[go: up one dir, main page]

JP2008068018A - 生体状態を推定した結果を出力する装置および方法 - Google Patents

生体状態を推定した結果を出力する装置および方法 Download PDF

Info

Publication number
JP2008068018A
JP2008068018A JP2006251499A JP2006251499A JP2008068018A JP 2008068018 A JP2008068018 A JP 2008068018A JP 2006251499 A JP2006251499 A JP 2006251499A JP 2006251499 A JP2006251499 A JP 2006251499A JP 2008068018 A JP2008068018 A JP 2008068018A
Authority
JP
Japan
Prior art keywords
memory
expiration
sleep
respiratory
estimating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006251499A
Other languages
English (en)
Other versions
JP4868514B2 (ja
Inventor
Yoshiaki Arai
善昭 荒井
Haruichi Yamada
晴一 山田
Shigeo Kubota
茂男 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Aircool Corp
Institute of National Colleges of Technologies Japan
Original Assignee
Denso Aircool Corp
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Aircool Corp, Institute of National Colleges of Technologies Japan filed Critical Denso Aircool Corp
Priority to JP2006251499A priority Critical patent/JP4868514B2/ja
Publication of JP2008068018A publication Critical patent/JP2008068018A/ja
Application granted granted Critical
Publication of JP4868514B2 publication Critical patent/JP4868514B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

【課題】睡眠段階を精度良く推定できる装置を提供する。
【解決手段】解析ユニット28は、呼気部分および吸気部分をそれぞれ含む複数の呼吸ピークを含む呼吸信号を取得する入力インターフェイス23と、呼気時間を抽出してメモリ25に記録する第1の解析機能21と、メモリ25に記録された複数の呼気時間の増減を、脳波の低周波成分の強度の増減に対応する第1の要素として判断要素に含めて睡眠状態を推定する第2の解析機能22と、推定した結果を出力する出力インターフェイス24とを有する。
【選択図】図1

