[go: up one dir, main page]

JP2017011780A - POWER GENERATION PREDICTION CONTROL DEVICE, POWER GENERATION PREDICTION METHOD, AND POWER GENERATION PREDICTION PROGRAM - Google Patents

POWER GENERATION PREDICTION CONTROL DEVICE, POWER GENERATION PREDICTION METHOD, AND POWER GENERATION PREDICTION PROGRAM Download PDF

Info

Publication number
JP2017011780A
JP2017011780A JP2015121698A JP2015121698A JP2017011780A JP 2017011780 A JP2017011780 A JP 2017011780A JP 2015121698 A JP2015121698 A JP 2015121698A JP 2015121698 A JP2015121698 A JP 2015121698A JP 2017011780 A JP2017011780 A JP 2017011780A
Authority
JP
Japan
Prior art keywords
power generation
generation amount
amount
prediction
storage unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015121698A
Other languages
Japanese (ja)
Other versions
JP5833267B1 (en
Inventor
祐輔 小嶋
Yusuke Kojima
祐輔 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LOOOP Inc
Original Assignee
LOOOP Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LOOOP Inc filed Critical LOOOP Inc
Priority to JP2015121698A priority Critical patent/JP5833267B1/en
Application granted granted Critical
Publication of JP5833267B1 publication Critical patent/JP5833267B1/en
Publication of JP2017011780A publication Critical patent/JP2017011780A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power generation amount prediction control device capable of highly accurately predicting a power generation amount of a photovoltaic power plant.SOLUTION: The power generation amount prediction control device comprises: a storage part 2 in which an attenuation rate of a power generation amount with respect to a cloud amount or the like is stored; a power generation amount correction part 13 by which, a periodically stored past power generation amount X is corrected into a power generation amount Xin the case of a cloud amount 0% based on the attenuation rate of the power generation amount corresponding to the cloud amount at the power generation time thereof, and stored in the storage part 2 as a new corrected power generation amount Xat every power generation time; a first power generation amount prediction part 14 by which the stored corrected power generation amount Xis sorted for the unit of a power generation time, an average and a standard deviation at every power generation time are calculated and based on the obtained average and standard deviation, a power generation amount Xin the case of cloud amount 0% on a prediction target date is predicted; and a second power generation amount prediction part 15 by which, based on the power generation amount Xand the attenuation rate of the power generation amount corresponding to a cloud amount on the prediction target date, a power generation amount Xon the prediction target date is predicted.SELECTED DRAWING: Figure 2

Description

本発明は、太陽光発電所の発電量を予測する発電量予測制御装置、発電量予測方法および発電量予測プログラムに関する。   The present invention relates to a power generation amount prediction control device, a power generation amount prediction method, and a power generation amount prediction program for predicting a power generation amount of a solar power plant.

太陽光発電は、石油等の化石燃料に依存しない無限エネルギーであり、石油等の化石燃料と違い発電時にCO2を排出しないクリーンなエネルギーとして注目されている。一方で、太陽光発電は、気象条件により発電量が変動する非常に不安定な発電設備である。そのため、その発電量の予測が可能となれば、適用範囲はさらに広がるものと考えられる。 Photovoltaic power generation is an infinite energy that does not depend on fossil fuels such as oil, and has attracted attention as clean energy that does not emit CO 2 during power generation unlike fossil fuels such as oil. On the other hand, solar power generation is a very unstable power generation facility whose power generation amount varies depending on weather conditions. Therefore, if the power generation amount can be predicted, the scope of application will be further expanded.

太陽光発電所の発電量を予測する従来の方法として、たとえば、下記特許文献1に記載の技術がある。下記特許文献1には、発電量を予測するシステムにおいて、太陽光発電所の設置地域で過去に観測された天気現象と、過去に計測された太陽光発電所の発電量とに基づき、発電量予測式を導出することが記載されている。   As a conventional method for predicting the power generation amount of a solar power plant, for example, there is a technique described in Patent Document 1 below. In the following Patent Document 1, in a system for predicting the power generation amount, the power generation amount is based on the weather phenomenon observed in the past in the installation area of the solar power plant and the power generation amount of the solar power plant measured in the past. Deriving a prediction formula is described.

また、下記特許文献1には、太陽光発電所の設置地域における予測対象日または予測対象時間帯についての天気予報と、予測対象日の予測実施時刻前に計測された太陽光発電所の発電量と、を上記発電量予測式に入力することにより、太陽光発電所の発電量を予測することが記載されている。特に、予測実施時刻前に計測された発電量に関し、下記特許文献1には、直前の時間帯における実測発電量(予測計算を10時に実施する場合には9時の時間帯の実測発電量)を対象日の発電量予測に用いることが明記されている。   Patent Document 1 listed below includes a weather forecast for a prediction target date or a prediction target time zone in a solar power plant installation area, and a power generation amount of the solar power plant measured before the prediction execution time of the prediction target date. Is input to the power generation amount prediction formula, and the power generation amount of the solar power plant is predicted. In particular, regarding the power generation amount measured before the prediction execution time, the following Patent Document 1 describes the actual power generation amount in the immediately preceding time zone (actual power generation amount in the 9 o'clock time zone when the prediction calculation is performed at 10:00). Is used to predict power generation on the target day.

特許3984604号公報Japanese Patent No. 3984604

しかしながら、上記引用文献に記載された技術は、発電量を予測するシステムにおいて、太陽光発電所の設置地域において過去に観測された天気現象を用いているものの、天気現象は晴れ:1,曇り:2,雨:3,雲:4と数値化する程度にとどまり、雲量と発電量の相関関係が把握されていないため、発電量の予測精度において改善の余地がある。   However, although the technique described in the above cited document uses a weather phenomenon observed in the past in the installation area of the solar power plant in a system for predicting the amount of power generation, the weather phenomenon is sunny: 1, cloudy: 2, the rain: 3 and the cloud: 4. The degree of correlation between the amount of cloud and the amount of power generation is not yet grasped, and there is room for improvement in the prediction accuracy of the amount of power generation.

また、上記引用文献に記載された技術は、予測対象時刻の直前(たとえば1時間前)の発電量を用いて現時点の発電量を予測しているが、たとえば、前日,前々日等の発電量を発電量予測式に入力して発電量を予測するような仕様ではない。すわわち、予測対象時刻の直前の発電量を重要なパラメータとして発電量予測式に入力するにことによって正確な発電量を予測するシステムであり、たとえば、予測対象日の前日,前々日…等に当該対象日の発電量を予測して小売業者(電力会社等、売電,買電の事業に携わる者)にその予測発電量を通知するようなケースには対応していない。   The technique described in the above cited document predicts the current power generation amount using the power generation amount immediately before the prediction target time (for example, one hour ago). It is not a specification that predicts the power generation amount by inputting the amount into the power generation amount prediction formula. In other words, it is a system that predicts an accurate power generation amount by inputting the power generation amount immediately before the prediction target time as an important parameter in the power generation amount prediction formula. In such a case, the power generation amount on the target day is predicted and the retailer (the person engaged in the business of selling or buying power, such as an electric power company) is notified of the predicted power generation amount.

本発明は、上記に鑑みてなされたものであって、雲量と太陽光発電の発電量との関係に基づいて予測対象日の発電量を高精度に予測することが可能な発電量予測制御装置、発電量予測方法および発電量予測プログラムを提供することを目的とする。   The present invention has been made in view of the above, and is a power generation amount prediction control apparatus capable of predicting the power generation amount on the prediction target day with high accuracy based on the relationship between the cloud amount and the power generation amount of solar power generation. An object is to provide a power generation amount prediction method and a power generation amount prediction program.

上述した課題を解決し、目的を達成するために、本発明にかかる発電量予測制御装置は、太陽光発電所の発電量を予測する発電量予測制御装置であって、雲量と発電量の相関関係を示す情報が記憶された記憶手段と、定期的に蓄積された過去の発電量を、その発電時刻における天気予報データに含まれる雲量および前記相関関係を示す情報に基づいて、雲量0%の場合の発電量に補正し、補正後の発電量を当該発電時刻毎に新たな補正後発電量として蓄積する発電量補正手段と、蓄積された補正後発電量を発電時刻単位に分類して発電時刻毎の平均および標準偏差を計算し、当該平均および標準偏差に基づいて、予測対象日における雲量0%の場合の発電量である第1の予測発電量を予測する第1の発電量予測手段と、前記第1の予測発電量、予測対象日の天気予報データに含まれる雲量、および前記相関関係を示す情報に基づいて、当該予測対象日の発電量である第2の予測発電量を予測する第2の発電量予測手段と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, the power generation amount prediction control device according to the present invention is a power generation amount prediction control device that predicts the power generation amount of a solar power plant, and is a correlation between the cloud amount and the power generation amount. Based on the storage means storing the information indicating the relationship and the past power generation amount periodically accumulated based on the cloud amount included in the weather forecast data at the power generation time and the information indicating the correlation, the cloud amount of 0% Power generation amount correction means for correcting the generated power generation amount to a new power generation amount at each power generation time and generating the power by classifying the stored corrected power generation amount into power generation time units. A first power generation amount predicting unit that calculates an average and standard deviation for each time and predicts a first predicted power generation amount that is a power generation amount when the cloud amount is 0% on the prediction target day based on the average and standard deviation. And the first predicted power generation amount Second power generation amount prediction means for predicting a second predicted power generation amount that is the power generation amount of the prediction target day based on the cloud amount included in the weather forecast data of the prediction target day and information indicating the correlation; It is characterized by providing.

