JP2009054124A - Computer system for supporting individual guidance, intervention target person selection, and intervention time and frequency determination in medical checkup business - Google Patents
Computer system for supporting individual guidance, intervention target person selection, and intervention time and frequency determination in medical checkup business Download PDFInfo
- Publication number
- JP2009054124A JP2009054124A JP2007246140A JP2007246140A JP2009054124A JP 2009054124 A JP2009054124 A JP 2009054124A JP 2007246140 A JP2007246140 A JP 2007246140A JP 2007246140 A JP2007246140 A JP 2007246140A JP 2009054124 A JP2009054124 A JP 2009054124A
- Authority
- JP
- Japan
- Prior art keywords
- procedure
- data
- individual
- medical
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims abstract description 65
- 230000036541 health Effects 0.000 claims abstract description 56
- 201000010099 disease Diseases 0.000 claims abstract description 43
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 43
- 230000010365 information processing Effects 0.000 claims abstract description 10
- 208000027418 Wounds and injury Diseases 0.000 claims abstract description 9
- 230000006378 damage Effects 0.000 claims abstract description 7
- 208000014674 injury Diseases 0.000 claims abstract description 7
- 238000010187 selection method Methods 0.000 claims description 16
- 238000012216 screening Methods 0.000 claims description 15
- 230000000737 periodic effect Effects 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 10
- 230000003993 interaction Effects 0.000 claims description 8
- 238000003745 diagnosis Methods 0.000 claims description 5
- 230000003862 health status Effects 0.000 claims description 4
- 238000011282 treatment Methods 0.000 abstract description 11
- 238000012545 processing Methods 0.000 abstract description 6
- 238000004321 preservation Methods 0.000 abstract 2
- 238000004364 calculation method Methods 0.000 description 9
- 239000003814 drug Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 229940079593 drug Drugs 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 239000012567 medical material Substances 0.000 description 3
- 230000003449 preventive effect Effects 0.000 description 3
- 238000003672 processing method Methods 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- VCUFZILGIRCDQQ-KRWDZBQOSA-N N-[[(5S)-2-oxo-3-(2-oxo-3H-1,3-benzoxazol-6-yl)-1,3-oxazolidin-5-yl]methyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C1O[C@H](CN1C1=CC2=C(NC(O2)=O)C=C1)CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F VCUFZILGIRCDQQ-KRWDZBQOSA-N 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000006806 disease prevention Effects 0.000 description 1
- 230000005802 health problem Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009862 primary prevention Effects 0.000 description 1
- 230000005180 public health Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
Images
Landscapes
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Description
本発明は、医療情報処理装置、より詳細には検診事業における個別指導対象者の選択用電子計算機システムに関するものである。 The present invention relates to a medical information processing apparatus, and more particularly, to an electronic computer system for selecting an individual guidance target person in a screening business.
医療費の増大を防止するために、保険者の中には生活習慣病の一次予防のための検診事業・指導事業を行っているものも多い。疾病に罹患した場合、軽症のうちに医療介入を行ったほうが重症化するまで放置してから医療介入を行うより医療費が少なくてすむため、各保険者により行われる疾病予防のための指導事業においては対象者が軽症のうちに指導を行うことが重要となる。保険者の財政を健全な状態で維持するためには、疾病予防、早期発見・早期治療等の健康管理増進システムを構築して行く必要がある。 In order to prevent an increase in medical costs, many insurers are conducting screening and guidance services for the primary prevention of lifestyle-related diseases. If you suffer from illness, it is less expensive to perform medical interventions until they become severer, and it costs less medical care than performing medical interventions. In this case, it is important for the subject to give guidance during a mild case. In order to maintain the health of the insurer in a healthy state, it is necessary to build a health management promotion system for disease prevention, early detection and early treatment.
健康管理増進システムを構築し運営して行くために、実際の医療の給付実績に基づく診療記録データベースが用いられている。このデータベースは、保健者毎に、紙レセプトの情報(傷病名・請求点数)を、OCR変換技術と、医療情報データベースを用いて構築されている。このような診療記録データベースは、保険者毎に、全ての加入者の診療記録が時系列に蓄積されているため、被保険者およびその家族、医療機関、疾病毎など、さまざまな視点からデータを統計的に分析することができる。健康保健サービスとして医療費統計情報を提供する技術としては、例えば特許文献1が知られている。 In order to build and operate a health management promotion system, a medical record database based on actual medical benefits is used. This database is constructed for each health worker by using paper receipt information (name of injury / illness and number of claims) using OCR conversion technology and a medical information database. In such a medical record database, medical records of all subscribers are accumulated in time series for each insurer, so data can be collected from various viewpoints such as insured persons and their families, medical institutions, and diseases. Statistical analysis is possible. For example, Patent Document 1 is known as a technique for providing medical cost statistical information as a health service.
