しかしながら、これまでに、複数のアミノ酸を変数として肺癌発症の有無を診断する技術の開発は時間的および金銭的な観点から行われておらず、実用化されていないという問題点があった。
本発明は、上記問題点に鑑みてなされたものであって、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸濃度を利用して肺癌の状態を精度よく評価することができる肺癌の評価方法、ならびに肺癌評価装置、肺癌評価方法、肺癌評価システム、肺癌評価プログラムおよび記録媒体を提供することを目的とする。
本発明者らは、上記課題を解決するために鋭意検討し、血液中のアミノ酸濃度による肺癌の判別に有用な、2群間で統計的有意差をもって変動するアミノ酸変数の同定、ならびにアミノ酸変数を用いる相関式(指標式)が初期肺癌の病態進行に有意な相関があることを見出し、本発明を完成するに至った。本発明は、以下を包含する。
すなわち、上述した課題を解決し、目的を達成するために、本発明にかかる肺癌の評価方法は、評価対象から採取した血液から、アミノ酸の濃度値に関するアミノ酸濃度データを測定する測定ステップと、前記測定ステップで測定した前記評価対象の前記アミノ酸濃度データに含まれるOrn,Lys,ABA(ABAはα−アミノ酪酸を表す。以下同様。),Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、肺癌の状態を評価する濃度値基準評価ステップとを実行することを特徴とする。
また、本発明にかかる肺癌の評価方法は、前記の肺癌の評価方法において、前記濃度値基準評価ステップは、前記測定ステップで測定した前記評価対象の前記アミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記肺癌または非肺癌であるか否かを判別する濃度値基準判別ステップをさらに含むことを特徴とする。
また、本発明にかかる肺癌の評価方法は、前記の肺癌の評価方法において、前記濃度値基準評価ステップは、前記測定ステップで測定した前記評価対象の前記アミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記肺癌であることおよびその病期、または非肺癌であるか否かを判別する濃度値基準判別ステップをさらに含むことを特徴とする。
また、本発明にかかる肺癌の評価方法は、前記の肺癌の評価方法において、前記濃度値基準評価ステップは、前記測定ステップで測定した前記評価対象の前記アミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの前記濃度値に基づいて、前記評価対象につき、前記肺癌のうち腺癌であること、または非肺癌であるか否かを判別する濃度値基準判別ステップをさらに含むことを特徴とする。
また、本発明にかかる肺癌の評価方法は、前記の肺癌の評価方法において、前記濃度値基準評価ステップは、前記測定ステップで測定した前記評価対象の前記アミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの前記濃度値および前記アミノ酸の濃度を変数とする予め設定した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出ステップと、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記肺癌の状態を評価する判別値基準評価ステップとをさらに含み、前記多変量判別式は、Orn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌の評価方法は、前記の肺癌の評価方法において、前記多変量判別式は、年齢を前記変数としてさらに含むことを特徴とする。
また、本発明にかかる肺癌の評価方法は、前記の肺癌の評価方法において、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記肺癌または非肺癌であるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とする。
また、本発明にかかる肺癌の評価方法は、前記の肺癌の評価方法において、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌の評価方法は、前記の肺癌の評価方法において、前記多変量判別式は数式1、数式2または数式3であることを特徴とする。
a1×Orn/Trp + b1×(Tau+ABA)/Arg + c1
・・・(数式1)
a2×Glu/Tyr + b2×(Pro+Lys)/(Ile+His) + c2 ・・・(数式2)
a3×His/Lys + b3×Glu/Ile + c3×Tyr/Pro + d3×Val/Leu + e3 ・・・(数式3)
(数式1において、a1,b1,c1は任意の実数であり、数式2において、a2,b2,c2は任意の実数であり、数式3において、a3,b3,c3,d3,e3は任意の実数である。)
また、本発明にかかる肺癌の評価方法は、前記の肺癌の評価方法において、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる肺癌の評価方法は、前記の肺癌の評価方法において、前記多変量判別式は、Tau,Orn,Arg,Ser,Glu,Pro,Asnを前記変数とする前記ロジスティック回帰式、または年齢,ABA,Arg,Gln,His,Leu,Orn,Pro,Tau,Trp,Valを前記変数とする前記線形判別式、またはHis,Glu,Pro,Ile,Gln,Lysを前記変数とする前記ロジスティック回帰式、またはHis,Glu,Pro,Ile,Tyr,Lysを前記変数とする前記線形判別式であることを特徴とする。
また、本発明にかかる肺癌の評価方法は、前記の肺癌の評価方法において、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記肺癌であることおよびその病期、または非肺癌であるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とする。
また、本発明にかかる肺癌の評価方法は、前記に記載の肺癌の評価方法において、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌の評価方法は、前記に記載の肺癌の評価方法において、前記多変量判別式は数式4、数式5または数式6であることを特徴とする。
a4×Tau/Arg + b4×(Orn+ABA)/Trp + c4
・・・(数式4)
a5×Gln/(Cit+His) + b5×(Glu+ABA)/(Cys2) + c5 ・・・(数式5)
a6×Gln/His + b6×Glu + c6×ABA/Cys + d6×Lys/Val + e6 ・・・(数式6)
(数式4において、a4,b4,c4は任意の実数であり、数式5において、a5,b5,c5は任意の実数であり、数式6において、a6,b6,c6,d6,e6は任意の実数である。)
また、本発明にかかる肺癌の評価方法は、前記に記載の肺癌の評価方法において、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる肺癌の評価方法は、前記に記載の肺癌の評価方法において、前記多変量判別式は、Orn,Tau,Trpを前記変数とする前記ロジスティック回帰式、またはOrn,Arg,Tau,ABA,Gly,Hisを前記変数とする前記線形判別式、またはGln,Glu,His,Lys,Cys,ABAを前記変数とする前記ロジスティック回帰式、またはGln,Glu,Ala,His,Cys,ABAを前記変数とする前記線形判別式であることを特徴とする。
また、本発明にかかる肺癌の評価方法は、前記の肺癌の評価方法において、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記肺癌のうち腺癌であること、または非肺癌であるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とする。
また、本発明にかかる肺癌の評価方法は、前記に記載の肺癌の評価方法において、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌の評価方法は、前記に記載の肺癌の評価方法において、前記多変量判別式は数式7、数式8または数式9であることを特徴とする。
a7×Orn/Trp + b7×Tau/Arg + c7 ・・・(数式7)
a8×(Glu+Pro)/His + b8×(ABA+Lys)/Ile + c8 ・・・(数式8)
a9×Glu/Cit + b9×His/Gln + c9×Ile/Leu + d9×Tyr/Ala + e9 ・・・(数式9)
(数式7において、a7,b7,c7は任意の実数であり、数式8において、a8,b8,c8は任意の実数であり、数式9において、a9,b9,c9,d9,e9は任意の実数である。)
また、本発明にかかる肺癌の評価方法は、前記に記載の肺癌の評価方法において、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる肺癌の評価方法は、前記に記載の肺癌の評価方法において、前記多変量判別式は、Orn,ABA,Tau,Glyを前記変数とする前記ロジスティック回帰式、またはOrn,ABA,Tau,His,Arg,Glyを前記変数とする前記線形判別式、またはHis,Ile,Glu,Pro,Leu,Glnを前記変数とする前記ロジスティック回帰式、またはHis,Ile,Pro,Ala,Leu,Glnを前記変数とする前記線形判別式であることを特徴とする。
また、本発明は肺癌評価装置に関するものであり、本発明にかかる肺癌評価装置は、制御手段と記憶手段とを備え評価対象につき肺癌の状態を評価する肺癌評価装置であって、前記制御手段は、アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの前記濃度値および前記アミノ酸の濃度を変数とする前記記憶手段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出手段と、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記肺癌の状態を評価する判別値基準評価手段とを備え、前記多変量判別式は、Orn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌評価装置は、前記の肺癌評価装置において、前記多変量判別式は、年齢を前記変数としてさらに含むことを特徴とする。
また、本発明にかかる肺癌評価装置は、前記の肺癌評価装置において、前記判別値基準評価手段は、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記肺癌または非肺癌であるか否かを判別する判別値基準判別手段をさらに備えたことを特徴とする。
また、本発明にかかる肺癌評価装置は、前記の肺癌評価装置において、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌評価装置は、前記の肺癌評価装置において、前記多変量判別式は数式1、数式2または数式3であることを特徴とする。
a1×Orn/Trp + b1×(Tau+ABA)/Arg + c1
・・・(数式1)
a2×Glu/Tyr + b2×(Pro+Lys)/(Ile+His) + c2 ・・・(数式2)
a3×His/Lys + b3×Glu/Ile + c3×Tyr/Pro + d3×Val/Leu + e3 ・・・(数式3)
(数式1において、a1,b1,c1は任意の実数であり、数式2において、a2,b2,c2は任意の実数であり、数式3において、a3,b3,c3,d3,e3は任意の実数である。)
また、本発明にかかる肺癌評価装置は、前記の肺癌評価装置において、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる肺癌評価装置は、前記の肺癌評価装置において、前記多変量判別式は、Tau,Orn,Arg,Ser,Glu,Pro,Asnを前記変数とする前記ロジスティック回帰式、または年齢,ABA,Arg,Gln,His,Leu,Orn,Pro,Tau,Trp,Valを前記変数とする前記線形判別式、またはHis,Glu,Pro,Ile,Gln,Lysを前記変数とする前記ロジスティック回帰式、またはHis,Glu,Pro,Ile,Tyr,Lysを前記変数とする前記線形判別式であることを特徴とする。
また、本発明にかかる肺癌評価装置は、前記の肺癌評価装置において、前記判別値基準評価手段は、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記肺癌であることおよびその病期、または非肺癌であるか否かを判別する判別値基準判別手段をさらに備えたことを特徴とする。
また、本発明にかかる肺癌評価装置は、前記に記載の肺癌評価装置において、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌評価装置は、前記に記載の肺癌評価装置において、前記多変量判別式は数式4、数式5または数式6であることを特徴とする。
a4×Tau/Arg + b4×(Orn+ABA)/Trp + c4
・・・(数式4)
a5×Gln/(Cit+His) + b5×(Glu+ABA)/(Cys2) + c5 ・・・(数式5)
a6×Gln/His + b6×Glu + c6×ABA/Cys + d6×Lys/Val + e6 ・・・(数式6)
(数式4において、a4,b4,c4は任意の実数であり、数式5において、a5,b5,c5は任意の実数であり、数式6において、a6,b6,c6,d6,e6は任意の実数である。)
また、本発明にかかる肺癌評価装置は、前記に記載の肺癌評価装置において、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる肺癌評価装置は、前記に記載の肺癌評価装置において、前記多変量判別式は、Orn,Tau,Trpを前記変数とする前記ロジスティック回帰式、またはOrn,Arg,Tau,ABA,Gly,Hisを前記変数とする前記線形判別式、またはGln,Glu,His,Lys,Cys,ABAを前記変数とする前記ロジスティック回帰式、またはGln,Glu,Ala,His,Cys,ABAを前記変数とする前記線形判別式であることを特徴とする。
また、本発明にかかる肺癌評価装置は、前記の肺癌評価装置において、前記判別値基準評価手段は、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記肺癌のうち腺癌であること、または非肺癌であるか否かを判別する判別値基準判別手段をさらに備えたことを特徴とする。
また、本発明にかかる肺癌評価装置は、前記に記載の肺癌評価装置において、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌評価装置は、前記に記載の肺癌評価装置において、前記多変量判別式は数式7、数式8または数式9であることを特徴とする。
a7×Orn/Trp + b7×Tau/Arg + c7 ・・・(数式7)
a8×(Glu+Pro)/His + b8×(ABA+Lys)/Ile + c8 ・・・(数式8)
a9×Glu/Cit + b9×His/Gln + c9×Ile/Leu + d9×Tyr/Ala + e9 ・・・(数式9)
(数式7において、a7,b7,c7は任意の実数であり、数式8において、a8,b8,c8は任意の実数であり、数式9において、a9,b9,c9,d9,e9は任意の実数である。)
また、本発明にかかる肺癌評価装置は、前記に記載の肺癌評価装置において、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる肺癌評価装置は、前記に記載の肺癌評価装置において、前記多変量判別式は、Orn,ABA,Tau,Glyを前記変数とする前記ロジスティック回帰式、またはOrn,ABA,Tau,His,Arg,Glyを前記変数とする前記線形判別式、またはHis,Ile,Glu,Pro,Leu,Glnを前記変数とする前記ロジスティック回帰式、またはHis,Ile,Pro,Ala,Leu,Glnを前記変数とする前記線形判別式であることを特徴とする。
また、本発明にかかる肺癌評価装置は、前記の肺癌評価装置において、前記制御手段は、前記アミノ酸濃度データと前記肺癌の状態を表す指標に関する肺癌状態指標データとを含む前記記憶手段で記憶した肺癌状態情報に基づいて、前記記憶手段で記憶する前記多変量判別式を作成する多変量判別式作成手段をさらに備え、前記多変量判別式作成手段は、前記肺癌状態情報から所定の式作成手法に基づいて、前記多変量判別式の候補である候補多変量判別式を作成する候補多変量判別式作成手段と、前記候補多変量判別式作成手段で作成した前記候補多変量判別式を、所定の検証手法に基づいて検証する候補多変量判別式検証手段と、前記候補多変量判別式検証手段での検証結果から所定の変数選択手法に基づいて前記候補多変量判別式の変数を選択することで、前記候補多変量判別式を作成する際に用いる前記肺癌状態情報に含まれる前記アミノ酸濃度データの組み合わせを選択する変数選択手段と、をさらに備え、前記候補多変量判別式作成手段、前記候補多変量判別式検証手段および前記変数選択手段を繰り返し実行して蓄積した前記検証結果に基づいて、複数の前記候補多変量判別式の中から前記多変量判別式として採用する前記候補多変量判別式を選出することで、前記多変量判別式を作成することを特徴とする。
また、本発明は肺癌評価方法に関するものであり、本発明にかかる肺癌評価方法は、制御手段と記憶手段とを備えた情報処理装置で実行する、評価対象につき肺癌の状態を評価する肺癌評価方法であって、前記制御手段で、アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの前記濃度値および前記アミノ酸の濃度を変数とする前記記憶手段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出ステップと、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記肺癌の状態を評価する判別値基準評価ステップとを実行し、前記多変量判別式は、Orn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌評価方法は、前記の肺癌評価方法において、前記多変量判別式は、年齢を前記変数としてさらに含むことを特徴とする。
また、本発明にかかる肺癌評価方法は、前記の肺癌評価方法において、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記肺癌または非肺癌であるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とする。
また、本発明にかかる肺癌評価方法は、前記の肺癌評価方法において、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌評価方法は、前記の肺癌評価方法において、前記多変量判別式は数式1、数式2または数式3であることを特徴とする。
a1×Orn/Trp + b1×(Tau+ABA)/Arg + c1
・・・(数式1)
a2×Glu/Tyr + b2×(Pro+Lys)/(Ile+His) + c2 ・・・(数式2)
a3×His/Lys + b3×Glu/Ile + c3×Tyr/Pro + d3×Val/Leu + e3 ・・・(数式3)
(数式1において、a1,b1,c1は任意の実数であり、数式2において、a2,b2,c2は任意の実数であり、数式3において、a3,b3,c3,d3,e3は任意の実数である。)
また、本発明にかかる肺癌評価方法は、前記の肺癌評価方法において、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる肺癌評価方法は、前記の肺癌評価方法において、前記多変量判別式は、Tau,Orn,Arg,Ser,Glu,Pro,Asnを前記変数とする前記ロジスティック回帰式、または年齢,ABA,Arg,Gln,His,Leu,Orn,Pro,Tau,Trp,Valを前記変数とする前記線形判別式、またはHis,Glu,Pro,Ile,Gln,Lysを前記変数とする前記ロジスティック回帰式、またはHis,Glu,Pro,Ile,Tyr,Lysを前記変数とする前記線形判別式であることを特徴とする。
また、本発明にかかる肺癌評価方法は、前記の肺癌評価方法において、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記肺癌であることおよびその病期、または非肺癌であるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とする。
また、本発明にかかる肺癌評価方法は、前記に記載の肺癌評価方法において、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌評価方法は、前記に記載の肺癌評価方法において、前記多変量判別式は数式4、数式5または数式6であることを特徴とする。
a4×Tau/Arg + b4×(Orn+ABA)/Trp + c4
・・・(数式4)
a5×Gln/(Cit+His) + b5×(Glu+ABA)/(Cys2) + c5 ・・・(数式5)
a6×Gln/His + b6×Glu + c6×ABA/Cys + d6×Lys/Val + e6 ・・・(数式6)
(数式4において、a4,b4,c4は任意の実数であり、数式5において、a5,b5,c5は任意の実数であり、数式6において、a6,b6,c6,d6,e6は任意の実数である。)
また、本発明にかかる肺癌評価方法は、前記に記載の肺癌評価方法において、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる肺癌評価方法は、前記に記載の肺癌評価方法において、前記多変量判別式は、Orn,Tau,Trpを前記変数とする前記ロジスティック回帰式、またはOrn,Arg,Tau,ABA,Gly,Hisを前記変数とする前記線形判別式、またはGln,Glu,His,Lys,Cys,ABAを前記変数とする前記ロジスティック回帰式、またはGln,Glu,Ala,His,Cys,ABAを前記変数とする前記線形判別式であることを特徴とする。
また、本発明にかかる肺癌評価方法は、前記の肺癌評価方法において、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記肺癌のうち腺癌であること、または非肺癌であるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とする。
また、本発明にかかる肺癌評価方法は、前記に記載の肺癌評価方法において、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌評価方法は、前記に記載の肺癌評価方法において、前記多変量判別式は数式7、数式8または数式9であることを特徴とする。
a7×Orn/Trp + b7×Tau/Arg + c7 ・・・(数式7)
a8×(Glu+Pro)/His + b8×(ABA+Lys)/Ile + c8 ・・・(数式8)
a9×Glu/Cit + b9×His/Gln + c9×Ile/Leu + d9×Tyr/Ala + e9 ・・・(数式9)
(数式7において、a7,b7,c7は任意の実数であり、数式8において、a8,b8,c8は任意の実数であり、数式9において、a9,b9,c9,d9,e9は任意の実数である。)
また、本発明にかかる肺癌評価方法は、前記に記載の肺癌評価方法において、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる肺癌評価方法は、前記に記載の肺癌評価方法において、前記多変量判別式は、Orn,ABA,Tau,Glyを前記変数とする前記ロジスティック回帰式、またはOrn,ABA,Tau,His,Arg,Glyを前記変数とする前記線形判別式、またはHis,Ile,Glu,Pro,Leu,Glnを前記変数とする前記ロジスティック回帰式、またはHis,Ile,Pro,Ala,Leu,Glnを前記変数とする前記線形判別式であることを特徴とする。
また、本発明にかかる肺癌評価方法は、前記の肺癌評価方法において、前記制御手段で、前記アミノ酸濃度データと前記肺癌の状態を表す指標に関する肺癌状態指標データとを含む前記記憶手段で記憶した肺癌状態情報に基づいて、前記記憶手段で記憶する前記多変量判別式を作成する多変量判別式作成ステップをさらに実行し、前記多変量判別式作成ステップは、前記肺癌状態情報から所定の式作成手法に基づいて、前記多変量判別式の候補である候補多変量判別式を作成する候補多変量判別式作成ステップと、前記候補多変量判別式作成ステップで作成した前記候補多変量判別式を、所定の検証手法に基づいて検証する候補多変量判別式検証ステップと、前記候補多変量判別式検証ステップでの検証結果から所定の変数選択手法に基づいて前記候補多変量判別式の変数を選択することで、前記候補多変量判別式を作成する際に用いる前記肺癌状態情報に含まれる前記アミノ酸濃度データの組み合わせを選択する変数選択ステップと、をさらに含み、前記候補多変量判別式作成ステップ、前記候補多変量判別式検証ステップおよび前記変数選択ステップを繰り返し実行して蓄積した前記検証結果に基づいて、複数の前記候補多変量判別式の中から前記多変量判別式として採用する前記候補多変量判別式を選出することで、前記多変量判別式を作成することを特徴とする。
また、本発明は肺癌評価システムに関するものであり、本発明にかかる肺癌評価システムは、制御手段と記憶手段とを備え評価対象につき肺癌の状態を評価する肺癌評価装置と、アミノ酸の濃度値に関する前記評価対象のアミノ酸濃度データを提供する情報通信端末装置とを、ネットワークを介して通信可能に接続して構成された肺癌評価システムであって、前記情報通信端末装置は、前記評価対象の前記アミノ酸濃度データを前記肺癌評価装置へ送信するアミノ酸濃度データ送信手段と、前記肺癌評価装置から送信された前記肺癌の状態に関する前記評価対象の評価結果を受信する評価結果受信手段とを備え、前記肺癌評価装置の前記制御手段は、前記情報通信端末装置から送信された前記評価対象の前記アミノ酸濃度データを受信するアミノ酸濃度データ受信手段と、前記アミノ酸濃度データ受信手段で受信した前記評価対象の前記アミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの前記濃度値および前記アミノ酸の濃度を変数とする前記記憶手段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出手段と、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記肺癌の状態を評価する判別値基準評価手段と、前記判別値基準評価手段での前記評価対象の前記評価結果を前記情報通信端末装置へ送信する評価結果送信手段と、を備え、前記多変量判別式は、Orn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌評価システムは、前記に記載の肺癌評価システムにおいて、前記多変量判別式は、年齢を前記変数としてさらに含むことを特徴とする。
また、本発明にかかる肺癌評価システムは、前記に記載の肺癌評価システムにおいて、前記判別値基準評価手段は、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記肺癌または非肺癌であるか否かを判別する判別値基準判別手段をさらに備えたことを特徴とする。
また、本発明にかかる肺癌評価システムは、前記に記載の肺癌評価システムにおいて、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌評価システムは、前記に記載の肺癌評価システムにおいて、前記多変量判別式は数式1、数式2または数式3であることを特徴とする。
a1×Orn/Trp + b1×(Tau+ABA)/Arg + c1
・・・(数式1)
a2×Glu/Tyr + b2×(Pro+Lys)/(Ile+His) + c2 ・・・(数式2)