また、つぎの発明にかかる発電量予測方法は、太陽光発電所の発電量を予測するための発電量予測方法であって、雲量と発電量の相関関係を示す情報を記憶部に記憶する記憶ステップと、定期的に前記記憶部に蓄積された過去の発電量を発電時刻毎に読み出し、当該過去の発電量を、その発電時刻における天気予報データに含まれる雲量および前記相関関係を示す情報に基づいて、雲量0%の場合の発電量に補正し、補正後の発電量を当該発電時刻毎に新たな補正後発電量として前記記憶部に蓄積する発電量補正ステップと、前記記憶部に蓄積された補正後発電量を読み出し、当該補正後発電量を発電時刻単位に分類して発電時刻毎の平均および標準偏差を計算し、当該平均および標準偏差に基づいて、予測対象日における雲量0%の場合の発電量を予測し、予測した発電量を第1の予測発電量として前記記憶部に記憶する第1の発電量予測ステップと、前記記憶部に記憶された第1の予測発電量を読み出し、当該第1の予測発電量、予測対象日の天気予報データに含まれる雲量、および前記相関関係を示す情報に基づいて、当該予測対象日の発電量を予測し、予測した発電量を第2の予測発電量として前記記憶部に記憶する第2の発電量予測ステップと、を含むことを特徴とする。   A power generation amount prediction method according to the next invention is a power generation amount prediction method for predicting a power generation amount of a solar power plant, and stores information indicating a correlation between a cloud amount and a power generation amount in a storage unit. Step, and periodically read the past power generation amount stored in the storage unit at each power generation time, and the past power generation amount is converted into information indicating the cloud amount and the correlation included in the weather forecast data at the power generation time. Based on this, the power generation amount when the cloud amount is 0% is corrected, and the corrected power generation amount is stored in the storage unit as a new corrected power generation amount at each power generation time, and is stored in the storage unit. The corrected power generation amount is read out, the corrected power generation amount is classified into power generation time units, the average and standard deviation for each power generation time are calculated, and based on the average and standard deviation, the cloud amount on the prediction target day is 0% In the case of A first power generation amount prediction step of predicting the amount of electricity, storing the predicted power generation amount as a first predicted power generation amount in the storage unit, and reading out the first predicted power generation amount stored in the storage unit; Based on the predicted power generation amount of 1, the cloud amount included in the weather forecast data of the prediction target day, and the information indicating the correlation, the power generation amount of the prediction target day is predicted, and the predicted power generation amount is the second predicted power generation And a second power generation amount prediction step stored in the storage unit as a quantity.

また、つぎの発明にかかる発電量予測プログラムは、太陽光発電所の発電量を予測する発電量予測制御装置として動作するコンピュータにより実行させる発電量予測プログラムであって、雲量と発電量の相関関係を示す情報を記憶部に記憶する記憶手順、定期的に前記記憶部に蓄積された過去の発電量を発電時刻毎に読み出し、当該過去の発電量を、その発電時刻における天気予報データに含まれる雲量および前記相関関係を示す情報に基づいて、雲量0%の場合の発電量に補正し、補正後の発電量を当該発電時刻毎に新たな補正後発電量として前記記憶部に蓄積する発電量補正手順、前記記憶部に蓄積された補正後発電量を読み出し、当該補正後発電量を発電時刻単位に分類して発電時刻毎の平均および標準偏差を計算し、当該平均および標準偏差に基づいて、予測対象日における雲量0%の場合の発電量を予測し、予測した発電量を第1の予測発電量として前記記憶部に記憶する第1の発電量予測手順、前記記憶部に記憶された第1の予測発電量を読み出し、当該第1の予測発電量、予測対象日の天気予報データに含まれる雲量、および前記相関関係を示す情報に基づいて、当該予測対象日の発電量を予測し、予測した発電量を第2の予測発電量として前記記憶部に記憶する第2の発電量予測手順、をコンピュータに実行させることを特徴とする。   A power generation amount prediction program according to the next invention is a power generation amount prediction program that is executed by a computer that operates as a power generation amount prediction control device that predicts a power generation amount of a solar power plant, and a correlation between a cloud amount and a power generation amount The storage procedure for storing the information indicating in the storage unit, the past power generation amount periodically stored in the storage unit is read at each power generation time, and the past power generation amount is included in the weather forecast data at the power generation time Based on the cloud amount and the information indicating the correlation, the power generation amount is corrected to the power generation amount when the cloud amount is 0%, and the corrected power generation amount is accumulated in the storage unit as a new corrected power generation amount at each power generation time. Correction procedure, read the corrected power generation amount stored in the storage unit, classify the corrected power generation amount into power generation time units, calculate the average and standard deviation for each power generation time, A first power generation amount prediction procedure for predicting a power generation amount when the cloud amount is 0% on the prediction target date based on the quasi-deviation, and storing the predicted power generation amount as a first predicted power generation amount in the storage unit, the storage The first predicted power generation amount stored in the unit, and based on the information indicating the first predicted power generation amount, the cloud amount included in the weather forecast data of the prediction target day, and the correlation, A power generation amount is predicted, and the computer is caused to execute a second power generation amount prediction procedure for storing the predicted power generation amount as a second predicted power generation amount in the storage unit.

本発明によれば、予測対象日における太陽光発電所の発電量を高精度に予測することができる、という効果を奏する。   According to the present invention, there is an effect that the power generation amount of the solar power plant on the prediction target date can be predicted with high accuracy.

図1は、発電量予測制御装置として動作するコンピュータのハードウェア構成例を示す図である。FIG. 1 is a diagram illustrating a hardware configuration example of a computer that operates as a power generation amount prediction control apparatus. 図2は、発電量予測制御装置の機能ブロック構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a functional block configuration of the power generation amount prediction control apparatus. 図3は、発電量実績を雲量0%の場合の発電量に補正する処理を示すフローチャートである。FIG. 3 is a flowchart showing a process of correcting the actual power generation amount to the power generation amount when the cloud amount is 0%. 図4は、「発電量実績を雲量0%の場合の発電量に補正する処理」を実行した場合のイメージを示す図である。FIG. 4 is a diagram illustrating an image in a case where “a process of correcting the actual power generation amount to the power generation amount when the cloud amount is 0%” is executed. 図5は、予測対象日における雲量0%の場合の発電量を予測する処理を示すフローチャートである。FIG. 5 is a flowchart illustrating a process of predicting the power generation amount when the cloud amount is 0% on the prediction target day. 図6−1は、「予測対象日における雲量0%の場合の発電量を予測する処理」を実行した場合のイメージを示す図である。FIG. 6A is a diagram illustrating an image when the “process for predicting the power generation amount when the cloud amount is 0% on the prediction target day” is executed. 図6−2は、「予測対象日における雲量0%の場合の発電量を予測する処理」を実行した場合のイメージを示す図である。FIG. 6B is a diagram illustrating an image when the “process for predicting the power generation amount when the cloud amount is 0% on the prediction target day” is executed. 図7は、予測対象日の発電量を予測する処理を示すフローチャートである。FIG. 7 is a flowchart illustrating a process of predicting the power generation amount on the prediction target day. 図8は、「予測対象日の発電量を予測する処理」を実行した場合のイメージを示す図である。FIG. 8 is a diagram illustrating an image when the “process for predicting the power generation amount on the prediction target day” is executed.

以下に、本発明にかかる発電量予測制御装置、発電量予測方法および発電量予測プログラムの実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Embodiments of a power generation amount prediction control device, a power generation amount prediction method, and a power generation amount prediction program according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

図1は、本実施例の発電量予測制御装置として動作するコンピュータのハードウェア構成例を示す図である。図1において、本実施例のコンピュータは、CPU(Central Processing Unit)およびFPGA(Field Programmable Gate Array)等で構成される制御部1と、ROM(Read Only Memory),RAM(Random Access Memory)等の各種メモリを含む記憶部2と、キーボード8およびマウス9等のユーザインタフェースを含む入力部3と、印刷等の出力処理を行う出力部4と、ディスプレイである表示部5と、所定のネットワークを介して外部と通信を行う通信部6とを備える。なお、図1では、キーボード8およびマウス9等のユーザインタフェースを含む入力部3を備えることとしたが、本実施例のコンピュータは、これに限らず、表示部5にタッチパネルの機能を持たせることによって、入力部3を設けない構成、または入力部3と併用する構成としてもよい。   FIG. 1 is a diagram illustrating a hardware configuration example of a computer that operates as a power generation amount prediction control apparatus according to the present embodiment. In FIG. 1, a computer according to the present embodiment includes a control unit 1 including a CPU (Central Processing Unit) and an FPGA (Field Programmable Gate Array), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like. A storage unit 2 including various memories, an input unit 3 including a user interface such as a keyboard 8 and a mouse 9, an output unit 4 that performs output processing such as printing, a display unit 5 that is a display, and a predetermined network And a communication unit 6 that communicates with the outside. In FIG. 1, the input unit 3 including the user interface such as the keyboard 8 and the mouse 9 is provided. However, the computer of the present embodiment is not limited to this, and the display unit 5 is provided with a touch panel function. The input unit 3 may not be provided, or the input unit 3 may be used in combination.

図1において、制御部1では、本実施例の発電量予測プログラムを実行する。記憶部2は、ROM,RAM等の内部メモリを含み、本実施例の発電量予測プログラムおよび各種入力情報や、処理の過程で得られたデータ等を記憶する。制御部1では、記憶部2に記憶されているプログラムを読み出すことにより本実施例の発電量予測制御を実行する。なお、記憶部2は、内部メモリに限るものではなく、たとえば、DVD(Digital Versatile Disc)やSDメモリ等の外部記憶媒体であってもよいし、また、内部メモリおよび外部記憶媒体(DVDやSDメモリ等)の両方で構成されることとしてもよい。   In FIG. 1, the control unit 1 executes a power generation amount prediction program of the present embodiment. The storage unit 2 includes an internal memory such as a ROM or a RAM, and stores a power generation amount prediction program and various input information of this embodiment, data obtained in the course of processing, and the like. The control unit 1 executes the power generation amount prediction control of the present embodiment by reading the program stored in the storage unit 2. The storage unit 2 is not limited to the internal memory, and may be an external storage medium such as a DVD (Digital Versatile Disc) or an SD memory, or may be an internal memory or an external storage medium (DVD or SD). (Memory etc.).

また、本実施例の発電量予測制御装置は、発電所,電力会社,小売事業者(買電,売電等)等、太陽光発電を事業とする会社の他、後述する発電量の予測を行うためのパラメータ(情報)を入手可能な環境が整っている場所であれば、容易に設置可能である。   In addition, the power generation amount prediction control device of the present embodiment predicts the power generation amount described later in addition to a company that operates solar power generation such as a power plant, a power company, a retailer (power purchase, power sale, etc.). It can be easily installed in an environment where an environment for obtaining parameters (information) for performing is available.

