may be stored in association with each other.

ここで、顧客識別情報とは、顧客分析サーバ100で実行する顧客分析処理において顧客を一意に識別する情報である。顧客識別情報は、購入者識別情報によって顧客を一意に識別することができる場合は購入者識別情報と同一でもよく、購入履歴情報の顧客を特定できるいくつかの情報を用いて顧客を一意に識別する顧客識別情報を生成(すなわち名寄せ)してもよい。購入回数とは、顧客が商品またはサービスを購入した通算回数であり、例えば顧客識別情報“UID0011”の顧客の購入種別ごとの顧客識別情報をカウントし通算購入回数を算出する。   Here, the customer identification information is information that uniquely identifies a customer in the customer analysis process executed by the customer analysis server 100. The customer identification information may be the same as the purchaser identification information if the purchaser identification information can uniquely identify the customer, and the customer identification information is uniquely identified by using some information that can identify the customer in the purchase history information. Customer identification information may be generated (name identification). The number of purchases is the total number of times that the customer has purchased goods or services. For example, the total number of purchases is calculated by counting customer identification information for each customer purchase type in the customer identification information “UID0011”.

なお、購入種別は、購入履歴情報に含む場合、購入履歴情報の購入種別をそのまま用いる。しかし、購入履歴情報に購入種別の項目がなく、購入履歴情報に含まれる定期番号の有無で“定期購入”と“通常購入”の別を判断する場合は、後述する顧客購入情報生成部103において、購入履歴情報に含まれる定期番号の有無で“定期購入”と“通常購入”の別を判断する。また、購入種別“サンプル”を購入履歴情報に含まれる商品区分で判断する場合は、後述する顧客購入情報生成部103において商品区分で判断する。   When the purchase type is included in the purchase history information, the purchase type of the purchase history information is used as it is. However, when there is no item of purchase type in the purchase history information and the distinction between “regular purchase” and “regular purchase” is made based on the presence or absence of the periodic number included in the purchase history information, the customer purchase information generation unit 103 described later The distinction between “regular purchase” and “regular purchase” is determined based on the presence / absence of the periodic number included in the purchase history information. Further, when the purchase type “sample” is determined by the product category included in the purchase history information, the customer purchase information generation unit 103 described later determines the product category.

送受信部101は、ECサーバ200との間でデータを送受信する。送受信部101は、ECサーバ200で顧客が商品やサービスを購入し決済するごとに生成する購入履歴情報を、購入履歴情報を生成するごとまたは一定の期間ごとに受信し、購入履歴情報記憶部110に格納する。   The transmission / reception unit 101 transmits / receives data to / from the EC server 200. The transmission / reception unit 101 receives purchase history information generated every time a customer purchases and settles a product or service by the EC server 200 every time the purchase history information is generated or every predetermined period, and the purchase history information storage unit 110 receives the purchase history information. To store.

顧客識別情報生成部102は、購入履歴情報記憶部110に記憶する購入履歴情報に含まれる顧客を特定する情報の組合せから顧客を一意に識別する顧客識別情報を生成する。例えば、顧客名と電話番号から顧客識別情報を生成する。   The customer identification information generation unit 102 generates customer identification information that uniquely identifies a customer from a combination of information that identifies the customer included in the purchase history information stored in the purchase history information storage unit 110. For example, customer identification information is generated from the customer name and telephone number.

顧客購入情報生成部103は、購入履歴情報記憶部110に記憶する購入履歴情報および顧客識別情報生成部102によって生成した顧客識別情報を用い顧客購入情報を生成する。より具体的には、顧客購入情報生成部103は、顧客ごとに購入種別ごとの購入回数をカウントし、カウントした購入回数および顧客識別情報を加えた顧客購入情報を生成し顧客購入情報記憶部120に格納する。   The customer purchase information generation unit 103 generates customer purchase information using the purchase history information stored in the purchase history information storage unit 110 and the customer identification information generated by the customer identification information generation unit 102. More specifically, the customer purchase information generation unit 103 counts the number of purchases for each purchase type for each customer, generates customer purchase information including the counted number of purchases and customer identification information, and generates a customer purchase information storage unit 120. To store.

顧客状況判定部104は、顧客購入情報記憶部120に記憶する顧客識別情報ごとに顧客状況を判定する。顧客状況とは、顧客の購入に関する状態を示す情報であり、より具体的には、顧客状況判定部104は、顧客の最終購入日が分析基準日から所定期間を超えているか否かで顧客状況を判定する。最終購入日が分析基準日から一定の期間(以下離脱判断期間という)を超えていない場合、顧客状況は、商品またはサービスを購入した後に離脱判断期間が経過せず、かつ、商品またはサービスを購入していない顧客である旨を示す“滞在”と判定する。最終購入日が分析基準日から離脱判断期間を超えている場合、顧客状況は、商品またはサービスを購入した後に離脱判断期間内に商品またはサービスを購入していない顧客である旨を示す“離脱”と判定する。また、購入回数が最終購入回数でない場合、顧客状況は、商品またはサービスを購入した後にさらに商品またはサービスを購入した顧客である旨を示す“継続”と判定する。詳細は後述する。   The customer status determination unit 104 determines the customer status for each customer identification information stored in the customer purchase information storage unit 120. The customer status is information indicating a status related to the purchase of the customer. More specifically, the customer status determination unit 104 determines whether or not the customer status is based on whether or not the last purchase date of the customer exceeds a predetermined period from the analysis reference date. Determine. If the last purchase date does not exceed a certain period from the analysis reference date (hereinafter referred to as the withdrawal decision period), the customer status indicates that the withdrawal decision period has not elapsed after the purchase of the product or service, and the purchase of the product or service is made It is determined as “stay” indicating that the customer is not a customer. If the last purchase date has exceeded the withdrawal decision period from the analysis reference date, the customer status indicates that the customer has not purchased the product or service within the withdrawal decision period after purchasing the product or service. Is determined. If the number of purchases is not the final number of purchases, the customer status is determined to be “continuation” indicating that the customer has purchased a product or service after purchasing the product or service. Details will be described later.