Description

本発明は、生体状態として、睡眠状態を推定した結果を出力するための装置および方法に関するものである。
特許文献1には、被験者の睡眠状態を中途覚醒も含めて正確に判定するためのシステムが記載されている。このシステムは、体動検出手段と、心拍あるいは脈拍検出手段と、それらから得られた出力を処理して中途覚醒および睡眠状態の判定を行う判定部と、判定結果を出力する手段とを備えている。
特許文献2には、睡眠中の被介護者に精神的なストレスを感じさせることなく、自然な状態で寝返り動作できるように支援する可動ベッドが記載されている。そのために、被介護者の脳波、心拍数、呼吸数、眼球運動、体動数などの生体情報を検出することが記載されている。また、これらの生体情報を得るために電極などのセンサーを被介護者に装着することは身体的な束縛感があるため、シート状の生体情報検出センサー(シート状センサー)を用いることが記載されている。このシート状センサーは、シート状の絶縁体を対向配置したものであり、被介護者の心拍動や呼吸動に伴って静電容量が変動する。このシート状センサーにより得られる信号(生体情報信号)には、心拍および呼吸の周波数成分が含まれている。さらに、生体情報信号を解析して、心拍数、呼吸数、体動数を求め、これらの生体情報により睡眠深度を推定することが記載されている。
特許文献3および4には、人体の呼吸運動に基づく電圧変動を一定期間毎に測定し、測定結果から電圧の正のピーク値、隣り合うピーク間の間隔(時間)を算出し、さらに、算出したピーク値およびピーク間隔から、ピーク間隔の平均値、ピーク間隔の分散に基づく値などを求めて、睡眠状態を推定することが記載されている。従来から睡眠の状態変化を検出する方法として、脳波、眼球運動、顎筋電などを検出し、その検出波形から睡眠深度を判断する睡眠ポリグラフ(ポリソノグラフ、PSG)法があるが、このPSG法は、装置が大型化し、日常的に使うには不向きであり、さらに有資格者が必要である。一方、呼吸数、心拍数、体動の情報、特に心拍数の増減変動に重点を置いて睡眠深度を推定する方法は、人体を拘束しないで生体情報を得ることができるが、睡眠ポリグラフに比較して精度がかなり悪いことが記載されている。
特許文献5には、ヒトの呼吸運動波形のピーク間隔、ピーク値比により覚醒かどうかの判定を行い、またかかる波形のピーク間面積の平均値、分散により深い眠り、浅い眠りのいずれであるかを判定し、判定された睡眠状態に応じて、ヒトの体温調整が効果的に機能するように睡眠環境である寝床内温度を制御することが記載されている。
特許文献6には、寝室内の環境状態および就寝者の生理状態を検知するとともに、就寝者の健康状態を検出し、就寝状態を快適にすることが記載されている。生理状態検出手段は、就寝者の就寝中の睡眠状態、脳波、心拍、呼吸、体動、皮膚温度、筋電位、血圧、発汗、皮膚電位、いびきなどを検出する。環境状態検出手段は、寝室内または寝床内の温度、湿度、風速、輻射熱などを検出し、空調器、寝床内環境制御手段を制御し、さらに、芳香発生装置から鎮静性の香りを発生させることが記載されている。
特許文献7には、就寝者の呼吸による体動に応じた、荷重変化を呼吸信号として生成し、この呼吸信号の周波数の変化に基づいて、就寝者の無呼吸状態もしくは低呼吸状態を判定することが記載されている。
特開2002−34955号公報 特開2004−121837号公報 特開2005−118151号公報 特開2006−20810号公報 特開2006−198023号公報 特開平7−328079号公報 特開2004−24684号公報
睡眠深度を判断する精度の高い方法は、脳波を検出し、その検出波形を使用するPSG法である。一方、PSG法に対して、就寝者に束縛感を与えないシート状センサーを用いて睡眠状態を判断しようとする方法は、呼吸数、心拍数、体動の情報に加え、呼吸信号のピーク値、ピーク間隔、ピーク間隔の平均値、ピーク間隔の分散などを判断要素に入れて精度を向上しようとしている。しかしながら、PSG法の判断結果に対して、睡眠状態を推定する精度は高くない。
本発明の一態様は、生体状態を推定した結果を出力する解析装置である。この解析装置は、呼気部分および吸気部分をそれぞれ含む複数の呼吸ピークを含む呼吸信号を取得する手段と、複数の呼吸ピークのそれぞれに含まれる呼気部分の呼気時間を抽出してメモリに記録する手段と、メモリに記録された複数の呼気時間の増減を、脳波の低周波成分の強度の増減に対応する第1の要素として判断要素に含めて睡眠状態を推定する手段と、推定した結果を出力する手段とを有する。