レセプトには、疾病欄と、摘要欄とが含まれている。疾病欄には、傷病名、診療開始日等の情報(疾病情報)が記載される。また、摘要欄には、医薬品名、医療材料名、指導・検査・画像診断・手術・処置名、各診療行為の回数、点数が記載されている。回数と点数は医療費を示している。医薬品・診療行為も記録されている。 The receipt includes a disease column and a summary column. In the disease column, information (disease information) such as a wound name and a medical treatment start date is described. In the summary column, the name of the medicine, the name of the medical material, the instruction / inspection / image diagnosis / surgery / procedure name, the number of times of each medical practice, and the score are described. The number of times and points indicate medical expenses. Drugs and medical practices are also recorded.
レセプトには、請求点数が記載されることから、医療情報データベースを用いた医療費統計では、レセプトに記載された請求点を、疾病欄の先頭に記載された病名に割り当てていた。しかしながら、この場合、疾病欄に複数の病名が記載されており、その先頭に重要でない傷病名が記載されているような場合であっても、レセプト内に記載された全ての医療費を、先頭に記載された疾病に割り当ててしまう欠点があった。 Since the number of claim points is described in the receipt, in the medical cost statistics using the medical information database, the claim point described in the receipt is assigned to the disease name described in the head of the disease column. However, in this case, even if multiple disease names are listed in the disease column and an injured disease name is listed at the beginning, all medical expenses listed in the receipt are There was a drawback of assigning to the diseases described in.
そこで、疾病欄に記載された病名のうち、「主」の文字が付された主傷病名に請求点を割り当てる方法が採用されている。これにより、主傷病名から見た医療費の各指標の全国比較を行う(医療費統計比較)ことができる。
これらのレセプトを利用した医療費統計の算出する技術については、例えば特許文献2が知られている。このようにして傷病名ごとに割り当てられた請求点数をもとに、請求金額の多い被保険者(患者)をリストアップして保健指導対象者とすることや、集計期間毎の受信回数(頻度)が多い被保険者をリストアップして保健指導対象者とすることも、保健指導対象者の選択方法としては有効であるが、被保険者全員に同一の基準を用いるため、個人差が評価されていないという欠点があった。層別してより細かい基準に分ける手法も考えられるが、どのように層別するかという基準の選択や集計作業や対象者毎の当てはめ作業が煩雑であるという欠点があった。Therefore, a method of assigning a claim point to the name of the main injury or illness with the letters “main” among the disease names described in the disease column is employed. Thereby, it is possible to make a nationwide comparison (medical cost statistics comparison) of each index of medical expenses viewed from the name of the main injury and illness.
For example, Patent Document 2 is known as a technique for calculating medical cost statistics using these receipts. Based on the number of claims assigned for each injury and illness in this way, list the insured person (patient) with the most billed amount and make it a health guidance target, and the number of times received (frequency) for each counting period ) It is effective as a method of selecting health instructors to list insured persons with a large number of insured persons, but individual differences are evaluated because the same standard is used for all insured persons. There was a drawback of not being. Although a method of dividing into sub-standards by stratification is also conceivable, there is a drawback in that selection of a standard for how to stratify, tabulation work, and fitting work for each subject are complicated.
なお、本願においては傷病名と合計請求点数が記載されているが医薬品名、医療材料名、指導・検査・画像診断・手術・処置名、各診療行為の回数、点数が記載されているとは限らないレセプトを60項目データレセプトと記載し、医薬品名、医療材料名、指導・検査・画像診断・手術・処置名、各診療行為の回数、点数等が記載されているレセプトを255項目データレセプトと記載することがある。 In this application, the name of the disease and the total number of claims are listed, but the name of the medicine, the name of the medical material, the instruction / inspection / image diagnosis / surgery / treatment name, the number of times of each medical practice, and the score are described. A non-restrictive receipt is described as a 60-item data receipt, and a drug name, medical material name, instruction / inspection / image diagnosis / surgery / procedure name, the number of times of each medical practice, the number of points, etc. are described in a 255-item data receipt. May be described.