a3×His/Lys + b3×Glu/Ile + c3×Tyr/Pro + d3×Val/Leu + e3 ・・・(数式3)
(数式1において、a1,b1,c1は任意の実数であり、数式2において、a2,b2,c2は任意の実数であり、数式3において、a3,b3,c3,d3,e3は任意の実数である。)
また、本発明にかかる肺癌評価システムは、前記に記載の肺癌評価システムにおいて、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる肺癌評価システムは、前記に記載の肺癌評価システムにおいて、前記多変量判別式は、Tau,Orn,Arg,Ser,Glu,Pro,Asnを前記変数とする前記ロジスティック回帰式、または年齢,ABA,Arg,Gln,His,Leu,Orn,Pro,Tau,Trp,Valを前記変数とする前記線形判別式、またはHis,Glu,Pro,Ile,Gln,Lysを前記変数とする前記ロジスティック回帰式、またはHis,Glu,Pro,Ile,Tyr,Lysを前記変数とする前記線形判別式であることを特徴とする。
また、本発明にかかる肺癌評価システムは、前記に記載の肺癌評価システムにおいて、前記判別値基準評価手段は、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記肺癌であることおよびその病期、または非肺癌であるか否かを判別する判別値基準判別手段をさらに備えたことを特徴とする。
また、本発明にかかる肺癌評価システムは、前記に記載の肺癌評価システムにおいて、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌評価システムは、前記に記載の肺癌評価システムにおいて、前記多変量判別式は数式4、数式5または数式6であることを特徴とする。
a4×Tau/Arg + b4×(Orn+ABA)/Trp + c4
・・・(数式4)
a5×Gln/(Cit+His) + b5×(Glu+ABA)/(Cys2) + c5 ・・・(数式5)
a6×Gln/His + b6×Glu + c6×ABA/Cys + d6×Lys/Val + e6 ・・・(数式6)
(数式4において、a4,b4,c4は任意の実数であり、数式5において、a5,b5,c5は任意の実数であり、数式6において、a6,b6,c6,d6,e6は任意の実数である。)
また、本発明にかかる肺癌評価システムは、前記に記載の肺癌評価システムにおいて、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる肺癌評価システムは、前記に記載の肺癌評価システムにおいて、前記多変量判別式は、Orn,Tau,Trpを前記変数とする前記ロジスティック回帰式、またはOrn,Arg,Tau,ABA,Gly,Hisを前記変数とする前記線形判別式、またはGln,Glu,His,Lys,Cys,ABAを前記変数とする前記ロジスティック回帰式、またはGln,Glu,Ala,His,Cys,ABAを前記変数とする前記線形判別式であることを特徴とする。
また、本発明にかかる肺癌評価システムは、前記に記載の肺癌評価システムにおいて、前記判別値基準評価手段は、前記判別値算出手段で算出した前記判別値に基づいて、前記評価対象につき、前記肺癌のうち腺癌であること、または非肺癌であるか否かを判別する判別値基準判別手段をさらに備えたことを特徴とする。
また、本発明にかかる肺癌評価システムは、前記に記載の肺癌評価システムにおいて、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌評価システムは、前記に記載の肺癌評価システムにおいて、前記多変量判別式は数式7、数式8または数式9であることを特徴とする。
a7×Orn/Trp + b7×Tau/Arg + c7 ・・・(数式7)
a8×(Glu+Pro)/His + b8×(ABA+Lys)/Ile + c8 ・・・(数式8)
a9×Glu/Cit + b9×His/Gln + c9×Ile/Leu + d9×Tyr/Ala + e9 ・・・(数式9)
(数式7において、a7,b7,c7は任意の実数であり、数式8において、a8,b8,c8は任意の実数であり、数式9において、a9,b9,c9,d9,e9は任意の実数である。)
また、本発明にかかる肺癌評価システムは、前記に記載の肺癌評価システムにおいて、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる肺癌評価システムは、前記に記載の肺癌評価システムにおいて、前記多変量判別式は、Orn,ABA,Tau,Glyを前記変数とする前記ロジスティック回帰式、またはOrn,ABA,Tau,His,Arg,Glyを前記変数とする前記線形判別式、またはHis,Ile,Glu,Pro,Leu,Glnを前記変数とする前記ロジスティック回帰式、またはHis,Ile,Pro,Ala,Leu,Glnを前記変数とする前記線形判別式であることを特徴とする。
また、本発明にかかる肺癌評価システムは、前記に記載の肺癌評価システムにおいて、前記肺癌評価装置の前記制御手段は、前記アミノ酸濃度データと前記肺癌の状態を表す指標に関する肺癌状態指標データとを含む前記記憶手段で記憶した肺癌状態情報に基づいて、前記記憶手段で記憶する前記多変量判別式を作成する多変量判別式作成手段をさらに備え、前記多変量判別式作成手段は、前記肺癌状態情報から所定の式作成手法に基づいて、前記多変量判別式の候補である候補多変量判別式を作成する候補多変量判別式作成手段と、前記候補多変量判別式作成手段で作成した前記候補多変量判別式を、所定の検証手法に基づいて検証する候補多変量判別式検証手段と、前記候補多変量判別式検証手段での検証結果から所定の変数選択手法に基づいて前記候補多変量判別式の変数を選択することで、前記候補多変量判別式を作成する際に用いる前記肺癌状態情報に含まれる前記アミノ酸濃度データの組み合わせを選択する変数選択手段と、をさらに備え、前記候補多変量判別式作成手段、前記候補多変量判別式検証手段および前記変数選択手段を繰り返し実行して蓄積した前記検証結果に基づいて、複数の前記候補多変量判別式の中から前記多変量判別式として採用する前記候補多変量判別式を選出することで、前記多変量判別式を作成することを特徴とする。
また、本発明は肺癌評価プログラムに関するものであり、本発明にかかる肺癌評価プログラムは、制御手段と記憶手段とを備えた情報処理装置に実行させる、評価対象につき肺癌の状態を評価する肺癌評価プログラムであって、前記制御手段に、アミノ酸の濃度値に関する予め取得した前記評価対象のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの前記濃度値および前記アミノ酸の濃度を変数とする前記記憶手段で記憶した多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する判別値算出ステップと、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記肺癌の状態を評価する判別値基準評価ステップとを実行させ、前記多変量判別式は、Orn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌評価プログラムは、前記に記載の肺癌評価プログラムにおいて、前記多変量判別式は、年齢を前記変数としてさらに含むことを特徴とする。
また、本発明にかかる肺癌評価プログラムは、前記に記載の肺癌評価プログラムにおいて、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記肺癌または非肺癌であるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とする。
また、本発明にかかる肺癌評価プログラムは、前記に記載の肺癌評価プログラムにおいて、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌評価プログラムは、前記に記載の肺癌評価プログラムにおいて、前記多変量判別式は数式1、数式2または数式3であることを特徴とする。
a1×Orn/Trp + b1×(Tau+ABA)/Arg + c1
・・・(数式1)
a2×Glu/Tyr + b2×(Pro+Lys)/(Ile+His) + c2 ・・・(数式2)
a3×His/Lys + b3×Glu/Ile + c3×Tyr/Pro + d3×Val/Leu + e3 ・・・(数式3)
(数式1において、a1,b1,c1は任意の実数であり、数式2において、a2,b2,c2は任意の実数であり、数式3において、a3,b3,c3,d3,e3は任意の実数である。)
また、本発明にかかる肺癌評価プログラムは、前記に記載の肺癌評価プログラムにおいて、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる肺癌評価プログラムは、前記に記載の肺癌評価プログラムにおいて、前記多変量判別式は、Tau,Orn,Arg,Ser,Glu,Pro,Asnを前記変数とする前記ロジスティック回帰式、または年齢,ABA,Arg,Gln,His,Leu,Orn,Pro,Tau,Trp,Valを前記変数とする前記線形判別式、またはHis,Glu,Pro,Ile,Gln,Lysを前記変数とする前記ロジスティック回帰式、またはHis,Glu,Pro,Ile,Tyr,Lysを前記変数とする前記線形判別式であることを特徴とする。
また、本発明にかかる肺癌評価プログラムは、前記に記載の肺癌評価プログラムにおいて、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記肺癌であることおよびその病期、または非肺癌であるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とする。
また、本発明にかかる肺癌評価プログラムは、前記に記載の肺癌評価プログラムにおいて、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌評価プログラムは、前記に記載の肺癌評価プログラムにおいて、前記多変量判別式は数式4、数式5または数式6であることを特徴とする。
a4×Tau/Arg + b4×(Orn+ABA)/Trp + c4
・・・(数式4)
a5×Gln/(Cit+His) + b5×(Glu+ABA)/(Cys2) + c5 ・・・(数式5)
a6×Gln/His + b6×Glu + c6×ABA/Cys + d6×Lys/Val + e6 ・・・(数式6)
(数式4において、a4,b4,c4は任意の実数であり、数式5において、a5,b5,c5は任意の実数であり、数式6において、a6,b6,c6,d6,e6は任意の実数である。)
また、本発明にかかる肺癌評価プログラムは、前記に記載の肺癌評価プログラムにおいて、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる肺癌評価プログラムは、前記に記載の肺癌評価プログラムにおいて、前記多変量判別式は、Orn,Tau,Trpを前記変数とする前記ロジスティック回帰式、またはOrn,Arg,Tau,ABA,Gly,Hisを前記変数とする前記線形判別式、またはGln,Glu,His,Lys,Cys,ABAを前記変数とする前記ロジスティック回帰式、またはGln,Glu,Ala,His,Cys,ABAを前記変数とする前記線形判別式であることを特徴とする。
また、本発明にかかる肺癌評価プログラムは、前記に記載の肺癌評価プログラムにおいて、前記判別値基準評価ステップは、前記判別値算出ステップで算出した前記判別値に基づいて、前記評価対象につき、前記肺癌のうち腺癌であること、または非肺癌であるか否かを判別する判別値基準判別ステップをさらに含むことを特徴とする。
また、本発明にかかる肺癌評価プログラムは、前記に記載の肺癌評価プログラムにおいて、前記多変量判別式は、1つの分数式または複数の前記分数式の和で表され、それを構成する前記分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを前記変数として含むことを特徴とする。
また、本発明にかかる肺癌評価プログラムは、前記に記載の肺癌評価プログラムにおいて、前記多変量判別式は数式7、数式8または数式9であることを特徴とする。
a7×Orn/Trp + b7×Tau/Arg + c7 ・・・(数式7)
a8×(Glu+Pro)/His + b8×(ABA+Lys)/Ile + c8 ・・・(数式8)
a9×Glu/Cit + b9×His/Gln + c9×Ile/Leu + d9×Tyr/Ala + e9 ・・・(数式9)
(数式7において、a7,b7,c7は任意の実数であり、数式8において、a8,b8,c8は任意の実数であり、数式9において、a9,b9,c9,d9,e9は任意の実数である。)
また、本発明にかかる肺癌評価プログラムは、前記に記載の肺癌評価プログラムにおいて、前記多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであることを特徴とする。
また、本発明にかかる肺癌評価プログラムは、前記に記載の肺癌評価プログラムにおいて、前記多変量判別式は、Orn,ABA,Tau,Glyを前記変数とする前記ロジスティック回帰式、またはOrn,ABA,Tau,His,Arg,Glyを前記変数とする前記線形判別式、またはHis,Ile,Glu,Pro,Leu,Glnを前記変数とする前記ロジスティック回帰式、またはHis,Ile,Pro,Ala,Leu,Glnを前記変数とする前記線形判別式であることを特徴とする。
また、本発明にかかる肺癌評価プログラムは、前記に記載の肺癌評価プログラムにおいて、前記制御手段に、前記アミノ酸濃度データと前記肺癌の状態を表す指標に関する肺癌状態指標データとを含む前記記憶手段で記憶した肺癌状態情報に基づいて、前記記憶手段で記憶する前記多変量判別式を作成する多変量判別式作成ステップをさらに実行させ、前記多変量判別式作成ステップは、前記肺癌状態情報から所定の式作成手法に基づいて、前記多変量判別式の候補である候補多変量判別式を作成する候補多変量判別式作成ステップと、前記候補多変量判別式作成ステップで作成した前記候補多変量判別式を、所定の検証手法に基づいて検証する候補多変量判別式検証ステップと、前記候補多変量判別式検証ステップでの検証結果から所定の変数選択手法に基づいて前記候補多変量判別式の変数を選択することで、前記候補多変量判別式を作成する際に用いる前記肺癌状態情報に含まれる前記アミノ酸濃度データの組み合わせを選択する変数選択ステップと、をさらに含み、前記候補多変量判別式作成ステップ、前記候補多変量判別式検証ステップおよび前記変数選択ステップを繰り返し実行して蓄積した前記検証結果に基づいて、複数の前記候補多変量判別式の中から前記多変量判別式として採用する前記候補多変量判別式を選出することで、前記多変量判別式を作成することを特徴とする。
また、本発明は記録媒体に関するものであり、本発明にかかる記録媒体は、前記の肺癌評価プログラムを記録したことを特徴とする。
本発明にかかる肺癌の評価方法によれば、評価対象から採取した血液から、アミノ酸の濃度値に関するアミノ酸濃度データを測定し、測定した評価対象のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値に基づいて、評価対象につき、肺癌の状態を評価するので、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸濃度を利用して、肺癌の状態を精度よく評価することができるという効果を奏する。
本発明にかかる肺癌の評価方法によれば、測定した評価対象のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値に基づいて、評価対象につき、肺癌または非肺癌であるか否かを判別するので、血液中のアミノ酸濃度のうち肺癌と非肺癌との2群判別に有用なアミノ酸の濃度を利用して、肺癌と非肺癌との2群判別を精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌の評価方法によれば、測定した評価対象のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値に基づいて、評価対象につき、肺癌であることおよびその病期、または非肺癌であるか否かを判別するので、血液中のアミノ酸濃度のうち初期肺癌と非肺癌との2群判別に有用なアミノ酸の濃度を利用して、初期肺癌と非肺癌との2群判別を精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌の評価方法によれば、測定した評価対象のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値に基づいて、評価対象につき、肺癌のうち腺癌であること、または非肺癌であるか否かを判別するので、血液中のアミノ酸濃度のうち、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸の濃度を利用して、肺癌のうちの腺癌と非肺癌との2群判別を精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌の評価方法によれば、測定した評価対象のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値およびアミノ酸の濃度を変数とする予め設定した多変量判別式であってOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含むものに基づいて、当該多変量判別式の値である判別値を算出し、算出した判別値に基づいて、評価対象につき、肺癌の状態を評価するので、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸の濃度を変数とする多変量判別式(肺癌の状態と有意な相関がある多変量判別式)で得られる判別値を利用して、肺癌の状態を精度よく評価することができるという効果を奏する。
また、本発明にかかる肺癌の評価方法によれば、多変量判別式は、年齢を変数としてさらに含むので、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸の濃度に加えてさらに年齢を変数とする多変量判別式(肺癌の状態と特に有意な相関がある多変量判別式)で得られる判別値を利用して、肺癌の状態をさらに精度よく評価することができるという効果を奏する。
また、本発明にかかる肺癌の評価方法によれば、算出した判別値に基づいて、評価対象につき、肺癌または非肺癌であるか否かを判別するので、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別を精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌の評価方法によれば、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含むので、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌の評価方法によれば、多変量判別式は数式1、数式2または数式3であるので、肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式1、数式2、数式3)で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
a1×Orn/Trp + b1×(Tau+ABA)/Arg + c1
・・・(数式1)
a2×Glu/Tyr + b2×(Pro+Lys)/(Ile+His) + c2 ・・・(数式2)
a3×His/Lys + b3×Glu/Ile + c3×Tyr/Pro + d3×Val/Leu + e3 ・・・(数式3)
(数式1において、a1,b1,c1は任意の実数であり、数式2において、a2,b2,c2は任意の実数であり、数式3において、a3,b3,c3,d3,e3は任意の実数である。)
また、本発明にかかる肺癌の評価方法によれば、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであるので、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌の評価方法によれば、多変量判別式は、Tau,Orn,Arg,Ser,Glu,Pro,Asnを変数とするロジスティック回帰式、または年齢,ABA,Arg,Gln,His,Leu,Orn,Pro,Tau,Trp,Valを変数とする線形判別式、またはHis,Glu,Pro,Ile,Gln,Lysを変数とするロジスティック回帰式、またはHis,Glu,Pro,Ile,Tyr,Lysを変数とする線形判別式であるので、肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌の評価方法によれば、算出した判別値に基づいて、評価対象につき、肺癌であることおよびその病期、または非肺癌であるか否かを判別するので、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との2群判別を精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌の評価方法によれば、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含むので、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌の評価方法によれば、多変量判別式は数式4、数式5または数式6であるので、初期肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式4、数式5、数式6)で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
a4×Tau/Arg + b4×(Orn+ABA)/Trp + c4
・・・(数式4)
a5×Gln/(Cit+His) + b5×(Glu+ABA)/(Cys2) + c5 ・・・(数式5)
a6×Gln/His + b6×Glu + c6×ABA/Cys + d6×Lys/Val + e6 ・・・(数式6)
(数式4において、a4,b4,c4は任意の実数であり、数式5において、a5,b5,c5は任意の実数であり、数式6において、a6,b6,c6,d6,e6は任意の実数である。)
また、本発明にかかる肺癌の評価方法によれば、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであるので、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌の評価方法によれば、多変量判別式は、Orn,Tau,Trpを変数とするロジスティック回帰式、またはOrn,Arg,Tau,ABA,Gly,Hisを変数とする線形判別式、またはGln,Glu,His,Lys,Cys,ABAを変数とするロジスティック回帰式、またはGln,Glu,Ala,His,Cys,ABAを変数とする線形判別式であるので、初期肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌の評価方法によれば、算出した判別値に基づいて、評価対象につき、肺癌のうち腺癌であること、または非肺癌であるか否かを判別するので、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別を精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌の評価方法によれば、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含むので、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌の評価方法によれば、多変量判別式は数式7、数式8または数式9であるので、肺癌のうちの腺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式7、数式8、数式9)で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
a7×Orn/Trp + b7×Tau/Arg + c7 ・・・(数式7)
a8×(Glu+Pro)/His + b8×(ABA+Lys)/Ile + c8 ・・・(数式8)
a9×Glu/Cit + b9×His/Gln + c9×Ile/Leu + d9×Tyr/Ala + e9 ・・・(数式9)
(数式7において、a7,b7,c7は任意の実数であり、数式8において、a8,b8,c8は任意の実数であり、数式9において、a9,b9,c9,d9,e9は任意の実数である。)
また、本発明にかかる肺癌の評価方法によれば、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであるので、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌の評価方法によれば、多変量判別式は、Orn,ABA,Tau,Glyを変数とするロジスティック回帰式、またはOrn,ABA,Tau,His,Arg,Glyを変数とする線形判別式、またはHis,Ile,Glu,Pro,Leu,Glnを変数とするロジスティック回帰式、またはHis,Ile,Pro,Ala,Leu,Glnを変数とする線形判別式であるので、肺癌のうちの腺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムによれば、アミノ酸の濃度値に関する予め取得した評価対象のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値およびアミノ酸の濃度を変数とする記憶手段で記憶した多変量判別式であってOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含むものに基づいて、当該多変量判別式の値である判別値を算出し、算出した判別値に基づいて、評価対象につき、肺癌の状態を評価するので、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸の濃度を変数とする多変量判別式(肺癌の状態と有意な相関がある多変量判別式)で得られる判別値を利用して、肺癌の状態を精度よく評価することができるという効果を奏する。
また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムによれば、多変量判別式は、年齢を変数としてさらに含むので、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸の濃度に加えてさらに年齢を変数とする多変量判別式(肺癌の状態と特に有意な相関がある多変量判別式)で得られる判別値を利用して、肺癌の状態をさらに精度よく評価することができるという効果を奏する。
また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムによれば、算出した判別値に基づいて、評価対象につき、肺癌または非肺癌であるか否かを判別するので、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別を精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムによれば、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含むので、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムによれば、多変量判別式は数式1、数式2または数式3であるので、肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式1、数式2、数式3)で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