呼吸信号に含まれる複数の呼吸ピークのそれぞれは、息を吸う吸気の部分と、息を吐く呼気部分とにより構成されている。これらの内、呼気部分の時間、すなわち呼気時間の増減と、睡眠時の脳波の低周波成分、例えば、δ波と称される3Hz以下(特に0.5Hzから3.0Hz)のスペクトルの振幅成分を加算したものの増減との間に相関関係があると考えられる見地が得られた。したがって、呼吸信号から呼気時間を抽出して睡眠状態を判断することにより、脳波、特に、睡眠状態により影響が表れる脳波の低周波成分に相当する要素を判断要素に入れることができる。このため、脳波を直に検出せずに、脳波の波形成分あるいはそれに相当する成分を睡眠段階の判断に加えることができるので、PSG法に対して就寝者に束縛感を与えない、例えば、シート状センサーを用いて睡眠状態を精度良く判断することができる。
推定する手段は、メモリに記録された複数の呼気時間を統計処理し、統計処理された呼気時間の増減を第1の要素とすることが好ましい。所定の数の呼吸ピークに含まれる複数の呼気時間の合計あるいは平均の増減、または、所定の時間間隔に含まれる複数の呼吸ピークに含まれる複数の呼気時間の平均の増減、を第1の要素とすることが好ましい。呼吸信号に含まれる、呼吸以外の体動などの成分によるノイズを除去できる。また、過去の実験などにより、睡眠深度の変化は90分程度の周期で繰り返されることが分かっており、脳波の変動も一呼吸程度で大きく変化するものでもない。したがって、数分、例えば5分程度の間に繰り返される呼吸ピークの呼気時間の平均を得ることにより、脳波の低周波成分と、さらに良い相関関係のある判断要素を得ることができる可能性がある。
本発明の態様の他の1つは、上記の解析装置と、横になった状態のユーザの荷重変化を検出可能なシートタイプのセンサーと、センサーの出力信号から呼吸信号を生成する装置とを有する、生体監視システムである。就寝者をセンサーに束縛せず、ほとんど負担をかけず睡眠段階を推定できるシステムを提供できる。シートタイプのセンサーは、シート状の支持部材にアッセンブルされた複数の感圧素子を含むものである。
本発明の態様のさらに他の1つは、上記の解析装置と、解析装置の出力に基づき、生活環境の少なくとも一部を制御する装置とを有する、環境制御システムである。睡眠段階あるいは睡眠状態を推定し、その結果により寝室の温度、香り、明るさなどを制御し、また、ベッドなどを制御することにより、より心地よい睡眠と、目覚めとを提供できる。
本発明の態様のさらに他の1つは、生体状態を推定した結果を出力する方法である。この方法は、以下のステップを含む。
a1.呼気部分および吸気部分をそれぞれ含む複数の呼吸ピークを含む呼吸信号を取得すること。
a2.複数の呼吸ピークのそれぞれに含まれる呼気部分の呼気時間を抽出してメモリに記録すること。
a3.所定の時間当たりにメモリに記録された複数の呼気時間の増減を、脳波の低周波成分の強度の増減に対応する第1の要素として判断要素に含めて睡眠状態を推定すること。
a4.推定した結果を出力すること。
抽出した呼気時間をメモリに記録することにより、所定の時間当たりにメモリに記録された複数の呼気時間を用いて増減を判断することができ、その増減を第1の要素として睡眠状態を推定することができる。したがって、パイプライン式に呼気時間から就寝者の睡眠段階あるいは睡眠状態を推定でき、その結果をほぼリアルタイムで得ることが可能となる。推定する工程は、メモリに記録された複数の呼気時間を統計処理し、統計処理された呼気時間の増減を第1の要素とすることを含むことが好ましい。
図1に、寝室用のホームシステムの一例を示す。このホームシステム50は、寝室のベッドあるいは布団に設置されるセンサーシート2を含む生体情報検出ユニット10と、寝室用の制御ユニット20とを含む。制御ユニット20は、家庭内LAN60と接続されており、LAN60に接続された寝室のエアコン61、ライト62、芳香器63を制御することにより寝室内の環境を制御できる。したがって、このホームシステム50は、環境制御システムとしての機能を備えている。また、制御ユニット20は、家庭内LAN60を通じて生体情報検出ユニット10で検出された情報およびその情報を解析した結果を監視ユニット58に送る。家庭内LAN60とゲートウェイ66を介して接続された外部ネットワーク、例えばインターネット65を介して外部監視ユニット59に送ることも可能である。したがって、このホームシステム50は生体監視システムとしての機能を備えている。