従来の技術では被保険者各個人が使用した医療費統計を算出し、被保険者各個人の疾病を把握することで、既に罹患した疾病を事後的に追跡・確認することはできても新たな疾患の罹患防止や、すでに罹患した疾患に加えて新たな合併症の罹患の防止や、すでに罹患した疾患の重症化防止のために保険者(企業健康保険組合など)が行っている(各保険者独自のものや、法律によるものがある)健康維持・増進事業において必要とされる被保険者各個人へ適切な健康管理のためのアドバイスサービスを提供する対象者の選択や時期や頻度の決定は行うことができず、各保険者の健康管理業務担当者の知識・意欲によって著しい対象者選択や介入時期や頻度の差が生じているのが現状である。 The conventional technology calculates the medical cost statistics used by each individual insured and grasps the illness of each individual insured. Insurers (corporate health insurance associations, etc.) are working to prevent new diseases, prevent new complications in addition to those already suffering, and prevent the seriousness of existing diseases (each (Insurer's own or legally required) The selection, timing and frequency of the target person providing appropriate health management advice services to each insured person required in health maintenance and promotion business Decisions cannot be made, and the current situation is that there are significant differences in target selection, intervention time, and frequency depending on the knowledge and motivation of each insurer's health care manager.
また、定期健康診断のデータは検査値異常があった場合についてその検査値異常に関連する疾患を検索するために使用されているが、該データをもちいて、将来の医療費の支出を減らすための予防介入を行うための対象者の選択や時期や頻度の決定は、健康管理担当者がその経験にもとづいて行うことが通例でありその処理件数の限界は電子計算機を使用した場合に比べてはるかに小さい。 In addition, the data of periodic medical examinations are used to search for diseases related to abnormalities in test values when there is abnormalities in test values. In order to reduce future expenditure on medical expenses, the data is used. It is customary for health care managers to select the target person for preventive interventions and determine the timing and frequency based on their experience, and the number of treatments is limited compared to using a computer. Much smaller.
また、疾患の診断・治療に伴う検査データ等も将来の医療費の支出を減らすための予防介入を行うためには使用されていない。
レセプトデータも医療費の請求・支払いのために使用されているが、このデータを用いての、将来の医療費の支出を減らすための予防介入を行うための対象者の選択や時期や頻度の決定は行われていない。In addition, test data associated with disease diagnosis and treatment is not used to perform preventive interventions to reduce future medical expenses.
Receipt data is also used for billing and payment of medical expenses. Using this data, the selection, timing, and frequency of target persons for preventive interventions to reduce future expenditure on medical expenses No decision has been made.
医療費は疾患が軽症のうちに治療したほうが、治療をせずに重症化した場合よりも安い傾向にある。また、予防により新たな疾患に罹患せずにすめば医療費は安くなる。ところで、疾患に新たに罹患した場合や、既に罹患している疾患が重症化した場合には、受診回数、医療費、使用薬剤などがそれまでより大きく変化するが、このような変化を検出し、健康アドバイス・介入を行うことで疾患がさらに悪化したり、合併症に罹患することを防止するためには、 健康管理担当者が、被保険者の受診行動に対して詳細な計量行動分析にかけることにより行わなければならないが、多くの保険者では、担当者や産業医、かかりつけ医、担当保健師などの専門職は健康管理に参加していても、計量行動学の専門職は参加していないことが多い。このため、健康指導・介入を行う対象者の選択やその予備軍のリストアップは、担当者の熱意や経験によるバラつきが極めて大きい業務となってしまっている。 Medical expenses tend to be cheaper when the disease is treated while it is mild than when it becomes severe without treatment. In addition, medical expenses will be reduced if it is not necessary to suffer from a new disease through prevention. By the way, if you are newly affected by a disease, or if you are already suffering from a serious disease, the number of visits, medical expenses, and drugs used will change more than before. In order to prevent further health problems and complications due to health advice / intervention, health managers must conduct detailed quantitative behavior analysis of the insured's visit behavior. In many insurers, specialists such as specialists, occupational physicians, family doctors, public health nurses, etc. participate in health management, but specialists in metrological behavior do participate. Often not. For this reason, selection of subjects for health guidance / intervention and listing of reserve armies are tasks that vary greatly depending on the enthusiasm and experience of the person in charge.