a1×Orn/Trp + b1×(Tau+ABA)/Arg + c1
・・・(数式1)
a2×Glu/Tyr + b2×(Pro+Lys)/(Ile+His) + c2 ・・・(数式2)
a3×His/Lys + b3×Glu/Ile + c3×Tyr/Pro + d3×Val/Leu + e3 ・・・(数式3)
(数式1において、a1,b1,c1は任意の実数であり、数式2において、a2,b2,c2は任意の実数であり、数式3において、a3,b3,c3,d3,e3は任意の実数である。)
また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムによれば、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであるので、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムによれば、多変量判別式は、Tau,Orn,Arg,Ser,Glu,Pro,Asnを変数とするロジスティック回帰式、または年齢,ABA,Arg,Gln,His,Leu,Orn,Pro,Tau,Trp,Valを変数とする線形判別式、またはHis,Glu,Pro,Ile,Gln,Lysを変数とするロジスティック回帰式、またはHis,Glu,Pro,Ile,Tyr,Lysを変数とする線形判別式であるので、肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムによれば、算出した判別値に基づいて、評価対象につき、肺癌であることおよびその病期、または非肺癌であるか否かを判別するので、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との2群判別を精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムによれば、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含むので、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムによれば、多変量判別式は数式4、数式5または数式6であるので、初期肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式4、数式5、数式6)で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
a4×Tau/Arg + b4×(Orn+ABA)/Trp + c4
・・・(数式4)
a5×Gln/(Cit+His) + b5×(Glu+ABA)/(Cys2) + c5 ・・・(数式5)
a6×Gln/His + b6×Glu + c6×ABA/Cys + d6×Lys/Val + e6 ・・・(数式6)
(数式4において、a4,b4,c4は任意の実数であり、数式5において、a5,b5,c5は任意の実数であり、数式6において、a6,b6,c6,d6,e6は任意の実数である。)
また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムによれば、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであるので、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムによれば、多変量判別式は、Orn,Tau,Trpを変数とするロジスティック回帰式、またはOrn,Arg,Tau,ABA,Gly,Hisを変数とする線形判別式、またはGln,Glu,His,Lys,Cys,ABAを変数とするロジスティック回帰式、またはGln,Glu,Ala,His,Cys,ABAを変数とする線形判別式であるので、初期肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムによれば、算出した判別値に基づいて、評価対象につき、肺癌のうち腺癌であること、または非肺癌であるか否かを判別するので、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別を精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムによれば、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含むので、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムによれば、多変量判別式は数式7、数式8または数式9であるので、肺癌のうちの腺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式7、数式8、数式9)で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
a7×Orn/Trp + b7×Tau/Arg + c7 ・・・(数式7)
a8×(Glu+Pro)/His + b8×(ABA+Lys)/Ile + c8 ・・・(数式8)
a9×Glu/Cit + b9×His/Gln + c9×Ile/Leu + d9×Tyr/Ala + e9 ・・・(数式9)
(数式7において、a7,b7,c7は任意の実数であり、数式8において、a8,b8,c8は任意の実数であり、数式9において、a9,b9,c9,d9,e9は任意の実数である。)
また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムによれば、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであるので、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムによれば、多変量判別式は、Orn,ABA,Tau,Glyを変数とするロジスティック回帰式、またはOrn,ABA,Tau,His,Arg,Glyを変数とする線形判別式、またはHis,Ile,Glu,Pro,Leu,Glnを変数とするロジスティック回帰式、またはHis,Ile,Pro,Ala,Leu,Glnを変数とする線形判別式であるので、肺癌のうちの腺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価装置、肺癌評価方法および肺癌評価プログラムによれば、アミノ酸濃度データと肺癌の状態を表す指標に関する肺癌状態指標データとを含む記憶手段で記憶した肺癌状態情報に基づいて、記憶手段で記憶する多変量判別式を作成する。具体的には、(1)肺癌状態情報から所定の式作成手法に基づいて、多変量判別式の候補である候補多変量判別式を作成し、(2)作成した候補多変量判別式を、所定の検証手法に基づいて検証し、(3)(2)での検証結果から所定の変数選択手法に基づいて候補多変量判別式の変数を選択することで、候補多変量判別式を作成する際に用いる肺癌状態情報に含まれるアミノ酸濃度データの組み合わせを選択し、(4)(1)、(2)および(3)を繰り返し実行して蓄積した検証結果に基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出することで、多変量判別式を作成する。これにより、肺癌の状態の評価に最適な多変量判別式(具体的には肺癌の状態と有意な相関がある多変量判別式(より具体的には、肺癌と非肺癌との2群判別に有用な多変量判別式、初期肺癌と非肺癌との2群判別に有用な多変量判別式、肺癌のうちの腺癌と非肺癌との2群判別に有用な多変量判別式))を作成することができるという効果を奏する。
また、本発明にかかる肺癌評価システムによれば、まず、情報通信端末装置は、評価対象のアミノ酸濃度データを肺癌評価装置へ送信する。そして、肺癌評価装置は、情報通信端末装置から送信された評価対象のアミノ酸濃度データを受信し、受信した評価対象のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値およびアミノ酸の濃度を変数とする記憶手段で記憶した多変量判別式であってOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含むものに基づいて、当該多変量判別式の値である判別値を算出し、算出した判別値に基づいて評価対象につき肺癌の状態を評価し、その評価対象の評価結果を情報通信端末装置へ送信する。そして、情報通信端末装置は、肺癌評価装置から送信された肺癌の状態に関する評価対象の評価結果を受信する。これにより、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸の濃度を変数とする多変量判別式(肺癌の状態と有意な相関がある多変量判別式)で得られる判別値を利用して、肺癌の状態を精度よく評価することができるという効果を奏する。
また、本発明にかかる肺癌評価システムによれば、多変量判別式は、年齢を変数としてさらに含むので、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸の濃度に加えてさらに年齢を変数とする多変量判別式(肺癌の状態と特に有意な相関がある多変量判別式)で得られる判別値を利用して、肺癌の状態をさらに精度よく評価することができるという効果を奏する。
また、本発明にかかる肺癌評価システムによれば、算出した判別値に基づいて、評価対象につき、肺癌または非肺癌であるか否かを判別するので、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別を精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価システムによれば、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含むので、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価システムによれば、多変量判別式は数式1、数式2または数式3であるので、肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式1、数式2、数式3)で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
a1×Orn/Trp + b1×(Tau+ABA)/Arg + c1
・・・(数式1)
a2×Glu/Tyr + b2×(Pro+Lys)/(Ile+His) + c2 ・・・(数式2)
a3×His/Lys + b3×Glu/Ile + c3×Tyr/Pro + d3×Val/Leu + e3 ・・・(数式3)
(数式1において、a1,b1,c1は任意の実数であり、数式2において、a2,b2,c2は任意の実数であり、数式3において、a3,b3,c3,d3,e3は任意の実数である。)
また、本発明にかかる肺癌評価システムによれば、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであるので、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価システムによれば、多変量判別式は、Tau,Orn,Arg,Ser,Glu,Pro,Asnを変数とするロジスティック回帰式、または年齢,ABA,Arg,Gln,His,Leu,Orn,Pro,Tau,Trp,Valを変数とする線形判別式、またはHis,Glu,Pro,Ile,Gln,Lysを変数とするロジスティック回帰式、またはHis,Glu,Pro,Ile,Tyr,Lysを変数とする線形判別式であるので、肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価システムによれば、算出した判別値に基づいて、評価対象につき、肺癌であることおよびその病期、または非肺癌であるか否かを判別するので、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との2群判別を精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価システムによれば、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含むので、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価システムによれば、多変量判別式は数式4、数式5または数式6であるので、初期肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式4、数式5、数式6)で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
a4×Tau/Arg + b4×(Orn+ABA)/Trp + c4
・・・(数式4)
a5×Gln/(Cit+His) + b5×(Glu+ABA)/(Cys2) + c5 ・・・(数式5)
a6×Gln/His + b6×Glu + c6×ABA/Cys + d6×Lys/Val + e6 ・・・(数式6)
(数式4において、a4,b4,c4は任意の実数であり、数式5において、a5,b5,c5は任意の実数であり、数式6において、a6,b6,c6,d6,e6は任意の実数である。)
また、本発明にかかる肺癌評価システムによれば、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであるので、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価システムによれば、多変量判別式は、Orn,Tau,Trpを変数とするロジスティック回帰式、またはOrn,Arg,Tau,ABA,Gly,Hisを変数とする線形判別式、またはGln,Glu,His,Lys,Cys,ABAを変数とするロジスティック回帰式、またはGln,Glu,Ala,His,Cys,ABAを変数とする線形判別式であるので、初期肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価システムによれば、算出した判別値に基づいて、評価対象につき、肺癌のうち腺癌であること、または非肺癌であるか否かを判別するので、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別を精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価システムによれば、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含むので、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価システムによれば、多変量判別式は数式7、数式8または数式9であるので、肺癌のうちの腺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式7、数式8、数式9)で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
a7×Orn/Trp + b7×Tau/Arg + c7 ・・・(数式7)
a8×(Glu+Pro)/His + b8×(ABA+Lys)/Ile + c8 ・・・(数式8)
a9×Glu/Cit + b9×His/Gln + c9×Ile/Leu + d9×Tyr/Ala + e9 ・・・(数式9)
(数式7において、a7,b7,c7は任意の実数であり、数式8において、a8,b8,c8は任意の実数であり、数式9において、a9,b9,c9,d9,e9は任意の実数である。)
また、本発明にかかる肺癌評価システムによれば、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つであるので、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価システムによれば、多変量判別式は、Orn,ABA,Tau,Glyを変数とするロジスティック回帰式、またはOrn,ABA,Tau,His,Arg,Glyを変数とする線形判別式、またはHis,Ile,Glu,Pro,Leu,Glnを変数とするロジスティック回帰式、またはHis,Ile,Pro,Ala,Leu,Glnを変数とする線形判別式であるので、肺癌のうちの腺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができるという効果を奏する。
また、本発明にかかる肺癌評価システムによれば、アミノ酸濃度データと肺癌の状態を表す指標に関する肺癌状態指標データとを含む記憶手段で記憶した肺癌状態情報に基づいて、記憶手段で記憶する多変量判別式を作成する。具体的には、(1)肺癌状態情報から所定の式作成手法に基づいて、多変量判別式の候補である候補多変量判別式を作成し、(2)作成した候補多変量判別式を、所定の検証手法に基づいて検証し、(3)(2)での検証結果から所定の変数選択手法に基づいて候補多変量判別式の変数を選択することで、候補多変量判別式を作成する際に用いる肺癌状態情報に含まれるアミノ酸濃度データの組み合わせを選択し、(4)(1)、(2)および(3)を繰り返し実行して蓄積した検証結果に基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出することで、多変量判別式を作成する。これにより、肺癌の状態の評価に最適な多変量判別式(具体的には肺癌の状態と有意な相関がある多変量判別式(より具体的には、肺癌と非肺癌との2群判別に有用な多変量判別式、初期肺癌と非肺癌との2群判別に有用な多変量判別式、肺癌のうちの腺癌と非肺癌との2群判別に有用な多変量判別式))を作成することができるという効果を奏する。
また、本発明にかかる記録媒体によれば、当該記録媒体に記録された肺癌評価プログラムをコンピュータに読み取らせて実行することでコンピュータに肺癌評価プログラムを実行させるので、肺癌評価プログラムと同様の効果を得ることができるという効果を奏する。
なお、本発明は、肺癌の状態を評価する際(具体的には、肺癌または非肺癌であるか否かを判別する際、肺癌であることおよびその病期、または非肺癌であるか否かを判別する際、肺癌のうち腺癌であること、または非肺癌であるか否かを判別する際)、アミノ酸の濃度以外に、その他の代謝物(生体代謝物)の濃度や、タンパク質の発現量、被験者の年齢・性別、生体指標などをさらに用いてもかまわない。また、本発明は、肺癌の状態を評価する際(具体的には、肺癌または非肺癌であるか否かを判別する際、肺癌であることおよびその病期、または非肺癌であるか否かを判別する際、肺癌のうち腺癌であること、または非肺癌であるか否かを判別する際)、多変量判別式における変数として、アミノ酸の濃度以外に、その他の代謝物(生体代謝物)の濃度や、タンパク質の発現量、被験者の年齢・性別、生体指標などをさらに用いてもかまわない。
以下に、本発明にかかる肺癌の評価方法の実施の形態(第1実施形態)、本発明にかかる肺癌評価装置、肺癌評価方法、肺癌評価システム、肺癌評価プログラムおよび記録媒体の実施の形態(第2実施形態)を、図面に基づいて詳細に説明する。なお、本実施の形態により本発明が限定されるものではない。
[第1実施形態]
[1−1.本発明の概要]
ここでは、本発明にかかる肺癌の評価方法の概要について図1を参照して説明する。図1は本発明の基本原理を示す原理構成図である。
まず、本発明では、評価対象(例えば動物やヒトなどの個体)から採取した血液から、アミノ酸の濃度値に関するアミノ酸濃度データを測定する(ステップS−11)。ここで、血中アミノ酸濃度の分析は次のように行った。採血した血液サンプルを、ヘパリン処理したチューブに採取し、採取した血液サンプルを遠心することにより血液から血漿を分離した。全ての血漿サンプルは、アミノ酸濃度の測定時まで−70℃で凍結保存した。アミノ酸濃度測定時には、スルホサリチル酸を添加し3%濃度調整により除蛋白処理を行い、測定には、ポストカラムでニンヒドリン反応を用いた高速液体クロマトグラフィー(HPLC)を原理としたアミノ酸分析機を使用した。なお、アミノ酸濃度の単位は、例えばモル濃度や重量濃度、これらの濃度に任意の定数を加減乗除することで得られるものでもよい。
つぎに、本発明では、ステップS−11で測定した評価対象のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値に基づいて、評価対象につき肺癌の状態を評価する(ステップS−12)。
以上、本発明によれば、評価対象から採取した血液からアミノ酸の濃度値に関するアミノ酸濃度データを測定し、測定した評価対象のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値に基づいて、評価対象につき肺癌の状態を評価する。これにより、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸濃度を利用して、肺癌の状態を精度よく評価することができる。
ここで、ステップS−12を実行する前に、ステップS−11で測定した評価対象のアミノ酸濃度データから欠損値や外れ値などのデータを除去してもよい。これにより、肺癌の状態をさらに精度よく評価することができる。
また、ステップS−12では、ステップS−11で測定した評価対象のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値に基づいて、評価対象につき、肺癌または非肺癌であるか否かを判別してもよい。具体的には、Orn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき肺癌または非肺癌であるか否かを判別してもよい。これにより、血液中のアミノ酸濃度のうち肺癌と非肺癌との2群判別に有用なアミノ酸の濃度を利用して、肺癌と非肺癌との2群判別を精度よく行うことができる。
また、ステップS−12では、ステップS−11で測定した評価対象のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値に基づいて、評価対象につき、肺癌であることおよびその病期、または非肺癌であるか否かを判別してもよい。具体的には、Orn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき、肺癌であることおよびその病期、または非肺癌であるか否かを判別してもよい。これにより、血液中のアミノ酸濃度のうち初期肺癌と非肺癌との2群判別に有用なアミノ酸の濃度を利用して、初期肺癌と非肺癌との2群判別を精度よく行うことができる。
また、ステップS−12では、ステップS−11で測定した評価対象のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値に基づいて、評価対象につき、肺癌のうち腺癌であること、または非肺癌であるか否かを判別してもよい。具体的には、Orn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき、肺癌のうち腺癌であること、または非肺癌であるか否かを判別してもよい。これにより、血液中のアミノ酸濃度のうち、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸の濃度を利用して、肺癌のうちの腺癌と非肺癌との2群判別を精度よく行うことができる。
また、ステップS−12では、ステップS−11で測定した評価対象のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値およびアミノ酸の濃度を変数とする予め設定した多変量判別式であってOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含むものに基づいて、当該多変量判別式の値である判別値を算出し、算出した判別値に基づいて、評価対象につき、肺癌の状態を評価してもよい。これにより、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸の濃度を変数とする多変量判別式(肺癌の状態と有意な相関がある多変量判別式)で得られる判別値を利用して、肺癌の状態を精度よく評価することができる。
また、ステップS−12において、多変量判別式は、年齢を変数としてさらに含んでもよい。これにより、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸の濃度に加えてさらに年齢を変数とする多変量判別式(肺癌の状態と特に有意な相関がある多変量判別式)で得られる判別値を利用して、肺癌の状態をさらに精度よく評価することができる。
また、ステップS−12では、算出した判別値に基づいて、評価対象につき、肺癌または非肺癌であるか否かを判別してもよい。具体的には、判別値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき、肺癌または非肺癌であるか否かを判別してもよい。これにより、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別を精度よく行うことができる。
なお、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含んでもよい。具体的には、多変量判別式は、数式1、数式2または数式3でもよい。これにより、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができる。具体的には、肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式1、数式2、数式3)で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができる。
a1×Orn/Trp + b1×(Tau+ABA)/Arg + c1
・・・(数式1)
a2×Glu/Tyr + b2×(Pro+Lys)/(Ile+His) + c2 ・・・(数式2)
a3×His/Lys + b3×Glu/Ile + c3×Tyr/Pro + d3×Val/Leu + e3 ・・・(数式3)
(数式1において、a1,b1,c1は任意の実数であり、数式2において、a2,b2,c2は任意の実数であり、数式3において、a3,b3,c3,d3,e3は任意の実数である。)
また、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。具体的には、多変量判別式は、Tau,Orn,Arg,Ser,Glu,Pro,Asnを変数とするロジスティック回帰式、または年齢,ABA,Arg,Gln,His,Leu,Orn,Pro,Tau,Trp,Valを変数とする線形判別式、またはHis,Glu,Pro,Ile,Gln,Lysを変数とするロジスティック回帰式、またはHis,Glu,Pro,Ile,Tyr,Lysを変数とする線形判別式でもよい。これにより、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができる。具体的には、肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができる。
また、ステップS−12では、算出した判別値に基づいて、評価対象につき、肺癌であることおよびその病期、または非肺癌であるか否かを判別してもよい。具体的には、判別値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき、肺癌であることおよびその病期、または非肺癌であるか否かを判別してもよい。これにより、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との2群判別を精度よく行うことができる。
なお、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含んでもよい。具体的には、多変量判別式は数式4、数式5または数式6でもよい。これにより、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができる。具体的には、初期肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式4、数式5、数式6)で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができる。