生体情報検出ユニット10は、感圧素子として圧力センサー(感圧センサー)7を用い、複数の感圧素子7をアレイ状に配置したセンサーシート2と、それら複数の感圧素子7からの信号を集めて制御ユニット20に送るデータ処理ユニット3とを備えている。センサーシート2は、複数のサブシート2a、2bおよび2cにより構成されている。それぞれのサブシート2a、2bおよび2cは、薄いプラスチック製のシート4を母材としている。センサーシート2は、それぞれのシート4をシート状の支持部材に複数の感圧素子7を取り付ける(アッセンブルする)ことにより、シートタイプのセンサーを構成するとともに、複数の感圧素子7が適当な間隔で規則的に配置されるようにしたものである。
シート4には、複数の感圧素子7から信号を取り出すための配線8も作りこまれている。したがって、センサーシート2をベッドなどに敷くことにより、多数の感圧素子7をベッドの上に配置できる。このため、ベッドの上に横たわる被験者(就寝者)9に直にセンサーあるいは電極を取り付けなくても、就寝者9の体動を寝具に加わる荷重変化として感圧素子7からの信号(荷重信号)に変換して捉えることができる。このため、感圧素子7からの荷重信号を解析することにより、就寝者(被験者)9の就寝中の呼吸状態やその他の状態を監視できる。
データ処理ユニット3は、荷重信号から呼吸信号を生成する。例えば、特許文献7には、各感圧素子7からの信号を周波数解析するために高速フーリエ変換(FFT)し、呼吸周波数成分(δ波成分)におけるパワースペクトルの大きさにより、呼吸に伴う体動に応じた荷重変化を検出している感圧素子7を複数抽出することが記載されている。さらに、それらの中でパワースペクトルが最も大きい感圧素子7を基準素子として、所定の位相差内に入る信号を加算することにより呼吸曲線(呼吸信号)39を生成することが記載されている。
制御ユニット20は、適当なハードウェア資源、例えば、メモリ(レジスタ、RAMなどの半導体メモリ、ハードディスクを含む)、CPU、ディスプレイ、各種のインターフェイスを備えたコンピュータを用いて構成することができる。制御ユニット20は、睡眠状態を推定する解析ユニット28としての機能を含む。また、制御ユニット20は、推定された結果に基づいて寝室のエアコン61、ライト62、芳香器63などに家庭内LAN60を介して制御信号を出力する環境制御ユニット30としての機能を含む。さらに、制御ユニット20は、推定された結果、環境制御状況などを表示出力するためのディスプレイ29を含む。
解析ユニット28は、生体情報検出システム10の情報処理ユニット3から呼吸信号39を受信し、メモリ25に格納する入力インターフェイス23と、メモリ25に格納された呼吸信号から呼気時間を抽出しメモリ25に格納する第1の解析機能21と、呼気時間を判断要素に含めて睡眠状態を推定する第2の解析機能22と、推定した結果を出力する出力インターフェイス24とを含む。第2の解析機能22は、さらに、メモリ25に格納された呼気時間を統計処理する機能26と、統計処理された呼気時間の増減を、脳波の低周波成分の強度の増減に対応する第1の要素として判断要素に含めて睡眠状態を推定する機能27とを含む。出力インターフェイス24は、推定された睡眠状態を環境制御ユニット30に出力するとともに、家庭内LAN60を介して監視ユニット58および/または59に送る。
図2に、解析ユニット28における処理をフローチャートにより示している。ステップ71において、入力インターフェイス23により、複数の呼吸ピークを含む呼吸信号39を取得してメモリ25に格納する。図3(a)に示すように、呼吸信号39は、呼吸を示す複数のピーク(呼吸ピーク)38を含む。呼吸は吸気と呼気とにより成り立つ。したがって、それぞれの呼吸ピーク38は、吸気部分36と、呼気部分37とを有し、呼吸時間tbは、吸気時間tiと、呼気時間teとの和になる。すなわち、呼吸ピーク38は、極小−極大−極小を含む。極小−極大−極小を1つのサイクル(呼吸サイクル、呼吸曲線)としたときに、呼吸中は、そのサイクルが複数繰り返されるので、呼吸信号39は、複数の呼吸サイクルを有する信号となる。