顧客数算出部105は、購入種別ごと購入回数ごとの顧客状況が“滞在”、“離脱”、“継続”それぞれである顧客購入情報をカウントし購入種別ごと購入回数ごとの顧客数および顧客割合を算出する。   The customer number calculation unit 105 counts customer purchase information in which the customer status for each purchase type is “stay”, “leave”, and “continue”, and calculates the number of customers and the customer ratio for each purchase type. calculate.

入出力部106は、入力部と出力部を備え、入力部はキーボード、マウス等の入力装置および入力制御部、出力部はディスプレイ等の出力装置および出力制御部であり、または入出力を合わせた装置および制御部、例えばタッチパネル等である。出力部は、顧客数算出部105での算出結果を表示画面に表示する。入力部は、分析基準日等の分析に関する情報の入力を受付ける。なお、入力部は、ECサーバ200で生成する購入履歴情報を記憶媒体を介し取得してもよい。   The input / output unit 106 includes an input unit and an output unit. The input unit is an input device and an input control unit such as a keyboard and a mouse. The output unit is an output device and an output control unit such as a display. A device and a control unit such as a touch panel. The output unit displays the calculation result of the customer number calculation unit 105 on the display screen. The input unit accepts input of information related to analysis such as an analysis reference date. Note that the input unit may acquire purchase history information generated by the EC server 200 via a storage medium.

図4は、定期購入の顧客分析結果の一例を示す説明図であり、購入種別“定期購入”の分析結果を示す。表示画面例41の顧客数42は、購入回数“1回(初回)”の購入を行なった顧客数および顧客割合を示し、本例では7604(100%)である。顧客数43は、顧客状況“滞在”の顧客数、すなわち分析基準日が離脱判断期間内であり、かつ、2回目の定期購入をしなかった顧客数を示す。顧客数44は、顧客状況“継続”の顧客数、すなわち2回目の定期購入をした顧客数を示す。顧客数45は、顧客状況“離脱” の顧客数、すなわち離脱判断期間内に2回目の定期購入をしなかった顧客数を示す。なお、顧客状況“離脱” の顧客数は、上述した“離脱”の顧客数に代えて定期購入を解約した顧客のみをカウントしてもよい。   FIG. 4 is an explanatory diagram showing an example of a customer analysis result of regular purchase, and shows an analysis result of the purchase type “regular purchase”. The number of customers 42 in the display screen example 41 indicates the number of customers who made the purchase “one time (first time)” and the customer ratio, and in this example is 7604 (100%). The number of customers 43 indicates the number of customers with the customer status “stay”, that is, the number of customers whose analysis reference date is within the withdrawal determination period and for which the second regular purchase was not made. The number of customers 44 indicates the number of customers with the customer status “continuation”, that is, the number of customers who have made a second regular purchase. The number of customers 45 indicates the number of customers with the customer status “leave”, that is, the number of customers who did not make a second regular purchase within the leave determination period. It should be noted that the number of customers with the customer status “leave” may be counted only for customers whose subscription has been canceled instead of the number of customers with “leave” described above.

図5は、すべての購入種別の顧客分析結果の一例を示す説明図であり、購入種別“定期購入”、“通常購入”、“サンプル”それぞれの算出結果を示す。表示画面例51の顧客数52は、購入期間の初回が購入種別“定期購入”である顧客数 “7412(72.4%)”を示す。顧客数53は、購入期間の初回の購入種別が“通常購入”である顧客数を示す。顧客数54は、購入期間の初回の購入種別が“サンプル”である顧客数を示す。   FIG. 5 is an explanatory diagram showing an example of customer analysis results for all purchase types, and shows calculation results for purchase types “regular purchase”, “normal purchase”, and “sample”. The number of customers 52 in the display screen example 51 indicates the number of customers “7412 (72.4%)” whose purchase type is “regular purchase” for the first time in the purchase period. The number of customers 53 indicates the number of customers whose initial purchase type in the purchase period is “normal purchase”. The number of customers 54 indicates the number of customers whose initial purchase type in the purchase period is “sample”.

また顧客数55は、顧客状況“滞在”の顧客数、すなわち離脱判断期間内に2回目の定期購入、通常購入、離脱をしなかった顧客数を示す。顧客数56は、1回目の通常購入した後に“定期購入”した顧客数を示す。顧客数57は、1回目の通常購入した後に“通常購入”した顧客数を示す。顧客数58は、1回目の通常購入した後に“離脱”した顧客数を示す。なお、図4および図5の表示画面は、1画面として表示してもよい。   The number of customers 55 indicates the number of customers with the customer status “stay”, that is, the number of customers who did not make a second regular purchase, normal purchase, or withdrawal within the withdrawal determination period. The number of customers 56 indicates the number of customers who made a “regular purchase” after the first regular purchase. The number of customers 57 indicates the number of customers who “normally purchased” after the first normal purchase. The number of customers 58 indicates the number of customers who “leave” after the first normal purchase. 4 and 5 may be displayed as one screen.