a4×Tau/Arg + b4×(Orn+ABA)/Trp + c4
・・・(数式4)
a5×Gln/(Cit+His) + b5×(Glu+ABA)/(Cys2) + c5 ・・・(数式5)
a6×Gln/His + b6×Glu + c6×ABA/Cys + d6×Lys/Val + e6 ・・・(数式6)
(数式4において、a4,b4,c4は任意の実数であり、数式5において、a5,b5,c5は任意の実数であり、数式6において、a6,b6,c6,d6,e6は任意の実数である。)
また、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。具体的には、多変量判別式は、Orn,Tau,Trpを変数とするロジスティック回帰式、またはOrn,Arg,Tau,ABA,Gly,Hisを変数とする線形判別式、またはGln,Glu,His,Lys,Cys,ABAを変数とするロジスティック回帰式、またはGln,Glu,Ala,His,Cys,ABAを変数とする線形判別式でもよい。これにより、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができる。具体的には、初期肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができる。
また、ステップS−12では、算出した判別値に基づいて、評価対象につき、肺癌のうち腺癌であること、または非肺癌であるか否かを判別してもよい。具体的には、判別値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき、肺癌のうち腺癌であること、または非肺癌であるか否かを判別してもよい。これにより、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別を精度よく行うことができる。
なお、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含んでもよい。具体的には、多変量判別式は数式7、数式8または数式9でもよい。これにより、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができる。具体的には、肺癌のうちの腺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式7、数式8、数式9)で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができる。
a7×Orn/Trp + b7×Tau/Arg + c7 ・・・(数式7)
a8×(Glu+Pro)/His + b8×(ABA+Lys)/Ile + c8 ・・・(数式8)
a9×Glu/Cit + b9×His/Gln + c9×Ile/Leu + d9×Tyr/Ala + e9 ・・・(数式9)
(数式7において、a7,b7,c7は任意の実数であり、数式8において、a8,b8,c8は任意の実数であり、数式9において、a9,b9,c9,d9,e9は任意の実数である。)
また、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。具体的には、多変量判別式は、Orn,ABA,Tau,Glyを変数とするロジスティック回帰式、またはOrn,ABA,Tau,His,Arg,Glyを変数とする線形判別式、またはHis,Ile,Glu,Pro,Leu,Glnを変数とするロジスティック回帰式、またはHis,Ile,Pro,Ala,Leu,Glnを変数とする線形判別式でもよい。これにより、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができる。具体的には、肺癌のうちの腺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができる。
なお、上記した各多変量判別式は、本出願人による国際出願である国際公開第2004/052191号に記載の方法や、本出願人による国際出願である国際出願番号PCT/JP2006/304398に記載の方法(後述する第2実施形態に記載の多変量判別式作成処理)で作成することができる。これら方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を肺癌の状態の評価に好適に用いることができる。
また、分数式とは、当該分数式の分子がアミノ酸A,B,C,・・・の和で表わされ及び/又は当該分数式の分母がアミノ酸a,b,c,・・・の和で表わされるものである。また、分数式には、このような構成の分数式α,β,γ,・・・の和(例えばα+βのようなもの)も含まれる。また、分数式には、分割された分数式も含まれる。なお、分子や分母に用いられるアミノ酸にはそれぞれ適当な係数がついてもかまわない。また、分子や分母に用いられるアミノ酸は重複してもかまわない。また、各分数式に適当な係数がついてもかまわない。また、各変数の係数の値や定数項の値は、実数であればかまわない。また、分数式で、分子の変数と分母の変数を入れ替えた組み合わせは、目的変数との相関の正負の符号は概して逆転するが、それらの相関性は保たれるので、判別性では同等と見なせるので、分子の変数と分母の変数を入れ替えた組み合わせも、包含するものである。
また、多変量判別式とは、一般に多変量解析で用いられる式の形式を意味し、例えば重回帰式、多重ロジスティック回帰式、線形判別関数、マハラノビス距離、正準判別関数、サポートベクターマシン、決定木などを包含する。また、異なる形式の多変量判別式の和で示されるような式も含まれる。また、重回帰式、多重ロジスティック回帰式、正準判別関数においては各変数に係数および定数項が付加されるが、この場合の係数および定数項は、好ましくは実数であること、より好ましくはデータから判別を行うために得られた係数および定数項の99%信頼区間の範囲に属する値、さらに好ましくはデータから判別を行うために得られた係数および定数項の95%信頼区間の範囲に属する値であればかまわない。また、各係数の値、及びその信頼区間は、それを実数倍したものでもよく、定数項の値、及びその信頼区間は、それに任意の実定数を加減乗除したものでもよい。
そして、本発明は、肺癌の状態を評価する際(具体的には、肺癌または非肺癌であるか否かを判別する際、肺癌であることおよびその病期、または非肺癌であるか否かを判別する際、肺癌のうち腺癌であること、または非肺癌であるか否かを判別する際)、アミノ酸の濃度以外に、その他の代謝物(生体代謝物)の濃度や、タンパク質の発現量、被験者の年齢・性別、生体指標などをさらに用いてもかまわない。また、本発明は、肺癌の状態を評価する際(具体的には、肺癌または非肺癌であるか否かを判別する際、肺癌であることおよびその病期、または非肺癌であるか否かを判別する際、肺癌のうち腺癌であること、または非肺癌であるか否かを判別する際)、多変量判別式における変数として、アミノ酸の濃度以外に、その他の代謝物(生体代謝物)の濃度や、タンパク質の発現量、被験者の年齢・性別、生体指標などをさらに用いてもかまわない。
[1−2.第1実施形態にかかる肺癌の評価方法]
ここでは、第1実施形態にかかる肺癌の評価方法について図2を参照して説明する。図2は、第1実施形態にかかる肺癌の評価方法の一例を示すフローチャートである。
まず、動物やヒトなどの個体から採取した血液から、アミノ酸の濃度値に関するアミノ酸濃度データを測定する(ステップSA−11)。なお、アミノ酸の濃度値の測定は、上述した方法で行う。
つぎに、ステップSA−11で測定した個体のアミノ酸濃度データから欠損値や外れ値などのデータを除去する(ステップSA−12)。
つぎに、ステップSA−12で欠損値や外れ値などのデータが除去された個体のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、肺癌または非肺癌であるか否かの判別、肺癌であることおよびその病期、または非肺癌であるか否かの判別、肺癌のうち腺癌であること、または非肺癌であるか否かの判別のいずれかを行う(ステップSA−13)。
[1−3.第1実施形態のまとめ、およびその他の実施形態]
以上、詳細に説明したように、肺癌の評価方法によれば、(1)個体から採取した血液からアミノ酸濃度データを測定し、(2)測定した個体のアミノ酸濃度データから欠損値や外れ値などのデータを除去し、(3)欠損値や外れ値などのデータが除去された個体のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、肺癌または非肺癌であるか否かの判別、肺癌であることおよびその病期、または非肺癌であるか否かの判別、肺癌のうち腺癌であること、または非肺癌であるか否かの判別のいずれかを行う。これにより、血液中のアミノ酸濃度のうち肺癌と非肺癌との2群判別に有用なアミノ酸の濃度、血液中のアミノ酸濃度のうち初期肺癌と非肺癌との2群判別に有用なアミノ酸の濃度、血液中のアミノ酸濃度のうち、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸の濃度を利用して、肺癌と非肺癌との2群判別、初期肺癌と非肺癌との2群判別、肺癌のうちの腺癌と非肺癌との2群判別を精度よく行うことができる。
ここで、肺癌の評価方法によれば、ステップSA−12で欠損値や外れ値などのデータが除去された個体のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値およびアミノ酸の濃度を変数とする予め設定した多変量判別式であってOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含むものに基づいて判別値を算出し、算出した判別値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、肺癌または非肺癌であるか否かの判別、肺癌であることおよびその病期、または非肺癌であるか否かの判別、肺癌のうち腺癌であること、または非肺癌であるか否かの判別のいずれかを行ってもよい。これにより、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別、初期肺癌と非肺癌との2群判別、肺癌のうちの腺癌と非肺癌との2群判別を精度よく行うことができる。
なお、肺癌の評価方法によれば、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含んでもよい。これにより、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)で得られる判別値を利用して、肺癌と非肺癌との2群判別、初期肺癌と非肺癌との2群判別、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができる。
具体的には、ステップSA−13で肺癌または非肺癌であるか否かの判別を行う場合には、多変量判別式は数式1、数式2または数式3でもよい。これにより、肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式1、数式2、数式3)で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができる。
a1×Orn/Trp + b1×(Tau+ABA)/Arg + c1
・・・(数式1)
a2×Glu/Tyr + b2×(Pro+Lys)/(Ile+His) + c2 ・・・(数式2)
a3×His/Lys + b3×Glu/Ile + c3×Tyr/Pro + d3×Val/Leu + e3 ・・・(数式3)
(数式1において、a1,b1,c1は任意の実数であり、数式2において、a2,b2,c2は任意の実数であり、数式3において、a3,b3,c3,d3,e3は任意の実数である。)
また、ステップSA−13で肺癌であることおよびその病期、または非肺癌であるか否かの判別を行う場合には、多変量判別式は数式4、数式5または数式6でもよい。これにより、初期肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式4、数式5、数式6)で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができる。
a4×Tau/Arg + b4×(Orn+ABA)/Trp + c4
・・・(数式4)
a5×Gln/(Cit+His) + b5×(Glu+ABA)/(Cys2) + c5 ・・・(数式5)
a6×Gln/His + b6×Glu + c6×ABA/Cys + d6×Lys/Val + e6 ・・・(数式6)
(数式4において、a4,b4,c4は任意の実数であり、数式5において、a5,b5,c5は任意の実数であり、数式6において、a6,b6,c6,d6,e6は任意の実数である。)
また、ステップSA−13で肺癌のうち腺癌であること、または非肺癌であるか否かの判別を行う場合には、多変量判別式は数式7、数式8または数式9でもよい。これにより、肺癌のうちの腺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式7、数式8、数式9)で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができる。
a7×Orn/Trp + b7×Tau/Arg + c7 ・・・(数式7)
a8×(Glu+Pro)/His + b8×(ABA+Lys)/Ile + c8 ・・・(数式8)
a9×Glu/Cit + b9×His/Gln + c9×Ile/Leu + d9×Tyr/Ala + e9 ・・・(数式9)
(数式7において、a7,b7,c7は任意の実数であり、数式8において、a8,b8,c8は任意の実数であり、数式9において、a9,b9,c9,d9,e9は任意の実数である。)
また、肺癌の評価方法によれば、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。これにより、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別、初期肺癌と非肺癌との2群判別、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができる。
具体的には、ステップSA−13で肺癌または非肺癌であるか否かの判別を行う場合には、多変量判別式は、Tau,Orn,Arg,Ser,Glu,Pro,Asnを変数とするロジスティック回帰式、または年齢,ABA,Arg,Gln,His,Leu,Orn,Pro,Tau,Trp,Valを変数とする線形判別式、またはHis,Glu,Pro,Ile,Gln,Lysを変数とするロジスティック回帰式、またはHis,Glu,Pro,Ile,Tyr,Lysを変数とする線形判別式でもよい。これにより、肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができる。
また、ステップSA−13で肺癌であることおよびその病期、または非肺癌であるか否かの判別を行う場合には、多変量判別式は、Orn,Tau,Trpを変数とするロジスティック回帰式、またはOrn,Arg,Tau,ABA,Gly,Hisを変数とする線形判別式、またはGln,Glu,His,Lys,Cys,ABAを変数とするロジスティック回帰式、またはGln,Glu,Ala,His,Cys,ABAを変数とする線形判別式でもよい。これにより、初期肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができる。
また、ステップSA−13で肺癌のうち腺癌であること、または非肺癌であるか否かの判別を行う場合には、多変量判別式は、Orn,ABA,Tau,Glyを変数とするロジスティック回帰式、またはOrn,ABA,Tau,His,Arg,Glyを変数とする線形判別式、またはHis,Ile,Glu,Pro,Leu,Glnを変数とするロジスティック回帰式、またはHis,Ile,Pro,Ala,Leu,Glnを変数とする線形判別式でもよい。これにより、肺癌のうちの腺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができる。
なお、上記した各多変量判別式は、本出願人による国際出願である国際公開第2004/052191号に記載の方法や、本出願人による国際出願である国際出願番号PCT/JP2006/304398に記載の方法(後述する第2実施形態に記載の多変量判別式作成処理)で作成することができる。これら方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を肺癌の状態の評価に好適に用いることができる。
[第2実施形態]
[2−1.本発明の概要]
ここでは、本発明にかかる肺癌評価装置、肺癌評価方法、肺癌評価システム、肺癌評価プログラムおよび記録媒体の概要について、図3を参照して説明する。図3は本発明の基本原理を示す原理構成図である。
まず、本発明は、制御部で、アミノ酸の濃度値に関する予め取得した評価対象(例えば動物やヒトなどの個体)のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値およびアミノ酸の濃度を変数する記憶部で記憶した多変量判別式であってOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含むものに基づいて、当該多変量判別式の値である判別値を算出する(ステップS−21)。
つぎに、本発明は、制御部で、ステップS−21で算出した判別値に基づいて、評価対象につき肺癌の状態を評価する(ステップS−22)。
以上、本発明によれば、アミノ酸の濃度値に関する予め取得した評価対象のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値およびアミノ酸の濃度を変数する記憶部で記憶した多変量判別式であってOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含むものに基づいて判別値を算出し、算出した判別値に基づいて評価対象につき肺癌の状態を評価する。これにより、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸の濃度を変数とする多変量判別式(肺癌の状態と有意な相関がある多変量判別式)で得られる判別値を利用して、肺癌の状態を精度よく評価することができる。
ここで、ステップS−21において、多変量判別式は、年齢を変数としてさらに含んでもよい。これにより、血液中のアミノ酸濃度のうち肺癌の状態と関連するアミノ酸の濃度に加えてさらに年齢を変数とする多変量判別式(肺癌の状態と特に有意な相関がある多変量判別式)で得られる判別値を利用して、肺癌の状態をさらに精度よく評価することができる。
また、ステップS−22では、ステップS−21で算出した判別値に基づいて、評価対象につき、肺癌または非肺癌であるか否かを判別してもよい。具体的には、判別値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき、肺癌または非肺癌であるか否かを判別してもよい。これにより、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別を精度よく行うことができる。
なお、ステップS−21において、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含んでもよい。具体的には、数式1、数式2または数式3でもよい。これにより、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができる。具体的には、肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式1、数式2、数式3)で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができる。
a1×Orn/Trp + b1×(Tau+ABA)/Arg + c1
・・・(数式1)
a2×Glu/Tyr + b2×(Pro+Lys)/(Ile+His) + c2 ・・・(数式2)
a3×His/Lys + b3×Glu/Ile + c3×Tyr/Pro + d3×Val/Leu + e3 ・・・(数式3)
(数式1において、a1,b1,c1は任意の実数であり、数式2において、a2,b2,c2は任意の実数であり、数式3において、a3,b3,c3,d3,e3は任意の実数である。)
また、ステップS−21において、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。具体的には、多変量判別式は、Tau,Orn,Arg,Ser,Glu,Pro,Asnを変数とするロジスティック回帰式、または年齢,ABA,Arg,Gln,His,Leu,Orn,Pro,Tau,Trp,Valを変数とする線形判別式、またはHis,Glu,Pro,Ile,Gln,Lysを変数とするロジスティック回帰式、またはHis,Glu,Pro,Ile,Tyr,Lysを変数とする線形判別式でもよい。これにより、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができる。具体的には、肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができる。
また、ステップS−22では、ステップS−21で算出した判別値に基づいて、評価対象につき、肺癌であることおよびその病期、または非肺癌であるか否かを判別してもよい。具体的には、判別値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき、肺癌であることおよびその病期、または非肺癌であるか否かを判別してもよい。これにより、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との2群判別を精度よく行うことができる。
なお、ステップS−21において、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含んでもよい。具体的には、多変量判別式は数式4、数式5または数式6でもよい。これにより、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができる。具体的には、初期肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式4、数式5、数式6)で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができる。
a4×Tau/Arg + b4×(Orn+ABA)/Trp + c4
・・・(数式4)
a5×Gln/(Cit+His) + b5×(Glu+ABA)/(Cys2) + c5 ・・・(数式5)
a6×Gln/His + b6×Glu + c6×ABA/Cys + d6×Lys/Val + e6 ・・・(数式6)
(数式4において、a4,b4,c4は任意の実数であり、数式5において、a5,b5,c5は任意の実数であり、数式6において、a6,b6,c6,d6,e6は任意の実数である。)
また、ステップS−21において、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。具体的には、多変量判別式は、Orn,Tau,Trpを変数とするロジスティック回帰式、またはOrn,Arg,Tau,ABA,Gly,Hisを変数とする線形判別式、またはGln,Glu,His,Lys,Cys,ABAを変数とするロジスティック回帰式、またはGln,Glu,Ala,His,Cys,ABAを変数とする線形判別式でもよい。これにより、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができる。具体的には、初期肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができる。
また、ステップS−22では、ステップS−21で算出した判別値に基づいて、評価対象につき、肺癌のうち腺癌であること、または非肺癌であるか否かを判別してもよい。具体的には、判別値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき、肺癌のうち腺癌であること、または非肺癌であるか否かを判別してもよい。これにより、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別を精度よく行うことができる。
なお、ステップS−21において、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含んでもよい。具体的には、多変量判別式は数式7、数式8または数式9でもよい。これにより、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができる。具体的には、肺癌のうちの腺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式7、数式8、数式9)で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができる。
a7×Orn/Trp + b7×Tau/Arg + c7 ・・・(数式7)
a8×(Glu+Pro)/His + b8×(ABA+Lys)/Ile + c8 ・・・(数式8)
a9×Glu/Cit + b9×His/Gln + c9×Ile/Leu + d9×Tyr/Ala + e9 ・・・(数式9)
(数式7において、a7,b7,c7は任意の実数であり、数式8において、a8,b8,c8は任意の実数であり、数式9において、a9,b9,c9,d9,e9は任意の実数である。)
また、ステップS−21において、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。具体的には、多変量判別式は、Orn,ABA,Tau,Glyを変数とするロジスティック回帰式、またはOrn,ABA,Tau,His,Arg,Glyを変数とする線形判別式、またはHis,Ile,Glu,Pro,Leu,Glnを変数とするロジスティック回帰式、またはHis,Ile,Pro,Ala,Leu,Glnを変数とする線形判別式でもよい。これにより、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができる。具体的には、肺癌のうちの腺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができる。
なお、上記した各多変量判別式は、本出願人による国際出願である国際公開第2004/052191号に記載の方法や、本出願人による国際出願である国際出願番号PCT/JP2006/304398に記載の方法(後述する多変量判別式作成処理)で作成することができる。これら方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を肺癌の状態の評価に好適に用いることができる。
また、分数式とは、当該分数式の分子がアミノ酸A,B,C,・・・の和で表わされ及び/又は当該分数式の分母がアミノ酸a,b,c,・・・の和で表わされるものである。また、分数式には、このような構成の分数式α,β,γ,・・・の和(例えばα+βのようなもの)も含まれる。また、分数式には、分割された分数式も含まれる。なお、分子や分母に用いられるアミノ酸にはそれぞれ適当な係数がついてもかまわない。また、分子や分母に用いられるアミノ酸は重複してもかまわない。また、各分数式に適当な係数がついてもかまわない。また、各変数の係数の値や定数項の値は、実数であればかまわない。また、分数式で、分子の変数と分母の変数を入れ替えた組み合わせは、目的変数との相関の正負の符号は概して逆転するが、それらの相関性は保たれるので、判別性では同等と見なせるので、分子の変数と分母の変数を入れ替えた組み合わせも、包含するものである。