ここで、本実施例の発電量予測制御装置が太陽光発電所による発電量を予測するための前提として、雲量と太陽光発電による発電量との相関関係について説明する。   Here, as a premise for the power generation amount prediction control apparatus of the present embodiment to predict the power generation amount by the solar power plant, the correlation between the cloud amount and the power generation amount by the solar power generation will be described.

たとえば、雲量に対する発電量の減衰率α(0≦α≦1)は、下記(1−1)式のようの一般化することができ、一次式の場合の一例として、下記(1−2)式のように表すことができる。下記(1−1)式および(1−2)式において、X1は上層雲量(%)であり、X2は中層雲量(%)であり、X3は下層雲量(%)であり、X4は全雲量(%)であり、それぞれ、一定時間(1時間等)毎に得られる天気予報データに含まれる一般的なパラメータである。また、a,b,c,dは、各層の雲量に対する個別の減衰率を表す係数であり、たとえば、各層の雲量が最大(100%)のときに減衰率αが0となり、雲量の低減に伴い減衰率αが0.1,0.2,0.3…と変化し、各層の雲量が最小(0%)のときに減衰率αが1となるように規定される係数である。 For example, the attenuation rate α (0 ≦ α ≦ 1) of the power generation amount with respect to the cloud amount can be generalized as in the following equation (1-1). As an example of the primary equation, the following (1-2) It can be expressed as: In the following formulas (1-1) and (1-2), X 1 is the upper cloud cover (%), X 2 is the intermediate cloud cover (%), and X 3 is the lower cloud cover (%). X 4 is the total cloud amount (%), and is a general parameter included in the weather forecast data obtained every certain time (such as one hour). Further, a, b, c, and d are coefficients representing individual attenuation rates with respect to the cloud amount of each layer. For example, when the cloud amount of each layer is maximum (100%), the attenuation rate α becomes 0, which reduces the cloud amount. Accordingly, the attenuation rate α changes to 0.1, 0.2, 0.3..., And is a coefficient defined so that the attenuation rate α becomes 1 when the cloud amount of each layer is minimum (0%).

減衰率α=f(X1,X2,X3,X4) …(1−1)
=aX1+bX2+cX3+dX4 …(1−2)
Decay rate α = f (X 1 , X 2 , X 3 , X 4 ) (1-1)
= AX 1 + bX 2 + cX 3 + dX 4 (1-2)

したがって、発電量(たとえば予測発電量)Xは、下記(2)式に示すように、雲量0%(上層,中層,下層のすべての雲量が0%)のときの発電量X0に対して、減衰率α(0≦α≦1)をかけた値となる。また、下記(2)式に示す関係から、雲量0%のときの発電量X0は、下記(3)式に示すように、発電量(たとえば発電量実績)Xを減衰率αで割った値となる。 Therefore, the power generation amount (for example, the predicted power generation amount) X is the power generation amount X 0 when the cloud amount is 0% (all cloud amounts in the upper layer, middle layer, and lower layer are 0%) as shown in the following equation (2). The value obtained by multiplying the attenuation rate α (0 ≦ α ≦ 1). Further, from the relationship shown in the following formula (2), the power generation amount X 0 when the cloud amount is 0% is obtained by dividing the power generation amount (for example, the actual power generation amount) X by the attenuation rate α as shown in the following formula (3). Value.

X=X0×α …(2) X = X 0 × α (2)

0=X÷α …(3) X 0 = X ÷ α (3)

本実施例では、上記式によりXやX0を求めるための前提処理として、制御部1が、過去の発電量実績データに基づく多変量解析等により係数a,b,c,dを予め計算しておくこととする。 In the present embodiment, as a precondition process for obtaining X and X 0 by the above formula, the control unit 1 calculates coefficients a, b, c, and d in advance by multivariate analysis based on past power generation result data. I will keep it.

図2は、本実施例の発電量予測制御装置の機能ブロック構成の一例を示す図であり、詳細には、上記制御部1が記憶部2から発電量予測プログラムを読み出して実行することで実現される機能ブロックを示している。図2において、制御部1は、本実施例の発電量予測制御を実行するための機能ブロックとして、送受信制御部11と日時管理部12と発電量補正部13と第1の発電量予測部14と第2の発電量予測部15とを有する。なお、本実施例の発電量予測制御装置のハードウェア構成および機能ブロック構成は、説明の便宜上、本実施例の処理にかかわる構成を列挙したものであり、発電量予測制御装置のすべての機能を表現したものではない。   FIG. 2 is a diagram illustrating an example of a functional block configuration of the power generation amount prediction control apparatus according to the present embodiment. Specifically, the control unit 1 reads the power generation amount prediction program from the storage unit 2 and executes it. The function block to be shown is shown. In FIG. 2, the control unit 1 includes a transmission / reception control unit 11, a date / time management unit 12, a power generation amount correction unit 13, and a first power generation amount prediction unit 14 as functional blocks for executing the power generation amount prediction control of the present embodiment. And a second power generation amount prediction unit 15. Note that the hardware configuration and functional block configuration of the power generation amount predictive control device of this embodiment are the configurations related to the processing of this embodiment for convenience of explanation, and all functions of the power generation amount prediction control device are listed. It is not a representation.

また、本実施例の発電量予測プログラムは、通信部6およびインターネットなどのネットワークを介して配布可能である。また、このプログラムは、ハードディスク,フレキシブルディスク(FD),CD−ROM,MO,DVDなどの、コンピュータで読み取り可能な記録媒体に記録されていてもよく、この場合は、コンピュータによって記録媒体から読み出されることによって実行される。   Further, the power generation amount prediction program of this embodiment can be distributed via the communication unit 6 and a network such as the Internet. The program may be recorded on a computer-readable recording medium such as a hard disk, a flexible disk (FD), a CD-ROM, an MO, or a DVD. In this case, the program is read from the recording medium by the computer. Is executed by.

つづいて、本実施例の発電量予測制御にかかる処理を、フローチャートを用いて詳細に説明する。以下では、本実施例の発電量予測制御にかかる処理を、便宜上、下記A,B,Cに分けて順に説明する。   Subsequently, the process according to the power generation amount prediction control of the present embodiment will be described in detail using a flowchart. Below, the process concerning the electric power generation prediction control of a present Example is divided into the following A, B, and C for convenience, and is demonstrated in order.

A. 過去の発電量(以下、発電量実績)を雲量0%の場合の発電量に補正する処理
B. 予測対象日における雲量0%の場合の発電量を予測する処理
C. 予測対象日の発電量を予測する処理
A. A process of correcting the past power generation amount (hereinafter referred to as power generation amount) to the power generation amount when the cloud amount is 0%. A process for predicting the power generation amount when the cloud amount is 0% on the prediction target day C. Process to predict the power generation amount on the forecast target day

まず、上記「A. 発電量実績を雲量0%の場合の発電量に補正する処理」について説明する。図3は、発電量実績を雲量0%の場合の発電量に補正する処理を示すフローチャートである。なお、記憶部2には、予め、雲量と発電量の相関関係を示す情報として減衰率データが記憶されており、減衰率データとして、たとえば、上記(1−2)式で規定されたα(=発電量の減衰率)が雲量(上層雲量,中層雲量,下層雲量,全雲量)とともに記憶されているものとする。また、送受信制御部11は、日時管理部12と連携し、インターネット等の外部回線および通信部6経由で、発電所等から発電量実績データ(発電日,発電時刻,発電量等)を定期的(たとえば、30分毎)に受け取り、そのデータを記憶部2に記憶する。また、送受信制御部11は、日時管理部12と連携し、インターネット等の外部回線および通信部6経由で、天気予報データ(位置,予報日時,雲量等を含む)を、たとえば、一時間毎に受け取り、そのデータを記憶部2に記憶する。   First, the above-mentioned “A. Process for correcting the actual power generation amount to the power generation amount when the cloud amount is 0%” will be described. FIG. 3 is a flowchart showing a process of correcting the actual power generation amount to the power generation amount when the cloud amount is 0%. The storage unit 2 stores attenuation rate data as information indicating the correlation between the cloud amount and the power generation amount in advance. As the attenuation rate data, for example, α ( = Attenuation rate of power generation) is stored together with cloud amount (upper cloud amount, middle cloud amount, lower cloud amount, total cloud amount). Further, the transmission / reception control unit 11 cooperates with the date and time management unit 12 and periodically generates power generation result data (power generation date, power generation time, power generation amount, etc.) from a power plant through an external line such as the Internet and the communication unit 6. (For example, every 30 minutes) and store the data in the storage unit 2. Also, the transmission / reception control unit 11 cooperates with the date / time management unit 12 to provide weather forecast data (including position, forecast date / time, cloud cover, etc.) via an external line such as the Internet and the communication unit 6, for example, every hour. The data is received and stored in the storage unit 2.

上記各種データが記憶部2に蓄積されている状態において、制御部1の発電量補正部13は、日時管理部12から定期的(たとえば、30分毎)に出力される通知を監視し(ステップS1,No)、当該通知を受け取った場合に(ステップS1,Yes)、通知された時刻における直近の発電量実績データを記憶部2から読み出す(ステップS2)。また、発電量補正部13は、ステップS2で読み出した発電量実績データに含まれる発電時刻に対応する天気予報データを記憶部2から読み出す(ステップS3)。さらに、発電量補正部13は、ステップS3で読み出した天気予報データに含まれる雲量に対応する減衰率データを記憶部2から読み出す(ステップS4)。   In a state in which the various data are accumulated in the storage unit 2, the power generation amount correction unit 13 of the control unit 1 monitors a notification that is periodically output (for example, every 30 minutes) from the date / time management unit 12 (step 30). When the notification is received (step S1, Yes), the latest power generation result data at the notified time is read from the storage unit 2 (step S2). Further, the power generation amount correction unit 13 reads the weather forecast data corresponding to the power generation time included in the power generation amount actual data read in step S2 from the storage unit 2 (step S3). Furthermore, the power generation amount correction unit 13 reads attenuation rate data corresponding to the cloud amount included in the weather forecast data read in step S3 from the storage unit 2 (step S4).