本発明はこのような問題に鑑みてなされたものであり、その目的とするところは、レセプトデータ、健康診断データ、医療機関に受診した再の検査データ、電子診療録の内容、診療に関連するデータ等を用いて、保険者等が被保険者に対して健康指導・介入を行う対象者の選択や時期や頻度の決定を行うとともに、被保険者へ個別のTailor Madeな健康アドバイスを行うための健康管理業務における意思決定Decision Makingを補助・自動化する医療情報処理方法・装置およびコンピュータプログラムを提供することにある。 The present invention has been made in view of such problems, and its object is related to receipt data, health check data, reexamination data received at a medical institution, contents of an electronic medical record, and medical care. To use the data, etc. to select the target person who will provide health guidance / intervention to the insured person, determine the timing and frequency, and provide individual Taylor-Made health advice to the insured person It is to provide a medical information processing method / apparatus and a computer program for assisting / automating decision-making in the health management work of a person.
上記目的を達成するために、本発明にかかる医療情報処理方法は、請求項1にかかる発明においては、
傷病名と、合計保険点数を含むレセプトデータを使用して被保険者の健康状態に応じた個別指導を行う検診事業における個別指導対象者を選択し提示する情報処理装置において、個人のレセプトデータを外部から読み込みメモリ内に記憶する手順と、記憶されたレセプトデータが所定の基準に合致するかどうかの指標を個人のレセプトデータごとに計算する手順と、前記計算された指標に基づいてレセプトデータのなかから個別指導対象者を選択する手順を備える。In order to achieve the above object, a medical information processing method according to the present invention comprises:
In the information processing device that selects and presents the individual guidance target in the screening business that performs individual guidance according to the health status of the insured person using the receipt data including the name of the injury and the total insurance score, the personal receipt data is displayed A procedure for reading from the outside and storing it in the memory, a procedure for calculating for each individual receipt data whether or not the stored receipt data meets a predetermined standard, and receiving data based on the calculated index. A procedure is provided for selecting individuals for individual tutoring.
請求項2にかかる発明においては、請求項1に記載された検診事業における個別指導対象者選択方法における記憶されたレセプトデータが、所定の基準に合致するかどうかの指標を個人のレセプトデータごとに計算する手順が疾患毎の診療報酬請求頻度に基づいて受診頻度情報を作成する手順を備える。In the invention according to claim 2, an indicator of whether or not the stored receipt data in the individual guidance subject selection method in the examination business described in claim 1 meets a predetermined standard is provided for each individual receipt data. The calculation procedure includes a procedure for creating consultation frequency information based on the medical fee request frequency for each disease.
請求項3にかかる発明においては、請求項1に記載された検診事業における個別指導対象者選択方法における個別指導対象者を選択する手順が、受診頻度情報の変化または受診頻度情報が定められた検出閾値を満たしたことを検出する手順を備えることを特徴としている。In the invention according to claim 3, the procedure for selecting the individual guidance target person in the individual guidance target person selection method in the screening business according to claim 1 is the detection of the change in the consultation frequency information or the consultation frequency information. It is characterized by comprising a procedure for detecting that the threshold value is satisfied.
請求項4にかかる発明においては、請求項1に記載された検診事業における個別指導対象者選択方法における記憶されたレセプトデータが所定の基準に合致するかどうかの指標を個人のレセプトデータごとに計算する手順が、疾患毎の診療報酬請求額に基づいて請求額情報を作成する手順を備えることを特徴としている。In the invention according to claim 4, an index is calculated for each individual receipt data as to whether or not the stored receipt data in the individual guidance subject selection method in the examination business described in claim 1 meets a predetermined standard. The procedure to perform comprises the procedure which creates billing amount information based on the medical treatment billing billing amount for every disease.
請求項5にかかる発明においては、請求項1に記載された検診事業における個別指導対象者選択方法における個別指導対象者を選択する手順が、請求額情報の変化または請求額情報が定められた検出閾値を満たしたことを検出する手順を備えることを特徴としている。In the invention according to claim 5, the procedure for selecting the individual guidance target person in the individual guidance target person selection method in the examination business according to claim 1 is a detection in which the change in the bill amount information or the bill amount information is defined. It is characterized by comprising a procedure for detecting that the threshold value is satisfied.
請求項6にかかる発明においては、請求項1に記載された検診事業における個別指導対象者選択方法における記憶されたレセプトデータが所定の基準に合致するかどうかの指標を個人のレセプトデータごとに計算する手順が、定期健康診断のデータに基づいて受診頻度情報を作成する手順を備えることを特徴としている。In the invention according to claim 6, an index is calculated for each individual receipt data as to whether or not the stored receipt data in the individual guidance subject selection method in the examination business described in claim 1 meets a predetermined standard. The procedure is characterized in that it comprises a procedure for creating consultation frequency information based on data of a periodic health examination.