ECサーバ200は、顧客が使用するスマートフォンやタブレット端末、パーソナルコンピュータ等の情報端末装置300との間で電子商取引を行なうウェブサーバであり、商品またはサービスを購入し決済するごとに購入履歴情報を生成し購入履歴情報記憶部210に格納する。ECサーバ200は、一例として通信販売サイトやオンラインショッピングモール等のウェブサーバである。送受信部201は、顧客分析サーバ100、情報端末装置300との間でデータを送受信する。送受信部201は、顧客分析サーバ100で分析対象とする購入履歴情報を購入履歴情報記憶部210から取得しネットワークNを介し顧客分析サーバ100に送信する。また、ECサーバ200は、購入履歴情報記憶部210に記憶する購入履歴情報を記憶媒体に書込み記憶媒体を介し顧客分析サーバ100に受け渡してもよい。   The EC server 200 is a web server that performs electronic commerce with an information terminal device 300 such as a smartphone, a tablet terminal, or a personal computer used by a customer, and generates purchase history information every time a product or service is purchased and settled. And stored in the purchase history information storage unit 210. The EC server 200 is a web server such as a mail order site or an online shopping mall as an example. The transmission / reception unit 201 transmits / receives data to / from the customer analysis server 100 and the information terminal device 300. The transmission / reception unit 201 acquires purchase history information to be analyzed by the customer analysis server 100 from the purchase history information storage unit 210 and transmits the purchase history information to the customer analysis server 100 via the network N. Further, the EC server 200 may write the purchase history information stored in the purchase history information storage unit 210 to the storage medium and deliver it to the customer analysis server 100 via the storage medium.

上述のように構成された顧客分析サーバ100で実行する顧客分析処理について説明する。図6は、顧客分析サーバ100が実行する顧客分析処理手順を示すフローチャートである。   A customer analysis process executed by the customer analysis server 100 configured as described above will be described. FIG. 6 is a flowchart showing a customer analysis processing procedure executed by the customer analysis server 100.

入出力部106は、分析条件の入力を受付ける(ステップS601)。分析条件として、分析基準日や離脱基準日数、購入期間、対象範囲、対象商品、対象カテゴリー、対象外商品、流入媒体等を設定する。   The input / output unit 106 receives input of analysis conditions (step S601). As analysis conditions, an analysis reference date, a withdrawal reference day, a purchase period, a target range, a target product, a target category, a non-target product, an inflow medium, and the like are set.

ここで、分析基準日は、顧客が商品またはサービスを購入しない日数である不買日数を算出する際に基準とする日付である。不買日数は、最終購入日から分析基準日までの期間の日数である。なお、分析基準日は、購入期間外、購入期間内のいずれにも設定することができる。   Here, the analysis reference date is a date used as a reference when calculating the number of non-purchase days, which is the number of days for which a customer does not purchase goods or services. The number of non-buying days is the number of days in the period from the last purchase date to the analysis reference date. The analysis reference date can be set outside the purchase period and within the purchase period.

離脱基準日数は、顧客状況が“離脱”であるか否かを判定するための基準とする日数である。購入期間は、顧客分析の対象とする顧客購入情報を定めるための条件であり、購入日が購入期間に含まれている顧客購入情報を分析対象とする。対象範囲は、購入期間の顧客購入情報のうち、さらに分析対象を絞り込む条件である。具体的には、購入期間に初回購入した顧客のみを対象にする“初回”と、購入期間に初回購入した顧客以外の顧客も対象にする“すべて”のいずれかを選択する。   The leaving standard days is the number of days used as a reference for determining whether or not the customer status is “leave”. The purchase period is a condition for determining customer purchase information to be subject to customer analysis, and the customer purchase information whose purchase date is included in the purchase period is the analysis target. The target range is a condition for further narrowing down the analysis target in the customer purchase information of the purchase period. Specifically, either “first time” that targets only the customer who made the initial purchase during the purchase period or “all” that targets customers other than the customer who purchased the first time during the purchase period is selected.

対象商品は、顧客が購入した商品およびサービスのうち対象とする商品、サービスを指定する。対象カテゴリーは、顧客が購入した商品およびサービスのうち対象とする商品のカテゴリー(商品群)やサービスのカテゴリー(サービス群)を指定する。対象外商品は、顧客が購入した商品およびサービスのうち対象としない商品、サービスを指定する。このように分析対象である商品、サービス、商品のカテゴリー、サービスのカテゴリーを指定または除外することによって、より細かな分析が可能となる。なお、分析対象の指定は、購入種別ごと購入回数ごとに行なってもよい。   The target product specifies a target product or service among the products and services purchased by the customer. The target category designates a target product category (product group) and a service category (service group) among products and services purchased by the customer. Non-target products specify products and services that are not targeted among products and services purchased by customers. By specifying or excluding the products, services, product categories, and service categories to be analyzed in this way, more detailed analysis is possible. The analysis target may be specified for each purchase type and for each number of purchases.

流入媒体は、顧客がECサーバ200のECサイトに流入した経路であり、例えば、ウェブ広告A、ウェブ広告B、広告メール等の媒体を設定する。これにより、媒体ごとの広告効果を分析することができる。   The inflow medium is a route through which the customer flows into the EC site of the EC server 200, and for example, media such as web advertisement A, web advertisement B, and advertisement mail are set. Thereby, the advertising effect for every medium can be analyzed.

顧客識別情報生成部102は、購入履歴情報を購入履歴情報記憶部110から取得する(ステップS602)。顧客識別情報生成部102は、購入履歴情報から顧客識別情報を生成する(ステップS603)。例えば、購入履歴情報に含まれる購入者名と電話番号(または住所)が一致する顧客は、同一顧客とみなしシステム内で一意となる顧客識別情報を付与する。顧客購入情報生成部103は、購入履歴情報それぞれについて購入種別ごとの購入回数をカウントする(ステップS604)。なお、購入回数は、顧客購入情報生成部103でカウントするほか、ECサーバ200で生成する購入履歴情報に記憶されていれば、その値を利用してもよい。顧客購入情報生成部103は、購入履歴情報に顧客識別情報と購入種別ごとの購入回数を追加した顧客購入情報を生成し顧客購入情報記憶部120に格納する(ステップS605)。   The customer identification information generation unit 102 acquires purchase history information from the purchase history information storage unit 110 (step S602). The customer identification information generation unit 102 generates customer identification information from the purchase history information (step S603). For example, a customer whose purchaser name and telephone number (or address) included in the purchase history information match is regarded as the same customer and is given unique customer identification information within the system. The customer purchase information generation unit 103 counts the number of purchases for each purchase type for each purchase history information (step S604). Note that the number of purchases may be counted by the customer purchase information generation unit 103 or may be used as long as it is stored in the purchase history information generated by the EC server 200. The customer purchase information generation unit 103 generates customer purchase information obtained by adding the customer identification information and the number of purchases for each purchase type to the purchase history information, and stores it in the customer purchase information storage unit 120 (step S605).