発電量補正部13は、ステップS2〜S4の処理により得られた発電量実績データ(発電量X)および減衰率データ(減衰率α)に基づいて、発電量Xを雲量0%の場合の発電量(=X0)に補正する(ステップS5)。具体的には、発電量Xを減衰率αで割ることにより発電量X0を取得する(上記(3)式参照)。そして、発電量補正部13は、発電量X0を補正後発電量データ(発電日および発電時刻,発電量X,雲量,減衰率α,発電量X0等を含む)として記憶部2に記憶する。 The power generation amount correction unit 13 generates power when the power generation amount X is a cloud amount of 0% based on the actual power generation amount data (power generation amount X) and attenuation rate data (attenuation rate α) obtained by the processes of steps S2 to S4. correcting the amount (= X 0) (step S5). Specifically, the power generation amount X 0 is obtained by dividing the power generation amount X by the attenuation rate α (see the above formula (3)). Then, the power generation amount correction unit 13 stores the power generation amount X 0 in the storage unit 2 as corrected power generation amount data (including power generation date and time, power generation amount X, cloud amount, attenuation rate α, power generation amount X 0, etc.). To do.

以降、発電量補正部13では、上記ステップS1〜S5の処理を、日時管理部12から通知を受ける度に定期的に実行(本実施例では30分毎の通知により実行)し、その都度、新たな補正後発電量データを記憶部2に記憶する。これにより、記憶部2には、発電量予測制御装置の起動をトリガとして30分毎に新たな補正後発電量データが蓄積されることになる。   Thereafter, the power generation amount correction unit 13 periodically executes the processes of steps S1 to S5 each time notification is received from the date management unit 12 (in this embodiment, executed by notification every 30 minutes). New corrected power generation amount data is stored in the storage unit 2. As a result, new corrected power generation amount data is accumulated in the storage unit 2 every 30 minutes triggered by the activation of the power generation amount prediction control device.

図4は、「発電量実績を雲量0%の場合の発電量に補正する処理」を実行した場合のイメージを示す図である。ここでは、日の出を6時,日没を18時とした場合を想定し、たとえば、10時〜12時の雲量を上層雲量:50%,中層雲量:70%,下層雲量30%,全雲量:80%とし、その他の時間帯の雲量を0%(全雲量0%)とした場合の、発電量実績と補正後発電量を表している。図4において、細線は、発電量実績を表し、太線は、補正後発電量を表している。   FIG. 4 is a diagram illustrating an image in a case where “a process of correcting the actual power generation amount to the power generation amount when the cloud amount is 0%” is executed. Here, it is assumed that sunrise is 6 o'clock and sunset is 18 o'clock. For example, the cloud cover from 10:00 to 12:00 is the upper cloud cover: 50%, middle cloud cover: 70%, lower cloud cover 30%, total cloud cover : Shows the actual power generation amount and the corrected power generation amount when the cloud amount in other time zones is 0% (total cloud amount 0%). In FIG. 4, the thin line represents the actual power generation amount, and the thick line represents the corrected power generation amount.

つぎに、上記「B. 予測対象日における雲量0%の場合の発電量を予測する処理」について説明する。図5は、予測対象日における雲量0%の場合の発電量を予測する処理を示すフローチャートである。なお、記憶部2には、予め、日時データとして、発電量の予測計算を行う日である予測日(計算日)と予測対象日が関連付けられた状態で記憶されているものとする。予測日は、通常1日単位(毎日)となるが、週1日,指定日等の設定も可能である。本実施例では、一例として、予測日の2日後が予測対象日になるように記憶されているものとする。   Next, the above-mentioned “B. Process for predicting the power generation amount when the cloud amount is 0% on the prediction target day” will be described. FIG. 5 is a flowchart illustrating a process of predicting the power generation amount when the cloud amount is 0% on the prediction target day. It is assumed that the storage unit 2 stores in advance, as date / time data, a state in which a prediction date (calculation date), which is a date on which the power generation amount prediction calculation is performed, and a prediction target date are associated with each other. The predicted date is usually in units of one day (daily), but it is possible to set a day of the week, a designated date, or the like. In the present embodiment, as an example, it is assumed that two days after the prediction date are stored as prediction target days.

制御部1において、第1の発電量予測部14は、日時管理部12と連携して、毎日規定された時刻に記憶部2内の日付データを確認する処理を行い(ステップS11,No)、今日の日付が予測日と一致した場合に(ステップS11,Yes)、予測日に対応付けられた予測対象日を確認する(ステップS12)。そして、第1の発電量予測部14は、記憶部2内に所定日数分の補正後発電量データがあるかどうかを確認する(ステップS13)。本実施例では、上記「B. 予測対象日における雲量0%の場合の発電量を予測する処理」の精度を高めるため、一例として、7日分以上の補正後発電量データがあるかどうかを確認する。なお、本実施例では、後述するように、補正後発電量の平均と標準偏差に基づいて上記Bの処理を実行することから、発電量予測の精度を考慮して7日分以上の補正後発電量データを要求することとしたが、発電量の予測に必要な補正後発電量データ数は、要求される予測精度に応じて可変であり、これに限るものではない。   In the control unit 1, the first power generation amount prediction unit 14 performs a process of confirming date data in the storage unit 2 at the time specified every day in cooperation with the date management unit 12 (No in step S <b> 11). When today's date coincides with the predicted date (step S11, Yes), the prediction target date associated with the predicted date is confirmed (step S12). Then, the first power generation amount prediction unit 14 checks whether or not there is corrected power generation amount data for a predetermined number of days in the storage unit 2 (step S13). In this embodiment, in order to improve the accuracy of the “B. Prediction of power generation amount when the cloud amount is 0% on the prediction target day”, as an example, whether or not there is corrected power generation amount data for seven days or more. Check. In the present embodiment, as will be described later, since the process B is performed based on the average and standard deviation of the corrected power generation amount, the power generation amount prediction is taken into consideration after correction for seven days or more. Although the power generation amount data is requested, the number of corrected power generation amount data necessary for the prediction of the power generation amount is variable according to the required prediction accuracy, and is not limited thereto.

たとえば、ステップS13の処理で7日分以上の補正後発電量データがあると判断した場合(ステップS13,Yes)、第1の発電量予測部14は、記憶部2から直近30日分の補正後発電量データを読み出す(ステップS14)。ここで、直近30日の1日目を過去データ開始日とし、30日目を過去データ終了日とする。なお、ステップS14の例外として、補正後発電量データが7日分以上蓄積されているが30日分に達していない場合には、記憶部2に蓄積された日数分の補正後発電量データを読み出すことになる。以下、一般的なケースである、補正後発電量データが30日分に達している場合を想定して説明を行うが、上記例外的なケースにおいても、補正後発電量データの数が少ないこと以外は上記一般的なケースと同様の処理が行われる。   For example, when it is determined that there is corrected power generation amount data for seven days or more in the process of step S13 (step S13, Yes), the first power generation amount prediction unit 14 corrects the latest 30 days from the storage unit 2. The post power generation amount data is read (step S14). Here, the first day of the last 30 days is the past data start date, and the 30th day is the past data end date. As an exception to step S14, when the corrected power generation amount data is accumulated for 7 days or more but has not reached 30 days, the corrected power generation amount data for the number of days stored in the storage unit 2 is stored. Will be read. The following description will be made assuming that the corrected power generation amount data reaches 30 days, which is a general case. However, the number of corrected power generation amount data is small even in the above exceptional cases. Except for the above, the same processing as in the above general case is performed.

第1の発電量予測部14は、読み出した30日分の補正後発電量データを発電時刻(本実施例では30分刻みの発電時刻が記憶されている)毎に分類して、発電時刻毎に過去データ開始日から過去データ終了日までの発電量X0の平均と標準偏差を計算し(ステップS15,S16)、その計算結果を、それぞれ過去平均データ(発電時刻,X0の平均等を含む),過去標準偏差データ(発電時刻,X0の標準偏差等を含む)として、発電時刻毎に記憶部2に記憶する。 The first power generation amount prediction unit 14 classifies the read 30-day corrected power generation amount data for each power generation time (in this embodiment, the power generation time in increments of 30 minutes is stored), and for each power generation time. The average and standard deviation of power generation amount X 0 from the start date of past data to the end date of past data are calculated (steps S15 and S16), and the calculation results are respectively calculated as past average data (power generation time, average of X 0 , etc.). including), past the standard deviation data (generation time, as includes the standard deviation of X 0, etc.), the storage unit 2 for each generation time.

第1の発電量予測部14は、上記ステップS15およびS16の実行により得られた発電時刻毎の発電量X0の平均と標準偏差に基づいて、予測対象日における雲量0%の場合の発電量X0_predictを、発電時刻毎に予測する(ステップS17)。詳細には、たとえば、上記ステップS15の実行により得られた発電時刻毎の発電量X0の平均は、過去30日間の平均となるため、季節による発電量の変動(傾向)を考慮すると、過去データ開始日から過去データ終了日の間の中間、すなわち、15日目あたりの雲量0%の場合の発電量(中間発電量と呼ぶ)に相当するものとなる。そのため、本実施例においては、一般的な日射量データベース(たとえば、通信回線を利用して入手可能なNEDOデータ等)を利用して、たとえば、過去20年間における日射量の傾向を季節係数として求め、発電量X0の平均と標準偏差に基づき得られる中間発電量を季節係数で補正したものを、予測対象日における雲量0%の場合の発電量X0_predictとしている。そして、第1の発電量予測部14は、ここで求めた発電量X0_predictを、予測対象日,予測対象時刻(上記発電時刻に対応)とともに第1の予測発電量データとして記憶部2に記憶する。なお、上記季節係数による補正処理は発電量予測の精度を高めるための処理の1つであり、たとえば、要求される予測精度に応じて、上記15日目あたりの雲量0%の場合の発電量をそのままX0_predictとしてもよく、また、その他の補正係数により補正したものをX0_predictとしてもよい。 First power generation amount prediction unit 14, based on the average and the standard deviation of the power generation amount X 0 for each generation time obtained by the execution of step S15 and S16, the power generation amount in the case of 0% cloud cover in the prediction target day X 0_predict is predicted for each power generation time (step S17). More specifically, for example, the average of the power generation amount X 0 at each power generation time obtained by executing step S15 is the average of the past 30 days. This corresponds to the power generation amount in the middle between the data start date and the past data end date, that is, when the cloud amount per day is 0% (referred to as intermediate power generation amount). Therefore, in the present embodiment, for example, the trend of solar radiation over the past 20 years is obtained as a seasonal coefficient using a general solar radiation database (for example, NEDO data that can be obtained using a communication line). The intermediate power generation amount obtained based on the average and standard deviation of the power generation amount X 0 is corrected with a seasonal coefficient, and is defined as the power generation amount X 0_predict when the cloud amount is 0% on the prediction target day. The first power generation amount prediction unit 14 stores the power generation amount X 0_predict obtained here in the storage unit 2 as the first predicted power generation amount data together with the prediction target date and the prediction target time (corresponding to the power generation time). To do. The correction process using the seasonal coefficient is one of the processes for increasing the accuracy of power generation prediction. For example, the power generation amount when the cloud amount per day is 0% according to the required prediction accuracy. as it may be a X 0_Predict, also, those corrected by other correction factors may be X 0_predict.