請求項7にかかる発明においては、請求項1に記載された検診事業における個別指導対象者選択方法における個別指導対象者を選択する手順が、定期健康診断情報の変化または定期健康診断情報が定められた検出閾値を満たしたことを検出する手順を備えることを特徴としている。In the invention according to claim 7, the procedure for selecting the individual guidance target person in the individual guidance target person selection method in the screening business according to claim 1 is defined as a change in regular health examination information or periodic health examination information. And a procedure for detecting that the detection threshold is satisfied.
請求項8にかかる発明においては、請求項1に記載された検診事業における個別指導対象者選択方法における記憶されたレセプトデータが所定の基準に合致するかどうかの指標を個人のレセプトデータごとに計算する手順が、受診頻度情報、請求額情報データおよび定期健康診断情報の組み合わせに基づいて受診頻度情報、請求額情報データおよび定期健康診断情報の組み合わせ情報を作成する手順を備えることを特徴としている。In the invention according to claim 8, an index is calculated for each individual receipt data as to whether or not the stored receipt data in the individual guidance subject selection method in the examination business described in claim 1 meets a predetermined standard. The procedure is characterized in that it includes a procedure of creating combination information of consultation frequency information, billing amount information data and periodic health examination information based on a combination of consultation frequency information, billing amount information data and periodic health checkup information.
請求項9にかかる発明においては、受診頻度情報、請求額情報データおよび定期健康診断情報について、相互を比較し、また相互の組み合わせによって得られるパターンから、定められた検出閾値を満たしたことを検出する手順を備えることを特徴としている。In the invention according to claim 9, the consultation frequency information, the billing amount information data, and the periodic health checkup information are compared with each other, and it is detected that a predetermined detection threshold is satisfied from a pattern obtained by a combination of each other. It is characterized by providing the procedure to do.
本発明によれば、健康指導・介入を行う対象者の選択や健康指導・介入を行う対象者の予備軍をリストアップすること、指導・介入時期・頻度の決定を効率的に行うことが可能となる。
また、年齢による層別や病院・診療所による傾向分析を行い組み合わせることでより効率的な健康指導を行うことが可能である。According to the present invention, it is possible to select a target person to perform health guidance / intervention, to list a reserve army of a target person to perform health guidance / intervention, and to efficiently determine guidance / intervention time / frequency. It becomes.
In addition, it is possible to provide more efficient health guidance by combining age groups and trend analysis by hospitals and clinics.
以下、図面を参照し、本発明の好適な実施の形態について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
図1は本発明の実施例にかかるフローチャートである。
604においてデータの取得と保存処理をおこない、606において頻度情報計算を行い、608において頻度の変化を抽出するための情報計算として移動平均を計算し、610では、条件判断を行って、被保険者の健康状態に変化がなかったか否かを判断し、移動平均に3倍よりもその月の受診回数が増加していたら、何か、盛んに医療機関を受診する必要が生じるような健康状態の変化があったものとして、健康指導・介入を行う対象者としてフラグを立てておく。612では健康管理責任者へ情報を提示する。これにはメールなどによる健康悪化イベントの通報という形態をとることなども含まれるし、直接、被保険者に健康状態の変化への注意を促すメッセージやアドバイスを送信するなどのバリエーションも考えられる。基準値を設けて一律に基準値を超えたら警告を発するなどのバリエーションも考えられる。FIG. 1 is a flowchart according to an embodiment of the present invention.
Data acquisition and storage processing is performed at 604, frequency information calculation is performed at 606, a moving average is calculated as information calculation for extracting frequency changes at 608, and condition judgment is performed at 610. If there is no change in the health status of the child, and if the number of visits in the month has increased more than 3 times on the moving average, something that is in need of actively visiting a medical institution A flag is set up as a subject for health guidance / intervention because there has been a change. In 612, information is presented to the health manager. This includes taking the form of notification of health deterioration events via e-mail, etc., and variations such as sending messages and advice to alert the insured of changes in health status directly. Variations such as issuing a warning when a reference value is set and the reference value is uniformly exceeded are also conceivable.