顧客状況判定部104は、顧客状況判定処理を実行する(ステップS606)。詳細は後述する。顧客数算出部105は、購入種別ごと購入回数ごとに顧客状況それぞれの顧客数および顧客割合を算出する(ステップS607)。入出力部106は、算出結果を表示画面に表示する(ステップS608)。一例として、図4、図5のような表示画面を表示する。   The customer situation determination unit 104 executes a customer situation determination process (step S606). Details will be described later. The number-of-customers calculation unit 105 calculates the number of customers and the customer ratio for each customer status for each purchase type and the number of purchases (step S607). The input / output unit 106 displays the calculation result on the display screen (step S608). As an example, a display screen as shown in FIGS. 4 and 5 is displayed.

次に、ステップS606の顧客状況判定処理について説明する。図7は、顧客分析サーバ100が実行する顧客状況判定処理手順を示すフローチャートである。   Next, the customer situation determination process in step S606 will be described. FIG. 7 is a flowchart showing a customer situation determination processing procedure executed by the customer analysis server 100.

顧客状況判定部104は、顧客購入情報記憶部120から顧客購入情報を取得する(ステップS701)。顧客状況判定部104は、顧客購入情報が最終購入であるか否かを判断する(ステップS702)。具体的には、対象である顧客購入情報の購入日以降の購入日に顧客購入情報が記憶されているか否かで判断する。顧客購入情報が最終購入でないと判断した場合(ステップS702:No)、顧客状況は“継続”と判定する(ステップS703)。   The customer situation determination unit 104 acquires customer purchase information from the customer purchase information storage unit 120 (step S701). The customer situation determination unit 104 determines whether or not the customer purchase information is a final purchase (step S702). Specifically, it is determined whether or not the customer purchase information is stored on the purchase date after the purchase date of the target customer purchase information. When it is determined that the customer purchase information is not the final purchase (step S702: No), the customer status is determined to be “continuation” (step S703).

顧客購入情報が最終購入であると判断した場合(ステップS702:Yes)、分析基準日から最終購入日までの日数、すなわち不買日数を算出する(ステップS704)。例えば、分析基準日が“2016年7月15日”で最終購入日が“2016年5月20日”の場合は、不買日数は“56日”と算出する。顧客状況判定部104は、不買日数が離脱基準日数以上であるか否かを判断する(ステップS705)。不買日数が離脱基準日数以上であると判断した場合(ステップS705:Yes)、顧客状況は“離脱”と判定する(ステップS706)。例えば、不買日数が“93日”で離脱基準日数が“90日”の場合“離脱”と判定する。不買日数が離脱基準日数以上でないと判断した場合(ステップS705:No)、顧客状況は“滞在”と判定する(ステップS707)。例えば、不買日数が“56日”で離脱基準日数が“90日”の場合“滞在”と判定する。   When it is determined that the customer purchase information is the final purchase (step S702: Yes), the number of days from the analysis reference date to the last purchase date, that is, the number of non-purchase days is calculated (step S704). For example, when the analysis reference date is “July 15, 2016” and the last purchase date is “May 20, 2016”, the number of non-purchased days is calculated as “56 days”. The customer situation determination unit 104 determines whether or not the number of non-purchased days is equal to or greater than the departure standard days (step S705). When it is determined that the number of non-purchased days is equal to or greater than the departure standard days (step S705: Yes), the customer status is determined to be “leave” (step S706). For example, if the number of non-purchased days is “93 days” and the withdrawal standard days is “90 days”, it is determined as “leave”. When it is determined that the number of non-purchased days is not equal to or greater than the departure standard days (step S705: No), the customer status is determined to be “stay” (step S707). For example, when the number of non-purchased days is “56 days” and the reference days for leaving is “90 days”, it is determined as “stay”.

顧客状況判定部104は、判定結果である顧客状況を顧客購入情報記憶部120に格納する(ステップS708)。例えば、図3の顧客購入情報31の顧客状況には“継続”を格納する。顧客状況判定部104は、顧客購入情報記憶部120に記憶するすべての顧客購入情報を取得したか否かを判断する(ステップS709)。すべての顧客購入情報を取得していないと判断した場合(ステップS709:No)、ステップS701に進む。すべての顧客購入情報を取得したと判断した場合(ステップS709:Yes)、処理を終了する。   The customer situation determination unit 104 stores the customer situation as a determination result in the customer purchase information storage unit 120 (step S708). For example, “continuation” is stored in the customer status of the customer purchase information 31 in FIG. The customer situation determination unit 104 determines whether or not all customer purchase information stored in the customer purchase information storage unit 120 has been acquired (step S709). When it is determined that not all customer purchase information has been acquired (step S709: No), the process proceeds to step S701. If it is determined that all customer purchase information has been acquired (step S709: Yes), the process ends.

このように、例えば“定期購入”という購入種別において、購入回数ごとに顧客状況を“継続”、“離脱”、“滞在”のいずれかと判定することによって、ECサイトでどの購入回数で顧客の離脱が発生しているかを容易に把握することができ、顧客に対し適切なタイミングで施策を講じることができる。   In this way, for example, in the purchase type “regular purchase”, the customer status is determined as “continue”, “leave”, or “stay” for each number of purchases. Can be easily grasped and measures can be taken to customers at an appropriate timing.