また、多変量判別式とは、一般に多変量解析で用いられる式の形式を意味し、例えば重回帰式、多重ロジスティック回帰式、線形判別関数、マハラノビス距離、正準判別関数、サポートベクターマシン、決定木などを包含する。また、異なる形式の多変量判別式の和で示されるような式も含まれる。また、重回帰式、多重ロジスティック回帰式、正準判別関数においては各変数に係数および定数項が付加されるが、この場合の係数および定数項は、好ましくは実数であること、より好ましくはデータから判別を行うために得られた係数および定数項の99%信頼区間の範囲に属する値、さらに好ましくはデータから判別を行うために得られた係数および定数項の95%信頼区間の範囲に属する値であればかまわない。また、各係数の値、及びその信頼区間は、それを実数倍したものでもよく、定数項の値、及びその信頼区間は、それに任意の実定数を加減乗除したものでもよい。
そして、本発明は、肺癌の状態を評価する際(具体的には、肺癌または非肺癌であるか否かを判別する際、肺癌であることおよびその病期、または非肺癌であるか否かを判別する際、肺癌のうち腺癌であること、または非肺癌であるか否かを判別する際)、アミノ酸の濃度以外に、その他の代謝物(生体代謝物)の濃度や、タンパク質の発現量、被験者の年齢・性別、生体指標などをさらに用いてもかまわない。また、本発明は、肺癌の状態を評価する際(具体的には、肺癌または非肺癌であるか否かを判別する際、肺癌であることおよびその病期、または非肺癌であるか否かを判別する際、肺癌のうち腺癌であること、または非肺癌であるか否かを判別する際)、多変量判別式における変数として、アミノ酸の濃度以外に、その他の代謝物(生体代謝物)の濃度や、タンパク質の発現量、被験者の年齢・性別、生体指標などをさらに用いてもかまわない。
ここで、多変量判別式作成処理(工程1〜工程4)の概要について詳細に説明する。
まず、本発明は、制御部で、アミノ酸濃度データと肺癌の状態を表す指標に関する肺癌状態指標データとを含む記憶部で記憶した肺癌状態情報から所定の式作成手法に基づいて、多変量判別式の候補である候補多変量判別式(例えば、y=a1x1+a2x2+・・・+anxn、y:肺癌状態指標データ、xi:アミノ酸濃度データ、ai:定数、i=1,2,・・・,n)を作成する(工程1)。なお、事前に、肺癌状態情報から欠損値や外れ値などを持つデータを除去してもよい。
なお、工程1において、肺癌状態情報から、複数の異なる式作成手法(主成分分析や判別分析、サポートベクターマシン、重回帰分析、ロジスティック回帰分析、k−means法、クラスター解析、決定木などの多変量解析に関するものを含む。)を併用して複数の候補多変量判別式を作成してもよい。具体的には、多数の非肺癌群および肺癌患者群から得た血液を分析して得たアミノ酸濃度データおよび肺癌状態指標データから構成される多変量データである肺癌状態情報に対して、複数の異なるアルゴリズムを利用して複数群の候補多変量判別式を同時並行的に作成してもよい。例えば、異なるアルゴリズムを利用して判別分析およびロジスティック回帰分析を同時に行い、2つの異なる候補多変量判別式を作成してもよい。また、主成分分析を行って作成した候補多変量判別式を利用して肺癌状態情報を変換し、変換した肺癌状態情報に対して判別分析を行うことで候補多変量判別式を作成してもよい。これにより、最終的に、診断条件に合った適切な多変量判別式を作成することができる。
ここで、主成分分析を用いて作成した候補多変量判別式は、全てのアミノ酸濃度データの分散を最大にするような各アミノ酸変数からなる一次式である。また、判別分析を用いて作成した候補多変量判別式は、各群内の分散の和の全てのアミノ酸濃度データの分散に対する比を最小にするような各アミノ酸変数からなる高次式(指数や対数を含む)である。また、サポートベクターマシンを用いて作成した候補多変量判別式は、群間の境界を最大にするような各アミノ酸変数からなる高次式(カーネル関数を含む)である。また、重回帰分析を用いて作成した候補多変量判別式は、全てのアミノ酸濃度データからの距離の和を最小にするような各アミノ酸変数からなる高次式である。ロジスティック回帰分析を用いて作成した候補多変量判別式は、尤度を最大にするような各アミノ酸変数からなる一次式を指数とする自然対数を項に持つ分数式である。また、k−means法とは、各アミノ酸濃度データのk個近傍を探索し、近傍点の属する群の中で一番多いものをそのデータの所属群と定義し、入力されたアミノ酸濃度データの属する群と定義された群とが最も合致するようなアミノ酸変数を選択する手法である。また、クラスター解析とは、全てのアミノ酸濃度データの中で最も近い距離にある点同士をクラスタリング(群化)する手法である。また、決定木とは、アミノ酸変数に序列をつけて、序列が上位であるアミノ酸変数の取りうるパターンからアミノ酸濃度データの群を予測する手法である。
多変量判別式作成処理の説明に戻り、本発明は、制御部で、工程1で作成した候補多変量判別式を、所定の検証手法に基づいて検証(相互検証)する(工程2)。候補多変量判別式の検証は、工程1で作成した各候補多変量判別式に対して行う。
なお、工程2において、ブートストラップ法やホールドアウト法、リーブワンアウト法などのうち少なくとも1つに基づいて候補多変量判別式の判別率や感度、特異性、情報量基準などのうち少なくとも1つに関して検証してもよい。これにより、肺癌状態情報や診断条件を考慮した予測性または堅牢性の高い候補多変量判別式を作成することができる。
ここで、判別率とは、全入力データの中で、本発明で評価した肺癌の状態が正しい割合である。また、感度とは、入力データに記載された肺癌に罹患しているものの中で、本発明で評価した肺癌の状態が正しい割合である。また、特異性とは、入力データに記載された非肺癌になっているもの(肺癌になっていないもの)の中で、本発明で評価した肺癌の状態が正しい割合である。また、情報量基準とは、工程1で作成した候補多変量判別式のアミノ酸変数の数と、本発明で評価した肺癌の状態および入力データに記載された肺癌の状態の差異と、を足し合わせたものである。また、予測性とは、候補多変量判別式の検証を繰り返すことで得られた判別率や感度、特異性を平均したものである。また、堅牢性とは、候補多変量判別式の検証を繰り返すことで得られた判別率や感度、特異性の分散である。
多変量判別式作成処理の説明に戻り、本発明は、制御部で、工程2での検証結果から所定の変数選択手法に基づいて候補多変量判別式の変数を選択することで、候補多変量判別式を作成する際に用いる肺癌状態情報に含まれるアミノ酸濃度データの組み合わせを選択する(工程3)。アミノ酸変数の選択は、工程1で作成した各候補多変量判別式に対して行う。これにより、候補多変量判別式のアミノ酸変数を適切に選択することができる。そして、工程3で選択したアミノ酸濃度データを含む肺癌状態情報を用いて再び工程1を実行する。
なお、工程3において、工程2での検証結果からステップワイズ法、ベストパス法、近傍探索法、遺伝的アルゴリズムのうち少なくとも1つに基づいて候補多変量判別式のアミノ酸変数を選択してもよい。
ここで、ベストパス法とは、候補多変量判別式に含まれるアミノ酸変数を1つずつ順次減らしていき、候補多変量判別式が与える評価指標を最適化することでアミノ酸変数を選択する方法である。
多変量判別式作成処理の説明に戻り、本発明は、制御部で、上述した工程1、工程2および工程3を繰り返し実行し、これにより蓄積した検証結果に基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出することで、多変量判別式を作成する(工程4)。なお、候補多変量判別式の選出には、例えば、同じ式作成手法で作成した候補多変量判別式の中から最適なものを選出する場合と、すべての候補多変量判別式の中から最適なものを選出する場合とがある。
以上、説明したように、多変量判別式作成処理では、肺癌状態情報に基づいて、候補多変量判別式の作成、候補多変量判別式の検証および候補多変量判別式の変数の選択に関する処理を一連の流れで体系化(システム化)して実行することにより、肺癌の状態の評価に最適な多変量判別式を作成することができる。換言すると、多変量判別式作成処理では、アミノ酸濃度を多変量の統計解析に用い、最適でロバストな変数の組を選択するために変数選択法とクロスバリデーションとを組み合わせて、診断性能の高い多変量判別式を抽出する。多変量判別式としては、ロジスティック回帰、線形判別、サポートベクターマシン、マハラノビス距離法、重回帰分析、クラスター解析などを用いることができる。
[2−2.システム構成]
ここでは、第2実施形態にかかる肺癌評価システム(以下では本システムと記す場合がある。)の構成について、図4から図20を参照して説明する。なお、本システムはあくまでも一例であり、本発明はこれに限定されない。
まず、本システムの全体構成について図4および図5を参照して説明する。図4は本システムの全体構成の一例を示す図である。また、図5は本システムの全体構成の他の一例を示す図である。本システムは、図4に示すように、評価対象につき肺癌の状態を評価する肺癌評価装置100と、アミノ酸の濃度値に関する評価対象のアミノ酸濃度データを提供するクライアント装置200(本発明の情報通信端末装置に相当)とを、ネットワーク300を介して通信可能に接続して構成されている。
なお、本システムは、図5に示すように、肺癌評価装置100やクライアント装置200の他に、肺癌評価装置100で多変量判別式を作成する際に用いる肺癌状態情報や肺癌の状態を評価するために用いる多変量判別式などを格納したデータベース装置400を、ネットワーク300を介して通信可能に接続して構成されてもよい。これにより、ネットワーク300を介して、肺癌評価装置100からクライアント装置200やデータベース装置400へ、あるいはクライアント装置200やデータベース装置400から肺癌評価装置100へ、肺癌の状態に関する情報などが提供される。ここで、肺癌の状態に関する情報とは、ヒトを含む生物の肺癌の状態に関する特定の項目について測定した値に関する情報である。また、肺癌の状態に関する情報は、肺癌評価装置100やクライアント装置200や他の装置(例えば各種の計測装置等)で生成され、主にデータベース装置400に蓄積される。
つぎに、本システムの肺癌評価装置100の構成について図6から図18を参照して説明する。図6は、本システムの肺癌評価装置100の構成の一例を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。
肺癌評価装置100は、当該肺癌評価装置を統括的に制御するCPU等の制御部102と、ルータ等の通信装置および専用線等の有線または無線の通信回線を介して当該肺癌評価装置をネットワーク300に通信可能に接続する通信インターフェース部104と、各種のデータベースやテーブルやファイルなどを格納する記憶部106と、入力装置112や出力装置114に接続する入出力インターフェース部108と、で構成されており、これら各部は任意の通信路を介して通信可能に接続されている。ここで、肺癌評価装置100は、各種の分析装置(例えばアミノ酸アナライザー等)と同一筐体で構成されてもよい。また、肺癌評価装置100の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷等に応じた任意の単位で、機能的または物理的に分散・統合して構成してもよい。例えば、処理の一部をCGI(Common Gateway Interface)を用いて実現してもよい。
記憶部106は、ストレージ手段であり、例えば、RAM・ROM等のメモリ装置や、ハードディスクのような固定ディスク装置、フレキシブルディスク、光ディスク等を用いることができる。記憶部106には、OS(Operating System)と協働してCPUに命令を与え各種処理を行うためのコンピュータプログラムが記録されている。記憶部106は、図示の如く、利用者情報ファイル106aと、アミノ酸濃度データファイル106bと、肺癌状態情報ファイル106cと、指定肺癌状態情報ファイル106dと、多変量判別式関連情報データベース106eと、判別値ファイル106fと、評価結果ファイル106gと、を格納する。
利用者情報ファイル106aは、利用者に関する利用者情報を格納する。図7は、利用者情報ファイル106aに格納される情報の一例を示す図である。利用者情報ファイル106aに格納される情報は、図7に示すように、利用者を一意に識別するための利用者IDと、利用者が正当な者であるか否かの認証を行うための利用者パスワードと、利用者の氏名と、利用者の所属する所属先を一意に識別するための所属先IDと、利用者の所属する所属先の部門を一意に識別するための部門IDと、部門名と、利用者の電子メールアドレスと、を相互に関連付けて構成されている。
図6に戻り、アミノ酸濃度データファイル106bは、アミノ酸の濃度値に関するアミノ酸濃度データを格納する。図8は、アミノ酸濃度データファイル106bに格納される情報の一例を示す図である。アミノ酸濃度データファイル106bに格納される情報は、図8に示すように、評価対象である個体(サンプル)を一意に識別するための個体番号と、アミノ酸濃度データとを相互に関連付けて構成されている。ここで、図8では、アミノ酸濃度データを数値、すなわち連続尺度として扱っているが、アミノ酸濃度データは名義尺度や順序尺度でもよい。なお、名義尺度や順序尺度の場合は、それぞれの状態に対して任意の数値を与えることで解析してもよい。また、アミノ酸濃度データに、他の生体情報(性差、年齢、身長、体重、BMI指数、腹囲、インスリン抵抗性指数、尿酸値、血糖値、中性脂肪、体脂肪率、総コレステロール、HDLコレステロール、LDLコレステロール、収縮期血圧、拡張期血圧、ヘモグロビンA1c、動脈硬化指数、喫煙の有無、喫煙指数、心電図の波形を数値化したもの、タンパク濃度、抗体濃度、腫瘍マーカー量、酵素濃度、遺伝子発現量、アミノ酸以外の代謝物の濃度など)を組み合わせてもよい。
図6に戻り、肺癌状態情報ファイル106cは、多変量判別式を作成する際に用いる肺癌状態情報を格納する。図9は、肺癌状態情報ファイル106cに格納される情報の一例を示す図である。肺癌状態情報ファイル106cに格納される情報は、図9に示すように、個体番号と、肺癌の状態を表す指標(指標T1、指標T2、指標T3・・・)に関する肺癌状態指標データ(T)と、アミノ酸濃度データと、を相互に関連付けて構成されている。ここで、図9では、肺癌状態指標データおよびアミノ酸濃度データを数値(すなわち連続尺度)として扱っているが、肺癌状態指標データおよびアミノ酸濃度データは名義尺度や順序尺度でもよい。なお、名義尺度や順序尺度の場合は、それぞれの状態に対して任意の数値を与えることで解析してもよい。また、肺癌状態指標データは、肺癌の状態のマーカーとなる既知の単一の状態指標であり、数値データを用いてもよい。
図6に戻り、指定肺癌状態情報ファイル106dは、後述する肺癌状態情報指定部102gで指定した肺癌状態情報を格納する。図10は、指定肺癌状態情報ファイル106dに格納される情報の一例を示す図である。指定肺癌状態情報ファイル106dに格納される情報は、図10に示すように、個体番号と、指定した肺癌状態指標データと、指定したアミノ酸濃度データと、を相互に関連付けて構成されている。
図6に戻り、多変量判別式関連情報データベース106eは、後述する候補多変量判別式作成部102h1で作成した候補多変量判別式を格納する候補多変量判別式ファイル106e1と、後述する候補多変量判別式検証部102h2での検証結果を格納する検証結果ファイル106e2と、後述する変数選択部102h3で選択したアミノ酸濃度データの組み合わせを含む肺癌状態情報を格納する選択肺癌状態情報ファイル106e3と、後述する多変量判別式作成部102hで作成した多変量判別式を格納する多変量判別式ファイル106e4と、で構成される。
候補多変量判別式ファイル106e1は、後述する候補多変量判別式作成部102h1で作成した候補多変量判別式を格納する。図11は、候補多変量判別式ファイル106e1に格納される情報の一例を示す図である。候補多変量判別式ファイル106e1に格納される情報は、図11に示すように、ランクと、候補多変量判別式(図11では、F1(Gly,Leu,Phe,・・・)やF2(Gly,Leu,Phe,・・・)、F3(Gly,Leu,Phe,・・・)など)とを相互に関連付けて構成されている。
図6に戻り、検証結果ファイル106e2は、後述する候補多変量判別式検証部102h2での検証結果を格納する。図12は、検証結果ファイル106e2に格納される情報の一例を示す図である。検証結果ファイル106e2に格納される情報は、図12に示すように、ランクと、候補多変量判別式(図12では、Fk(Gly,Leu,Phe,・・・)やFm(Gly,Leu,Phe,・・・)、Fl(Gly,Leu,Phe,・・・)など)と、各候補多変量判別式の検証結果(例えば各候補多変量判別式の評価値)と、を相互に関連付けて構成されている。
図6に戻り、選択肺癌状態情報ファイル106e3は、後述する変数選択部102h3で選択した変数に対応するアミノ酸濃度データの組み合わせを含む肺癌状態情報を格納する。図13は、選択肺癌状態情報ファイル106e3に格納される情報の一例を示す図である。選択肺癌状態情報ファイル106e3に格納される情報は、図13に示すように、個体番号と、後述する肺癌状態情報指定部102gで指定した肺癌状態指標データと、後述する変数選択部102h3で選択したアミノ酸濃度データと、を相互に関連付けて構成されている。
図6に戻り、多変量判別式ファイル106e4は、後述する多変量判別式作成部102hで作成した多変量判別式を格納する。図14は、多変量判別式ファイル106e4に格納される情報の一例を示す図である。多変量判別式ファイル106e4に格納される情報は、図14に示すように、ランクと、多変量判別式(図14では、Fp(Phe,・・・)やFp(Gly,Leu,Phe)、Fk(Gly,Leu,Phe,・・・)など)と、各式作成手法に対応する閾値と、各多変量判別式の検証結果(例えば各多変量判別式の評価値)と、を相互に関連付けて構成されている。
図6に戻り、判別値ファイル106fは、後述する判別値算出部102iで算出した判別値を格納する。図15は、判別値ファイル106fに格納される情報の一例を示す図である。判別値ファイル106fに格納される情報は、図15に示すように、評価対象である個体(サンプル)を一意に識別するための個体番号と、ランク(多変量判別式を一意に識別するための番号)と、判別値と、を相互に関連付けて構成されている。
図6に戻り、評価結果ファイル106gは、後述する判別値基準評価部102jでの評価結果(具体的には、後述する判別値基準判別部102j1での判別結果)を格納する。図16は、評価結果ファイル106gに格納される情報の一例を示す図である。評価結果ファイル106gに格納される情報は、評価対象である個体(サンプル)を一意に識別するための個体番号と、予め取得した評価対象のアミノ酸濃度データと、多変量判別式で算出した判別値と、肺癌の状態に関する評価結果(具体的には、肺癌または非肺癌であるか否かに関する判別結果、肺癌であることおよびその病期、または非肺癌であるか否かに関する判別結果、肺癌のうち腺癌であること、または非肺癌であるか否かに関する判別結果)と、を相互に関連付けて構成されている。
図6に戻り、記憶部106には、上述した情報以外にその他情報として、Webサイトをクライアント装置200に提供するための各種のWebデータや、CGIプログラム等が記録されている。Webデータとしては後述する各種のWebページを表示するためのデータ等があり、これらデータは例えばHTMLやXMLで記述されたテキストファイルとして形成されている。また、Webデータを作成するための部品用のファイルや作業用のファイルやその他一時的なファイル等も記憶部106に記憶される。記憶部106には、必要に応じて、クライアント装置200に送信するための音声をWAVE形式やAIFF形式の如き音声ファイルで格納したり、静止画や動画をJPEG形式やMPEG2形式の如き画像ファイルで格納したりすることができる。
通信インターフェース部104は、肺癌評価装置100とネットワーク300(またはルータ等の通信装置)との間における通信を媒介する。すなわち、通信インターフェース部104は、他の端末と通信回線を介してデータを通信する機能を有する。
入出力インターフェース部108は、入力装置112や出力装置114に接続する。ここで、出力装置114には、モニタ(家庭用テレビを含む)の他、スピーカやプリンタを用いることができる(なお、以下では、出力装置114をモニタ114として記載する場合がある。)。入力装置112には、キーボードやマウスやマイクの他、マウスと協働してポインティングデバイス機能を実現するモニタを用いることができる。
制御部102は、OS(Operating System)等の制御プログラム・各種の処理手順等を規定したプログラム・所要データなどを格納するための内部メモリを有し、これらのプログラムに基づいて種々の情報処理を実行する。制御部102は、図示の如く、大別して、要求解釈部102aと閲覧処理部102bと認証処理部102cと電子メール生成部102dとWebページ生成部102eと受信部102fと肺癌状態情報指定部102gと多変量判別式作成部102hと判別値算出部102iと判別値基準評価部102jと結果出力部102kと送信部102mとを備えている。制御部102は、データベース装置400から送信された肺癌状態情報やクライアント装置200から送信されたアミノ酸濃度データに対して、欠損値のあるデータの除去・外れ値の多いデータの除去・欠損値のあるデータの多い変数の除去などのデータ処理も行う。
要求解釈部102aは、クライアント装置200やデータベース装置400からの要求内容を解釈し、その解釈結果に応じて制御部102の各部に処理を受け渡す。閲覧処理部102bは、クライアント装置200からの各種画面の閲覧要求を受けて、これら画面のWebデータの生成や送信を行なう。認証処理部102cは、クライアント装置200やデータベース装置400からの認証要求を受けて、認証判断を行う。電子メール生成部102dは、各種の情報を含んだ電子メールを生成する。Webページ生成部102eは、利用者がクライアント装置200で閲覧するWebページを生成する。
受信部102fは、クライアント装置200やデータベース装置400から送信された情報(具体的には、アミノ酸濃度データや肺癌状態情報、多変量判別式など)を、ネットワーク300を介して受信する。肺癌状態情報指定部102gは、多変量判別式を作成するにあたり、対象とする肺癌状態指標データおよびアミノ酸濃度データを指定する。
多変量判別式作成部102hは、受信部102fで受信した肺癌状態情報や肺癌状態情報指定部102gで指定した肺癌状態情報に基づいて多変量判別式を作成する。具体的には、多変量判別式作成部102hは、肺癌状態情報から、候補多変量判別式作成部102h1、候補多変量判別式検証部102h2および変数選択部102h3を繰り返し実行させることにより蓄積された検証結果に基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出することで、多変量判別式を作成する。
なお、多変量判別式が予め記憶部106の所定の記憶領域に格納されている場合には、多変量判別式作成部102hは、記憶部106から所望の多変量判別式を選択することで、多変量判別式を作成してもよい。また、多変量判別式作成部102hは、多変量判別式を予め格納した他のコンピュータ装置(例えばデータベース装置400)から所望の多変量判別式を選択しダウンロードすることで、多変量判別式を作成してもよい。
ここで、多変量判別式作成部102hの構成について図17を参照して説明する。図17は、多変量判別式作成部102hの構成を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。多変量判別式作成部102hは、候補多変量判別式作成部102h1と、候補多変量判別式検証部102h2と、変数選択部102h3と、をさらに備えている。候補多変量判別式作成部102h1は、肺癌状態情報から所定の式作成手法に基づいて多変量判別式の候補である候補多変量判別式を作成する。なお、候補多変量判別式作成部102h1は、肺癌状態情報から、複数の異なる式作成手法を併用して複数の候補多変量判別式を作成してもよい。候補多変量判別式検証部102h2は、候補多変量判別式作成部102h1で作成した候補多変量判別式を所定の検証手法に基づいて検証する。なお、候補多変量判別式検証部102h2は、ブートストラップ法、ホールドアウト法、リーブワンアウト法のうち少なくとも1つに基づいて候補多変量判別式の判別率、感度、特異性、情報量基準のうち少なくとも1つに関して検証してもよい。変数選択部102h3は、候補多変量判別式検証部102h2での検証結果から所定の変数選択手法に基づいて候補多変量判別式の変数を選択することで、候補多変量判別式を作成する際に用いる肺癌状態情報に含まれるアミノ酸濃度データの組み合わせを選択する。なお、変数選択部102h3は、検証結果からステップワイズ法、ベストパス法、近傍探索法、遺伝的アルゴリズムのうち少なくとも1つに基づいて候補多変量判別式の変数を選択してもよい。
図6に戻り、判別値算出部102iは、受信部102fで受信した評価対象のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値および多変量判別式作成部102hで作成したOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含む多変量判別式に基づいて、当該多変量判別式の値である判別値を算出する。
ここで、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含んでもよい。
具体的には、多変量判別式は数式1、数式2または数式3でもよい。
a1×Orn/Trp + b1×(Tau+ABA)/Arg + c1
・・・(数式1)
a2×Glu/Tyr + b2×(Pro+Lys)/(Ile+His) + c2 ・・・(数式2)
a3×His/Lys + b3×Glu/Ile + c3×Tyr/Pro + d3×Val/Leu + e3 ・・・(数式3)
(数式1において、a1,b1,c1は任意の実数であり、数式2において、a2,b2,c2は任意の実数であり、数式3において、a3,b3,c3,d3,e3は任意の実数である。)
また、多変量判別式は数式4、数式5または数式6でもよい。
a4×Tau/Arg + b4×(Orn+ABA)/Trp + c4
・・・(数式4)
a5×Gln/(Cit+His) + b5×(Glu+ABA)/(Cys2) + c5 ・・・(数式5)
a6×Gln/His + b6×Glu + c6×ABA/Cys + d6×Lys/Val + e6 ・・・(数式6)
(数式4において、a4,b4,c4は任意の実数であり、数式5において、a5,b5,c5は任意の実数であり、数式6において、a6,b6,c6,d6,e6は任意の実数である。)
また、多変量判別式は数式7、数式8または数式9でもよい。
a7×Orn/Trp + b7×Tau/Arg + c7 ・・・(数式7)
a8×(Glu+Pro)/His + b8×(ABA+Lys)/Ile + c8 ・・・(数式8)
a9×Glu/Cit + b9×His/Gln + c9×Ile/Leu + d9×Tyr/Ala + e9 ・・・(数式9)
(数式7において、a7,b7,c7は任意の実数であり、数式8において、a8,b8,c8は任意の実数であり、数式9において、a9,b9,c9,d9,e9は任意の実数である。)
また、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。
具体的には、多変量判別式は、Tau,Orn,Arg,Ser,Glu,Pro,Asnを変数とするロジスティック回帰式、または年齢,ABA,Arg,Gln,His,Leu,Orn,Pro,Tau,Trp,Valを変数とする線形判別式、またはHis,Glu,Pro,Ile,Gln,Lysを変数とするロジスティック回帰式、またはHis,Glu,Pro,Ile,Tyr,Lysを変数とする線形判別式でもよい。