上記の処理に加え、レセプトデータ保持部、健康診断データ保持部、医療機関に受診した再の検査データ保持部、電子診療録の内容保持部、診療に関連するデータ保持部を有する医療情報処理システムにおいて、レセプト、健康診断データ等は別々に保険者に送られてくることから、レセプトデータと健康診断データを各個人毎に突合させる処理を行う。この処理により別々の日時、別々の医療機関で発生した情報を、被保険者ごとに仕分けさせることは有用である。 In addition to the above processing, a medical information processing system having a receipt data holding unit, a medical examination data holding unit, a reexamination data holding unit that has received a medical institution, an electronic medical record content holding unit, and a data holding unit related to medical treatment Since the receipt, health check data, etc. are separately sent to the insurer, the process of matching the receipt data with the health check data for each individual is performed. It is useful to sort information generated in different medical institutions by different dates and times by this process for each insured.
また、介入対象者の選択や健康指導・介入を行う対象者の予備軍をリストアップすることは、有用である。In addition, it is useful to list the target's reserve army for the selection of intervention subjects, health guidance and intervention.
一方、統計データを使用するためには、予め統計データ計算しておくことが主流である。本願発明では、レセプトデータを使用して被保険者の健康状態に応じた個別指導を行う検診事業における個別指導対象者を選択し提示する情報処理装置において使用する統計データの作製においては、まず、単純な1疾患に対するレセプトを用いて疾患ごとの統計データを作製する。次に2疾患に対するレセプトから統計データを作製し、作製したデータから1疾患に対するレセプトを用いて作製した疾患ごとのデータを差し引いて、2疾患間の交互作用を求める。2つの疾患A,Bから疾患Aと疾患Bを合併したことによる交互作用項がもとまったら、3疾患間での交互作用をもとめ、以下N次の交互作用まで順々にダイナミックプログラミングのアルゴリズムを用いて決定していく。このようにして、個別指導対象者選択基礎データを作成している。なお、新しいレセプトがくるごとにデータを更新していくように構成してもよい。On the other hand, in order to use statistical data, it is mainstream to calculate statistical data in advance. In the present invention, in the creation of statistical data to be used in the information processing apparatus for selecting and presenting the individual guidance target person in the examination business that performs the individual guidance according to the health condition of the insured person using the receipt data, Statistical data for each disease is generated using a simple receptor for one disease. Next, statistical data is created from the receptors for two diseases, and the data for each disease produced using the receptors for one disease is subtracted from the produced data to determine the interaction between the two diseases. If an interaction term is obtained by combining disease A and disease B from two diseases A and B, the interaction between the three diseases is determined, and the dynamic programming algorithm is sequentially applied until the N-th interaction. Use and decide. In this way, the individual guidance target person selection basic data is created. In addition, you may comprise so that data may be updated whenever a new receipt comes.
このような交互作用を計算するのは、通常、2疾患(あるいは3疾患以上)を合併した場合には、それぞれの疾患単独で罹患した場合にくらべより検査値が悪化したり、より投薬する薬品の品数が増えたり、より高額の医療費が必要となるからである。このように統計データを作製することで合併症による医療費等の増加分が交互作用という形で決定できる。高次の交互作用まで評価することで合併症の重症度、コストなどをより正確に評価することができる。また、介入時期や頻度は、疾病平均からの乖離度、被保健者毎の平均からの乖離度、パーセンタイル、変化率などにもとづいて、健康状態悪化を示す統計量の強度(Intensity)を介入する被保健者の毎、疾患ごとに定め、その強度が大きいものほど、早期の介入をおこない、頻度も頻繁にすれば良い。Such interactions are usually calculated when two or more diseases (or more than three diseases) are combined, and the test value is worse or more medicinal than when each disease is affected alone. This is because the number of products increases and higher medical costs are required. By creating statistical data in this way, an increase in medical expenses due to complications can be determined in the form of interaction. By evaluating even higher-order interactions, the severity and cost of complications can be more accurately evaluated. The intervention time and frequency are based on the degree of deviation from the disease average, the degree of deviation from the average for each health subject, the percentile, the rate of change, etc. It is determined for each health-care subject and for each disease, and the higher the intensity, the earlier the intervention and the more frequent the frequency.