図6−1および図6−2は、「予測対象日における雲量0%の場合の発電量を予測する処理」を実行した場合のイメージを示す図である。詳細には、図6−1は、ステップS14で読み出した直近30日分の補正後発電量データ(発電量X0)のイメージを示す図であり、図6−2は、ステップS17にて予測した「予測対象日における雲量0%の場合の発電量(発電量X0_predict)」のイメージを示す図である。 FIGS. 6A and 6B are diagrams illustrating an image when the “process for predicting the power generation amount when the cloud amount is 0% on the prediction target day” is executed. Specifically, FIG. 6-1 is a diagram illustrating an image of the corrected power generation amount data (power generation amount X 0 ) for the latest 30 days read out in step S14, and FIG. 6-2 is predicted in step S17. It is a figure which shows the image of "the electric power generation amount (power generation amount X0_predict ) in the case of the cloud amount 0% in the prediction object day".

なお、本実施例においては、予測日の直近30日分の補正後発電量データを読み出して、発電時刻毎に30日分の発電量X0の平均と標準偏差を計算することとしたが、補正後発電量データの読み出し日数については、要求される予測の精度に応じて適宜変更可能である。たとえば、30日分を超える補正後発電量データを用いることによりさらに高精度に発電量X0_predictを予測することが可能であり、予測の精度を落として計算量を削減したいような場合には30日分に満たない補正後発電量データを用いて発電量X0_predictを予測することも可能である。 In this embodiment, the corrected power generation amount data for the last 30 days of the forecast date is read, and the average and standard deviation of the power generation amount X 0 for 30 days are calculated for each power generation time. The number of days for reading the corrected power generation amount data can be appropriately changed according to the required accuracy of prediction. For example, it is possible to predict the power generation amount X 0_predict with higher accuracy by using the corrected power generation amount data exceeding 30 days, and when it is desired to reduce the calculation amount by reducing the prediction accuracy. It is also possible to predict the power generation amount X 0_predict using corrected power generation amount data that is less than a day.

一方、ステップS13の処理で7日分以上の補正後発電量データがないと判断した場合(ステップS13,No)、第1の発電量予測部14は、一般的な日射量データベース(たとえば、通信回線を利用して入手可能なNEDOデータ等)を利用して、たとえば、過去20年間における予測対象日と同日同時間の日射量、および太陽光パネルの方位,角度等のパラメータに基づいて、予測対象日の発電量を計算し(ステップS18)、その計算結果を、予測対象日における雲量0%の場合の発電量X0_predictとする。そして、第1の発電量予測部14は、ここで求めた発電量X0_predictを、予測対象日,予測対象時刻(上記発電時刻に対応)とともに第1の予測発電量データとして記憶部2に記憶する。 On the other hand, if it is determined in step S13 that there is no corrected power generation amount data for seven days or more (step S13, No), the first power generation amount prediction unit 14 uses a general solar radiation amount database (for example, communication). Prediction based on parameters such as the amount of insolation between the forecasting date and the same day in the past 20 years, and the orientation and angle of the solar panel, etc. The power generation amount on the target day is calculated (step S18), and the calculation result is set as the power generation amount X 0_predict when the cloud amount is 0% on the prediction target day. The first power generation amount prediction unit 14 stores the power generation amount X 0_predict obtained here in the storage unit 2 as the first predicted power generation amount data together with the prediction target date and the prediction target time (corresponding to the power generation time). To do.

本実施例においては、7日分以上の補正後発電量データがないケースが、起動直後の数日間しか発生しない非常にレアなケースであることから、このケースについては、予測対象日における雲量0%の場合の発電量X0_predictを高精度に予測することを優先せず、ステップS18では、X0_predictを、上記ステップS14〜S17の方法で高精度に予測する場合よりも小さく見積もることを優先する。すなわち、雲のある日も含む過去20年間の予測対象日と同日の日射量に基づいて予測対象日の発電量を予測し、その結果をX0_predictとしている。 In this embodiment, the case where there is no corrected power generation amount data for 7 days or more is a very rare case that occurs only for a few days immediately after startup. % of the power generation quantity X 0_Predict if not priority is to predict with high accuracy, in step S18, the X 0_Predict, prioritized to estimate smaller than when predicting the high accuracy method in step S14~S17 . That is, the power generation amount of the prediction target day is predicted based on the amount of solar radiation on the same day as the prediction target date for the past 20 years including the day with cloud, and the result is X 0_predict .

これにより、所定日数(7日分)以上の補正後発電量データがない場合には予測対象日の発電量を高精度に予測することはできないが、上記ステップS18の計算により予測対象日の発電量を小さく見積もることができる。したがって、たとえば、売電等、事前に電力供給の計画をたてるような場合であっても、予め少ない予測発電量で供給計画がたてられているため、供給電力不足になるような不測の事態を回避することが可能となる。   As a result, if there is no corrected power generation amount data for a predetermined number of days (for 7 days) or more, the power generation amount for the prediction target day cannot be predicted with high accuracy, but the power generation for the prediction target day is calculated by the calculation in step S18. The amount can be estimated small. Therefore, for example, even if a power supply plan is planned in advance, such as when selling electricity, the supply plan is made with a small amount of predicted power generation in advance, so that it is unexpected It becomes possible to avoid the situation.

つぎに、上記「C. 予測対象日の発電量を予測する処理」について説明する。図7は、予測対象日の発電量を予測する処理を示すフローチャートである。   Next, the “C. Process for predicting the power generation amount on the prediction target day” will be described. FIG. 7 is a flowchart illustrating a process of predicting the power generation amount on the prediction target day.

上記Bの処理を実行後、第2の発電量予測部15は、第1の発電量予測部14と連携して、記憶部2から予測対象日における第1の予測発電量データ(予測対象日,予測対象時刻,発電量X0_predict等を含む)をすべて読み出す(ステップS21)。また、第2の発電量予測部15は、ステップS21で読み出した第1の予測発電量データに含まれる予測対象時刻(本実施例では30分刻みの予測対象時刻が記憶されている)に対応する天気予報データ(位置,予報日時,雲量等を含む)を記憶部2から読み出す(ステップS22)。さらに、第2の発電量予測部15は、ステップS22で読み出した天気予報データに含まれる雲量に対応する減衰率データを記憶部2から読み出す(ステップS23)。ここでは、ステップS22で読み出された天気予報データ単位に、対応する減衰率データが読み出される。 After executing the process B, the second power generation amount prediction unit 15 cooperates with the first power generation amount prediction unit 14 to store the first predicted power generation amount data (prediction target date) from the storage unit 2 on the prediction target date. , Prediction time, power generation amount X 0_predict, etc.) are all read out (step S21). Further, the second power generation amount prediction unit 15 corresponds to the prediction target time included in the first predicted power generation amount data read in step S21 (in this embodiment, the prediction target time in increments of 30 minutes is stored). The weather forecast data (including position, forecast date and time, cloud cover, etc.) to be read is read from the storage unit 2 (step S22). Further, the second power generation amount prediction unit 15 reads attenuation rate data corresponding to the cloud amount included in the weather forecast data read in step S22 from the storage unit 2 (step S23). Here, the corresponding attenuation rate data is read for the weather forecast data unit read in step S22.

第2の発電量予測部15は、ステップS21〜S23の処理により得られた第1の予測発電量データ(発電量X0_predict)および減衰率データ(減衰率α)に基づいて、予測対象日の発電量(=Xpredict)を予測する(ステップS24)。具体的には、予測対象時刻毎に、発電量X0_predictに減衰率αをかけることにより発電量Xpredictを計算する(上記(2)式参照)。そして、第2の発電量予測部15は、計算により得られた発電量Xpredictを第2の予測発電量データ(予測対象日および予測対象時刻,発電量X0_predict,雲量,減衰率α,発電量Xpredict等を含む)として記憶部2に記憶する。 The second power generation amount prediction unit 15 calculates the prediction target date based on the first predicted power generation amount data (power generation amount X 0_predict ) and attenuation rate data (attenuation rate α) obtained by the processes of steps S21 to S23. A power generation amount (= X predict ) is predicted (step S24). Specifically, the power generation amount X predict is calculated by multiplying the power generation amount X 0_predict by the attenuation rate α at each prediction target time (see the above formula (2)). Then, the second power generation amount prediction unit 15 converts the power generation amount X predict obtained by the calculation into second predicted power generation amount data (prediction target date and prediction target time, power generation amount X 0_predict , cloud amount, attenuation rate α, power generation Stored in the storage unit 2 as a quantity X predict ).