ステップ72において、第1の解析機能21により、呼吸ピーク38のそれぞれに含まれる呼気部分37の呼気時間teを抽出してメモリ25に記録する。呼吸信号39において吸気部分36と呼気部分37との切り替わり箇所は、極大点および極小点であり、その位置は波形微分から求めることができる。この工程において、呼気時間teを抽出する際に、呼吸ピーク38が所定の振幅を越えるものは体動ノイズとしてカットする。また、ショルダノイズもカットする。ショルダノイズは、図3(b)に示すような小変化が呼吸ピーク38に含まれているものである。ショルダノイズは、以下の条件を満たす頂点を削除することにより除去できる。
(MX−MNi−1)+(MXi+1−MN)<Cs(MXi+1−MNi−1
のときは頂点MXとMNを削除、
(MX−MN)+(MXi+1−MNi+1)<Cs(MX−MNi+1
のときは頂点MXi+1とMNを削除、
ただしCsは閾値であり、例えば、1.2である。
呼気部分37と吸気部分36との判別は、いくつかの方法がある。検出原理に依存した方法としては、例えば、サーミスタ式鼻気流センサーであれば、呼気時に温度が上昇するので温度データを合わせてセンサー側から取得することにより呼気部分37と吸気部分36とを判断できる。一般的な方法としては、自律神経の働きから隣接する呼気と吸気の中では呼気時間が吸気時間より長くなるという経験則から呼気部分37と吸気部分36とを判断できる。そして、呼吸信号39の極大点の時刻と、極小点の時刻の差から呼気時間teを計算し、メモリ25に格納する。
ステップ73においては、第2の解析機能22の統計処理する機能26により、メモリ25に格納された呼気時間teの5分単位の平均値を算出する。5分単位の平均値とは、ある時刻t0の呼気時間teを、その時刻t0から5分前から得られた複数の呼気時間teの平均値として求めることを示しており、5分に一回だけ有意なデータが得られるということではない。平均化する時間は5分に限定されない。ノイズを除去できる程度の時間であれば良い。PSG法においては、脳波データを5分毎に周波数解析を行う。このため、5分間の平均値を計算することはPSG法と比較する上では意味がある。
ステップ74において、推定する機能27により、得られた呼気時間teの5分間平均値teaに基づき睡眠状態を段階値で推定する。睡眠段階の推定には、呼気時間teのみならず、上記の特許文献に開示されている各パラメータを合わせて用いることが可能である。呼気時間teaの判断には、平均値そのものを使う方法と、標準化した数値を使う方法とがある。本明細書において標準化とは、ある時間の平均値Aと標準偏差Bにより5分単位のi番目の値tea(i)を以下の式(1)で加工(換算)することである。
(tea(i)−A)/B ・・・(1)
このように標準化された値の睡眠中の通常の(平均的な)値(基準値)は0である。標準化を進めた換算は、一回の睡眠の平均値Aおよび標準偏差Bを使用することである。特定のユーザに対して解析ユニット28が繰り返し使用されている状況であれば、そのユーザの過去のデータに基づき、複数回の睡眠の平均的な値を使用することができる。一方、初期設定されたとき、あるいは個別なユーザに対しては、最初から標準化しようとするとリアルタイムな推定値を得ることができない。したがって、一般的な値を基準値として設定し、数時間程度経過した段階で標準化された値による判断に移行することが望ましい。
呼気時間の平均値teaの標準化値Te(秒)に基づき睡眠段階を判断する方法の一例は以下の通りである。
Te<−0.5s ・覚醒またはレム睡眠
−0.5s≦Te<0.8s ・・浅いノンレム睡眠
0.8s≦Te ・・・・・・・深いノンレム睡眠
呼気時間の平均値tea(秒)から一般的な値に基づき睡眠段階を判断する方法の一例は以下の通りである。
tea<2.2s ・覚醒またはレム睡眠
2.2s≦tea<3.2s ・浅いノンレム睡眠
3.2s≦tea ・・・・・・深いノンレム睡眠
ステップ75では、出力インターフェイス24から、睡眠段階の推定された値を出力する。したがって、環境制御機能30は、睡眠初期においては、深いノンレム睡眠に導くように環境を制御し、寝起きの段階であれば、覚醒またはレム睡眠のときに合わせて起きるように環境を制御することなど、ユーザの睡眠状態に合わせた処理を行うことができる。
なお、図2に示したフローチャートでは、ステップ71、72および73がシリーズで行われるようになっているが、これらの処理はメモリ25をバッファとして用いているので、それぞれの処理を独立したタイミングで実行することが可能である。したがって、ユーザの睡眠段階を殆ど遅れなく、リアルタイムで出力することが可能である。