また、多変量判別式は、Orn,Tau,Trpを変数とするロジスティック回帰式、またはOrn,Arg,Tau,ABA,Gly,Hisを変数とする線形判別式、またはGln,Glu,His,Lys,Cys,ABAを変数とするロジスティック回帰式、またはGln,Glu,Ala,His,Cys,ABAを変数とする線形判別式でもよい。
また、多変量判別式は、Orn,ABA,Tau,Glyを変数とするロジスティック回帰式、またはOrn,ABA,Tau,His,Arg,Glyを変数とする線形判別式、またはHis,Ile,Glu,Pro,Leu,Glnを変数とするロジスティック回帰式、またはHis,Ile,Pro,Ala,Leu,Glnを変数とする線形判別式でもよい。
図6の説明に戻り、判別値基準評価部102jは、判別値算出部102iで算出した判別値に基づいて評価対象につき肺癌の状態を評価する。判別値基準評価部102jは、判別値基準判別部102j1をさらに備えている。ここで、判別値基準評価部102jの構成について図18を参照して説明する。図18は、判別値基準評価部102jの構成を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。判別値基準判別部102j1は、判別値に基づいて評価対象につき、肺癌または非肺癌であるか否かの判別、肺癌であることおよびその病期、または非肺癌であるか否かの判別、肺癌のうち腺癌であること、または非肺癌であるか否かの判別を行う。具体的には、判別値基準判別部102j1は、判別値と予め設定された閾値(カットオフ値)とを比較することで、評価対象につき、肺癌または非肺癌であるか否かの判別、肺癌であることおよびその病期、または非肺癌であるか否かの判別、肺癌のうち腺癌であること、または非肺癌であるか否かの判別を行う。
図6に戻り、結果出力部102kは、制御部102の各処理部での処理結果(判別値基準評価部102jでの評価結果(具体的には判別値基準判別部102j1での判別結果)を含む)等を出力装置114に出力する。
送信部102mは、評価対象のアミノ酸濃度データの送信元のクライアント装置200に対して評価結果を送信したり、データベース装置400に対して、肺癌評価装置100で作成した多変量判別式や評価結果を送信したりする。
つぎに、本システムのクライアント装置200の構成について図19を参照して説明する。図19は、本システムのクライアント装置200の構成の一例を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。
クライアント装置200は、制御部210とROM220とHD230とRAM240と入力装置250と出力装置260と入出力IF270と通信IF280とで構成されており、これら各部は任意の通信路を介して通信可能に接続されている。
制御部210は、Webブラウザ211、電子メーラ212、受信部213、送信部214を備えている。Webブラウザ211は、Webデータを解釈し、解釈したWebデータを後述するモニタ261に表示するブラウズ処理を行う。なお、Webブラウザ211には、ストリーム映像の受信・表示・フィードバック等を行う機能を備えたストリームプレイヤ等の各種のソフトウェアをプラグインしてもよい。電子メーラ212は、所定の通信規約(例えば、SMTP(Simple Mail Transfer Protocol)やPOP3(Post Office Protocol version 3)等)に従って電子メールの送受信を行う。受信部213は、通信IF280を介して、肺癌評価装置100から送信された評価結果などの各種情報を受信する。送信部214は、通信IF280を介して、評価対象のアミノ酸濃度データなどの各種情報を肺癌評価装置100へ送信する。
入力装置250はキーボードやマウスやマイク等である。なお、後述するモニタ261もマウスと協働してポインティングデバイス機能を実現する。出力装置260は、通信IF280を介して受信した情報を出力する出力手段であり、モニタ(家庭用テレビを含む)261およびプリンタ262を含む。この他、出力装置260にスピーカ等を設けてもよい。入出力IFは入力装置250や出力装置260に接続する。
通信IF280は、クライアント装置200とネットワーク300(またはルータ等の通信装置)とを通信可能に接続する。換言すると、クライアント装置200は、モデムやTAやルータなどの通信装置および電話回線を介して、または専用線を介してネットワーク300に接続される。これにより、クライアント装置200は、所定の通信規約に従って肺癌評価装置100にアクセスすることができる。
ここで、プリンタ・モニタ・イメージスキャナ等の周辺装置を必要に応じて接続した情報処理装置(例えば、既知のパーソナルコンピュータ・ワークステーション・家庭用ゲーム装置・インターネットTV・PHS端末・携帯端末・移動体通信端末・PDA等の情報処理端末など)に、Webデータのブラウジング機能や電子メール機能を実現させるソフトウェア(プログラム、データ等を含む)を実装することにより、クライアント装置200を実現してもよい。
また、クライアント装置200の制御部210は、制御部210で行う処理の全部または任意の一部を、CPUおよび当該CPUにて解釈して実行するプログラムで実現してもよい。ROM220またはHD230には、OS(Operating System)と協働してCPUに命令を与え、各種処理を行うためのコンピュータプログラムが記録されている。当該コンピュータプログラムは、RAM240にロードされることで実行され、CPUと協働して制御部210を構成する。また、当該コンピュータプログラムは、クライアント装置200と任意のネットワークを介して接続されるアプリケーションプログラムサーバに記録されてもよく、クライアント装置200は、必要に応じてその全部または一部をダウンロードしてもよい。また、制御部210で行う処理の全部または任意の一部を、ワイヤードロジック等によるハードウェアで実現してもよい。
つぎに、本システムのネットワーク300について図4、図5を参照して説明する。ネットワーク300は、肺癌評価装置100とクライアント装置200とデータベース装置400とを相互に通信可能に接続する機能を有し、例えばインターネットやイントラネットやLAN(有線/無線の双方を含む)等である。なお、ネットワーク300は、VANや、パソコン通信網や、公衆電話網(アナログ/デジタルの双方を含む)や、専用回線網(アナログ/デジタルの双方を含む)や、CATV網や、携帯回線交換網または携帯パケット交換網(IMT2000方式、GSM(登録商標)方式またはPDC/PDC−P方式等を含む)や、無線呼出網や、Bluetooth(登録商標)等の局所無線網や、PHS網や、衛星通信網(CS、BSまたはISDB等を含む)等でもよい。
つぎに、本システムのデータベース装置400の構成について図20を参照して説明する。図20は、本システムのデータベース装置400の構成の一例を示すブロック図であり、該構成のうち本発明に関係する部分のみを概念的に示している。
データベース装置400は、肺癌評価装置100または当該データベース装置で多変量判別式を作成する際に用いる肺癌状態情報や、肺癌評価装置100で作成した多変量判別式、肺癌評価装置100での評価結果などを格納する機能を有する。図20に示すように、データベース装置400は、当該データベース装置を統括的に制御するCPU等の制御部402と、ルータ等の通信装置および専用線等の有線または無線の通信回路を介して当該データベース装置をネットワーク300に通信可能に接続する通信インターフェース部404と、各種のデータベースやテーブルやファイル(例えばWebページ用ファイル)などを格納する記憶部406と、入力装置412や出力装置414に接続する入出力インターフェース部408と、で構成されており、これら各部は任意の通信路を介して通信可能に接続されている。
記憶部406は、ストレージ手段であり、例えば、RAM・ROM等のメモリ装置や、ハードディスクのような固定ディスク装置や、フレキシブルディスクや、光ディスク等を用いることができる。記憶部406には、各種処理に用いる各種プログラム等を格納する。通信インターフェース部404は、データベース装置400とネットワーク300(またはルータ等の通信装置)との間における通信を媒介する。すなわち、通信インターフェース部404は、他の端末と通信回線を介してデータを通信する機能を有する。入出力インターフェース部408は、入力装置412や出力装置414に接続する。ここで、出力装置414には、モニタ(家庭用テレビを含む)の他、スピーカやプリンタを用いることができる(なお、以下で、出力装置414をモニタ414として記載する場合がある。)。また、入力装置412には、キーボードやマウスやマイクの他、マウスと協働してポインティングデバイス機能を実現するモニタを用いることができる。
制御部402は、OS(Operating System)等の制御プログラム・各種の処理手順等を規定したプログラム・所要データなどを格納するための内部メモリを有し、これらのプログラムに基づいて種々の情報処理を実行する。制御部402は、図示の如く、大別して、要求解釈部402aと閲覧処理部402bと認証処理部402cと電子メール生成部402dとWebページ生成部402eと送信部402fとを備えている。
要求解釈部402aは、肺癌評価装置100からの要求内容を解釈し、その解釈結果に応じて制御部402の各部に処理を受け渡す。閲覧処理部402bは、肺癌評価装置100からの各種画面の閲覧要求を受けて、これら画面のWebデータの生成や送信を行う。認証処理部402cは、肺癌評価装置100からの認証要求を受けて、認証判断を行う。電子メール生成部402dは、各種の情報を含んだ電子メールを生成する。Webページ生成部402eは、利用者がクライアント装置200で閲覧するWebページを生成する。送信部402fは、肺癌状態情報や多変量判別式などの各種情報を、肺癌評価装置100へ送信する。
[2−3.本システムの処理]
ここでは、以上のように構成された本システムで行われる肺癌評価サービス処理の一例を、図21を参照して説明する。図21は、肺癌評価サービス処理の一例を示すフローチャートである。
なお、本処理で用いるアミノ酸濃度データは、個体から予め採取した血液を分析して得たアミノ酸の濃度値に関するものである。ここで、血液中のアミノ酸の分析方法について簡単に説明する。まず、採血した血液サンプルを、ヘパリン処理したチューブに採取し、その後、当該チューブに対して遠心分離を行うことで血漿を分離する。なお、分離したすべての血漿サンプルは、アミノ酸濃度の測定時まで−70℃で凍結保存する。そして、アミノ酸濃度の測定時に、血漿サンプルに対してスルホサリチル酸を添加し、3%濃度調整により除蛋白処理を行う。なお、アミノ酸濃度の測定には、ポストカラムでニンヒドリン反応を用いた高速液体クロマトグラフィー(HPLC)を原理としたアミノ酸分析機を使用した。
まず、Webブラウザ211を表示した画面上で利用者が入力装置250を介して肺癌評価装置100が提供するWebサイトのアドレス(URLなど)を指定すると、クライアント装置200は肺癌評価装置100へアクセスする。具体的には、利用者がクライアント装置200のWebブラウザ211の画面更新を指示すると、Webブラウザ211は、肺癌評価装置100が提供するWebサイトのアドレスを所定の通信規約で肺癌評価装置100へ送信することで、アミノ酸濃度データ送信画面に対応するWebページの送信要求を、当該アドレスに基づくルーティングで肺癌評価装置100へ行う。
つぎに、肺癌評価装置100は、要求解釈部102aで、クライアント装置200からの送信を受け、当該送信の内容を解析し、解析結果に応じて制御部102の各部に処理を移す。具体的には、送信の内容がアミノ酸濃度データ送信画面に対応するWebページの送信要求であった場合、肺癌評価装置100は、主として閲覧処理部102bで、記憶部106の所定の記憶領域に格納されている当該Webページを表示するためのWebデータを取得し、取得したWebデータをクライアント装置200へ送信する。より具体的には、利用者からアミノ酸濃度データ送信画面に対応するWebページの送信要求があった場合、肺癌評価装置100は、まず、制御部102で、利用者IDや利用者パスワードの入力を利用者に対して求める。そして、利用者IDやパスワードが入力されると、肺癌評価装置100は、認証処理部102cで、入力された利用者IDやパスワードと利用者情報ファイル106aに格納されている利用者IDや利用者パスワードとの認証判断を行う。そして、肺癌評価装置100は、認証可の場合にのみ、閲覧処理部102bで、アミノ酸濃度データ送信画面に対応するWebページを表示するためのWebデータをクライアント装置200へ送信する。なお、クライアント装置200の特定は、クライアント装置200から送信要求と共に送信されたIPアドレスで行う。
つぎに、クライアント装置200は、肺癌評価装置100から送信されたWebデータ(アミノ酸濃度データ送信画面に対応するWebページを表示するためのもの)を受信部213で受信し、受信したWebデータをWebブラウザ211で解釈し、モニタ261にアミノ酸濃度データ送信画面を表示する。
つぎに、モニタ261に表示されたアミノ酸濃度データ送信画面に対し利用者が入力装置250を介して個体のアミノ酸濃度データなどを入力・選択すると、クライアント装置200は、送信部214で、入力情報や選択事項を特定するための識別子を肺癌評価装置100へ送信することで、評価対象の個体のアミノ酸濃度データを肺癌評価装置100へ送信する(ステップSA−21)。なお、ステップSA−21におけるアミノ酸濃度データの送信は、FTP等の既存のファイル転送技術等により実現してもよい。
つぎに、肺癌評価装置100は、要求解釈部102aで、クライアント装置200から送信された識別子を解釈することによりクライアント装置200の要求内容を解釈し、Orn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含む肺癌評価用(具体的には、肺癌と非肺癌との2群判別用、初期肺癌と非肺癌との2群判別用、肺癌のうちの腺癌と非肺癌との2群判別用)の多変量判別式の送信要求をデータベース装置400へ行う。
つぎに、データベース装置400は、要求解釈部402aで、肺癌評価装置100からの送信要求を解釈し、記憶部406の所定の記憶領域に格納した、Orn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含む多変量判別式(例えばアップデートされた最新のもの)を肺癌評価装置100へ送信する(ステップSA−22)。
ここで、ステップSA−22において、肺癌評価装置100へ送信する多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含んでもよい。
具体的には、後述するステップSA−26で肺癌または非肺癌であるか否かの判別を行う場合には、多変量判別式は数式1、数式2または数式3でもよい。
a1×Orn/Trp + b1×(Tau+ABA)/Arg + c1
・・・(数式1)
a2×Glu/Tyr + b2×(Pro+Lys)/(Ile+His) + c2 ・・・(数式2)
a3×His/Lys + b3×Glu/Ile + c3×Tyr/Pro + d3×Val/Leu + e3 ・・・(数式3)
(数式1において、a1,b1,c1は任意の実数であり、数式2において、a2,b2,c2は任意の実数であり、数式3において、a3,b3,c3,d3,e3は任意の実数である。)
また、後述するステップSA−26で肺癌であることおよびその病期、または非肺癌であるか否かの判別を行う場合には、多変量判別式は数式4、数式5または数式6でもよい。
a4×Tau/Arg + b4×(Orn+ABA)/Trp + c4
・・・(数式4)
a5×Gln/(Cit+His) + b5×(Glu+ABA)/(Cys2) + c5 ・・・(数式5)
a6×Gln/His + b6×Glu + c6×ABA/Cys + d6×Lys/Val + e6 ・・・(数式6)
(数式4において、a4,b4,c4は任意の実数であり、数式5において、a5,b5,c5は任意の実数であり、数式6において、a6,b6,c6,d6,e6は任意の実数である。)
また、後述するステップSA−26で肺癌のうち腺癌であること、または非肺癌であるか否かの判別を行う場合には、多変量判別式は数式7、数式8または数式9でもよい。
a7×Orn/Trp + b7×Tau/Arg + c7 ・・・(数式7)
a8×(Glu+Pro)/His + b8×(ABA+Lys)/Ile + c8 ・・・(数式8)
a9×Glu/Cit + b9×His/Gln + c9×Ile/Leu + d9×Tyr/Ala + e9 ・・・(数式9)
(数式7において、a7,b7,c7は任意の実数であり、数式8において、a8,b8,c8は任意の実数であり、数式9において、a9,b9,c9,d9,e9は任意の実数である。)
また、ステップSA−22において、肺癌評価装置100へ送信する多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。
具体的には、ステップSA−26で肺癌または非肺癌であるか否かの判別を行う場合には、多変量判別式は、Tau,Orn,Arg,Ser,Glu,Pro,Asnを変数とするロジスティック回帰式、または年齢,ABA,Arg,Gln,His,Leu,Orn,Pro,Tau,Trp,Valを変数とする線形判別式、またはHis,Glu,Pro,Ile,Gln,Lysを変数とするロジスティック回帰式、またはHis,Glu,Pro,Ile,Tyr,Lysを変数とする線形判別式でもよい。
また、ステップSA−26で肺癌であることおよびその病期、または非肺癌であるか否かの判別を行う場合には、多変量判別式は、Orn,Tau,Trpを変数とするロジスティック回帰式、またはOrn,Arg,Tau,ABA,Gly,Hisを変数とする線形判別式、またはGln,Glu,His,Lys,Cys,ABAを変数とするロジスティック回帰式、またはGln,Glu,Ala,His,Cys,ABAを変数とする線形判別式でもよい。
また、ステップSA−26で肺癌のうち腺癌であること、または非肺癌であるか否かの判別を行う場合には、多変量判別式は、Orn,ABA,Tau,Glyを変数とするロジスティック回帰式、またはOrn,ABA,Tau,His,Arg,Glyを変数とする線形判別式、またはHis,Ile,Glu,Pro,Leu,Glnを変数とするロジスティック回帰式、またはHis,Ile,Pro,Ala,Leu,Glnを変数とする線形判別式でもよい。
図21の説明に戻り、肺癌評価装置100は、受信部102fで、クライアント装置200から送信された個体のアミノ酸濃度データおよびデータベース装置400から送信された多変量判別式を受信し、受信したアミノ酸濃度データをアミノ酸濃度データファイル106bの所定の記憶領域に格納すると共に、受信した多変量判別式を多変量判別式ファイル106e4の所定の記憶領域に格納する(ステップSA−23)。
つぎに、肺癌評価装置100は、制御部102で、ステップSA−23で受信した個体のアミノ酸濃度データから欠損値や外れ値などのデータを除去する(ステップSA−24)。
つぎに、肺癌評価装置100は、判別値算出部102iで、ステップSA−24で欠損値や外れ値などのデータが除去された個体のアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値およびステップSA−23で受信した多変量判別式に基づいて、判別値を算出する(ステップSA−25)。
つぎに、肺癌評価装置100は、判別値基準判別部102j1で、ステップSA−25で算出した判別値と予め設定された閾値(カットオフ値)とを比較することで、個体につき、肺癌または非肺癌であるか否かの判別、肺癌であることおよびその病期、または非肺癌であるか否かの判別、肺癌のうち腺癌であること、または非肺癌であるか否かの判別のいずれかを行い、その判別結果を評価結果ファイル106gの所定の記憶領域に格納する(ステップSA−26)。
つぎに、肺癌評価装置100は、送信部102mで、ステップSA−26で得た判別結果(肺癌または非肺癌であるか否かに関する判別結果、肺癌であることおよびその病期、または非肺癌であるか否かに関する判別結果、肺癌のうち腺癌であること、または非肺癌であるか否かに関する判別結果)を、アミノ酸濃度データの送信元のクライアント装置200とデータベース装置400とへ送信する(ステップSA−27)。具体的には、まず、肺癌評価装置100は、Webページ生成部102eで、判別結果を表示するためのWebページを作成し、作成したWebページに対応するWebデータを記憶部106の所定の記憶領域に格納する。ついで、利用者がクライアント装置200のWebブラウザ211に入力装置250を介して所定のURLを入力し上述した認証を経た後、クライアント装置200は、当該Webページの閲覧要求を肺癌評価装置100へ送信する。ついで、肺癌評価装置100は、閲覧処理部102bで、クライアント装置200から送信された閲覧要求を解釈し、判別結果を表示するためのWebページに対応するWebデータを記憶部106の所定の記憶領域から読み出す。そして、肺癌評価装置100は、送信部102mで、読み出したWebデータをクライアント装置200へ送信すると共に、当該Webデータ又は判別結果をデータベース装置400へ送信する。
ここで、ステップSA−27において、肺癌評価装置100は、制御部102で、判別結果を電子メールで利用者のクライアント装置200へ通知してもよい。具体的には、まず、肺癌評価装置100は、電子メール生成部102dで、利用者IDなどを基にして利用者情報ファイル106aに格納されている利用者情報を送信タイミングに従って参照し、利用者の電子メールアドレスを取得する。ついで、肺癌評価装置100は、電子メール生成部102dで、取得した電子メールアドレスを宛て先とし利用者の氏名および判別結果を含む電子メールに関するデータを生成する。ついで、肺癌評価装置100は、送信部102mで、生成した当該データを利用者のクライアント装置200へ送信する。
また、ステップSA−27において、肺癌評価装置100は、FTP等の既存のファイル転送技術等で、判別結果を利用者のクライアント装置200へ送信してもよい。
図21の説明に戻り、データベース装置400は、制御部402で、肺癌評価装置100から送信された判別結果またはWebデータを受信し、受信した判別結果またはWebデータを記憶部406の所定の記憶領域に保存(蓄積)する(ステップSA−28)。
また、クライアント装置200は、受信部213で、肺癌評価装置100から送信されたWebデータを受信し、受信したWebデータをWebブラウザ211で解釈し、個体の判別結果が記されたWebページの画面をモニタ261に表示する(ステップSA−29)。なお、判別結果が肺癌評価装置100から電子メールで送信された場合には、クライアント装置200は、電子メーラ212の公知の機能で、肺癌評価装置100から送信された電子メールを任意のタイミングで受信し、受信した電子メールをモニタ261に表示する。
以上により、利用者は、モニタ261に表示されたWebページを閲覧することで、肺癌と非肺癌との2群判別に関する個体の判別結果、初期肺癌と非肺癌との2群判別に関する個体の判別結果、肺癌のうちの腺癌と非肺癌との2群判別に関する個体の判別結果を確認することができる。なお、利用者は、モニタ261に表示されたWebページの表示内容をプリンタ262で印刷してもよい。
また、判別結果が肺癌評価装置100から電子メールで送信された場合には、利用者は、モニタ261に表示された電子メールを閲覧することで、肺癌と非肺癌との2群判別に関する個体の判別結果、初期肺癌と非肺癌との2群判別に関する個体の判別結果、肺癌のうちの腺癌と非肺癌との2群判別に関する個体の判別結果を確認することができる。利用者は、モニタ261に表示された電子メールの表示内容をプリンタ262で印刷してもよい。
これにて、肺癌評価サービス処理の説明を終了する。
[2−4.第2実施形態のまとめ、およびその他の実施形態]
以上、詳細に説明したように、肺癌評価システムによれば、クライアント装置200は個体のアミノ酸濃度データを肺癌評価装置100へ送信し、データベース装置400は肺癌評価装置100からの要求を受けて、Orn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含む多変量判別式を肺癌評価装置100へ送信する。そして、肺癌評価装置100は、(1)クライアント装置200からアミノ酸濃度データを受信すると共にデータベース装置400から多変量判別式を受信し、(2)受信した個体のアミノ酸濃度データから欠損値や外れ値などのデータを除去し、(3)欠損値や外れ値などのデータが除去されたアミノ酸濃度データに含まれるOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つの濃度値および受信したOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含む多変量判別式に基づいて判別値を算出し、(4)算出した判別値と予め設定した閾値とを比較することで個体につき、肺癌または非肺癌であるか否かの判別、肺癌およびその病期、または非肺癌であるか否かの判別、肺癌のうち腺癌であること、または非肺癌であるか否かの判別のいずれかを行い、(5)この判別結果をクライアント装置200やデータベース装置400へ送信する。そして、クライアント装置200は肺癌評価装置100から送信された判別結果を受信して表示し、データベース装置400は肺癌評価装置100から送信された判別結果を受信して格納する。これにより、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別、初期肺癌と非肺癌との2群判別、肺癌のうちの腺癌と非肺癌との2群判別を精度よく行うことができる。
ここで、肺癌評価システムによれば、多変量判別式は、1つの分数式または複数の分数式の和で表され、それを構成する分数式の分子および/または分母にOrn,Lys,ABA,Arg,Glu,His,Tau,Pro,Ala,Cit,Ileのうち少なくとも1つを変数として含んでもよい。これにより、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式(分数式)で得られる判別値を利用して、肺癌と非肺癌との2群判別、初期肺癌と非肺癌との2群判別、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができる。
具体的には、ステップSA−26で肺癌または非肺癌であるか否かの判別を行う場合には、多変量判別式は数式1、数式2または数式3でもよい。これにより、肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式1、数式2、数式3)で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができる。
a1×Orn/Trp + b1×(Tau+ABA)/Arg + c1
・・・(数式1)
a2×Glu/Tyr + b2×(Pro+Lys)/(Ile+His) + c2 ・・・(数式2)
a3×His/Lys + b3×Glu/Ile + c3×Tyr/Pro + d3×Val/Leu + e3 ・・・(数式3)
(数式1において、a1,b1,c1は任意の実数であり、数式2において、a2,b2,c2は任意の実数であり、数式3において、a3,b3,c3,d3,e3は任意の実数である。)
また、ステップSA−26で肺癌であることおよびその病期、または非肺癌であるか否かの判別を行う場合には、多変量判別式は数式4、数式5または数式6でもよい。これにより、初期肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式4、数式5、数式6)で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができる。
a4×Tau/Arg + b4×(Orn+ABA)/Trp + c4
・・・(数式4)
a5×Gln/(Cit+His) + b5×(Glu+ABA)/(Cys2) + c5 ・・・(数式5)
a6×Gln/His + b6×Glu + c6×ABA/Cys + d6×Lys/Val + e6 ・・・(数式6)