図8は、「予測対象日の発電量を予測する処理」を実行した場合のイメージを示す図である。ここでは、日の出が6時,日没が18時であり、たとえば、10時〜12時の雲量を上層雲量:40%,中層雲量:60%,下層雲量80%,全雲量:90%とし、その他の時間帯の雲量を0%(全雲量0%)とした場合の第1の予測発電量データと第2の予測発電量データを表している。図8において、細線は、第1の予測発電量データ(予測対象日における雲量0%の場合の発電量)を表し、太線は、第2の予測発電量データ(予測対象日の発電量)を表している。   FIG. 8 is a diagram illustrating an image when the “process for predicting the power generation amount on the prediction target day” is executed. Here, sunrise is 6 o'clock and sunset is 18 o'clock. For example, the amount of clouds from 10 o'clock to 12 o'clock is 40% upper cloud cover, 60% middle cloud cover, 80% lower cloud cover, and 90% total cloud cover. The first predicted power generation amount data and the second predicted power generation amount data when the cloud amount in other time zones is 0% (total cloud amount 0%) are shown. In FIG. 8, the thin line represents the first predicted power generation amount data (power generation amount when the cloud amount is 0% on the prediction target day), and the thick line represents the second predicted power generation amount data (power generation amount on the prediction target day). Represents.

以上のように、本実施例では、雲量に対する発電量の減衰率α等、各種パラメータが記憶された記憶部2を有し、発電量補正部13が、定期的に蓄積された過去の発電量Xを、その発電時刻における雲量に対応する発電量の減衰率αを用いて、雲量0%の場合の発電量X0に補正し、発電時刻毎に新たな補正後発電量X0として記憶部2に蓄積する。また、第1の発電量予測部14が、蓄積された補正後発電量X0を発電時刻単位に分類して発電時刻毎の平均および標準偏差を計算し、得られた平均および標準偏差に基づいて、予測対象日における雲量0%の場合の発電量X0_predictを予測する。そして、第2の発電量予測部15が、発電量X0_predictおよび予測対象日の雲量に対応する発電量の減衰率αに基づいて、予測対象日の発電量Xpredictを予測することとした。これにより、予測日(計算日)が予測対象日の前日,前々日…等に設定されているような場合であっても、予測対象日における太陽光発電所の発電量を高精度に予測することが可能となる。 As described above, in the present embodiment, the power generation amount correction unit 13 includes the storage unit 2 in which various parameters such as the attenuation rate α of the power generation amount with respect to the cloud amount are stored. X is corrected to the power generation amount X 0 when the cloud amount is 0% using the attenuation rate α of the power generation amount corresponding to the cloud amount at the power generation time, and is stored as a new corrected power generation amount X 0 at each power generation time. Accumulate in 2. Further, the first power generation amount prediction unit 14 classifies the accumulated corrected power generation amount X 0 into power generation time units, calculates the average and standard deviation for each power generation time, and based on the obtained average and standard deviation Thus, the power generation amount X 0_predict when the cloud amount on the prediction target day is 0% is predicted. The second power generation amount prediction unit 15, based on the attenuation factor of the power generation amount corresponding to the cloud cover of the power generation quantity X 0_Predict and prediction target day alpha, was to predict the power generation amount X predict the prediction target day. As a result, even if the forecast date (calculation date) is set to the day before the forecast date, the day before the forecast date, etc., the power generation amount of the solar power plant on the forecast date is predicted with high accuracy. It becomes possible to do.

1 制御部
2 記憶部
3 入力部
4 出力部
5 表示部
6 通信部
8 キーボード
9 マウス
11 送受信制御部
12 日時管理部
13 発電量補正部
14 第1の発電量予測部
15 第2の発電量予測部
DESCRIPTION OF SYMBOLS 1 Control part 2 Memory | storage part 3 Input part 4 Output part 5 Display part 6 Communication part 8 Keyboard 9 Mouse 11 Transmission / reception control part 12 Date management part 13 Electric power generation amount correction | amendment part 14 1st electric power generation amount prediction part 15 2nd electric power generation amount prediction Part

上述した課題を解決し、目的を達成するために、本発明にかかる発電量予測制御装置は、太陽光発電所の発電量を予測する発電量予測制御装置であって、雲量と発電量との関係を示す情報が記憶された記憶手段と、定期的に蓄積された過去の発電量を、各々の発電時刻における前記雲量と発電量との関係を示す情報に基づいて雲量0%の場合の発電量に補正し、補正後の発電量を各々の発電時刻毎に補正後発電量としてそれぞれ蓄積する発電量補正手段と、蓄積された前記補正後発電量を発電時刻に応じて分類し、分類された発電時刻毎の補正後発電量の平均および標準偏差を計算し、前記平均および標準偏差に基づいて、予測対象日雲量0%であると仮定した場合の発電量である第1の予測発電量を予測する第1の発電量予測手段と、前記第1の予測発電量および前記予測対象日の雲量と発電量との関係を示す情報に基づいて、前記予測対象日の発電量である第2の予測発電量を予測する第2の発電量予測手段と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, a power generation amount predictive control device according to the present invention is a power generation amount prediction control device that predicts the power generation amount of a solar power plant, and includes a cloud amount and a power generation amount. The storage means in which the information indicating the relationship is stored, and the past power generation amount accumulated periodically, the power generation when the cloud amount is 0% based on the information indicating the relationship between the cloud amount and the power generation amount at each power generation time correcting the amount, and the power generation amount correction means for storing each power generation amount after correction as compensation after power generation amount for each power generation time of each classified in accordance with the stored the corrected power generation amount of the power generation time, classification are the mean and standard deviation of the corrected power generation amount per power generation time was calculated and, on the basis of the mean and standard deviation, the first prediction prediction target day is power generation amount on the assumption that 0% cloud cover A first power generation amount prediction means for predicting a power generation amount, Based on the information indicating the relationship between the cloud cover and the power generation amount of the first prospective power generation amount and the prediction target day, the second power generation amount prediction for predicting a second predicted power generation amount of power generation of the prediction target day And means.

また、つぎの発明にかかる発電量予測方法は、太陽光発電所の発電量を予測するための発電量予測方法であって、雲量と発電量との関係を示す情報を記憶部に記憶する記憶ステップと、定期的に前記記憶部に蓄積された過去の発電量を読み出し、前記過去の発電量を、各々の発電時刻における前記雲量と発電量との関係を示す情報に基づいて雲量0%の場合の発電量に補正し、補正後の発電量を各々の発電時刻毎に補正後発電量としてそれぞれ前記記憶部に蓄積する発電量補正ステップと、前記記憶部に蓄積された補正後発電量を読み出し、前記補正後発電量を発電時刻に応じて分類し、分類された発電時刻毎の補正後発電量の平均および標準偏差を計算し、前記平均および標準偏差に基づいて予測対象日雲量0%であると仮定した場合の発電量を予測し、予測した発電量を第1の予測発電量として前記記憶部に記憶する第1の発電量予測ステップと、前記記憶部に記憶された第1の予測発電量を読み出し、前記第1の予測発電量および前記予測対象日の雲量と発電量との関係を示す情報に基づいて、前記予測対象日の発電量を予測し、予測した発電量を第2の予測発電量として前記記憶部に記憶する第2の発電量予測ステップと、を含むことを特徴とする。 A power generation amount prediction method according to the next invention is a power generation amount prediction method for predicting a power generation amount of a solar power plant, and stores information indicating a relationship between a cloud amount and a power generation amount in a storage unit. a step, out read regularly power generation amount of the past accumulated in the storage unit, the past power generation amount, cloudiness 0 based on the information indicating the relationship between the cloud cover and the power generation amount at each of the power generation time % of corrected power generation amount when the power generation amount correction step of storing in each said storage unit amount of power generation corrected as compensation after power generation amount for each power generation time of each corrected accumulated in the storage unit reads the power generation amount, the post-correction power generation amount is classified according to the power generation time, the mean and standard deviation of the corrected power generation amount for each classified generator time calculated, based on the mean and standard deviation, the predicted target If the day is assumed to be 0% cloud cover The power generation amount predicted, reading a first power generation amount prediction step of storing in the storage unit a generation amount predicted as a first predicted power generation amount, the first prospective power generation amount stored in the storage unit, the based on the information indicating the relationship between the cloud cover and the power generation amount of the first prospective power generation amount and the prediction target day, to predict the power generation amount of the prediction target day, the power generation amount predicted as a second predicted power generation amount And a second power generation amount prediction step stored in the storage unit.

また、つぎの発明にかかる発電量予測プログラムは、太陽光発電所の発電量を予測する発電量予測制御装置として動作するコンピュータにより実行させる発電量予測プログラムであって、雲量と発電量との関係を示す情報を記憶部に記憶する記憶手順、定期的に前記記憶部に蓄積された過去の発電量を読み出し、前記過去の発電量を、各々の発電時刻における前記雲量と発電量との関係を示す情報に基づいて雲量0%の場合の発電量に補正し、補正後の発電量を各々の発電時刻毎に補正後発電量としてそれぞれ前記記憶部に蓄積する発電量補正手順、前記記憶部に蓄積された補正後発電量を読み出し、前記補正後発電量を発電時刻に応じて分類し、分類された発電時刻毎の補正後発電量の平均および標準偏差を計算し、前記平均および標準偏差に基づいて予測対象日雲量0%であると仮定した場合の発電量を予測し、予測した発電量を第1の予測発電量として前記記憶部に記憶する第1の発電量予測手順、前記記憶部に記憶された第1の予測発電量を読み出し、前記第1の予測発電量および前記予測対象日の雲量と発電量との関係を示す情報に基づいて、前記予測対象日の発電量を予測し、予測した発電量を第2の予測発電量として前記記憶部に記憶する第2の発電量予測手順、をコンピュータに実行させることを特徴とする。
A power generation amount prediction program according to the next invention is a power generation amount prediction program executed by a computer that operates as a power generation amount prediction control device that predicts the power generation amount of a solar power plant, and a relationship between a cloud amount and a power generation amount. storing instructions to be stored in the storage unit information indicating, out read power generation amount of the past accumulated in regularly the storage unit, the past power generation amount, and the cloud cover and the power generation amount at each of the power generation time based on the information indicating the relationship is corrected to the power generation amount in the case of 0% cloud cover, the power generation amount correction procedures accumulated in each of the storage unit to the power generation amount of the corrected as compensation after power generation amount for each power generation time of each said reading the corrected power generation amount accumulated in the storage unit, the post-correction power generation amount is classified according to the power generation time, to calculate the mean and standard deviation of the corrected power generation amount for each classified generator time, the mean and Standard deviation Based on, it predicts the power generation amount when the prediction target day is assumed to be 0% cloud cover, the first power generation amount prediction procedure stored in the storage unit a generation amount predicted as the first prospective power generation amount, It reads the first prospective power generation amount stored in the storage unit, based on the information indicating the relationship between the cloud cover and the power generation amount of the first prospective power generation amount and the prediction target day, the power generation amount of the prediction target day The computer is caused to execute a second power generation amount prediction procedure for storing the predicted power generation amount in the storage unit as a second predicted power generation amount.