この発明はレセプトデータ、健康診断データ、医療機関を受診した時の検査データ、電子診療録の内容、診療に関連するデータ等を用いて、保険者等が被保険者に対して健康指導・介入を行う対象者の選択や時期や頻度の決定を行う医療情報処理方法・装置およびコンピュータプログラムを提供する。それにより、従来の、保健管理業務担当者の知識・熱意によって提供されるサービスが著しく異なるとうい状況を均てん化し、医療産業の効率化を図ることに利用することができるとともに、医療分野でのDecision Makingのサポート・自動化をするという点で有用である。 This invention is based on the receipt data, health check data, test data obtained at the medical institution, contents of electronic medical records, data related to medical care, etc. The present invention provides a medical information processing method / apparatus and a computer program for selecting a target person to be performed and determining the timing and frequency. As a result, if the services provided by the knowledge and enthusiasm of health managers are significantly different, it can be used for leveling the situation and improving the efficiency of the medical industry. This is useful in that it supports and automates Decision Making.
レセプトを使用して受診頻度情報を作成し、それに基づいて健康指導を行うかどうかを決定しているので、被保険者にアドバイスサービスを的確に配信することができる。請求点数や投薬・検査・処置の種類とその変化、を使用して被保健者の受診状況の変化を観察するので、被保険者の疾病罹患状況の変化に応じたアドバイスサービスを提供することができる。傷病名や検診データに基づくようにしたので、アドバイスサービスの提供頻度を適切なものにすることができる。統計データの更新(例えばベイズ流に)を行うこと、全体の統計指標の計算のみならず、患者ごとに移動平均などの相対基準を計算したりすることによりTailorMadeな医療・保健介入の実現ができる。 Since the consultation frequency information is created using the receipt and it is determined whether or not to give health guidance based on the information, the advice service can be accurately distributed to the insured. Because the number of claims, the type of medication, inspection, and treatment, and their changes are used to observe changes in the health checkup status of the insured person, it is possible to provide an advice service according to changes in the insured's disease status it can. Since it is based on the name of the wound and the examination data, the frequency of providing the advice service can be made appropriate. Update of statistical data (for example, Bayesian style), calculation of overall statistical index, and calculation of relative criteria such as moving average for each patient can realize TaylorMade medical / health intervention. .
604 データの取得と保存処理手順
606 傷病名数・医療機関受診頻度・請求額・検診データ情報計算手順
608 統計量の変化を抽出するための移動平均情報計算手順
610 4ヶ月移動平均と比較して受診頻度や金額が急増している被保険者を抽出する条件判断手順
612 健康管理責任者への保健指導・介入候補者の提示手順
614 データの取得と保存処理手順
616 統計量、乖離指標の計算と更新手順
618 それぞれの統計量情報計算手順
620 計算した統計量・乖離度が閾値を超えているかどうかの条件判断手順
622 健康管理責任者へのイベント通報手順604 Data acquisition and
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007246140A JP2009054124A (en) | 2007-08-26 | 2007-08-26 | Computer system for supporting individual guidance, intervention target person selection, and intervention time and frequency determination in medical checkup business |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007246140A JP2009054124A (en) | 2007-08-26 | 2007-08-26 | Computer system for supporting individual guidance, intervention target person selection, and intervention time and frequency determination in medical checkup business |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009054124A true JP2009054124A (en) | 2009-03-12 |
Family
ID=40505122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007246140A Pending JP2009054124A (en) | 2007-08-26 | 2007-08-26 | Computer system for supporting individual guidance, intervention target person selection, and intervention time and frequency determination in medical checkup business |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009054124A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016218966A (en) * | 2015-05-26 | 2016-12-22 | 株式会社日立製作所 | Analysis system and analysis method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11353183A (en) * | 1998-04-08 | 1999-12-24 | Sysmex Corp | Curing method decision supporting method |
JP2004529440A (en) * | 2001-06-01 | 2004-09-24 | プロサノス コーポレイション | Information processing method for stratifying diseases and judging disease progress |
JP2004329811A (en) * | 2003-05-06 | 2004-11-25 | Sanefu:Kk | Prophylaxis-emphasized health care system |
JP2004341611A (en) * | 2003-05-13 | 2004-12-02 | Mitsubishi Electric Corp | Insurer information system |
WO2005104768A2 (en) * | 2004-04-27 | 2005-11-10 | Humana Inc. | System and method for automatic generation of a hierarchical tree network and the use of two complementary learning algorithms, optimized for each leaf of the hierarchical tree network |
JP2006155411A (en) * | 2004-11-30 | 2006-06-15 | Houken Corp | System, method, and program for constructing medical treatment prediction model, system, method, and program for verifying / offering medical treatment content, method of downloading health management data, and detachable storage medium |
JP2006519626A (en) * | 2002-12-17 | 2006-08-31 | カーディアック ペースメーカーズ,インコーポレイティド | Communication repeater device for implantable medical devices |