(数式4において、a4,b4,c4は任意の実数であり、数式5において、a5,b5,c5は任意の実数であり、数式6において、a6,b6,c6,d6,e6は任意の実数である。)
また、ステップSA−26で肺癌のうち腺癌であること、または非肺癌であるか否かの判別を行う場合には、多変量判別式は数式7、数式8または数式9でもよい。これにより、肺癌のうちの腺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式(数式7、数式8、数式9)で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができる。
a7×Orn/Trp + b7×Tau/Arg + c7 ・・・(数式7)
a8×(Glu+Pro)/His + b8×(ABA+Lys)/Ile + c8 ・・・(数式8)
a9×Glu/Cit + b9×His/Gln + c9×Ile/Leu + d9×Tyr/Ala + e9 ・・・(数式9)
(数式7において、a7,b7,c7は任意の実数であり、数式8において、a8,b8,c8は任意の実数であり、数式9において、a9,b9,c9,d9,e9は任意の実数である。)
また、肺癌評価システムによれば、多変量判別式は、ロジスティック回帰式、線形判別式、重回帰式、サポートベクターマシンで作成された式、マハラノビス距離法で作成された式、正準判別分析で作成された式、決定木で作成された式のいずれか1つでもよい。これにより、肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式、初期肺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式、肺癌のうちの腺癌と非肺癌との2群判別に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別、初期肺癌と非肺癌との2群判別、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができる。
具体的には、ステップSA−26で肺癌または非肺癌であるか否かの判別を行う場合には、多変量判別式は、Tau,Orn,Arg,Ser,Glu,Pro,Asnを変数とするロジスティック回帰式、または年齢,ABA,Arg,Gln,His,Leu,Orn,Pro,Tau,Trp,Valを変数とする線形判別式、またはHis,Glu,Pro,Ile,Gln,Lysを変数とするロジスティック回帰式、またはHis,Glu,Pro,Ile,Tyr,Lysを変数とする線形判別式でもよい。これにより、肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌と非肺癌との2群判別をさらに精度よく行うことができる。
また、ステップSA−26で肺癌であることおよびその病期、または非肺癌であるか否かの判別を行う場合には、多変量判別式は、Orn,Tau,Trpを変数とするロジスティック回帰式、またはOrn,Arg,Tau,ABA,Gly,Hisを変数とする線形判別式、またはGln,Glu,His,Lys,Cys,ABAを変数とするロジスティック回帰式、またはGln,Glu,Ala,His,Cys,ABAを変数とする線形判別式でもよい。これにより、初期肺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、初期肺癌と非肺癌との2群判別をさらに精度よく行うことができる。
また、ステップSA−26で肺癌のうち腺癌であること、または非肺癌であるか否かの判別を行う場合には、多変量判別式は、Orn,ABA,Tau,Glyを変数とするロジスティック回帰式、またはOrn,ABA,Tau,His,Arg,Glyを変数とする線形判別式、またはHis,Ile,Glu,Pro,Leu,Glnを変数とするロジスティック回帰式、またはHis,Ile,Pro,Ala,Leu,Glnを変数とする線形判別式でもよい。これにより、肺癌のうちの腺癌と非肺癌との2群判別に特に有用なアミノ酸変数を用いる多変量判別式で得られる判別値を利用して、肺癌のうちの腺癌と非肺癌との2群判別をさらに精度よく行うことができる。
なお、上記した各多変量判別式は、本出願人による国際出願である国際公開第2004/052191号に記載の方法や、本出願人による国際出願である国際出願番号PCT/JP2006/304398に記載の方法(後述する多変量判別式作成処理)で作成することができる。これら方法で得られた多変量判別式であれば、入力データとしてのアミノ酸濃度データにおけるアミノ酸濃度の単位に因らず、当該多変量判別式を肺癌の状態の評価に好適に用いることができる。
また、本発明にかかる肺癌評価装置、肺癌評価方法、肺癌評価システム、肺癌評価プログラムおよび記録媒体は、上述した第2実施形態以外にも、特許請求の範囲の書類に記載した技術的思想の範囲内において種々の異なる実施形態にて実施されてよいものである。例えば、上述した第2実施形態で説明した各処理のうち、自動的に行なわれるものとして説明した処理の全部または一部を手動的に行うこともでき、手動的に行なわれるものとして説明した処理の全部または一部を公知の方法で自動的に行うこともできる。この他、上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種の登録データおよび検索条件等のパラメータを含む情報、画面例、データベース構成については、特記する場合を除いて任意に変更することができる。例えば、肺癌評価装置100に関して、図示の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。また、肺癌評価装置100の各部または各装置が備える処理機能(特に制御部102にて行なわれる各処理機能)については、CPU(Central Processing Unit)および当該CPUにて解釈実行されるプログラムにて、その全部または任意の一部を実現することができ、ワイヤードロジックによるハードウェアとして実現することもできる。
ここで、「プログラム」とは任意の言語や記述方法にて記述されたデータ処理方法であり、ソースコードやバイナリコード等の形式を問わない。なお、「プログラム」は、必ずしも単一的に構成されるものに限られず、複数のモジュールやライブラリとして分散構成されるものや、OS(Operating System)に代表される別個のプログラムと協働してその機能を達成するものを含む。なお、プログラムは、記録媒体に記録されており、必要に応じて肺癌評価装置100に機械的に読み取られる。記録媒体に記録されたプログラムを各装置で読み取るための具体的な構成や読み取り手順や読み取り後のインストール手順等については、周知の構成や手順を用いることができる。
また、「記録媒体」とは任意の「可搬用の物理媒体」や任意の「固定用の物理媒体」や「通信媒体」を含むものとする。なお、「可搬用の物理媒体」とはフレキシブルディスクや光磁気ディスクやROMやEPROMやEEPROMやCD−ROMやMOやDVD等である。「固定用の物理媒体」とは各種コンピュータシステムに内蔵されるROMやRAMやHD等である。「通信媒体」とは、LANやWANやインターネット等のネットワークを介してプログラムを送信する場合における通信回線や搬送波のように、短期にプログラムを保持するものである。
最後に、肺癌評価装置100で行う多変量判別式作成処理の一例について図22を参照して詳細に説明する。図22は多変量判別式作成処理の一例を示すフローチャートである。なお、当該多変量判別式作成処理は、肺癌状態情報を管理するデータベース装置400で行ってもよい。
なお、本説明では、肺癌評価装置100は、データベース装置400から事前に取得した肺癌状態情報を、肺癌状態情報ファイル106cの所定の記憶領域に格納しているものとする。また、肺癌評価装置100は、肺癌状態情報指定部102gで事前に指定した肺癌状態指標データおよびアミノ酸濃度データを含む肺癌状態情報を、指定肺癌状態情報ファイル106dの所定の記憶領域に格納しているものとする。
まず、多変量判別式作成部102hは、候補多変量判別式作成部102h1で、指定肺癌状態情報ファイル106dの所定の記憶領域に格納されている肺癌状態情報から所定の式作成手法に基づいて候補多変量判別式を作成し、作成した候補多変量判別式を候補多変量判別式ファイル106e1の所定の記憶領域に格納する(ステップSB−21)。具体的には、まず、多変量判別式作成部102hは、候補多変量判別式作成部102h1で、複数の異なる式作成手法(主成分分析や判別分析、サポートベクターマシン、重回帰分析、ロジスティック回帰分析、k−means法、クラスター解析、決定木などの多変量解析に関するものを含む。)の中から所望のものを1つ選択し、選択した式作成手法に基づいて、作成する候補多変量判別式の形(式の形)を決定する。つぎに、多変量判別式作成部102hは、候補多変量判別式作成部102h1で、肺癌状態情報に基づいて、選択した式選択手法に対応する種々(例えば平均や分散など)の計算を実行する。つぎに、多変量判別式作成部102hは、候補多変量判別式作成部102h1で、計算結果および決定した候補多変量判別式のパラメータを決定する。これにより、選択した式作成手法に基づいて候補多変量判別式が作成される。なお、複数の異なる式作成手法を併用して候補多変量判別式を同時並行(並列)的に作成する場合は、選択した式作成手法ごとに上記の処理を並行して実行すればよい。また、複数の異なる式作成手法を併用して候補多変量判別式を直列的に作成する場合は、例えば、主成分分析を行って作成した候補多変量判別式を利用して肺癌状態情報を変換し、変換した肺癌状態情報に対して判別分析を行うことで候補多変量判別式を作成してもよい。
つぎに、多変量判別式作成部102hは、候補多変量判別式検証部102h2で、ステップSB−21で作成した候補多変量判別式を所定の検証手法に基づいて検証(相互検証)し、検証結果を検証結果ファイル106e2の所定の記憶領域に格納する(ステップSB−22)。具体的には、多変量判別式作成部102hは、候補多変量判別式検証部102h2で、指定肺癌状態情報ファイル106dの所定の記憶領域に格納されている肺癌状態情報に基づいて候補多変量判別式を検証する際に用いる検証用データを作成し、作成した検証用データに基づいて候補多変量判別式を検証する。なお、ステップSB−21で複数の異なる式作成手法を併用して候補多変量判別式を複数作成した場合には、多変量判別式作成部102hは、候補多変量判別式検証部102h2で、各式作成手法に対応する候補多変量判別式ごとに所定の検証手法に基づいて検証する。ここで、ステップSB−22において、ブートストラップ法やホールドアウト法、リーブワンアウト法などのうち少なくとも1つに基づいて候補多変量判別式の判別率や感度、特異性、情報量基準などのうち少なくとも1つに関して検証してもよい。これにより、肺癌状態情報や診断条件を考慮した予測性または堅牢性の高い候補指標式を選択することができる。
つぎに、多変量判別式作成部102hは、変数選択部102h3で、ステップSB−22での検証結果から所定の変数選択手法に基づいて、候補多変量判別式の変数を選択することで、候補多変量判別式を作成する際に用いる肺癌状態情報に含まれるアミノ酸濃度データの組み合わせを選択し、選択したアミノ酸濃度データの組み合わせを含む肺癌状態情報を選択肺癌状態情報ファイル106e3の所定の記憶領域に格納する(ステップSB−23)。なお、ステップSB−21で複数の異なる式作成手法を併用して候補多変量判別式を複数作成し、ステップSB−22で各式作成手法に対応する候補多変量判別式ごとに所定の検証手法に基づいて検証した場合には、ステップSB−23において、多変量判別式作成部102hは、変数選択部102h3で、ステップSB−22での検証結果に対応する候補多変量判別式ごとに所定の変数選択手法に基づいて候補多変量判別式の変数を選択する。ここで、ステップSB−23において、検証結果からステップワイズ法、ベストパス法、近傍探索法、遺伝的アルゴリズムのうち少なくとも1つに基づいて候補多変量判別式の変数を選択してもよい。なお、ベストパス法とは、候補多変量判別式に含まれる変数を1つずつ順次減らしていき、候補多変量判別式が与える評価指標を最適化することで変数を選択する方法である。また、ステップSB−23において、多変量判別式作成部102hは、変数選択部102h3で、指定肺癌状態情報ファイル106dの所定の記憶領域に格納されている肺癌状態情報に基づいてアミノ酸濃度データの組み合わせを選択してもよい。
つぎに、多変量判別式作成部102hは、指定肺癌状態情報ファイル106dの所定の記憶領域に格納されている肺癌状態情報に含まれるアミノ酸濃度データの全ての組み合わせが終了したか否かを判定し、判定結果が「終了」であった場合(ステップSB−24:Yes)には次のステップ(ステップSB−25)へ進み、判定結果が「終了」でなかった場合(ステップSB−24:No)にはステップSB−21へ戻る。なお、多変量判別式作成部102hは、予め設定した回数が終了したか否かを判定し、判定結果が「終了」であった場合には(ステップSB−24:Yes)次のステップ(ステップSB−25)へ進み、判定結果が「終了」でなかった場合(ステップSB−24:No)にはステップSB−21へ戻ってもよい。また、多変量判別式作成部102hは、ステップSB−23で選択したアミノ酸濃度データの組み合わせが、指定肺癌状態情報ファイル106dの所定の記憶領域に格納されている肺癌状態情報に含まれるアミノ酸濃度データの組み合わせまたは前回のステップSB−23で選択したアミノ酸濃度データの組み合わせと同じであるか否かを判定し、判定結果が「同じ」であった場合(ステップSB−24:Yes)には次のステップ(ステップSB−25)へ進み、判定結果が「同じ」でなかった場合(ステップSB−24:No)にはステップSB−21へ戻ってもよい。また、多変量判別式作成部102hは、検証結果が具体的には各候補多変量判別式に関する評価値である場合には、当該評価値と各式作成手法に対応する所定の閾値との比較結果に基づいて、ステップSB−25へ進むかステップSB−21へ戻るかを判定してもよい。
ついで、多変量判別式作成部102hは、検証結果に基づいて、複数の候補多変量判別式の中から多変量判別式として採用する候補多変量判別式を選出することで多変量判別式を決定し、決定した多変量判別式(選出した候補多変量判別式)を多変量判別式ファイル106e4の所定の記憶領域に格納する(ステップSB−25)。ここで、ステップSB−25において、例えば、同じ式作成手法で作成した候補多変量判別式の中から最適なものを選出する場合と、すべての候補多変量判別式の中から最適なものを選出する場合とがある。
これにて、多変量判別式作成処理の説明を終了する。
肺生検による肺癌の診断が行われた肺癌患者の血液サンプル、および非肺癌患者の血液サンプルから、前述のアミノ酸分析法により血中アミノ酸濃度を測定した。アミノ酸濃度の単位はnmol/mlである。図23に、肺癌患者および非肺癌患者のアミノ酸変数の分布を(横軸は、非肺がん群、肺癌群、図中のABAはα−ABAを、またCysはCystineを表す)箱ひげ図を示す。肺癌群と非肺癌群の判別を目的に2群間のt検定を実施した。
非肺癌群に比べて肺癌群では、Tau,Glu,ABA,Val,Leu,Orn,Lys,Hisが有意に増加し(有意差確率P<0.05)、またArgが有意に減少し、アミノ酸変数Tau,Glu,ABA,Val,Leu,Orn,Lys,His,Argが肺癌群と非肺癌群の2群間の判別能を持つことが判明した。
肺生検による肺癌の診断が行われた肺癌患者の血液サンプル、および非肺癌患者の血液サンプルから、前述のアミノ酸分析法により血中アミノ酸濃度を測定した。図24に、肺癌患者および非肺癌患者のアミノ酸変数を用いて肺癌群と非肺癌群、初期肺癌群と非肺癌群、肺癌群のうち腺癌群と非肺癌群の2群判別に関して、ROC曲線(図24)のAUCによる評価を行った。
肺癌群と非肺癌群の判別においてはOrn,Tau,ABA,Asn,Lys,Cit,Arg,Ser,Thr,Gly,Glu,His,Proが、初期肺癌群と非肺癌群の判別においてはOrn,Arg,Tau,ABA,Gly,Asn,Cit,Lys,Ser,His,Proが、肺癌群のうち腺癌群と非肺癌群の判別においてはOrn,Tau,ABA,Asn,Lys,Cit,His,Arg,Thr,Glu,Gly,Cysがそれぞれ0.65以上の値が得られ、これらのアミノ酸が上記対象の2群間の判別能を持つことが判明した。
実施例1で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、肺癌判別に関して肺癌群と非肺癌群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式1が得られた。なお、このほかに指標式1と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図25、図26に示す。
指標式1:(Orn)/(Trp) + (Tau+ABA)/(Arg)
指標式1による肺癌の診断性能を肺癌群と非肺癌群の2群判別に関して、ROC曲線(図27)のAUCによる評価を行い、0.973±0.020(95%信頼区間は0.936〜0.986)が得られた。また、指標式1による肺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を0.038として最適なカットオフ値を求めると、カットオフ値が2.64となり、感度93%、特異度91%、陽性適中率29%、陰性適中率99%、正診率96%が得られ(図28)、診断性能が高く有用な指標であることが判明した。
実施例1で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、肺癌判別に関して初期肺癌群(病理病期IおよびII期)及び非肺癌群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式2が得られた。なお、このほかに指標式2と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図29、図30に示す。
指標式2:(Tau)/(Arg) + (Orn+ABA)/(Trp)
指標式2による肺癌のうち腺癌の診断性能を初期肺癌群(病理病期IおよびII期)と非肺癌群の2群判別に関して、ROC曲線(図31)のAUCによる評価を行い、0.966±0.008(95%信頼区間は0.960〜0.991)が得られた。また、指標式2による肺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を.028として最適なカットオフ値を求めると、カットオフ値が2.40となり、感度91%、特異度92%、陽性適中率28%、陰性適中率99%、正診率92%が得られ(図31)、診断性能が高く有用な指標であることが判明した。
実施例1で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、肺癌判別に関して腺癌群と非肺癌群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式3が得られた。なお、このほかに指標式3と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図32、図33に示す。
指標式3:(Orn)/(Trp) + (Tau)/(Arg)
指標式3による肺癌のうち腺癌の診断性能を腺癌群と非肺癌群の2群判別に関して、ROC曲線(図34)のAUCによる評価を行い、0.966±0.017(95%信頼区間は0.924〜0.989)が得られた。また、指標式3による肺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を0.032として最適なカットオフ値を求めると、カットオフ値が2.40となり、感度91%、特異度92%、陽性適中率28%、陰性適中率99%、正診率92%が得られ(図34)、診断性能が高く有用な指標であることが判明した。
実施例1で用いたサンプルデータを用いた。肺癌に関して肺癌群と非肺癌群の2群判別性能を最大化する指標をロジスティック解析(BIC最小基準による変数網羅法)により探索し、指標式4としてTau,Orn,Arg,Ser,Glu,Pro,Asnから構成されるロジスティック回帰式(アミノ酸変数Tau,Orn,Arg,Ser,Glu,Pro,Asnの数係数と定数項は順に、0.086±0.020、0.124±0.020、−0.046±0.018、0.023±0.018、−0.016±0.019、0.013±0.006、0.003±0.054、−17.61±3.437)が得られた。なお、このほかに指標式4と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図35、図36、図37に示す。また、図35、図36、図37に示す式における各係数の値や定数項の値、及びその95%信頼区間は、それを実数倍したものでもよい。
指標式4による肺癌の診断性能を肺癌群と非肺癌群の2群判別に関して、ROC曲線(図38)のAUCによる評価を行い、0.967±0.014(95%信頼区間は0.923〜0.988)が得られ診断性能が高く有用な指標であることが判明した。また指標式4による肺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を0.038として最適なカットオフ値を求めると、カットオフ値が0.019となり、感度90%、特異度88%、陽性適中率24%、陰性適中率99%、正診率88%が得られ(図39)、診断性能が高く有用な指標であることが判明した。
実施例1で用いたサンプルデータを用いた。肺癌に関して初期肺癌群と非肺癌群の2群判別性能を最大化する指標をロジスティック解析(BIC最小基準による変数網羅法)により探索し、指標式5としてOrn,Tau,Trpから構成されるロジスティック回帰式(アミノ酸変数Orn,Tau,Trpの数係数と定数項は順に、0.178±0.032、0.0780±0.0197、−0.201±0.0510、−12.367±2.316)が得られた。なお、このほかに指標式5と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図40、図41、図42に示す。なお、図40、図41、図42に示す式における各係数の値や定数項の値、及びその95%信頼区間は、それを実数倍したものでもよい。
指標式5による肺癌の診断性能を肺癌群と非肺癌群の2群判別に関して、ROC曲線(図43)のAUCによる評価を行い、0.981±0.008(95%信頼区間は0.960〜0.990)が得られ診断性能が高く有用な指標であることが判明した。また指標式5による肺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を0.028として最適なカットオフ値を求めると、カットオフ値が0.019となり、感度100%、特異度90%、陽性適中率22%、陰性適中率100%、正診率90%が得られ(図43)、診断性能が高く有用な指標であることが判明した。
実施例1で用いたサンプルデータを用いた。肺癌に関して腺癌群と非肺癌群の2群判別性能を最大化する指標をロジスティック解析(BIC最小基準による変数網羅法)により探索し、指標式6としてOrn,ABA,Tau,Glyから構成されるロジスティック回帰式(アミノ酸変数Orn,ABA,Tau,Glyの数係数と定数項は順に、0.114±0.020、0.120±0.051、0.0654±0.0161、0.00702±0.00469、−20.62±2.90)が得られた。なお、このほかに指標式6と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図44、図45、図46に示す。なお、図44、図45、図46に示す式における各係数の値や定数項の値、及びその95%信頼区間は、それを実数倍したものでもよい。
指標式6による肺癌の診断性能を肺癌群と非肺癌群の2群判別に関して、ROC曲線(図47)のAUCによる評価を行い、0.968±0.012(95%信頼区間は0.937〜0.989)が得られ診断性能が高く有用な指標であることが判明した。また指標式6による肺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を0.032として最適なカットオフ値を求めると、カットオフ値が0.029となり、感度87%、特異度91%、陽性適中率25%、陰性適中率99%、正診率91%が得られ(図47)、診断性能が高く有用な指標であることが判明した。
実施例1で用いたサンプルデータを用いた。肺癌に関して肺癌群と非肺癌群の2群判別性能を最大化する指標を線形判別分析(変数網羅法)により探索し、指標式7として年齢,ABA,Arg,Gln,His,Leu,Orn,Pro,Tau,Trp,Valから構成される線形判別関数(年齢及びアミノ酸変数ABA,Arg,Gln,His,Leu,Orn,Pro,Tau,Trp,Valの数係数は順に、0.0338±0.0177、0.0332±0.0227、−0.0180±0.0073、−0.0030±0.0020、0.0233±0.0151、0.0136±0.0124、0.0617±0.0092、0.0031±0.0031、0.0475±0.0099、−0.0268±0.0150、−0.0134±0.0072)が得られた。なお、このほかに指標式7と同等の判別性能を有する線形判別関数は複数得られた。それらを図48、図49、図50に示す。なお、図48、図49、図50に示す式における各係数の値や定数項の値、及びその95%信頼区間は、それを実数倍したものでもよい。
指標式7による肺癌の診断性能を肺癌群と非肺癌群の2群判別に関して、ROC曲線(図51)のAUCによる評価を行い、0.984±0.008(95%信頼区間は0.962〜0.995)が得られ診断性能が高く有用な指標であることが判明した。また指標式7による肺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を0.038として最適なカットオフ値を求めると、カットオフ値が1.863となり、感度90%、特異度97%、陽性適中率56%、陰性適中率99%、正診率97%が得られ(図52)、診断性能が高く有用な指標であることが判明した。
実施例1で用いたサンプルデータを用いた。肺癌に関して初期肺癌群と非肺癌群の2群判別性能を最大化する指標を線形判別分析(変数網羅法)により探索し、指標式8としてOrn,Arg,Tau,ABA,Gly,Hisから構成される線形判別関数(アミノ酸変数Orn,Arg,Tau,ABA,Gly,Hisの数係数と定数項は順に、0.00412±0.00080、−0.00212±0.00063、0.00316±0.00097、0.00223±0.00202、0.00020±0.00018、0.00088±0.00123、0.634±0.123)が得られた。なお、このほかに指標式8と同等の判別性能を有する線形判別関数は複数得られた。それらを図53、図54、図55に示す。なお、図53、図54、図55に示す式における各係数の値や定数項の値、及びその95%信頼区間は、それを実数倍したものでもよい。
指標式8による肺癌の診断性能を肺癌のうち初期肺癌群と非肺癌群の2群判別に関して、ROC曲線(図56)のAUCによる評価を行い、0.953±0.023(95%信頼区間は0.877〜0.979)が得られ診断性能が高く有用な指標であることが判明した。また指標式8による初期肺癌群と非肺癌群の2群判別のカットオフ値について、初期肺癌群の有症率を0.028として最適なカットオフ値を求めると、カットオフ値が1.137となり、感度85%、特異度94%、陽性適中率29%、陰性適中率99%、正診率94%が得られ(図56)、診断性能が高く有用な指標であることが判明した。
実施例1で用いたサンプルデータを用いた。肺癌のうち腺癌群と非肺癌群の2群判別性能を最大化する指標を線形判別分析(変数網羅法)により探索し、指標式9としてOrn,ABA,Tau,His,Arg,Glyから構成される線形判別関数(アミノ酸変数Orn,ABA,Tau,His,Arg,Glyの数係数と定数項は順に、0.00464±0.00080、0.00222±0.0021、0.00428±0.00091、0.00065±0.00127、−0.00159±0.00065、0.00012±0.00019、0.534±0.124)が得られた。なお、このほかに指標式9と同等の判別性能を有する線形判別関数は複数得られた。それらを図57、図58、図59に示す。なお、図57、図58、図59に示す式における各係数の値や定数項の値、及びその95%信頼区間は、それを実数倍したものでもよい。