また、購入種別ごと購入回数ごとの顧客状況それぞれの顧客数および顧客割合を把握することができるため、購入種別を変更するための施策、例えば“通常購入”から“定期購入”に変更するための施策をどのタイミングで実施すべきなのかを判断することができる。   In addition, since it is possible to grasp the number of customers and the customer ratio for each purchase status for each purchase type, measures for changing the purchase type, for example, from “regular purchase” to “regular purchase” It is possible to determine when the measure should be implemented.

他の実施例として、図4、図5の顧客数および顧客割合を構成する顧客購入情報を顧客数および顧客割合の数値に対応付けて記憶部に記憶することによって、表示画面から数値の指示を受付けた場合に、数値に対応付けられた顧客購入情報を表示する。図8は、顧客購入情報一覧を示す説明図である。このように、顧客数を構成する顧客購入情報を表示することによって、購入種別ごと購入回数ごとの顧客それぞれの実像を確認することができる。例えば、顧客購入情報として、購入金額、購入商品、最終購入経過日数、累計購入回数、累計購入金額、メールシステムから取得したメール配信履歴等を記憶しておくことにより、より具体的な顧客に関する情報を確認することができる。   As another example, the customer purchase information constituting the number of customers and the customer ratio in FIGS. 4 and 5 is stored in the storage unit in association with the numerical values of the number of customers and the customer ratio. When accepted, the customer purchase information associated with the numerical value is displayed. FIG. 8 is an explanatory diagram showing a list of customer purchase information. In this way, by displaying the customer purchase information constituting the number of customers, it is possible to confirm the real image of each customer for each purchase type and the number of purchases. For example, as customer purchase information, by storing purchase price, purchased product, number of days of final purchase, cumulative number of purchases, cumulative purchase price, mail distribution history acquired from the mail system, etc., more specific information about the customer Can be confirmed.

また、他の実施例として、顧客推移を表示する旨の指示を受付けた場合に、顧客購入情報記憶部120に記憶する顧客購入情報から顧客状況ごとの顧客数および顧客割合の推移を時系列に表示する。具体的には、顧客購入情報記憶部120に記憶する顧客購入情報から購入種別ごと購入回数ごとに所定期間ごと(例えば1ヶ月ごと)の“継続”の顧客数と“離脱”の顧客数をカウントし一覧表を作成する。図9は、顧客状況ごとの顧客数および顧客割合を時系列に示す説明図である。このように、時系列の顧客数および顧客割合を表示することによって、所定期間ごとに顧客が定期購入に定着したか否か、また期間を限定し実施したキャンペーンの効果や定着率を確認することができる。   As another example, when an instruction to display customer transition is received, the transition of the number of customers for each customer situation and the transition of the customer ratio from the customer purchase information stored in the customer purchase information storage unit 120 in chronological order. indicate. Specifically, from the customer purchase information stored in the customer purchase information storage unit 120, the number of “continue” customers and the number of “leave” customers for each predetermined period (for example, every month) for each purchase type are counted. Create a list. FIG. 9 is an explanatory diagram showing the number of customers and the customer ratio for each customer situation in time series. In this way, by displaying the number of customers and the percentage of customers in a time series, it is possible to confirm whether or not the customer has settled in the regular purchase every predetermined period, and confirm the effect and retention rate of the campaign executed for a limited period. Can do.

上述したとおり、ECサーバ200は、一例として通信販売サイトやオンラインショッピングモール等のウェブサーバであるが、顧客分析サーバ100と他のシステムとの連携例として、実店舗での商品・サービスの販売情報を管理するPOSシステム(Point Of Sales system)と連携しPOSシステムで生成する購入履歴情報を顧客分析サーバ100に送信し顧客分析処理を実行してもよい。   As described above, the EC server 200 is a web server such as a mail-order sales site or an online shopping mall as an example, but as an example of cooperation between the customer analysis server 100 and other systems, sales information on products and services at actual stores is provided. The purchase history information generated by the POS system in cooperation with a POS system (Point Of Sales system) that manages the client may be transmitted to the customer analysis server 100 to execute the customer analysis process.

また、通信販売サイトやオンラインショッピングモールのような電子商取引に加え、電話注文、ファクシミリ注文、実店舗での販売等の複数の販路がある場合には、各販路のデータを1つのシステム(例えば、受注管理システムや基幹システム等)に集約し集約した購入履歴情報を顧客分析サーバ100に送信し顧客分析処理を実行してもよい。   In addition to electronic commerce such as mail order sites and online shopping malls, when there are multiple sales channels such as telephone orders, facsimile orders, sales at actual stores, etc., the data of each sales channel is stored in one system (for example, The purchase history information aggregated in the order management system, the backbone system, etc.) may be transmitted to the customer analysis server 100 to execute the customer analysis process.

さらに、購入履歴情報を倉庫からの出荷データの置換えることによって、倉庫での入荷・出荷・在庫を管理する倉庫システムと連携し、倉庫システムで生成した出荷履歴情報を顧客分析サーバ100に送信し顧客分析処理を実行してもよい。   Further, by replacing the purchase history information with the shipment data from the warehouse, the shipment history information generated in the warehouse system is transmitted to the customer analysis server 100 in cooperation with the warehouse system that manages the arrival, shipment, and inventory in the warehouse. Customer analysis processing may be performed.

その他にも、財務会計処理を実行する会計ソフトウェアや、月ごとのの商品購入契約が想定される新聞購読契約を管理するシステム、複数回のサービス購入が想定される歯医者の予約システム等と連携し、各システムで生成した購入履歴情報を顧客分析サーバ100に送信し顧客分析処理を実行してもよい。   In addition, it is linked with accounting software that performs financial accounting processing, a system that manages newspaper subscription contracts that assume monthly product purchase contracts, and a dentist reservation system that is expected to purchase multiple services. The purchase history information generated by each system may be transmitted to the customer analysis server 100 to perform customer analysis processing.