Claims (14)

太陽光発電所の発電量を予測する発電量予測制御装置において、
雲量と発電量の相関関係を示す相関情報が記憶された記憶手段と、
定期的に蓄積された過去の発電量を、その発電時刻における前記相関情報に基づいて雲量0%の場合の発電量に補正し、補正後の発電量を当該発電時刻毎に新たな補正後発電量として蓄積する発電量補正手段と、
蓄積された補正後発電量を発電時刻単位に分類して発電時刻毎の平均および標準偏差を計算し、当該平均および標準偏差に基づいて、予測対象日における雲量0%の場合の発電量である第1の予測発電量を予測する第1の発電量予測手段と、
前記第1の予測発電量および予測対象日の前記相関情報に基づいて、当該予測対象日の発電量である第2の予測発電量を予測する第2の発電量予測手段と、
を備えることを特徴とする発電量予測制御装置。
In the power generation amount prediction control device that predicts the power generation amount of the solar power plant,
Storage means for storing correlation information indicating a correlation between the cloud amount and the power generation amount;
Based on the correlation information at the power generation time, the past power generation accumulated periodically is corrected to a power generation amount when the cloud amount is 0%, and the corrected power generation amount is newly corrected at each power generation time. Power generation amount correcting means for accumulating as a quantity;
The accumulated power generation amount after correction is classified into power generation time units, and the average and standard deviation for each power generation time are calculated. Based on the average and standard deviation, this is the power generation amount when the cloud amount is 0% on the prediction target day. First power generation amount predicting means for predicting the first predicted power generation amount;
Based on the first predicted power generation amount and the correlation information on the prediction target date, second power generation amount prediction means for predicting a second predicted power generation amount that is the power generation amount of the prediction target date;
A power generation amount predictive control device comprising:
前記相関情報として、雲量に対する発電量の減衰率が前記記憶手段に記憶されている場合において、
前記発電量補正手段は、
過去の発電量の発電時刻における雲量に対応する減衰率を前記記憶手段から読み出し、当該過去の発電量を、読み出した減衰率で割ることにより、補正後発電量を得る、
ことを特徴とする請求項1に記載の発電量予測制御装置。
As the correlation information, when the attenuation rate of the power generation amount with respect to the cloud amount is stored in the storage means,
The power generation amount correcting means includes
Reading the attenuation rate corresponding to the cloud amount of the past power generation amount at the power generation time from the storage unit, and dividing the past power generation amount by the read attenuation rate, to obtain a corrected power generation amount,
The power generation amount prediction control apparatus according to claim 1.
前記第1の発電量予測手段は、
一般的な日射量データベースを利用して得られる過去の日射量の傾向を季節係数として求め、前記平均および標準偏差に基づき得られる発電量を当該季節係数により補正したものを第1の予測発電量とする、
ことを特徴とする請求項1または2に記載の発電量予測制御装置。
The first power generation amount prediction means includes:
A trend of past solar radiation obtained using a general solar radiation database is obtained as a seasonal coefficient, and the first predicted power generation is obtained by correcting the power generation obtained based on the average and standard deviation by the seasonal coefficient. And
The power generation amount prediction control apparatus according to claim 1 or 2,
前記第1の発電量予測手段は、
第1の予測発電量の予測に最低限必要な所定日数分の補正後発電量が蓄積されている場合に、前記平均および標準偏差を計算する処理を実行する、
ことを特徴とする請求項1、2または3に記載の発電量予測制御装置。
The first power generation amount prediction means includes:
When the corrected power generation amount for a predetermined number of days necessary for the prediction of the first predicted power generation amount is accumulated, the process of calculating the average and standard deviation is executed.
The power generation amount prediction control apparatus according to claim 1, 2, or 3.
前記第1の発電量予測手段は、
前記所定日数分の補正後発電量が蓄積されていない場合に、一般的な日射量データベース、および太陽光パネルの方位,角度に基づいて、予測対象日の発電量を計算し、その計算結果を第1の予測発電量とする、
ことを特徴とする請求項4に記載の発電量予測制御装置。
The first power generation amount prediction means includes:
When the corrected power generation amount for the predetermined number of days is not accumulated, the power generation amount for the prediction target day is calculated based on the general solar radiation amount database and the direction and angle of the solar panel, and the calculation result is The first predicted power generation amount
The power generation amount prediction control apparatus according to claim 4.
前記相関情報として、雲量に対する発電量の減衰率が前記記憶手段に記憶されている場合において、
前記第2の発電量予測手段は、
予測対象日の雲量に対応する減衰率を前記記憶手段から読み出し、前記第1の予測発電量に対して当該減衰率をかけることにより、第2の予測発電量を得る、
ことを特徴とする請求項1〜5のいずれか1つに記載の発電量予測制御装置。
As the correlation information, when the attenuation rate of the power generation amount with respect to the cloud amount is stored in the storage means,
The second power generation amount prediction means includes
A second predicted power generation amount is obtained by reading the attenuation rate corresponding to the cloud amount of the prediction target day from the storage unit and multiplying the first predicted power generation amount by the attenuation rate.
The power generation amount prediction control apparatus according to any one of claims 1 to 5, wherein
前記相関情報を、過去の発電量を用いた多変量解析に基づき規定する、
ことを特徴とする請求項1〜6のいずれか1つに記載の発電量予測制御装置。
The correlation information is defined based on multivariate analysis using past power generation amount,
The power generation amount prediction control apparatus according to any one of claims 1 to 6,
太陽光発電所の発電量を予測するための発電量予測方法であって、
雲量と発電量の相関関係を示す相関情報を記憶部に記憶する記憶ステップと、
定期的に前記記憶部に蓄積された過去の発電量を発電時刻毎に読み出し、当該過去の発電量を、その発電時刻における前記相関情報に基づいて雲量0%の場合の発電量に補正し、補正後の発電量を当該発電時刻毎に新たな補正後発電量として前記記憶部に蓄積する発電量補正ステップと、
前記記憶部に蓄積された補正後発電量を読み出し、当該補正後発電量を発電時刻単位に分類して発電時刻毎の平均および標準偏差を計算し、当該平均および標準偏差に基づいて予測対象日における雲量0%の場合の発電量を予測し、予測した発電量を第1の予測発電量として前記記憶部に記憶する第1の発電量予測ステップと、
前記記憶部に記憶された第1の予測発電量を読み出し、当該第1の予測発電量および予測対象日の前記相関情報に基づいて当該予測対象日の発電量を予測し、予測した発電量を第2の予測発電量として前記記憶部に記憶する第2の発電量予測ステップと、
を含むことを特徴とする発電量予測方法。
A power generation amount prediction method for predicting the power generation amount of a solar power plant,
A storage step of storing, in the storage unit, correlation information indicating a correlation between a cloud amount and a power generation amount;
The past power generation amount periodically stored in the storage unit is read for each power generation time, and the past power generation amount is corrected to the power generation amount when the cloud amount is 0% based on the correlation information at the power generation time, A power generation amount correcting step for storing the corrected power generation amount in the storage unit as a new corrected power generation amount for each power generation time; and
Read the corrected power generation amount stored in the storage unit, classify the corrected power generation amount into power generation time units, calculate the average and standard deviation for each power generation time, and based on the average and standard deviation the prediction target date A first power generation amount prediction step of predicting a power generation amount when the cloud amount is 0% in the storage unit, and storing the predicted power generation amount as a first predicted power generation amount in the storage unit;
Reading the first predicted power generation amount stored in the storage unit, predicting the power generation amount on the prediction target day based on the first predicted power generation amount and the correlation information on the prediction target date, and calculating the predicted power generation amount A second power generation amount predicting step for storing the second predicted power generation amount in the storage unit;
A method for predicting the amount of power generation, comprising:
前記相関情報として、雲量に対する発電量の減衰率が前記記憶部に記憶されている場合に、
前記発電量補正ステップでは、
過去の発電量の発電時刻における雲量に対応する減衰率を前記記憶部から読み出し、当該過去の発電量を、読み出した減衰率で割ることにより、補正後発電量を得る、
ことを特徴とする請求項8に記載の発電量予測方法。
As the correlation information, when the attenuation rate of the power generation amount with respect to the cloud amount is stored in the storage unit,
In the power generation amount correcting step,
Read the attenuation rate corresponding to the cloud amount at the time of power generation of the past power generation amount from the storage unit, and obtain the corrected power generation amount by dividing the past power generation amount by the read attenuation rate.
The power generation amount prediction method according to claim 8.
前記第1の発電量予測ステップでは、
第1の予測発電量の予測に最低限必要な所定日数分の補正後発電量が前記記憶部に蓄積されている場合に、前記平均および標準偏差を計算する処理を実行し、
一般的な日射量データベースを利用して得られる過去の日射量の傾向を季節係数として求め、前記平均および標準偏差に基づき得られる発電量を当該季節係数により補正したものを前記第1の予測発電量とする、
ことを特徴とする請求項8または9に記載の発電量予測方法。
In the first power generation amount prediction step,
When the corrected power generation amount for a predetermined number of days necessary for the prediction of the first predicted power generation amount is accumulated in the storage unit, the process of calculating the average and standard deviation is executed,
A trend of past solar radiation obtained by using a general solar radiation database is obtained as a seasonal coefficient, and the first predicted power generation is obtained by correcting the power generation obtained based on the average and standard deviation by the seasonal coefficient. The amount,
The power generation amount prediction method according to claim 8 or 9, characterized in that.
前記第1の発電量予測ステップでは、
前記所定日数分の補正後発電量が前記記憶部に蓄積されていない場合に、一般的な日射量データベース、および太陽光パネルの方位,角度に基づいて、予測対象日の発電量を計算し、その計算結果を第1の予測発電量として前記記憶部に記憶する、
ことを特徴とする請求項10に記載の発電量予測方法。
In the first power generation amount prediction step,
When the corrected power generation amount for the predetermined number of days is not accumulated in the storage unit, based on the general solar radiation amount database and the azimuth and angle of the solar panel, calculate the power generation amount on the prediction target day, The calculation result is stored in the storage unit as the first predicted power generation amount,
The power generation amount prediction method according to claim 10.
前記相関情報として、雲量に対する発電量の減衰率が前記記憶部に記憶されている場合に、
前記第2の発電量予測ステップでは、
予測対象日の雲量に対応する減衰率を前記記憶部から読み出し、前記第1の予測発電量に対して当該減衰率をかけることにより、第2の予測発電量を得る、
ことを特徴とする請求項8〜11のいずれか1つに記載の発電量予測方法。
As the correlation information, when the attenuation rate of the power generation amount with respect to the cloud amount is stored in the storage unit,
In the second power generation amount prediction step,
Reading the attenuation rate corresponding to the cloud amount of the prediction target day from the storage unit, and applying the attenuation rate to the first predicted power generation amount, to obtain a second predicted power generation amount,
The power generation amount prediction method according to any one of claims 8 to 11, characterized in that:
前記相関情報を、過去の発電量を用いた多変量解析に基づき規定する規定ステップ、
をさらに含むことを特徴とする請求項8〜12のいずれか1つに記載の発電量予測方法。
A defining step for defining the correlation information based on multivariate analysis using past power generation amount,
The power generation amount prediction method according to any one of claims 8 to 12, further comprising:
太陽光発電所の発電量を予測する発電量予測制御装置として動作するコンピュータにより実行させる発電量予測プログラムであって、
雲量と発電量の相関関係を示す相関情報を記憶部に記憶する記憶手順、
定期的に前記記憶部に蓄積された過去の発電量を発電時刻毎に読み出し、当該過去の発電量を、その発電時刻における前記相関情報に基づいて雲量0%の場合の発電量に補正し、補正後の発電量を当該発電時刻毎に新たな補正後発電量として前記記憶部に蓄積する発電量補正手順、
前記記憶部に蓄積された補正後発電量を読み出し、当該補正後発電量を発電時刻単位に分類して発電時刻毎の平均および標準偏差を計算し、当該平均および標準偏差に基づいて予測対象日における雲量0%の場合の発電量を予測し、予測した発電量を第1の予測発電量として前記記憶部に記憶する第1の発電量予測手順、
前記記憶部に記憶された第1の予測発電量を読み出し、当該第1の予測発電量および予測対象日の前記相関情報に基づいて当該予測対象日の発電量を予測し、予測した発電量を第2の予測発電量として前記記憶部に記憶する第2の発電量予測手順、
をコンピュータに実行させることを特徴とする発電量予測プログラム。
A power generation amount prediction program that is executed by a computer that operates as a power generation amount prediction control device that predicts the power generation amount of a solar power plant,
A storage procedure for storing correlation information indicating a correlation between cloud amount and power generation amount in a storage unit,
The past power generation amount periodically stored in the storage unit is read for each power generation time, and the past power generation amount is corrected to the power generation amount when the cloud amount is 0% based on the correlation information at the power generation time, A power generation amount correction procedure for storing the corrected power generation amount in the storage unit as a new corrected power generation amount for each power generation time,
Read the corrected power generation amount stored in the storage unit, classify the corrected power generation amount into power generation time units, calculate the average and standard deviation for each power generation time, and based on the average and standard deviation the prediction target date A first power generation amount prediction procedure for predicting a power generation amount in a case where the cloud amount is 0% and storing the predicted power generation amount as a first predicted power generation amount in the storage unit,
Reading the first predicted power generation amount stored in the storage unit, predicting the power generation amount on the prediction target day based on the first predicted power generation amount and the correlation information on the prediction target date, and calculating the predicted power generation amount A second power generation amount prediction procedure stored in the storage unit as a second predicted power generation amount;
A power generation amount prediction program characterized by causing a computer to execute.
JP2015121698A 2015-06-17 2015-06-17 Power generation amount predicting control device, power generation amount prediction method, and power generation amount prediction program Active JP5833267B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015121698A JP5833267B1 (en) 2015-06-17 2015-06-17 Power generation amount predicting control device, power generation amount prediction method, and power generation amount prediction program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015121698A JP5833267B1 (en) 2015-06-17 2015-06-17 Power generation amount predicting control device, power generation amount prediction method, and power generation amount prediction program