指標式9による肺癌の診断性能を肺癌のうち腺癌群と非肺癌群の2群判別に関して、ROC曲線(図60)のAUCによる評価を行い、0.961±0.015(95%信頼区間は0.894〜0.984)が得られ診断性能が高く有用な指標であることが判明した。また指標式9による肺癌のうち腺癌群と非肺癌群の2群判別のカットオフ値について、腺癌群の有症率を0.032として最適なカットオフ値を求めると、カットオフ値が1.143となり、感度87%、特異度93%、陽性適中率29%、陰性適中率99%、正診率93%が得られ(図60)、診断性能が高く有用な指標であることが判明した。
実施例1で用いたサンプルデータを用いた。肺癌に関して肺癌群と非肺癌群の2群判別を行う線形判別式を変数網羅法により全ての式を抽出した。このとき、各式に出現するアミノ酸変数の最大値は6として、この条件を満たす全ての式のROC曲線下面積を計算した。このとき、ROC曲線下面積がある閾値以上の式中で、各アミノ酸が出現する頻度を測定した結果、Arg,Lys,Orn,ABA,His,Gly,Glu,Tau,Ser,CitがROC曲線下面積0.7、0.75、0.8、0.85をそれぞれ閾値としたときに、常に高頻度で抽出されるアミノ酸の上位10位以内となることが確認され、これらのアミノ酸を変数として用いた多変量判別式が肺癌群と非肺癌群の2群間の判別能を持つことが判明した(図61)。
実施例1で用いたサンプルデータを用いた。肺癌に関して肺癌群と非肺癌群の2群判別を行う上記の指標式7を用いて、健常群、肺癌群、及び他癌群のそれぞれの群の分布を計算した。このとき、図62、図63に示すように、肺癌群と他癌群は分布が異なり、肺癌群と他癌群との間のt検定によるp値は0であり、両群の間には有意な差があることが明らかとなった。このことから、指標式7は、肺癌と非肺癌群を肺癌に対して特異的に判別する関数であることが示された。
肺生検による肺癌の診断が行われた肺癌患者の血液サンプル、および非肺癌患者の血液サンプルから、前述のアミノ酸分析法により血中アミノ酸濃度を測定した。アミノ酸濃度の単位はnmol/mlである。図64に、肺癌患者および非肺癌患者のアミノ酸変数の分布を(横軸は、非肺がん群、肺癌群、図中のABAはα−ABAを、またCysはCystineを表す)スキャッタープロットにより示す。肺癌群と非肺癌群の判別を目的に2群間のt検定を実施した。
非肺癌群に比べて肺癌群では、Glu,Pro,Ala,Lysが有意に増加し(有意差確率P<0.05)、またCit,Met,Ile,Hisが有意に減少し、アミノ酸変数Glu,Pro,Ala,Lys,Cit,Met,Ile,Hisが肺癌群と非肺癌群の2群間の判別能を持つことが判明した。
実施例14で用いたサンプルデータを用いた。図65に、肺癌患者および非肺癌患者のアミノ酸変数を用いて肺癌群と非肺癌群、初期肺癌群と非肺癌群、肺癌群のうち腺癌群と非肺癌群の2群判別に関して、ROC曲線の曲線下面積(AUC)による評価を行った。
肺癌群と非肺癌群の判別においてはGlu,Pro,Cit,Ile,Hisが、初期肺癌群と非肺癌群の判別においてはGlu,Gln,Ala,His,Trp,Lysが、肺癌群のうち腺癌群と非肺癌群の判別においてはGlu,Cit,Met,Ile,Tyr,Hisがそれぞれ0.625以上の値が得られ、これらのアミノ酸が上記対象の2群間の判別能を持つことが判明した(図65)。
実施例14で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、肺癌判別に関して肺癌群と非肺癌群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式10が得られた。なお、このほかに指標式10と同等の判別性能を有する多変量判別式は複数得られた。それらを図66、図67に示す。
指標式10:(Glu)/(Tyr) + (Pro+Lys)/(Ile+His)
指標式10による肺癌の診断性能を肺癌群と非肺癌群の2群判別に関して、ROC曲線(図68)の曲線下面積(AUC)による評価を行い、0.888±0.029(95%信頼区間は0.831〜0.945)が得られた。また、指標式10による肺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を0.106%として最適なカットオフ値を求めると、カットオフ値が2.891となり、感度88.1%、特異度76.3%、陽性適中率0.37%、陰性適中率99.98%、正診率76.28%が得られ(図68)、診断性能が高く有用な指標であることが判明した。
実施例14で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、肺癌判別に関して肺癌群と非肺癌群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式11が得られた。なお、このほかに指標式11と同等の判別性能を有する多変量判別式は複数得られた。それらを図69、図70に示す。また、図69、図70に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式11:(His)/(Lys) − 0.22205×(Glu)/(Ile) + 0.38171×(Tyr)/(Pro) + 0.16513×(Val)/(Leu)
指標式11による肺癌の診断性能を肺癌群と非肺癌群の2群判別に関して、ROC曲線(図71)の曲線下面積(AUC)による評価を行い、0.906±0.028(95%信頼区間は0.851〜0.962)が得られた。また、指標式11による肺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を0.106%として最適なカットオフ値を求めると、カットオフ値が0.767となり、感度89.8%、特異度79.7%、陽性適中率0.44%、陰性適中率99.99%、正診率79.68%が得られ(図71)、診断性能が高く有用な指標であることが判明した。
実施例14で用いたサンプルデータを用いた。肺癌に関して肺癌群と非肺癌群の2群判別性能を最大化する指標をロジスティック解析(BIC最小基準による変数網羅法)により探索し、指標式12としてHis,Glu,Pro,Ile,Gln,Lysから構成されるロジスティック回帰式(アミノ酸変数His,Glu,Pro,Ile,Gln,Lysの数係数と定数項は順に、−1.289±0.027、0.070±0.014、0.018±0.004、0.092±0.018、0.009±0.002、0.031±0.006、−0.926±0.185)が得られた。なお、このほかに指標式12と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図72、図73、図74に示す。また図72、図73、図74に示す式における各係数の値は、それを実数倍したものでもよい。
指標式12による肺癌の診断性能を肺癌群と非肺癌群の2群判別に関して、ROC曲線(図75)の曲線下面積(AUC)による評価を行い、0.908±0.026(95%信頼区間は0.856〜0.960)が得られ診断性能が高く有用な指標であることが判明した。また指標式12による肺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を0.106%として最適なカットオフ値を求めると、カットオフ値が0.505となり、感度83.1%、特異度84.7%、陽性適中率0.54%、陰性適中率99.98%、正診率84.74%が得られ(図75)、診断性能が高く有用な指標であることが判明した。
実施例14で用いたサンプルデータを用いた。肺癌に関して肺癌に関して肺癌群と非肺癌群の2群判別性能を最大化する指標を線形判別分析(変数網羅法)により探索し、指標式13としてHis,Glu,Pro,Ile,Tyr,Lysから構成される線形判別関数(アミノ酸変数His,Glu,Pro,Ile,Tyr,Lysの数係数は順に、1.000±0.197、−0.566±0.11、−0.253±0.076、0.628±0.189、0.437±0.130、−0.368±0.110)が得られた。なお、このほかに指標式13と同等の判別性能を有する線形判別関数は複数得られた。それらを図76、図77、図78に示す。なお、図76、図77、図78に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式13による肺癌の診断性能を肺癌群と非肺癌群の2群判別に関して、ROC曲線(図79)の曲線下面積(AUC)による評価を行い、0.901±0.0267(95%信頼区間は0.849〜0.954)が得られ診断性能が高く有用な指標であることが判明した。また指標式13による肺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を0.106%として最適なカットオフ値を求めると、カットオフ値が17.65となり、感度84.8%、特異度81.4%、陽性適中率0.45%、陰性適中率99.98%、正診率81.36%が得られ(図79)、診断性能が高く有用な指標であることが判明した。
実施例14で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、肺癌判別に関して初期肺癌群(病理病期IおよびII期)と非肺癌群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式14が得られた。なお、このほかに指標式14と同等の判別性能を有する多変量判別式は複数得られた。それらを図80、図81に示す。
指標式14:(Gln)/(Cit+His) + (Glu+ABA)/(Cys2)
指標式14による肺癌の診断性能を初期肺癌群と非肺癌群の2群判別に関して、ROC曲線(図82)の曲線下面積(AUC)による評価を行い、0.881±0.030(95%信頼区間は0.822〜0.940)が得られた。また、指標式14による初期肺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を0.106%として最適なカットオフ値を求めると、カットオフ値が8.58となり、感度87.5%、特異度80.6%、陽性適中率0.45%、陰性適中率99.98%、正診率80.58%が得られ(図82)、診断性能が高く有用な指標であることが判明した。
実施例14で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、肺癌判別に関して初期肺癌群と非肺癌群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式15が得られた。なお、このほかに指標式15と同等の判別性能を有する多変量判別式は複数得られた。それらを図83、図84に示す。また、図83、図84に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式15:(Gln)/(His) + 0.091931×(Glu) + 3.9043×(a−ABA)/(Cys2) + 4.3541×(Lys)/(Val)
指標式15による肺癌の診断性能を肺癌群と非肺癌群の2群判別に関して、ROC曲線(図85)の曲線下面積(AUC)による評価を行い、0.936±0.026(95%信頼区間は0.884〜0.987)が得られた。また、指標式15による初期肺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を0.106%として最適なカットオフ値を求めると、カットオフ値が18.55となり、感度87.5%、特異度87.5%、陽性適中率0.70%、陰性適中率99.99%、正診率87.50%が得られ(図85)、診断性能が高く有用な指標であることが判明した。
実施例14で用いたサンプルデータを用いた。肺癌に関して初期肺癌群と非肺癌群の2群判別性能を最大化する指標をロジスティック解析(BIC最小基準による変数網羅法)により探索し、指標式16としてGln,Glu,His,Lys,Cys,ABAから構成されるロジスティック回帰式(アミノ酸変数Gln,Glu,His,Lys,Cys,ABAの数係数と定数項は順に、0.016±0.004、0.0101±0.003、−0.141±0.428、0.025±0.008、−0.168±0.050、0.173±0.050、−6.125±1.840)が得られた。なお、このほかに指標式16と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図86、図87、図88に示す。また、図86、図87、図88に示す式における各係数の値は、それを実数倍したものでもよい。
指標式16による肺癌の診断性能を初期肺癌群と非肺癌群の2群判別に関して、ROC曲線(図89)の曲線下面積(AUC)による評価を行い、0.913±0.037(95%信頼区間は0.841〜0.985)が得られ診断性能が高く有用な指標であることが判明した。また指標式16による初期肺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を0.106%として最適なカットオフ値を求めると、カットオフ値が0.387となり、感度83.3%、特異度91.7%、陽性適中率0.99%、陰性適中率99.98%、正診率91.65%が得られ(図89)、診断性能が高く有用な指標であることが判明した。
実施例14で用いたサンプルデータを用いた。肺癌に関して肺癌に関して初期肺癌群と非肺癌群の2群判別性能を最大化する指標を線形判別分析(変数網羅法)により探索し、指標式17としてGln,Glu,Ala,His,Cys,ABAから構成される線形判別関数(アミノ酸変数Gln,Glu,Ala,His,Cys,ABAの数係数は順に、1.000±0.201、7.251±1.450、0.495±0.091、−9.07±1.82、−11.10±2.24、12.63±2.58)が得られた。なお、このほかに指標式17と同等の判別性能を有する線形判別関数は複数得られた。それらを図90、図91、図92に示す。なお、図90、図91、図92に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式17による肺癌の診断性能を初期肺癌群と非肺癌群の2群判別に関して、ROC曲線(図93)の曲線下面積(AUC)による評価を行い、0.923±0.027(95%信頼区間は0.869〜0.976)が得られ診断性能が高く有用な指標であることが判明した。また指標式17による初期肺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を0.106%として最適なカットオフ値を求めると、カットオフ値が346.8となり、感度87.5%、特異度84.7%、陽性適中率0.57%、陰性適中率99.99%、正診率84.73%が得られ(図93)、診断性能が高く有用な指標であることが判明した。
実施例14で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、肺癌判別に関して腺癌群(病理病期IおよびII期)と非肺癌群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式18が得られた。なお、このほかに指標式18と同等の判別性能を有する多変量判別式は複数得られた。それらを図94、図95に示す。
指標式18:(Glu+Pro)/(His) + (ABA+Lys)/(Ile)
指標式18による肺癌の診断性能を腺癌群と非肺癌群の2群判別に関して、ROC曲線(図96)の曲線下面積(AUC)による評価を行い、0.872±0.034(95%信頼区間は0.804〜0.939)が得られた。また、指標式18による腺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を0.106%として最適なカットオフ値を求めると、カットオフ値が5.745となり、感度82.1%、特異度78.0%、陽性適中率0.37%、陰性適中率99.98%、正診率77.97%が得られ(図96)、診断性能が高く有用な指標であることが判明した。
実施例14で用いたサンプルデータを用いた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、肺癌判別に関して腺癌群と非肺癌群の2群判別性能を最大化する指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式19が得られた。なお、このほかに指標式19と同等の判別性能を有する多変量判別式は複数得られた。それらを図97、図98に示す。また、図97、図98に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式19:(Glu)/(Cit) − 31.7927×(His)/(Gln) − 11.3577×(Ile)/(Leu) − 9.975×(Tyr)/(Ala)
指標式19による肺癌の診断性能を肺癌群と非肺癌群の2群判別に関して、ROC曲線(図99)の曲線下面積(AUC)による評価を行い、0.895±0.028(95%信頼区間は0.841〜0.950)が得られた。また、指標式19による腺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を0.106%として最適なカットオフ値を求めると、カットオフ値が−11.04となり、感度92.3%、特異度78.2%、陽性適中率0.42%、陰性適中率99.99%、正診率78.22%が得られ(図99)、診断性能が高く有用な指標であることが判明した。
実施例14で用いたサンプルデータを用いた。肺癌に関して腺癌群と非肺癌群の2群判別性能を最大化する指標をロジスティック解析(BIC最小基準による変数網羅法)により探索し、指標式20としてHis,Ile,Glu,Pro,Leu,Glnから構成されるロジスティック回帰式(アミノ酸変数His,Ile,Glu,Pro,Leu,Glnの数係数と定数項は順に、−0.150±0.044、0−0.210±0.041、0.054±0.011、0.025±0.008、0.092±0.018、0.008±0.002、3.577±0.714)が得られた。なお、このほかに指標式20と同等の判別性能を有するロジスティック回帰式は複数得られた。それらを図100、図101、図102に示す。また、図100、図101、図102に示す式における各係数の値は、それを実数倍したものでもよい。
指標式20による肺癌の診断性能を腺癌群と非肺癌群の2群判別に関して、ROC曲線(図103)の曲線下面積(AUC)による評価を行い、0.909±0.028(95%信頼区間は0.855〜0.964)が得られ診断性能が高く有用な指標であることが判明した。また指標式20による腺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を0.106%として最適なカットオフ値を求めると、カットオフ値が0.329となり、感度89.7%、特異度83.1%、陽性適中率0.53%、陰性適中率99.99%、正診率83.06%が得られ(図103)、診断性能が高く有用な指標であることが判明した。
実施例14で用いたサンプルデータを用いた。肺癌に関して肺癌に関して腺癌群と非肺癌群の2群判別性能を最大化する指標を線形判別分析(変数網羅法)により探索し、指標式21としてHis,Ile,Pro,Ala,Leu,Glnから構成される線形判別関数(アミノ酸変数His,Ile,Pro,Ala,Leu,Glnの数係数は順に、1.000±0.198、1.402±0.28、−0.157±0.035、−0.053±0.011、−0.744±0.151、−0.050±0.013)が得られた。なお、このほかに指標式21と同等の判別性能を有する線形判別関数は複数得られた。それらを図104、図105、図106に示す。なお、図104、図105、図106に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
指標式21による肺癌の診断性能を腺癌群と非肺癌群の2群判別に関して、ROC曲線(図107)の曲線下面積(AUC)による評価を行い、0.923±0.026(95%信頼区間は0.871〜0.974)が得られ診断性能が高く有用な指標であることが判明した。また指標式21による腺癌群と非肺癌群の2群判別のカットオフ値について、肺癌群の有症率を0.106%として最適なカットオフ値を求めると、カットオフ値が7.91となり、感度84.6%、特異度81.4%、陽性適中率0.45%、陰性適中率99.98%、正診率81.36%が得られ(図107)、診断性能が高く有用な指標であることが判明した。
実施例14で用いたサンプルデータを用いた。肺癌に関して肺癌の病理病期(Ia、Ib、IIa、IIb、IIIa、IIIb、IV)を、それぞれ第1群(Ia)、第2群(Ib)、第3群(IIa、IIb)、第4群(IIIa、IIIb、IV)に分けた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、肺癌病期判別に関して非肺癌群と第1〜4群と最も相関性の高い指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式22が得られた。なお、このほかに指標式22と同等の判別性能を有する多変量判別式は複数得られた。それらを図108、図109に示す。
指標式22:(Glu+Pro+Lys+Leu)/(Val+His)
このとき、非肺癌群および第1〜4群と指標式22の値との間のスピアマンの順位相関係数は0.654(95%信頼区間は0.513〜0.758)となり、診断性能が高く有用な指標であることが判明した(図110)。
実施例14で用いたサンプルデータを用いた。肺癌に関して肺癌の病理病期(Ia、Ib、IIa、IIb、IIIa、IIIb、IV)を、それぞれ第1群(Ia)、第2群(Ib)、第3群(IIa、IIb)、第4群(IIIa、IIIb、IV)に分けた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、肺癌病期判別に関して非肺癌群と第1〜4群と最も相関性の高い指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式23が得られた。なお、このほかに指標式23と同等の判別性能を有する多変量判別式は複数得られた。それらを図111、図112に示す。
指標式23:(Ala)/(His) + 33.5806×(Leu)/(Val) − 7.2184×(Cys2)/(Orn) − 13.3068×(Ile)/(Lys)
このとき、非肺癌群および第1〜4群と指標式23の値との間のスピアマンの順位相関係数は0.648(95%信頼区間は0.515〜0.751)となり、診断性能が高く有用な指標であることが判明した(図113)。
実施例14で用いたサンプルデータを用いた。肺癌に関して肺癌の病理病期(Ia、Ib、IIa、IIb、IIIa、IIIb、IV)を、それぞれ第1群(Ia)、第2群(Ib)、第3群(IIa、IIb)、第4群(IIIa、IIIb、IV)に分けた。肺癌病期判別に関して非肺癌群と第1〜4群と最も相関性の高い指標を重回帰分析(AIC最小基準による変数選択法)鋭意探索し、指標式24としてPro,His,Gly,Val,Ile,Leuから構成される重回帰式(アミノ酸変数Pro,His,Gly,Val,Ile,Leuの数係数は順に、1.000±0.200、−2.735±0.55、−0.129±0.025、−0.948±0.195、−2.710±0.584、3.113±0.659)が得られた。なお、このほかに指標式24と同等の相関性を有する重回帰式は複数得られた。それらを図114、図115、図116に示す。なお、図114、図115、図116に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
このとき、非肺癌群および第1〜4群と指標式24の値との間のスピアマンの順位相関係数は0.634(95%信頼区間は0.490〜0.745)となり、診断性能が高く有用な指標であることが判明した(図117)。
実施例14で用いたサンプルデータを用いた。肺癌に関して肺癌の病理病期(Ia、Ib、IIa、IIb、IIIa、IIIb、IV)を、それぞれ第1群(Ia)、第2群(Ib)、第3群(IIa、IIb)、第4群(IIIa、IIIb、IV)に分けた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、肺癌病期判別に関して第1〜4群と最も相関性の高い指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式25が得られた。なお、このほかに指標式25と同等の判別性能を有する多変量判別式は複数得られた。それらを図118、図119に示す。
指標式25:(Pro)/(Gln) + (Tyr+Leu+Cys2)/(Val)
このとき、第1〜4群と指標式25の値との間のスピアマンの順位相関係数は0.619(95%信頼区間は0.346〜0.794)となり、診断性能が高く有用な指標であることが判明した(図120)。
実施例14で用いたサンプルデータを用いた。肺癌に関して肺癌の病理病期(Ia、Ib、IIa、IIb、IIIa、IIIb、IV)を、それぞれ第1群(Ia)、第2群(Ib)、第3群(IIa、IIb)、第4群(IIIa、IIIb、IV)に分けた。本出願人による国際出願である国際公開第2004/052191号に記載の方法を用いて、肺癌病期判別に関して第1〜4群と最も相関性の高い指標を鋭意探索し、同等の性能を持つ複数の指標の中に指標式26が得られた。なお、このほかに指標式26と同等の判別性能を有する多変量判別式は複数得られた。それらを図121、図122に示す。
指標式26:(Tyr)/(Trp) − 0.012943×(Ser) − 0.080336×(Ala)/(Asn)
このとき、第1〜4群と指標式26の値との間のスピアマンの順位相関係数は0.706(95%信頼区間は0.475〜0.846)となり、診断性能が高く有用な指標であることが判明した(図123)。
実施例14で用いたサンプルデータを用いた。肺癌に関して肺癌の病理病期(Ia、Ib、IIa、IIb、IIIa、IIIb、IV)を、それぞれ第1群(Ia)、第2群(Ib)、第3群(IIa、IIb)、第4群(IIIa、IIIb、IV)に分けた。肺癌病期判別に関して第1〜4群と最も相関性の高い指標を重回帰分析(AIC最小基準による変数選択法)鋭意探索し、指標式27としてGln,Ser,Pro,Tyr,Cys,Tauから構成される重回帰式(アミノ酸変数Gln,Ser,Pro,Tyr,Cys,Tauの数係数は順に、1.000±0.304、3.875±1.289、−1.106±0.321、−5.227±1.583、−8.412±2.523、5.097±1.529)が得られた。なお、このほかに指標式27と同等の相関性を有する重回帰式は複数得られた。それらを図124、図125、図126に示す。なお、図124、図125、図126に示す式における各係数の値は、それを実数倍したもの、あるいは任意の定数項を付加したものでもよい。
このとき、数値化を行った第1〜4群と指標式27の値との間のスピアマンの順位相関係数は−0.730(95%信頼区間は−0.512〜−0.859)となり、診断性能が高く有用な指標であることが判明した(図127)。
実施例14で用いたサンプルデータを用いた。肺癌に関して肺癌群と非肺癌群の2群判別を行う線形判別式を変数網羅法により全ての式を抽出した。このとき、各式に出現するアミノ酸変数の最大値は5として、この条件を満たす全ての式のROC曲線下面積を計算した。このとき、ROC曲線下面積がある閾値以上の式中で、各アミノ酸が出現する頻度を測定した結果、Ala,Glu,His,Ile,Lys,ProがROC曲線下面積0.7、0.75、0.8、0.85をそれぞれ閾値としたときに、常に高頻度で抽出されるアミノ酸の上位10位以内となることが確認され、これらのアミノ酸を変数として用いた多変量判別式が肺癌群と非肺癌群の2群間の判別能を持つことが判明した(図128)。