上述した実施例にかかる顧客分析サーバ100のハードウェア構成は、CPU(Central Processing Unit)、ROM(Read Only Memory)やRAM(Random Access Memory)、HDD(Hard Disk Drive)等の外部記憶装置、通信制御装置等を備えた通常のコンピュータであり、ROMやRAM、HDD等に記憶されたプログラムをCPUが読み出し動作させることによって、上述した構成や機能を実現する。   The hardware configuration of the customer analysis server 100 according to the above-described embodiment includes a CPU (Central Processing Unit), an ROM (Read Only Memory), a RAM (Random Access Memory), an HDD (Hard Disk Drive), and other external storage devices, communication The computer is a normal computer including a control device and the like, and the above-described configuration and functions are realized by the CPU reading and operating programs stored in the ROM, RAM, HDD, and the like.

顧客分析サーバ100で動作するプログラムは、インターネット等のネットワークNに接続されたコンピュータ上に格納しておき、ネットワークN経由でダウンロードさせることにより提供したり、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、DVD、USBメモリ、SDカード等のコンピュータで読取り可能な記録媒体に記録し提供してもよい。また、上述した機能や処理を実現するプログラムは、API(Application Programming Interface)やSaaS(Software as a Service)、またはクラウドコンピューティングでのASP(Application Service Provider)サービスの1機能という形態で提供してもよい。   A program that operates on the customer analysis server 100 is stored on a computer connected to a network N such as the Internet, and is provided by being downloaded via the network N, or a file in an installable or executable format. May be recorded and provided on a computer-readable recording medium such as a CD-ROM, a DVD, a USB memory, or an SD card. The program for realizing the functions and processes described above is provided in the form of one function of API (Application Programming Interface), SaaS (Software as a Service), or ASP (Application Service Provider) service in cloud computing. Also good.

なお、本発明は、上述した実施例そのままに限定されるものではなく、必ずしも物理的に図示のように構成されている必要はない。また、本発明は、実施例で説明した構成要素の全部または一部を、各種の負荷や使用状況などに応じ、任意の単位で機能的または物理的に分割、統合、入替、変形または削除して構成することができる。   Note that the present invention is not limited to the above-described embodiments as they are, and does not necessarily have to be physically configured as illustrated. In addition, the present invention is configured to functionally or physically divide, integrate, replace, modify, or delete all or a part of the constituent elements described in the embodiments in arbitrary units according to various loads or usage conditions. Can be configured.

N…ネットワーク、10…顧客分析システム、100…顧客分析サーバ、101…送受信部、102…顧客識別情報生成部、103…顧客購入情報生成部、104…顧客状況判定部、105…顧客数算出部、106…入出力部、110…購入履歴情報記憶部、120…顧客購入情報記憶部、200…ECサーバ、201…送受信部、210…購入履歴情報記憶部、300…情報端末装置 DESCRIPTION OF SYMBOLS N ... Network, 10 ... Customer analysis system, 100 ... Customer analysis server, 101 ... Transmission / reception part, 102 ... Customer identification information generation part, 103 ... Customer purchase information generation part, 104 ... Customer status determination part, 105 ... Customer number calculation part 106 ... I / O unit 110 ... Purchase history information storage unit 120 ... Customer purchase information storage unit 200 ... EC server 201 ... Transmission / reception unit 210 ... Purchase history information storage unit 300 ... Information terminal device

上述した課題を解決するために、本発明では、顧客分析する基準日である分析基準日の入力を受付け、顧客購入情報記憶手段に記憶する顧客購入情報および分析基準日を用い、顧客状況を判定し、判定した顧客状況を加えた顧客購入情報を生成し、生成した顧客購入情報から顧客状況それぞれの顧客数を算出し、算出した顧客状況それぞれの顧客数を購入回数ごとに表示し、顧客状況は、商品またはサービスを購入した後にさらに商品またはサービスを購入した顧客である旨を示す継続、商品またはサービスを購入した後に離脱判断期間が経過せず、かつ、商品またはサービスを購入していない顧客である旨を示す滞在、商品またはサービスを購入した後に離脱判断期間内に商品またはサービスを購入していない顧客である旨を示す離脱のいずれかであることを特徴とする。 In order to solve the above-described problems, in the present invention, the input of an analysis reference date, which is a reference date for customer analysis, is accepted, and the customer purchase information and the analysis reference date stored in the customer purchase information storage means are used to determine the customer situation. and generates customer purchase information plus customer situation determined, resulting calculates the number of customers each customer situation from the customer purchase information, displayed for each calculated number purchased number of customers each customer situation was, customer status Is a continuation that indicates that the customer has purchased a product or service after purchasing the product or service, a customer who has not purchased the product or service for which the withdrawal judgment period has not elapsed, and has not purchased the product or service. A stay, a product or service that indicates that the customer has not purchased the product or service within the withdrawal decision period after purchasing the product or service. Characterized in that Re is or.

Claims (10)