図4に、呼吸信号から得られる幾つかの情報と、脳波(EEG)の低周波成分(δ波成分)との相関の有無を示している。縦軸は、信号強度であり、単に増減の傾向を示しているにすぎない。呼吸時間tbおよび吸気時間tiの変化は小さく、EEGの低周波成分との相関は積極的に認められない。これに対し、呼気時間teの変化は比較的大きく、EEGの低周波成分との間に安定した相関関係が認められる。
図5から図8は、さらに、標準化したデータで相関関係を示したものである。図5は、呼気時間の5分間平均値の標準化値Teと、EEGの低周波成分の標準化値(δ波のスペクトルの振幅成分の5分間加算値、図6および7についても同様)とを示している。呼気時間の標準化値TeとEEGの低周波成分との増減の傾向はほぼ一致している。特に、睡眠初期において良い相関が見られる。したがって、適当な閾値を設定することによりEEGの低周波成分と同様に睡眠段階を示唆するデータとして利用できることが分かる。
これに対し、図6は、5分間の平均呼吸数の標準化値と、EEGの低周波成分とを示している。増減などの関係に法則性を見出すことが難しい。図7は、5分間の平均呼気時間と平均吸気時間との比の標準化値と、EEGの低周波成分とを示している。この図においても、増減などの関係に法則性を見出すことが難しい。
図8に、PSG法により得られた睡眠段階と、上記の解析ユニット28により得られた睡眠段階とを比較して示している。図8(a)はPSG法により得られた睡眠段階を示している。レム(REM)睡眠は、急速眼球運動(Rapid Eye Movement)の見られる睡眠である。脳波は比較的早いθ波が主体となる。人間では、6〜8時間の睡眠のうち、1時間半〜2時間をレム睡眠が占めるといわれている。
ステージ1(S1)〜ステージ4(S4)はまとめてノンレム睡眠と呼ばれている。ステージ1(S1)は、傾眠状態であり、脳波上、覚醒時にみられたα波が減少し、低振幅の電位がみられる。ステージ2(S2)は、脳波上、睡眠紡錘(sleep spindle)がみられる段階である。ステージ3(S3)は、低周波のδ波が増える段階であり、20%〜50%程度である。ステージ4(S4)は、δ波が50%以上の段階である。
図8(b)は、標準化値Teに対して、上述した判断基準を当てはめた状態を示している。図8(c)は、解析ユニット28から出力される睡眠段階を示している。PSG法により得られる睡眠段階とほぼ一致し、睡眠段階を精度良く判断できていることが分かる。
上記に示した解析ユニット28および解析方法は、呼吸信号に含まれる呼気時間の増減が脳波の低周波成分の増減と相関性が高いことに基づき、呼気時間を脳波の低周波成分と関連付けして判断することにより睡眠段階を判断している。その結果、上記のように、呼吸信号により、睡眠段階をPSG法に匹敵する精度で得ることができる。また、睡眠状態を推定するための入力情報は呼吸信号で良いので、本発明にかかる装置、システムおよび方法においては、就寝者に電極などを取り付ける必要はなく、就寝者の拘束を低減できる。したがって、より快適な睡眠を提供するシステムを提供できる。
呼気時間により睡眠状態を精度良く推定できるが、呼吸信号には上記特許文献などに開示されているように呼吸回数などの睡眠に関連していると考えられている多くの情報を含む。したがって、呼気時間に加えて、呼吸信号に含まれる他の要素を、睡眠状態の判断要素として加えたり、睡眠の推移により判断の主要素を選択したりすることにより、さらに睡眠状態の推定精度を向上できる可能性がある。
寝室用のホームシステムの概略構成を示す図。 呼気時間を取得して、解析する方法を示すフローチャート。 図3(a)は呼吸信号の一例、図3(b)はショルダーを備えた呼吸信号の例。 呼吸信号に含まれる幾つかの情報と、脳波の低周波成分との相関を示す図。 平均呼気時間とEEG低周波成分との相関を示す図。 平均呼吸回数とEEG低周波成分との相関を示す図。 呼気時間/吸気時間とEEG低周波成分との相関を示す図。 図8(a)はPSG法により求められた睡眠段階、図8(b)は呼気時間の変動、図8(c)は上記の解析方法で得られた睡眠段階をそれぞれ示す。
符号の説明
2 センサーシート、 3 情報処理ユニット、 7 感圧素子
10 生体情報検出ユニット、 20 寝室用の制御ユニット
28 解析ユニット、 30 環境制御ユニット
50 寝室用のホームシステム