Publications (2)

Publication Number Publication Date
JP5833267B1 JP5833267B1 (en) 2015-12-16
JP2017011780A true JP2017011780A (en) 2017-01-12

Family

ID=54874338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015121698A Active JP5833267B1 (en) 2015-06-17 2015-06-17 Power generation amount predicting control device, power generation amount prediction method, and power generation amount prediction program

Country Status (1)

Country Link
JP (1) JP5833267B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020127337A (en) * 2019-02-06 2020-08-20 東京電力ホールディングス株式会社 Power generation amount estimation device, power generation amount estimation method and power generation amount estimation program
JP7026279B1 (en) 2021-10-08 2022-02-25 株式会社Looop Devices, methods, and programs that generate power generation calculation models
WO2023054476A1 (en) * 2021-09-28 2023-04-06 株式会社ラプラス・システム Method for predicting generated power, device for predicting generated power, and solar power generation system
KR102915831B1 (en) 2021-12-28 2026-01-23 충북대학교 산학협력단 Method And Apparatus for Prediction Solar Power Generation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020061186A1 (en) * 2018-09-20 2020-03-26 Koulomzin George An apparatus, methodologies and software applications for determining a level of direct sunlight
CN110472826B (en) * 2019-07-09 2022-11-18 大连理工大学 A real-time adaptive method for cascade hydropower station load change considering daily power deviation
CN114519468A (en) * 2022-02-21 2022-05-20 北京理工大学 Photovoltaic power generation power prediction method and system based on data driving

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2972596B2 (en) * 1996-09-26 1999-11-08 関西電力株式会社 Power generation prediction method for photovoltaic power generation system
JP2007173657A (en) * 2005-12-26 2007-07-05 Mitsubishi Electric Corp Photovoltaic power generation prediction device
JP2014098601A (en) * 2012-11-14 2014-05-29 Hitachi Ltd Insolation amount calculation method and power supply determining method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2972596B2 (en) * 1996-09-26 1999-11-08 関西電力株式会社 Power generation prediction method for photovoltaic power generation system
JP2007173657A (en) * 2005-12-26 2007-07-05 Mitsubishi Electric Corp Photovoltaic power generation prediction device
JP2014098601A (en) * 2012-11-14 2014-05-29 Hitachi Ltd Insolation amount calculation method and power supply determining method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020127337A (en) * 2019-02-06 2020-08-20 東京電力ホールディングス株式会社 Power generation amount estimation device, power generation amount estimation method and power generation amount estimation program
JP7346835B2 (en) 2019-02-06 2023-09-20 東京電力ホールディングス株式会社 Power generation amount estimation device, power generation amount estimation method, and power generation amount estimation program
WO2023054476A1 (en) * 2021-09-28 2023-04-06 株式会社ラプラス・システム Method for predicting generated power, device for predicting generated power, and solar power generation system
JP7026279B1 (en) 2021-10-08 2022-02-25 株式会社Looop Devices, methods, and programs that generate power generation calculation models
JP2023056772A (en) * 2021-10-08 2023-04-20 株式会社Looop Apparatus, method, and program for generating power generation calculation model
KR102915831B1 (en) 2021-12-28 2026-01-23 충북대학교 산학협력단 Method And Apparatus for Prediction Solar Power Generation

Also Published As

Publication number Publication date
JP5833267B1 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
JP5911442B2 (en) Method and controller for predicting the output of a photovoltaic device
JP5833267B1 (en) Power generation amount predicting control device, power generation amount prediction method, and power generation amount prediction program
US10127568B2 (en) Systems and methods for improving the accuracy of day-ahead load forecasts on an electric utility grid
JP5606114B2 (en) Power generation amount prediction device, prediction method, and prediction program
US8620634B2 (en) Energy resource allocation including renewable energy sources
Paraschiv et al. A spot-forward model for electricity prices with regime shifts
JP7664708B2 (en) Photovoltaic power generation output prediction device, power system control system, supply and demand control system, solar radiation intensity prediction device, learning device, photovoltaic power generation output prediction method, and photovoltaic power generation output prediction program
JP2013164286A (en) Solar radiation amount prediction method, photovoltaic power generation output prediction method and system
US20170031867A1 (en) Combining Multiple Trending Models for Photovoltaics Plant Output Forecasting
CA2996731C (en) Methods and systems for energy use normalization and forecasting
JP7410897B2 (en) Power generation management system and power generation management method
JP7406395B2 (en) DR activation prediction system
JP6303909B2 (en) Planning method, planning system and planning program
JP5078128B2 (en) Operation method, prediction error compensation device, meteorological power generation planning device, and program
JP2014220971A (en) Power demand prediction device, power demand prediction method, and power demand prediction program
CN106663942A (en) Information processing device, information processing method, and storage medium
Michaelson et al. Reduction of forced outages in islanded microgrids by compensating model uncertainties in PV rating and battery capacity
Belrzaeg et al. AI-Driven Optimization of Renewable Energy Grids Enhancing Efficiency and Sustainability
Sharma et al. Development of modified Pro-Energy algorithm for future solar irradiance estimation using level and trend factors in time series analysis
CN118611134A (en) Distributed photovoltaic power station configuration optimization method and device
JP7767989B2 (en) Photovoltaic power generation prediction device, and control method and program for photovoltaic power generation prediction device
JP7607548B2 (en) Learning device, power demand inference device, grid control system, supply and demand control system, facility formation support system and program
JP7559118B2 (en) Information processing device, information processing method, and program
CN119536158B (en) Cooperative control method and device for renewable energy source water electrolysis hydrogen production and ammonia synthesis system
JP7767990B2 (en) Photovoltaic power generation prediction device, and control method and program for photovoltaic power generation prediction device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151028

R150 Certificate of patent or registration of utility model

Ref document number: 5833267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250