JP2006235938A (en) * | 2005-02-24 | 2006-09-07 | Mitsubishi Electric Corp | Health management support system |
-
2007
- 2007-08-26 JP JP2007246140A patent/JP2009054124A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11353183A (en) * | 1998-04-08 | 1999-12-24 | Sysmex Corp | Curing method decision supporting method |
JP2004529440A (en) * | 2001-06-01 | 2004-09-24 | プロサノス コーポレイション | Information processing method for stratifying diseases and judging disease progress |
JP2006519626A (en) * | 2002-12-17 | 2006-08-31 | カーディアック ペースメーカーズ,インコーポレイティド | Communication repeater device for implantable medical devices |
JP2004329811A (en) * | 2003-05-06 | 2004-11-25 | Sanefu:Kk | Prophylaxis-emphasized health care system |
JP2004341611A (en) * | 2003-05-13 | 2004-12-02 | Mitsubishi Electric Corp | Insurer information system |
WO2005104768A2 (en) * | 2004-04-27 | 2005-11-10 | Humana Inc. | System and method for automatic generation of a hierarchical tree network and the use of two complementary learning algorithms, optimized for each leaf of the hierarchical tree network |
JP2006155411A (en) * | 2004-11-30 | 2006-06-15 | Houken Corp | System, method, and program for constructing medical treatment prediction model, system, method, and program for verifying / offering medical treatment content, method of downloading health management data, and detachable storage medium |
JP2006235938A (en) * | 2005-02-24 | 2006-09-07 | Mitsubishi Electric Corp | Health management support system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016218966A (en) * | 2015-05-26 | 2016-12-22 | 株式会社日立製作所 | Analysis system and analysis method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bradley et al. | Care delivery and self management strategies for adults with epilepsy | |
Riedl et al. | The influence of doctor-patient communication on health outcomes: a systematic review | |
Marin et al. | Multidisciplinary biopsychosocial rehabilitation for subacute low back pain | |
Thomas et al. | System change interventions for smoking cessation | |
Yuan et al. | Payment methods for outpatient care facilities | |
Bosch‐Capblanch et al. | Managerial supervision to improve primary health care in low‐and middle‐income countries | |
Burton et al. | Clinical course and prognostic factors in conservatively managed carpal tunnel syndrome: a systematic review | |
Abdekhoda et al. | The effects of organizational contextual factors on physicians’ attitude toward adoption of Electronic Medical Records | |
US11776677B2 (en) | Computer vision-based analysis of provider data | |
Wilson et al. | Interventions to increase or decrease the length of primary care physicians' consultation | |
US20100100395A1 (en) | Method for high-risk member identification | |
Dubin et al. | Risk of recall among medical devices undergoing US Food and Drug Administration 510 (k) clearance and premarket approval, 2008-2017 | |
US20090099875A1 (en) | Expert system and method for translating, evaluating, monitoring, assessing, auditing, profiling, compiling and quantifying medical data sets | |
US11010716B2 (en) | Health plan rating system improvement program | |
US20050273370A1 (en) | System and method for determining risk management solutions | |
US10424032B2 (en) | Methods for administering preventative healthcare to a patient population | |
O’Byrne et al. | Episode-based payment: evaluating the impact on chronic conditions | |
Nagase et al. | Effectiveness of remote home monitoring for patients with Chronic Obstructive Pulmonary Disease (COPD): systematic review | |
Treitler et al. | Buprenorphine utilization and prescribing among New Jersey Medicaid beneficiaries after adoption of initiatives designed to improve treatment access | |
Abhijnhan et al. | Depot fluspirilene for schizophrenia | |
McAfee et al. | Capturing tobacco status using an automated billing system: steps toward a tobacco registry | |
Karhunen et al. | Dental treatment injuries in the Finnish Patient Insurance Centre in 2000–2011 | |
Badreldin et al. | Prevalence and predictors of inappropriate apixaban dosing in patients with non-valvular atrial fibrillation at a large tertiary academic medical institution | |
US20160162650A1 (en) | Method for automating medical billing | |
JP2009054124A (en) | Computer system for supporting individual guidance, intervention target person selection, and intervention time and frequency determination in medical checkup business |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120605 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120825 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130305 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130502 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130718 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140325 |