顧客を一意に識別する顧客識別情報と、前記顧客が商品またはサービスを購入した購入日と、前記顧客の通算購入回数である購入回数と、を対応付けた顧客購入情報を記憶する顧客購入情報記憶手段と、
顧客分析する基準日である分析基準日の入力を受付ける基準日受付手段と、
前記顧客購入情報記憶手段に記憶する顧客購入情報および前記分析基準日を用い、顧客状況を判定する顧客状況判定手段と、
前記顧客状況判定手段によって判定した前記顧客状況を加えた前記顧客購入情報を生成する顧客購入情報生成手段と、
前記顧客購入情報生成手段によって生成した前記顧客購入情報から前記顧客状況それぞれの顧客数を算出する顧客数算出手段と、
前記顧客数算出手段によって算出した前記顧客状況それぞれの顧客数を前記購入回数ごとに表示する表示手段と、
を備えることを特徴とする顧客分析サーバ。
Customer purchase information storage that stores customer purchase information in which customer identification information that uniquely identifies a customer, a purchase date when the customer purchased a product or service, and a purchase count that is the total purchase count of the customer are associated with each other Means,
A reference date receiving means for receiving an input of an analysis reference date, which is a reference date for customer analysis;
Using the customer purchase information stored in the customer purchase information storage means and the analysis reference date, a customer situation determination means for judging a customer situation;
Customer purchase information generation means for generating the customer purchase information to which the customer status determined by the customer status determination means is added;
Customer number calculation means for calculating the number of customers in each of the customer statuses from the customer purchase information generated by the customer purchase information generation means;
Display means for displaying the number of customers of each of the customer statuses calculated by the number of customers calculating means for each number of purchases;
A customer analysis server comprising:
前記顧客購入情報記憶手段は、さらに商品またはサービスを購入する方法を示す購入種別を前記顧客識別情報に対応付けて記憶し、前記購入回数を前記購入種別ごとの回数とし、
前記顧客数算出手段は、前記購入種別ごとの前記顧客数を算出すること、を特徴とする請求項1に記載の顧客分析サーバ。
The customer purchase information storage means further stores a purchase type indicating a method of purchasing goods or services in association with the customer identification information, and sets the number of purchases as the number of purchase types.
The customer analysis server according to claim 1, wherein the number of customers calculation unit calculates the number of customers for each purchase type.
前記顧客数算出手段は、前記購入日が所定期間内である前記顧客購入情報から前記顧客数を算出すること、を特徴とする請求項1または請求項2に記載の顧客分析サーバ。   3. The customer analysis server according to claim 1, wherein the number of customers calculation unit calculates the number of customers from the customer purchase information whose purchase date is within a predetermined period. 前記顧客数算出手段は、前記所定期間内に初回購入した顧客の前記顧客購入情報から前記顧客数を算出すること、を特徴とする請求項1〜3のいずれか1つに記載の顧客分析サーバ。   4. The customer analysis server according to claim 1, wherein the number of customers calculation unit calculates the number of customers from the customer purchase information of a customer who has made a first purchase within the predetermined period. 5. . 前記顧客状況は、商品またはサービスを購入した後にさらに商品またはサービスを購入した顧客である旨を示す継続、商品またはサービスを購入した後に離脱判断期間が経過せず、かつ、商品またはサービスを購入していない顧客である旨を示す滞在、商品またはサービスを購入した後に前記離脱判断期間内に商品またはサービスを購入していない顧客である旨を示す離脱のいずれかであること、を特徴とする請求項1〜4のいずれか1つに記載の顧客分析サーバ。   The customer status includes a continuation indicating that the customer has purchased the product or service after purchasing the product or service, the withdrawal judgment period has not elapsed after the purchase of the product or service, and the product or service has been purchased. A stay indicating that the customer is not a customer, or a customer who has not purchased a product or service within the departure judgment period after purchasing a product or service after purchase. Item 5. The customer analysis server according to any one of Items 1 to 4. ECサーバで生成する購入履歴情報に含まれる顧客を特定できる情報の組合せから前記顧客識別情報を生成する顧客識別情報生成手段、をさらに備え、
前記顧客購入情報生成手段は、前記顧客識別情報生成手段によって生成した前記顧客識別情報を加えた前記顧客購入情報を生成すること、を特徴とする請求項1〜5のいずれか1つに記載の顧客分析サーバ。
A customer identification information generating unit that generates the customer identification information from a combination of information that can identify the customer included in the purchase history information generated by the EC server;
The said customer purchase information generation means produces | generates the said customer purchase information which added the said customer identification information produced | generated by the said customer identification information production | generation means, The Claim 1 characterized by the above-mentioned. Customer analysis server.
前記顧客数算出手段は、前記顧客数と、前記顧客数にカウントされた前記顧客購入情報とを対応付けて記憶部に記憶し、
前記表示手段は、前記顧客数の指示を受付けた場合、前記記憶部に記憶する前記顧客数に対応付けられた前記顧客購入情報を表示すること、を特徴とする請求項1〜6のいずれか1つに記載の顧客分析サーバ。
The customer number calculating means stores the number of customers in association with the customer purchase information counted in the number of customers in a storage unit,
The said display means displays the said customer purchase information matched with the said number of customers memorize | stored in the said memory | storage part, when the instruction | indication of the said number of customers is received. The customer analysis server described in one.
前記表示手段は、顧客推移を表示する旨の指示を受付けた場合に、前記顧客購入情報記憶手段に記憶する前記顧客購入情報から前記顧客状況ごとの顧客数および顧客割合の推移を時系列に表示すること、を特徴とする請求項1〜7のいずれか1つに記載の顧客分析サーバ。   When the display means receives an instruction to display customer transition, the transition of the number of customers and the customer ratio for each customer situation is displayed in time series from the customer purchase information stored in the customer purchase information storage means. The customer analysis server according to any one of claims 1 to 7, characterized in that: 顧客を一意に識別する顧客識別情報と、前記顧客が商品またはサービスを購入した購入日と、前記顧客の通算購入回数である購入回数と、を対応付けた顧客購入情報を記憶する顧客購入情報記憶手段を備える顧客分析サーバで実行される顧客分析方法であって、
顧客分析する基準日である分析基準日の入力を受付ける基準日受付ステップと、
前記顧客購入情報記憶手段に記憶する顧客購入情報および前記分析基準日を用い、顧客状況を判定する顧客状況判定ステップと、
前記顧客状況判定ステップによって判定した前記顧客状況を加えた前記顧客購入情報を生成する顧客購入情報生成ステップと、
前記顧客購入情報生成ステップによって生成した前記顧客購入情報から前記顧客状況それぞれの顧客数を算出する顧客数算出ステップと、
前記顧客数算出手段によって算出した前記顧客状況それぞれの顧客数を前記購入回数ごとに表示する表示ステップと、
を含むことを特徴とする顧客分析方法。
Customer purchase information storage that stores customer purchase information in which customer identification information that uniquely identifies a customer, a purchase date when the customer purchased a product or service, and a purchase count that is the total purchase count of the customer are associated with each other A customer analysis method executed by a customer analysis server comprising means,
A reference date receiving step for accepting an input of an analysis reference date, which is a reference date for customer analysis;
A customer status determination step for determining customer status using the customer purchase information stored in the customer purchase information storage means and the analysis reference date;
A customer purchase information generation step for generating the customer purchase information including the customer status determined by the customer status determination step;
A customer number calculating step of calculating the number of customers in each of the customer statuses from the customer purchase information generated by the customer purchase information generating step;
A display step of displaying the number of customers of each of the customer statuses calculated by the customer number calculating means for each number of purchases;
A customer analysis method characterized by including:
顧客を一意に識別する顧客識別情報と、前記顧客が商品またはサービスを購入した購入日と、前記顧客の通算購入回数である購入回数と、を対応付けた顧客購入情報を記憶する顧客購入情報記憶手段を備える顧客分析サーバに、
顧客分析する基準日である分析基準日の入力を受付ける基準日受付ステップと、
前記顧客購入情報記憶手段に記憶する顧客購入情報および前記分析基準日を用い、顧客状況を判定する顧客状況判定ステップと、
前記顧客状況判定ステップによって判定した前記顧客状況を加えた前記顧客購入情報を生成する顧客購入情報生成ステップと、
前記顧客購入情報生成ステップによって生成した前記顧客購入情報から前記顧客状況それぞれの顧客数を算出する顧客数算出ステップと、
前記顧客数算出手段によって算出した前記顧客状況それぞれの顧客数を前記購入回数ごとに表示する表示ステップと、
を実行させることを特徴とする顧客分析プログラム。
Customer purchase information storage that stores customer purchase information in which customer identification information that uniquely identifies a customer, a purchase date when the customer purchased a product or service, and a purchase count that is the total purchase count of the customer are associated with each other In the customer analysis server with means,
A reference date receiving step for accepting an input of an analysis reference date, which is a reference date for customer analysis;
A customer status determination step for determining customer status using the customer purchase information stored in the customer purchase information storage means and the analysis reference date;
A customer purchase information generation step for generating the customer purchase information including the customer status determined by the customer status determination step;
A customer number calculating step of calculating the number of customers in each of the customer statuses from the customer purchase information generated by the customer purchase information generating step;
A display step of displaying the number of customers of each of the customer statuses calculated by the customer number calculating means for each number of purchases;
A customer analysis program characterized by having
JP2016166310A 2016-08-26 2016-08-26 Customer analysis server, customer analysis method, and customer analysis program Active JP6094021B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016166310A JP6094021B1 (en) 2016-08-26 2016-08-26 Customer analysis server, customer analysis method, and customer analysis program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016166310A JP6094021B1 (en) 2016-08-26 2016-08-26 Customer analysis server, customer analysis method, and customer analysis program