Claims (8)

  1. 呼気部分および吸気部分をそれぞれ含む複数の呼吸ピークを含む呼吸信号を取得する手段と、
    前記複数の呼吸ピークのそれぞれに含まれる呼気部分の呼気時間を抽出してメモリに記録する手段と、
    前記メモリに記録された複数の呼気時間の増減を、脳波の低周波成分の強度の増減に対応する第1の要素として判断要素に含めて睡眠状態を推定する手段と、
    推定した結果を出力する手段とを有する、生体状態を推定した結果を出力する解析装置。
  2. 請求項1において、前記推定する手段は、前記メモリに記録された複数の呼気時間を統計処理し、統計処理された呼気時間の増減を前記第1の要素とする、解析装置。
  3. 請求項1において、前記推定する手段は、所定の数の呼吸ピークに含まれる複数の呼気時間の合計あるいは平均の増減、または、所定の時間間隔に含まれる複数の呼吸ピークに含まれる複数の呼気時間の平均の増減、を前記第1の要素とする、解析装置。
  4. 請求項1に記載の解析装置と、
    横になった状態のユーザの荷重変化を検出可能なシートタイプのセンサーと、
    前記シートタイプのセンサーの出力信号から前記呼吸信号を生成する装置とを有する、生体監視システム。
  5. 請求項4において、前記シートタイプのセンサーは、シート状の支持部材にアッセンブルされた複数の感圧素子を含む、生体監視システム。
  6. 請求項1に記載の解析装置と、
    前記解析装置の出力に基づき、生活環境の少なくとも一部を制御する装置とを有する、環境制御システム。
  7. 呼気部分および吸気部分をそれぞれ含む複数の呼吸ピークを含む呼吸信号を取得することと、
    前記複数の呼吸ピークのそれぞれに含まれる呼気部分の呼気時間を抽出してメモリに記録することと、
    所定の時間当たりに前記メモリに記録された複数の呼気時間の増減を、脳波の低周波成分の強度の増減に対応する第1の要素として判断要素に含めて睡眠状態を推定することと、
    推定した結果を出力することとを有する、生体状態を推定した結果を出力する方法。
  8. 請求項7において、前記推定する工程は、前記メモリに記録された複数の呼気時間を統計処理し、統計処理された呼気時間の増減を前記第1の要素とすることを含む、方法。
JP2006251499A 2006-09-15 2006-09-15 生体状態を推定した結果を出力する装置および方法 Expired - Fee Related JP4868514B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006251499A JP4868514B2 (ja) 2006-09-15 2006-09-15 生体状態を推定した結果を出力する装置および方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006251499A JP4868514B2 (ja) 2006-09-15 2006-09-15 生体状態を推定した結果を出力する装置および方法