Publications (2)

Publication Number Publication Date
JP6094021B1 JP6094021B1 (en) 2017-03-15
JP2018032357A true JP2018032357A (en) 2018-03-01

Family

ID=58281037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016166310A Active JP6094021B1 (en) 2016-08-26 2016-08-26 Customer analysis server, customer analysis method, and customer analysis program

Country Status (1)

Country Link
JP (1) JP6094021B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023229098A1 (en) * 2022-05-26 2023-11-30 주식회사 센티언스 Data analysis device for effectively displaying analysis results, and method for operating data analysis device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002049738A (en) * 2000-08-04 2002-02-15 Office Automation System:Kk Client identification marketing method
JP3864904B2 (en) * 2002-12-13 2007-01-10 株式会社電通テック Customer asset value evaluation system
JP2016143237A (en) * 2015-02-02 2016-08-08 株式会社イースト Information processor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023229098A1 (en) * 2022-05-26 2023-11-30 주식회사 센티언스 Data analysis device for effectively displaying analysis results, and method for operating data analysis device

Also Published As

Publication number Publication date
JP6094021B1 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6181501B2 (en) Amount calculation apparatus, amount calculation method, and program
JP5337174B2 (en) Demand prediction device and program thereof
US12481902B2 (en) Systems and methods for short identifier behavioral analytics
EP3373219A1 (en) Inventory management and method
WO2023163106A1 (en) Information processing system, information processing method, and program
JP2018041220A (en) Marketing support method, program, computer storage medium, and marketing support system
JP6094021B1 (en) Customer analysis server, customer analysis method, and customer analysis program
JP7091276B2 (en) Proposed equipment, proposed method and proposed program
US20230289845A1 (en) Estimation system, estimation method, and program recording medium
Tripathi EOQ model with stock level dependent demand rate and inflation under trade credits
US20160253680A1 (en) Real-time inter and intra outlet trending
JP7114888B2 (en) Recommendation degree determination device, display system, control method and program
JP7598577B2 (en) ADVERTISING ANALYSIS SERVER, ADVERTISING ANALYSIS METHOD, AND ADVERTISING ANALYSIS PROGRAM
JP6926385B2 (en) Delivery management device, delivery management method and delivery management program
JP7494260B2 (en) PROGRAM, INFORMATION PROCESSING APPARATUS, AND INFORMATION PROCESSING METHOD
US12354074B2 (en) Data processing apparatus
KR20200042381A (en) Apparatus and method of transmitting real time marketing messages
JP6159276B2 (en) Sales information registration processing device, point server, and point processing program
US20250131403A1 (en) Information processing system and information processing method
JP2019168880A (en) Advertisement distribution control program, advertisement distribution control method, and advertisement distribution control apparatus
JP7388043B2 (en) Output device, output method and output program
JP2004259126A (en) Product sales balance management device and program
JP2025123984A (en) Information processing device and program
JP2023042366A (en) Information presenting device, information presenting method and information presenting program
JP2017037571A (en) Information processing system, information processing device, information processing method, and program

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170127

R150 Certificate of patent or registration of utility model

Ref document number: 6094021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250