Publications (2)

Publication Number Publication Date
JP2008068018A true JP2008068018A (ja) 2008-03-27
JP4868514B2 JP4868514B2 (ja) 2012-02-01

Family

ID=39290136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006251499A Expired - Fee Related JP4868514B2 (ja) 2006-09-15 2006-09-15 生体状態を推定した結果を出力する装置および方法

Country Status (1)

Country Link
JP (1) JP4868514B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014226451A (ja) * 2013-05-27 2014-12-08 昭和電工株式会社 睡眠状態計測装置及び睡眠状態計測方法
CN107106050A (zh) * 2014-12-18 2017-08-29 皇家飞利浦有限公司 用于慢波睡眠检测的系统和方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62277968A (ja) * 1986-05-27 1987-12-02 八木 寛 バイオフイ−ドバツク装置
JPH0415064A (ja) * 1990-05-10 1992-01-20 Matsushita Electric Ind Co Ltd 就寝装置
JP2000325315A (ja) * 1999-05-19 2000-11-28 Arata Nemoto 睡眠段階判定方法および睡眠段階判定装置
JP2002336357A (ja) * 2001-03-13 2002-11-26 Matsushita Electric Works Ltd 呼吸誘導方法、感覚刺激装置、感覚刺激制御装置および照明制御装置
JP2002336358A (ja) * 2001-03-15 2002-11-26 Matsushita Electric Works Ltd 調息方法、リフレッシュ方法、照明制御方法および装置
JP2003339809A (ja) * 2002-05-23 2003-12-02 Marutaka Co Ltd 椅子型マッサージ機
JP2006026302A (ja) * 2004-07-21 2006-02-02 Jepico Corp 睡眠分析装置
JP2008068019A (ja) * 2006-09-15 2008-03-27 Gac Corp 呼気時間を出力可能な装置および方法
JP2009509638A (ja) * 2005-09-30 2009-03-12 ニューヨーク ユニバーシティー 患者の呼吸パターンの診断と治療のためのシステムおよび方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62277968A (ja) * 1986-05-27 1987-12-02 八木 寛 バイオフイ−ドバツク装置
JPH0415064A (ja) * 1990-05-10 1992-01-20 Matsushita Electric Ind Co Ltd 就寝装置
JP2000325315A (ja) * 1999-05-19 2000-11-28 Arata Nemoto 睡眠段階判定方法および睡眠段階判定装置
JP2002336357A (ja) * 2001-03-13 2002-11-26 Matsushita Electric Works Ltd 呼吸誘導方法、感覚刺激装置、感覚刺激制御装置および照明制御装置
JP2002336358A (ja) * 2001-03-15 2002-11-26 Matsushita Electric Works Ltd 調息方法、リフレッシュ方法、照明制御方法および装置
JP2003339809A (ja) * 2002-05-23 2003-12-02 Marutaka Co Ltd 椅子型マッサージ機
JP2006026302A (ja) * 2004-07-21 2006-02-02 Jepico Corp 睡眠分析装置
JP2009509638A (ja) * 2005-09-30 2009-03-12 ニューヨーク ユニバーシティー 患者の呼吸パターンの診断と治療のためのシステムおよび方法
JP2008068019A (ja) * 2006-09-15 2008-03-27 Gac Corp 呼気時間を出力可能な装置および方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014226451A (ja) * 2013-05-27 2014-12-08 昭和電工株式会社 睡眠状態計測装置及び睡眠状態計測方法
CN107106050A (zh) * 2014-12-18 2017-08-29 皇家飞利浦有限公司 用于慢波睡眠检测的系统和方法
JP2018502632A (ja) * 2014-12-18 2018-02-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 徐波睡眠検出のためのシステム及び方法
US10856801B2 (en) 2014-12-18 2020-12-08 Koninklijke Philips N.V. System and method for slow wave sleep detection

Also Published As

Publication number Publication date
JP4868514B2 (ja) 2012-02-01

Similar Documents

Publication Publication Date Title
JP3976752B2 (ja) 睡眠状態推定装置及びプログラム
JP5961235B2 (ja) 睡眠/覚醒状態評価方法及びシステム
JP3733133B2 (ja) 睡眠状態推定装置
Paalasmaa et al. Unobtrusive online monitoring of sleep at home
US9833184B2 (en) Identification of emotional states using physiological responses
EP3927234B1 (en) A sleep monitoring system and method
Hwang et al. Nocturnal awakening and sleep efficiency estimation using unobtrusively measured ballistocardiogram
EP3329845B1 (en) Biological condition determination device
JP6585074B2 (ja) 被験者の生理学的活動をモニタするためのシステムおよび方法
JP5632986B2 (ja) 睡眠段階判定装置及び睡眠段階判定方法
JP5065823B2 (ja) いびき検出装置
JP7106729B2 (ja) 異常判定装置及びそれに用いるプログラム
CN104970779A (zh) 睡眠检测系统和方法
KR20180075832A (ko) 수면 상태 모니터링 방법 및 장치
JP5070701B2 (ja) 寝具に加わる被験者の荷重変化により得られる呼吸信号の解析方法および装置
JP4993980B2 (ja) 呼気時間を出力可能な装置および方法
JP2016087355A (ja) 睡眠状態判定装置、睡眠状態判定方法及びプログラム
JP2000325315A (ja) 睡眠段階判定方法および睡眠段階判定装置
JP4868514B2 (ja) 生体状態を推定した結果を出力する装置および方法
Ferri et al. Quantifying leg movement activity during sleep
EP3590418B1 (en) Apparatus for monitoring a patient during his sleep
JP7688593B2 (ja) 判定装置及びプログラム
JP2020073108A (ja) 睡眠段階判定方法、睡眠段階判定装置、及び睡眠段階判定プログラム
JP2006263032A (ja) 睡眠深度計測装置
JP6775359B2 (ja) 吐き気検出装置および吐き気検出装置の作動方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111031

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees