[go: up one dir, main page]

HK40077647B - Method for precise 3d lidar aided satellite positioning - Google Patents

Method for precise 3d lidar aided satellite positioning

Info

Publication number
HK40077647B
HK40077647B HK42022066335.5A HK42022066335A HK40077647B HK 40077647 B HK40077647 B HK 40077647B HK 42022066335 A HK42022066335 A HK 42022066335A HK 40077647 B HK40077647 B HK 40077647B
Authority
HK
Hong Kong
Prior art keywords
nlos
gnss
satellite
swm
point
Prior art date
Application number
HK42022066335.5A
Other languages
Chinese (zh)
Other versions
HK40077647A (en
Inventor
许立达
文伟松
Original Assignee
香港理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港理工大学 filed Critical 香港理工大学
Publication of HK40077647A publication Critical patent/HK40077647A/en
Publication of HK40077647B publication Critical patent/HK40077647B/en

Links

Description

三维激光雷达辅助的高精度卫星定位方法Three-dimensional lidar-assisted high-precision satellite positioning method

技术领域Technical Field

本公开主要涉及用于智能交通系统的自动驾驶或其他种类的自主系统的领域。具体而言,本公开涉及一种用于NLOS检测和校正的3D LiDAR辅助的全球导航卫星系统及方法,其可以提高定位性能。This disclosure primarily relates to the field of autonomous driving or other types of autonomous systems for intelligent transportation systems. Specifically, this disclosure relates to a 3D LiDAR-assisted global navigation satellite system and method for NLOS detection and correction, which can improve positioning performance.

背景技术Background Technology

自动驾驶被公认为是过度交通拥堵和预期事故的补救措施。然而,当前解决方案的定位精度不足是阻碍自动驾驶在城市场景中到来的关键问题之一。随着对ADV的需求不断增加,在城市环境中的定位变得至关重要。Autonomous driving is widely recognized as a remedy for excessive traffic congestion and anticipated accidents. However, the insufficient positioning accuracy of current solutions is one of the key issues hindering the arrival of autonomous driving in urban scenarios. With the increasing demand for ADV (Autonomous Driving Vehicles), positioning in urban environments becomes crucial.

GNSS,例如GPS和/或其他类似的基于卫星的定位技术,目前是为智能交通系统的ADV定位提供全球参考定位的主要手段之一。随着多个卫星星座的可用性增加,GNSS可以在开阔的天空区域提供令人满意的性能。然而,当大部分天空被遮挡时,GNSS的性能会严重下降,这是一个具有挑战性的问题。这种情况被称为“城市峡谷”情景。通常,在高度城市化的城市中,由于静态建筑物和动态对象引起的信号反射,定位精度会显著下降。GNSS, such as GPS and/or other similar satellite-based positioning technologies, is currently one of the primary means of providing global reference positioning for ADV (Advanced Vehicle Positioning) in intelligent transportation systems. With the increasing availability of multiple satellite constellations, GNSS can provide satisfactory performance over open sky areas. However, GNSS performance degrades significantly when much of the sky is obscured, posing a challenging problem. This situation is known as the "urban canyon" scenario. Typically, in highly urbanized cities, positioning accuracy decreases significantly due to signal reflections caused by static buildings and dynamic objects.

特别地,GNSS-RTK用于4级全自动驾驶车辆的高精度航空测绘和定位。通常,GNSS-RTK定位涉及两个步骤:(1)根据接收到的GNSS测量值估计浮点解;(2)基于导出的浮点解作为初始猜测,使用最小二乘算法(例如LAMBDA)求解整周模糊度。在实现固定解的情况下,基于空旷区域的双差分载波和编码测量,可以达到厘米级的定位精度。不幸的是,由于GNSS信号反射和周围建筑物的遮挡导致的NLOS和多径接收,GNSS-RTK的准确性在城市峡谷中显著降低。在实践中,城市峡谷中GNSS-RTK定位精度的显著下降主要是由GNSS NLOS接收的发生导致的。由于NLOS接收,GNSS定位的性能受到建筑物和动态对象等实时周围环境特征的高度影响。部分接收到的GNSS信号受到严重污染,包括大噪声。根据发明人之前的研究,在高度城市化的地区,接收到的大部分GNSS信号可以是多径或NLOS接收。因此,基于差分载波和编码测量的浮点解估计的准确性降低,使得模糊度求解难以得到固定解。Specifically, GNSS-RTK is used for high-precision aerial mapping and positioning of Level 4 fully automated vehicles. Typically, GNSS-RTK positioning involves two steps: (1) estimating a floating-point solution based on received GNSS measurements; and (2) using a least-squares algorithm (e.g., LAMBDA) to solve for integer ambiguities based on the derived floating-point solution as an initial guess. With a fixed solution, centimeter-level positioning accuracy can be achieved based on dual-differential carrier and coded measurements over open areas. Unfortunately, the accuracy of GNSS-RTK is significantly reduced in urban canyons due to NLOS and multipath reception caused by GNSS signal reflection and obstruction by surrounding buildings. In practice, the significant decrease in GNSS-RTK positioning accuracy in urban canyons is mainly due to the occurrence of GNSS NLOS reception. Due to NLOS reception, the performance of GNSS positioning is highly affected by real-time environmental features such as buildings and moving objects. Some received GNSS signals are heavily contaminated, including large noise levels. According to previous research by the inventors, in highly urbanized areas, most received GNSS signals can be multipath or NLOS receptions. Therefore, the accuracy of floating-point solution estimation based on differential carrier and coded measurements is reduced, making it difficult to obtain a fixed solution for ambiguity.

此外,由于来自周围建筑物的信号遮挡,城市峡谷中可用卫星的数量受到限制。因此,卫星分布的几何形状被扭曲,导致大的DOP。结果,由于卫星几何形状较差,搜索空间模糊度较大,难以获得固定解。简而言之,城市峡谷场景给GNSS-RTK定位的两个步骤都带来了额外的困难。Furthermore, the number of available satellites in urban canyons is limited due to signal obstruction from surrounding buildings. This distorts the geometry of satellite distribution, resulting in a large DOP (Depth of Opportunity). Consequently, the poor satellite geometry leads to significant ambiguity in the search space, making it difficult to obtain a fixed solution. In short, urban canyon scenarios introduce additional challenges to both steps of GNSS-RTK positioning.

因此,有效地感测和理解周围环境是改善城市地区的GNSS定位的关键,因为GNSS定位严重依赖于天空视野可见性。应对GNSS NLOS接收最著名的方法是3DMAGNSS定位,例如基于3D地图构建信息的NLOS排除和阴影匹配。然而,这些3DMA GNSS方法的缺点是1)依赖3D建筑模型的可用性和GNSS接收器位置的初始猜测;2)无法缓解由周围动态对象引起的NLOS接收。3DMA GNSS定位方法的最新进展在发明人之前的工作中进行了详细回顾。Therefore, effectively sensing and understanding the surrounding environment is crucial for improving GNSS positioning in urban areas, as GNSS positioning heavily relies on sky visibility. The most well-known method for addressing GNSS NLOS reception is 3DMA GNSS positioning, such as NLOS exclusion and shadow matching based on 3D map construction information. However, these 3DMA GNSS methods have drawbacks: 1) they rely on the availability of 3D building models and initial guessing of the GNSS receiver's location; 2) they cannot mitigate NLOS reception caused by dynamic objects in the surrounding environment. Recent advances in 3DMA GNSS positioning methods are reviewed in detail in the inventors' previous work.

在发明人最近的出版物中,3D LiDAR传感器,即被称之为ADV的“眼睛”,自动驾驶车辆的典型不可或缺的车载传感器,已被用于检测由动态对象引起的NLOS。由于3D LiDAR的-30°~+10°FOV有限,只能扫描双层巴士的一部分。此外,该方法严重依赖对象检测的准确性。尽管如此,这是第一项采用实时对象检测来辅助GNSS定位的工作。探索了使用实时3DLiDAR点云检测周围建筑物的方法,而不是仅检测动态对象。由于3D LiDAR的视野有限,只能扫描部分建筑物。因此,需要有关建筑物高度的信息来检测由建筑物引起的NLOS接收。发明人没有排除检测到的NLOS接收,而是探索了在LiDAR的帮助下校正NLOS伪距测量值的替代方案。3D LiDAR可以测量从GNSS接收器到可能已反射GNSS信号的建筑物表面的距离。然后,校正后的和剩余的健康GNSS测量值都可以用于进一步的GNSS定位。在校正检测到的NLOS卫星后获得了改进的性能。然而,这种方法的性能依赖于建筑物和反射器检测的准确性。当建筑物表面高度不规则时,建筑物检测和反射器检测都可能失败。LiDAR有限的FOV在动态对象和建筑物的检测中仍然是一个缺点。总体而言,以前的工作显示了使用实时机载传感(实时点云)检测GNSS NLOS的可行性。为了克服3D LiDAR的有限FOV的缺点,发明人探索了使用鱼眼相机和3D LiDAR来检测和校正NLOS信号。鱼眼相机用于检测非视距信号。同时,3D LiDAR被用来测量GNSS接收器与导致NLOS信号的潜在反射器之间的距离。然而,这种方法存在NLOS检测对环境光照条件敏感的问题。In the inventors' recent publication, a 3D LiDAR sensor, referred to as the "eyes" of an ADV (Advanced Driver Assistance Vehicle), a typical and indispensable onboard sensor for autonomous vehicles, has been used to detect NLOS caused by dynamic objects. Due to the limited field of view (FOV) of 3D LiDAR (-30° to +10°), only a portion of a double-decker bus can be scanned. Furthermore, the method heavily relies on the accuracy of object detection. Nevertheless, this is the first work to employ real-time object detection to assist GNSS positioning. A method was explored to detect surrounding buildings using real-time 3D LiDAR point clouds, rather than just detecting dynamic objects. Because of the limited field of view of 3D LiDAR, only a portion of buildings can be scanned. Therefore, information about building height is needed to detect NLOS reception caused by buildings. Instead of excluding detected NLOS reception, the inventors explored alternatives to correcting NLOS pseudorange measurements with the aid of LiDAR. The 3D LiDAR can measure the distance from the GNSS receiver to the surface of a building that may have reflected GNSS signals. The corrected and remaining healthy GNSS measurements can then be used for further GNSS positioning. Improved performance was achieved after correcting for detected NLOS satellites. However, the performance of this method depends on the accuracy of building and reflector detection. Both building and reflector detection may fail when building surfaces are highly irregular. The limited FOV of LiDAR remains a drawback for detecting dynamic objects and buildings. Overall, previous work has demonstrated the feasibility of using real-time airborne sensing (real-time point cloud) to detect GNSS NLOS. To overcome the limited FOV of 3D LiDAR, the inventors explored using a fisheye camera and a 3D LiDAR to detect and correct NLOS signals. The fisheye camera is used to detect non-line-of-sight signals. Simultaneously, the 3D LiDAR is used to measure the distance between the GNSS receiver and the potential reflector causing the NLOS signal. However, this method suffers from the problem of NLOS detection being sensitive to ambient lighting conditions.

因此,本领域需要具有改进的定位方法和系统,特别是对于能够在非常深的城市峡谷中实现高精度定位的自动驾驶。此外,结合本公开的附图和背景,从随后的详细描述和所附权利要求中,其他期望的特征和特性将变得显而易见。Therefore, there is a need in the art for improved positioning methods and systems, particularly for autonomous driving systems capable of achieving high-precision positioning in very deep urban canyons. Furthermore, other desirable features and characteristics will become apparent from the following detailed description and appended claims, taken in conjunction with the accompanying drawings and background information.

发明内容Summary of the Invention

本文提供了一种3D LiDAR辅助GNSS NLOS缓解方法和实现该方法的系统。本公开的目的是提供一种缓解由静态建筑物和动态对象引起的NLOS的方法。This paper presents a 3D LiDAR-assisted GNSS NLOS mitigation method and a system for implementing the method. The purpose of this disclosure is to provide a method for mitigating NLOS caused by static buildings and dynamic objects.

本公开的第一方面提供了一种用于使用卫星定位系统支持车辆进行定位的方法。该方法包括:从3D LiDAR传感器和LIO接收LiDAR因子和IMU因子;使用局部因子图优化集成LiDAR因子和IMU因子,以估计两个历元之间的相对运动;生成3D PCM作为辅助地标卫星,用于提供低仰角辅助地标卫星;通过GNSS接收器从卫星接收GNSS测量值;使用3D PCM从所述GNSS测量值中检测GNSS NLOS接收;以及从所述GNSS测量值中排除所述GNSS NLOS接收,以获得幸存的GNSS卫星测量值,从而提高用于自动驾驶车辆定位的GNSS测量值的质量。A first aspect of this disclosure provides a method for supporting vehicle positioning using a satellite positioning system. The method includes: receiving LiDAR factors and IMU factors from a 3D LiDAR sensor and an IIO; optimizing the integrated LiDAR factors and IMU factors using a local factor map to estimate the relative motion between two epochs; generating a 3D PCM as an auxiliary landmark satellite to provide low-elevation auxiliary landmark satellites; receiving GNSS measurements from the satellites via a GNSS receiver; detecting GNSS NLOS receptions from the GNSS measurements using the 3D PCM; and excluding the GNSS NLOS receptions from the GNSS measurements to obtain surviving GNSS satellite measurements, thereby improving the quality of GNSS measurements used for positioning of autonomous vehicles.

在一实施例中,该方法进一步包括:对所述幸存的GNSS卫星测量值执行GNSS-RTK浮点估计,以获得浮点解;执行模糊度求解以获得固定模糊度解;以及从所述浮点解和所述固定模糊度解确定固定的GNSS-RTK定位解。In one embodiment, the method further includes: performing GNSS-RTK floating-point estimation on the surviving GNSS satellite measurements to obtain a floating-point solution; performing ambiguity solving to obtain a fixed ambiguity solution; and determining a fixed GNSS-RTK positioning solution from the floating-point solution and the fixed ambiguity solution.

在一实施例中,通过应用LAMBDA算法来执行所述模糊度求解。In one embodiment, the ambiguity solution is performed by applying the LAMBDA algorithm.

在一实施例中,该方法进一步包括:将所述固定的GNSS-RTK定位解反馈给所述3DLiDAR传感器和所述LIO;以及使用所述固定的GNSS-RTK定位解执行PCM校正,以校正3D点云的漂移。In one embodiment, the method further includes: feeding back the fixed GNSS-RTK positioning solution to the 3D LiDAR sensor and the LIO; and performing PCM correction using the fixed GNSS-RTK positioning solution to correct the drift of the 3D point cloud.

在一实施例中,该方法进一步包括:在所述GNSS测量值上使用最小二乘算法获得所述浮点解的初始猜测。In one embodiment, the method further includes: using a least squares algorithm on the GNSS measurements to obtain an initial guess of the floating-point solution.

本公开的第二方面提供了一种用于使用卫星定位系统支持车辆进行定位的方法。该方法包括:基于来自3D LiDAR传感器和AHRS的3D点云实时地生成滑动窗口地图(SWM),其中,所述SWM提供用于检测和校正NLOS接收的环境描述;将来自先前帧的3D点云累积到所述SWM中,以增强所述3D LiDAR传感器的FOV;通过GNSS接收器接收来自卫星的GNSS测量值;使用所述SWM从所述GNSS测量值中检测所述NLOS接收;当在所述SWM中找不到反射点时,通过NLOS重构来校正所述NLOS接收;以及通过最小二乘算法估计GNSS定位。A second aspect of this disclosure provides a method for supporting vehicle positioning using a satellite positioning system. The method includes: generating a sliding window map (SWM) in real time based on 3D point clouds from a 3D LiDAR sensor and an AHRS, wherein the SWM provides an environmental description for detecting and correcting NLOS reception; accumulating 3D point clouds from previous frames into the SWM to enhance the FOV of the 3D LiDAR sensor; receiving GNSS measurements from the satellite via a GNSS receiver; detecting the NLOS reception from the GNSS measurements using the SWM; correcting the NLOS reception by NLOS reconstruction when no reflection point is found in the SWM; and estimating GNSS positioning using a least-squares algorithm.

在一实施例中,该方法进一步包括:通过排除远离所述GNSS接收器的点云来使所述SWM的点云容量最小化,使得所述3D点云位于滑动窗口内。In one embodiment, the method further includes minimizing the point cloud capacity of the SWM by excluding point clouds that are far from the GNSS receiver, such that the 3D point cloud is located within a sliding window.

在一实施例中,生成所述SWM的步骤包括:基于来自3D LiDAR传感器的所述3D点云,从LiDAR扫描匹配中获取局部地图;以及采用AHRS的方向将所述SWM从载体坐标系转换为局部东北天(ENU)坐标系。In one embodiment, the step of generating the SWM includes: obtaining a local map from a LiDAR scan match based on the 3D point cloud from a 3D LiDAR sensor; and converting the SWM from the carrier coordinate system to the local northeast-sky (ENU) coordinate system using the orientation of the AHRS.

在一实施例中,使用快速搜索方法执行所述从所述GNSS测量值中检测所述NLOS接收的步骤,其中,所述快速搜索方法包括:使所述3D LiDAR传感器的中心的搜索点初始化;根据卫星的仰角和方位角确定连接所述GNSS接收器和卫星的搜索方向;以固定的增量值Δdpix沿所述搜索方向移动所述搜索点;计算所述搜索点附近的相邻点(Nk)数量;以及如果Nk超过预定阈值Nthres,则将所述搜索点归类为NLOS卫星。In one embodiment, the step of detecting the NLOS receiver from the GNSS measurements is performed using a fast search method, wherein the fast search method includes: initializing a search point at the center of the 3D LiDAR sensor; determining a search direction connecting the GNSS receiver and the satellite based on the satellite's elevation and azimuth angles; moving the search point along the search direction by a fixed increment Δdpix ; calculating the number of neighboring points ( Nk ) near the search point; and classifying the search point as an NLOS satellite if Nk exceeds a predetermined threshold Nthres .

在一实施例中,该方法进一步包括:通过使用基于所述SWM的模型校准重新估计所述GNSS测量值来校正所述NLOS接收,其中,所述SWM提供密集、离散和无组织的3D点云,而没有连续的建筑物表面或边界。In one embodiment, the method further includes: correcting the NLOS reception by re-estimating the GNSS measurements using a model calibration based on the SWM, wherein the SWM provides a dense, discrete, and unorganized 3D point cloud without continuous building surfaces or boundaries.

在一实施例中,模型校准包括:使用基于反射器检测算法的高效kdTree结构检测所述NLOS接收对应的反射点,其中,所述反射器检测算法包括:遍历从0°到360°的所有方位角,方位角分辨率为αres,仰角为当连接点pj和卫星的视距没有被阻挡时,检测潜在反射器;以及检测所述GNSS接收器和所述潜在反射器之间距离最短的唯一反射器。In one embodiment, model calibration includes: detecting the reflection point corresponding to the NLOS receiver using an efficient kdTree structure based on a reflector detection algorithm, wherein the reflector detection algorithm includes: traversing all azimuth angles from 0° to 360°, with an azimuth resolution of αres and an elevation angle of [value missing], detecting potential reflectors when the line of sight between the connection point pj and the satellite is not obstructed; and detecting the unique reflector with the shortest distance between the GNSS receiver and the potential reflector.

在一实施例中,NLOS使用具有比例因子的加权方案来执行所述NLOS重构。所述比例因子用于对所述NLOS接收进行去加权,所述加权方案包括以下定义:如果卫星被归类为LOS测量值,则根据卫星信噪比(SNR)和仰角计算所述比例因子;如果所述卫星被归类为NLOS测量值并且校正了伪距误差,则根据所述卫星SNR和所述仰角计算所述比例因子;以及如果所述卫星被归类为NLOS测量值但未检测到反射点,则根据所述卫星SNR、所述仰角和比例因子Kw计算所述比例因子。In one embodiment, NLOS uses a weighting scheme with a scaling factor to perform the NLOS reconstruction. The scaling factor is used to deweight the NLOS reception, and the weighting scheme includes the following definitions: if the satellite is classified as a LOS measurement, the scaling factor is calculated based on the satellite signal-to-noise ratio (SNR) and elevation angle; if the satellite is classified as an NLOS measurement and pseudorange error has been corrected, the scaling factor is calculated based on the satellite SNR and the elevation angle; and if the satellite is classified as an NLOS measurement but no reflection point is detected, the scaling factor is calculated based on the satellite SNR, the elevation angle, and the scaling factor Kw .

提供本发明内容是为了以简化形式介绍概念的选择,这些概念将在下面的详细描述中做了进一步描述。本发明内容并非旨在识别所要求保护的主题的关键特征或基本特征,也不旨在用作确定所要求保护的主题的范围的辅助。本发明的其他方面和优点如以下实施例所示公开。This summary is provided to introduce the selected concepts in a simplified form, which will be further described in the detailed description below. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. Other aspects and advantages of the invention are disclosed as shown in the following embodiments.

附图说明Attached Figure Description

附图包含用于进一步说明和阐明本公开的上述和其他方面、优点和特征的附图。应当理解,这些附图仅描绘了本公开的某些实施例并且不旨在限制其范围。还应当理解,这些附图是为了简单和清楚而示出的,并且不一定按比例描绘。现在将通过使用附图以附加的具体性和细节来描述和解释本公开,其中:The accompanying drawings include figures for further illustration and elucidation of the above and other aspects, advantages, and features of this disclosure. It should be understood that these drawings depict only certain embodiments of the disclosure and are not intended to limit its scope. It should also be understood that these drawings are shown for simplicity and clarity and are not necessarily drawn to scale. This disclosure will now be described and explained with additional specificity and detail using the accompanying drawings, in which:

图1是根据本公开示例性实施例的3D LiDAR辅助GNSS实时动态差分定位方法的概略图;Figure 1 is a schematic diagram of a 3D LiDAR-assisted GNSS real-time dynamic differential positioning method according to an exemplary embodiment of the present disclosure;

图2是根据本公开示例性实施例的3D LiDAR辅助GNSS NLOS缓解方法的概略图;Figure 2 is a schematic diagram of a 3D LiDAR-assisted GNSS NLOS mitigation method according to an exemplary embodiment of the present disclosure;

图3是根据本公开示例性实施例的生成的滑动窗口地图和实时3D点云的示例性演示;Figure 3 is an exemplary demonstration of a sliding window map and a real-time 3D point cloud generated according to an exemplary embodiment of the present disclosure;

图4是本发明采用的坐标系的概略图。Figure 4 is a schematic diagram of the coordinate system used in this invention.

图5是示出根据本公开的示例性实施例的基于生成的滑动窗口地图的NLOS检测的概念图;Figure 5 is a conceptual diagram illustrating NLOS detection based on a generated sliding window map according to an exemplary embodiment of the present disclosure;

图6是通过感知世界对被污染的GNSS信号进行重构和校正;Figure 6 shows the reconstruction and correction of contaminated GNSS signals through the perception of the world;

图7为本发明实施例的3D LiDAR辅助GNSS实时动态差分定位方法应用前后的定位表现。Figure 7 shows the positioning performance before and after the application of the 3D LiDAR-assisted GNSS real-time dynamic differential positioning method according to an embodiment of the present invention.

图8是根据本公开的实施例的被配置为利用3D LiDAR辅助的GNSS NLOS缓解方法并结合到车辆中的3D LiDAR辅助GNSS的系统图。Figure 8 is a system diagram of a 3D LiDAR-assisted GNSS NLOS mitigation method configured to be used in conjunction with a vehicle, according to an embodiment of the present disclosure.

具体实施方式Detailed Implementation

本公开主要向自动驾驶或具有使用卫星定位系统的导航要求的其他类型的自主系统的领域提供。车辆可以是ADV,或配备ADAS的车辆。更具体地,但不限于,本公开提供了一种3D LiDAR辅助的GNSS NLOS缓解方法,该方法可以在非常深的城市峡谷中检测和校正NLOS信号,并且该系统实现了该方法。本公开的目的是提供一种缓解由静态建筑物和动态对象引起的NLOS的方法,从而在高度密集的城市化区域中实现高精度。This disclosure is primarily directed to the field of autonomous driving or other types of autonomous systems requiring navigation using satellite positioning systems. The vehicle may be an ADV (Advanced Driver Assistance Vehicle) or a vehicle equipped with ADAS (Advanced Driver Assistance Systems). More specifically, but not limited to, this disclosure provides a 3D LiDAR-assisted GNSS NLOS mitigation method that can detect and correct NLOS signals in very deep urban canyons, and the system implements this method. The purpose of this disclosure is to provide a method for mitigating NLOS caused by static buildings and dynamic objects, thereby achieving high accuracy in highly dense urbanized areas.

效果、优势、问题的解决方案以及可能导致任何效果、优势或解决方案出现或变得更加明显的任何要素不应被解释为任何或所有权利要求的关键的、必需的或基本的特征或要素。本发明仅由所附权利要求限定,包括在本申请未决期间作出的任何修改以及所发布的那些权利要求的所有等同物。Effects, advantages, solutions to problems, and any elements that may lead to or make more apparent any effects, advantages, or solutions should not be construed as key, essential, or fundamental features or elements of any or all claims. The invention is defined solely by the appended claims, including any modifications made during the pending period of this application and all equivalents of those claims.

在随后的权利要求和本发明的前面的描述中,除非上下文由于表达语言或必要的暗示而另有要求,否则“包括”(“comprise”或其变体,例如“comprises”或“comprising”)以包容性方式使用,即,指定所述特征的存在,但不排除本发明的各种实施例中进一步特征的存在或添加。In the following claims and the foregoing description of the invention, unless the context requires otherwise due to the language of expression or necessary implication, the word "comprise" (or variations thereof, such as "comprises" or "comprising") is used in an inclusive manner, that is, to specify the presence of the stated feature but not to exclude the presence or addition of further features in various embodiments of the invention.

如本文所用,术语“全球导航卫星系统”或“GNSS”是指通用卫星辅助导航系统,其中,电子接收器可以使用由卫星发射的视距无线电信号以指定的精度确定它们的位置。GNSS接收器可以接收和处理来自绕地球运行的多颗卫星的信号,以确定GNSS接收器的位置,并位置转换确定车辆的位置。为了本发明的目的,除非另有说明,否则GNSS接收器的状态和卫星的位置均以ECEF坐标系表示。As used herein, the term "Global Navigation Satellite System" or "GNSS" refers to a universal satellite-aided navigation system in which electronic receivers can determine their position with specified accuracy using line-of-sight radio signals transmitted by satellites. A GNSS receiver can receive and process signals from multiple satellites orbiting the Earth to determine the receiver's position and perform position transformations to determine the vehicle's position. For the purposes of this invention, unless otherwise stated, the status of the GNSS receiver and the positions of the satellites are represented in the ECEF coordinate system.

术语“LiDAR传感器”是指能够通过将激光束发射到物体并测量激光束的反射部分以计算距离来测量从车辆到物体的距离的传感器。The term "LiDAR sensor" refers to a sensor that can measure the distance from a vehicle to an object by emitting a laser beam at the object and measuring the reflected portion of the laser beam to calculate the distance.

术语“姿态航向参考系统”或“AHRS”是指具有一个或多个传感器的系统,该一个或多个传感器被配置为使用振动来测量基于垂直参考的车辆的方向、方位和/或加速度的变化。The term "Attitude Heading Reference System" or "AHRS" refers to a system with one or more sensors configured to use vibrations to measure changes in the vehicle's orientation, azimuth, and/or acceleration based on a vertical reference.

本公开的第一实施例是检测和排除GNSS NLOS接收以进一步改进GNSS-RTK定位。同时,采用改进后的GNSS-RTK定位来修正3D点云的漂移,从而提高整体定位精度也具有重要意义。The first embodiment of this disclosure is to detect and exclude GNSS NLOS reception to further improve GNSS-RTK positioning. Simultaneously, using the improved GNSS-RTK positioning to correct 3D point cloud drift, thereby improving overall positioning accuracy, is also of great significance.

图1提供了本公开中提出的3D LiDAR辅助的GNSS-RTK定位方法的概略图。该系统包括两部分:(1)基于来自3D LiDAR和IMU的云的实时环境描述生成,以及来自GNSS-RTK解S100A的校正;(2)基于实时环境描述的GNSS NLOS检测和排除,以及基于S100B幸存卫星的GNSS-RTK定位。Figure 1 provides a schematic diagram of the 3D LiDAR-assisted GNSS-RTK positioning method proposed in this disclosure. The system comprises two parts: (1) generation of a real-time environment description based on the cloud from the 3D LiDAR and IMU, and correction from the GNSS-RTK solution S100A; and (2) GNSS NLOS detection and elimination based on the real-time environment description, and GNSS-RTK positioning based on the surviving S100B satellites.

在某些实施例中,使用3D LiDAR传感器110通过从本质上解决传统GNSS-RTK由于信号反射和遮挡引起的问题,改进了城市峡谷中的GNSS-RTK定位。首先,执行3D LiDAR传感器110和LIO120,其接收并使用局部因子图优化141松散地集成LiDAR因子和IMU因子,以估计两个历元之间的相对运动并生成3D PCM以提供环境描述。LiDAR因子从LiDAR扫描匹配111获得,IMU因子从预积分121获得。这里使用的环境描述是本地环境描述。在某些实施例中,3D LiDAR传感器110是配置为以10Hz的频率收集原始3D点云数据的Velodyne 32,并且LIO 120是配置为以100Hz的频率收集数据的Xsens Ti-10 IMU。并且,同时估计周围点云的位置。因此,通过使用3D PCM上的周围点云的位置估计来执行PCM校正142。效果是该方法可以有利地生成局部准确的PCM。In some embodiments, the use of a 3D LiDAR sensor 110 improves GNSS-RTK positioning in urban canyons by fundamentally addressing the problems of conventional GNSS-RTK caused by signal reflection and occlusion. First, the 3D LiDAR sensor 110 and LIO 120 are executed, receiving and loosely integrating LiDAR factors and IMU factors using local factor map optimization 141 to estimate the relative motion between two epochs and generate a 3D PCM to provide an environmental description. The LiDAR factors are obtained from LiDAR scan matching 111, and the IMU factors are obtained from pre-integration 121. The environmental description used here is a local environmental description. In some embodiments, the 3D LiDAR sensor 110 is a Velodyne 32 configured to collect raw 3D point cloud data at a frequency of 10 Hz, and the LIO 120 is an Xsens Ti-10 IMU configured to collect data at a frequency of 100 Hz. Simultaneously, the positions of the surrounding point cloud are estimated. Therefore, PCM correction 142 is performed using the position estimation of the surrounding point cloud on the 3D PCM. The effect is that this method can advantageously generate locally accurate PCMs.

其次,在环境描述的帮助下检测和排除潜在的GNSS NLOS卫星。GNSS接收器130接收来自卫星的GNSS测量值,其可以使用传统的最小二乘算法131来导出浮点解的初始猜测。在某些实施例中,GNSS接收器130是商业级u-blox F9P GNSS接收器,用于以1Hz的数据频率收集原始GPS/北斗测量值。此外,NovAtel SPAN-CPT、GNSS(GPS、GLONASS和北斗)RTK/INS(光纤陀螺仪,FOG)综合导航系统可用于提供地面实况定位。使用ROS收集和同步所有数据。Secondly, potential GNSS NLOS satellites are detected and excluded with the aid of environmental description. GNSS receiver 130 receives GNSS measurements from the satellites, which can be used to derive an initial guess of the floating-point solution using a conventional least-squares algorithm 131. In some embodiments, GNSS receiver 130 is a commercial-grade u-blox F9P GNSS receiver used to collect raw GPS/BeiDou measurements at a data frequency of 1 Hz. Furthermore, a NovAtel SPAN-CPT, GNSS (GPS, GLONASS, and BeiDou) RTK/INS (fiber optic gyroscope, FOG) integrated navigation system can be used to provide ground-based positioning. All data is collected and synchronized using ROS.

对于后续的GNSS NLOS检测,本公开的第一实施例不依赖于GNSS接收器130的浮点解的初始猜测。相反,使用通过LiDAR或惯性积分与相关算法生成的3D PCM从GNSS测量值中检测GNSS NLOS接收。因此,使用GNSS NLOS排除151可以缓解GNSS测量值的质量差的问题,它基本上排除了潜在的GNSS NLOS接收以获得幸存的GNSS卫星测量。For subsequent GNSS NLOS detection, the first embodiment of this disclosure does not rely on an initial guess of the floating-point solution of the GNSS receiver 130. Instead, GNSS NLOS reception is detected from GNSS measurements using 3D PCM generated by LiDAR or inertial integration and correlation algorithms. Therefore, using GNSS NLOS exclusion 151 can alleviate the problem of poor GNSS measurement quality, which essentially excludes potential GNSS NLOS reception to obtain surviving GNSS satellite measurements.

为了解决这个问题,本公开提出采用来自生成的点云地图的地标作为“辅助地标卫星”以从根本上改善卫星几何形状。有利地,辅助地标卫星和接收卫星作为点云地图互补,可以提供低仰角辅助地标卫星。这种低仰角辅助地标卫星通常对于物理接收的卫星是不可用的。为此,排除了受污染的GNSS NLOS卫星,并在辅助地标卫星的帮助下改进了卫星几何形状。To address this issue, this disclosure proposes using landmarks from the generated point cloud map as "auxiliary landmark satellites" to fundamentally improve satellite geometry. Advantageously, the auxiliary landmark satellite and the receiving satellite complement each other as point cloud maps, providing low-elevation auxiliary landmark satellites. Such low-elevation auxiliary landmark satellites are typically unavailable for physically receiving satellites. Therefore, contaminated GNSS NLOS satellites are excluded, and satellite geometry is improved with the help of auxiliary landmark satellites.

接下来,可以通过执行GNSS-RTK浮点估计152以获得浮点解,然后执行模糊度求解153以获得固定模糊度解,基于幸存的GNSS卫星测量来估计浮点解。在某些实施例中,模糊度求解153通过应用LAMBDA算法来执行。最后,估计的固定的GNSS-RTK定位解154被反馈到3D LiDAR传感器和LIO以执行PCM校正142以进一步校正3D点云的漂移。通过结合由GNSSNLOS检测辅助的、改善的GNSS-RTK定位,该方法可以从本质上纠正LiDAR或惯性积分生成的3D点云地图的漂移。因此,所提出的方法有效地结合了LIO(以在短时间内局部准确的方式,并为GNSS NLOS检测提供环境描述)和GNSS-RTK(无漂移,具有全球参考定位但受GNSS NLOS影响)的互补性。Next, a floating-point solution can be obtained by performing GNSS-RTK floating-point estimation 152, followed by ambiguity resolution 153 to obtain a fixed ambiguity solution, which is estimated based on surviving GNSS satellite measurements. In some embodiments, ambiguity resolution 153 is performed by applying the LAMBDA algorithm. Finally, the estimated fixed GNSS-RTK positioning solution 154 is fed back to the 3D LiDAR sensor and LIO to perform PCM correction 142 to further correct for 3D point cloud drift. By combining improved GNSS-RTK positioning assisted by GNSS NLOS detection, this method can essentially correct the drift of 3D point cloud maps generated by LiDAR or inertial integration. Therefore, the proposed method effectively combines the complementarity of LIO (which provides environmental description for GNSS NLOS detection in a locally accurate manner over a short time) and GNSS-RTK (drift-free, with global reference positioning but affected by GNSS NLOS).

本公开的第一实施例通过利用3D LiDAR传感器的感知能力来检测和排除潜在的GNSS NLOS接收来解决这个问题。这种方法即使在城市峡谷场景中也可以达到10厘米的精度,以满足自动驾驶的导航要求。在本公开的第二实施例中,提供了一种替代方法和系统,其采用3D LiDAR来帮助GNSS单点定位。定位只能在5米范围内准确,不如第一实施例的GNSS-RTK准确。The first embodiment of this disclosure addresses this problem by utilizing the sensing capabilities of a 3D LiDAR sensor to detect and exclude potential GNSS NLOS reception. This method achieves an accuracy of 10 centimeters even in urban canyon scenarios, meeting the navigation requirements of autonomous driving. In the second embodiment of this disclosure, an alternative method and system are provided that employ 3D LiDAR to assist in GNSS point positioning. Positioning accuracy is limited to a range of only 5 meters, which is less accurate than the GNSS-RTK of the first embodiment.

参考图2,图解说明了3D LiDAR辅助GNSS NLOS缓解方法的概略图。该系统包括两部分:(1)基于来自3D LiDAR传感器和AHRS的3D点云的实时SWM生成S200A;(2)基于实时环境描述的GNSS NLOS检测与校正S200B。Referring to Figure 2, a schematic diagram of a 3D LiDAR-assisted GNSS NLOS mitigation method is illustrated. The system consists of two parts: (1) a real-time SWM generation S200A based on 3D point clouds from 3D LiDAR sensors and AHRS; and (2) a GNSS NLOS detection and correction S200B based on real-time environment description.

有利地,SWM是基于来自3D LiDAR传感器110的实时3D点云生成的,其中,仅使用滑动窗口内的3D点云来生成SWM,因为远离GNSS接收器130的点云对于NLOS检测是不必要的。因此,可以最小化SWM的尺寸。首先使用3D LiDAR传感器110和AHRS160生成SWM,其中,SWM本质上提供了用于检测和校正NLOS接收的环境描述。基于来自3D LiDAR传感器110的3D点云,从LiDAR扫描匹配211获得局部地图。直接采用来自AHRS 160的方向以将SWM从载体坐标系转换为局部ENU坐标系。Advantageously, the SWM is generated based on real-time 3D point clouds from the 3D LiDAR sensor 110, where only the 3D point cloud within a sliding window is used to generate the SWM, since point clouds far from the GNSS receiver 130 are unnecessary for NLOS detection. Therefore, the size of the SWM can be minimized. The SWM is first generated using the 3D LiDAR sensor 110 and the AHRS 160, where the SWM essentially provides an environmental description for detecting and correcting NLOS reception. A local map is obtained from LiDAR scan matching 211 based on the 3D point cloud from the 3D LiDAR sensor 110. Orientation from the AHRS 160 is directly adopted to transform the SWM from the carrier coordinate system to the local ENU coordinate system.

通过执行局部转换241,可以生成SWM,该SWM被实时执行以用于GNSS NLOS检测。这对于实现更好的环境描述能力至关重要,从而可以增强LiDAR传感的FOV。在传统方法中,仅应用实时3D点云来进一步检测NLS卫星。然而,NLOS检测的能力受限于3D LiDAR传感器110的FOV。在这方面,本公开的第二实施例通过将实时点云累积到SWM中来改进现有技术的不足。可以有效增强3D LiDAR传感器110的FOV。By performing local transformation 241, a SWM can be generated, which is executed in real time for GNSS NLOS detection. This is crucial for achieving better environmental description capabilities, thereby enhancing the FOV of LiDAR sensing. In conventional methods, only real-time 3D point clouds are applied to further detect NLS satellites. However, the NLOS detection capability is limited by the FOV of the 3D LiDAR sensor 110. In this regard, the second embodiment of this disclosure improves upon the shortcomings of the prior art by accumulating real-time point clouds into the SWM. The FOV of the 3D LiDAR sensor 110 can be effectively enhanced.

参考如图3所示的感知数字世界,其显示了实时3D LiDAR点云和SWM之间的差异。感知环境开启了一个新窗口,以揭示由周围高层建筑等造成的GNSS信号传输的遮挡或反射的影响。3D LiDAR传感器110的FOV有限,单帧3D点云只能有效检测建筑物的低洼部分和车辆(例如双层巴士)。简单地基于实时3D点云无法有效地对高仰角卫星的可见性进行分类。由于3D LiDAR传感器110的物理扫描角度分布,实时3D点云也是稀疏的。Referring to Figure 3, which illustrates the perceived digital world, the differences between real-time 3D LiDAR point clouds and SWM (Surveyed Width Model) are shown. Perceiving the environment opens a new window to reveal the effects of GNSS signal transmission obstruction or reflection caused by surrounding tall buildings, etc. The 3D LiDAR sensor 110 has a limited FOV (Field of View), and a single frame of 3D point cloud can only effectively detect low-lying areas of buildings and vehicles (e.g., double-decker buses). Simply relying on real-time 3D point clouds cannot effectively classify the visibility of high-elevation satellites. Due to the physical scanning angle distribution of the 3D LiDAR sensor 110, the real-time 3D point cloud is also sparse.

利用本公开的SWM,可以有效地改善上述问题。SWM的地图点如图3所示(从SWM中去除地面点以进行有效的NLOS检测)。在SWM的帮助下,截止高度角可以达到76°,因此可以对仰角小于76°的卫星的能见度进行分类。SWM中的点云比原始实时3D点云要密集得多,这可以显著提高NLOS检测的准确性。完整的SWM地图的快照显示在图3的右上角。建筑物和动态对象,如双层巴士,甚至树木都包含在SWM中,这些并未包含在3D建筑模型中。The aforementioned problems can be effectively improved using the SWM disclosed herein. The map points of the SWM are shown in Figure 3 (ground points are removed from the SWM for effective NLOS detection). With the help of the SWM, the cutoff elevation angle can reach 76°, thus enabling the classification of visibility for satellites with elevation angles less than 76°. The point cloud in the SWM is much denser than the original real-time 3D point cloud, which significantly improves the accuracy of NLOS detection. A snapshot of the complete SWM map is shown in the upper right corner of Figure 3. Buildings and dynamic objects, such as double-decker buses and even trees, are included in the SWM, which are not included in the 3D building model.

为了生成基于实时3D点云的点云地图,通常使用SLAM方法。事实上,可以在短时间内以低漂移获得满意的精度。但是,误差会随着时间的推移而累积,在长期行进后会导致较大的误差,并且通常无法进行闭环。因此,在实际应用中,只有半径为250米左右的圆圈内的物体才能引起GNSS NLOS接收,而忽略远处的建筑物。To generate point cloud maps based on real-time 3D point clouds, the SLAM method is typically used. In fact, satisfactory accuracy with low drift can be achieved in a short time. However, errors accumulate over time, leading to significant errors after long-term travel, and loop closure is usually impossible. Therefore, in practical applications, only objects within a circle with a radius of approximately 250 meters will be received by GNSS NLOS, while distant buildings are ignored.

参照图4,示出了坐标系的变换。ECEF坐标系固定在地球的中心。选择第一个点作为ENU坐标系的参考,而LiDAR、AHRS和GNSS接收器之间的外部参数是预先固定和校准的。L坐标系(ENU)通过转换为G坐标系(ECEF)。Referring to Figure 4, the coordinate system transformation is illustrated. The ECEF coordinate system is fixed at the center of the Earth. The first point is chosen as the reference for the ENU coordinate system, while the extrinsic parameters between the LiDAR, AHRS, and GNSS receivers are pre-fixed and calibrated. The L coordinate system (ENU) is transformed into the G coordinate system (ECEF).

本公开仅使用3D点云的最后Nsw坐标系来生成滑动窗口地图。结果,地图生成的漂移误差因此被限制在一个很小的值上,并且由窗口的大小(Nsw)决定。为了使具有大量动态对象的城市峡谷中的垂直方向上的明显漂移最小化,本公开采用绝对地面来约束垂直漂移。下面演示了SWM生成算法的细节:This disclosure uses only the last Nsw coordinate system of the 3D point cloud to generate the sliding window map. As a result, the drift error in map generation is thus limited to a very small value and is determined by the window size (Nsw). To minimize significant vertical drift in urban canyons with a large number of dynamic objects, this disclosure employs absolute ground to constrain vertical drift. Details of the SWM generation algorithm are demonstrated below:

输入:从历元t-Nsw+1到历元t的的一系列点云为3D LiDAR、AHRS和GNSS接收器之间的外部参数。Input: A series of point clouds from epoch tN sw +1 to epoch t, representing external parameters between 3D LiDAR, AHRS, and GNSS receivers.

输出:Output:

步骤1:初始化Step 1: Initialization

步骤2:SWM生成:Step 2: SWM generation:

首先,将所有点云准到以为第一坐标系的局部地图中;其次,利用以下等式,将局部地图内的一个点转换到接收器载体坐标系中的First, align all point clouds to a local map using a given coordinate system as the primary coordinate system. Second, use the following equation to transform a point within the local map to the receiver carrier's coordinate system.

第三,利用以下等式将局部地图内的一个点转换为ENU坐标系中的Third, use the following equation to convert a point within a local map to the ENU coordinate system.

现在返回参考图2,对GNSS伪距测量值进行GNSS NLOS检测和校正S200B的第二部分设置有四个阶段。首先,GNSS NLOS检测251用于基于使用SWM的卫星可见性分类的模型验证,这可以有效地识别LOS卫星和NLOS卫星。接下来,如果一颗卫星被归类为NLOS,则执行作为模型校准阶段的GNSSNLOS校正252,其通过校正NLOS伪距测量值(CNLOS)来重新估计GNSS测量值。但是,如果一颗卫星被归类为NLOS,而其反射点不在SWM(FNLOS)内,则意味着NLOS校正不可用。第三阶段是执行NLOS重构253,这是一个模型修复阶段,通过对NLOS测量值进行去加权以用于进一步定位。GNSS定位通过最小二乘算法254基于伪距测量值来估计。Returning to Figure 2, the second part of the GNSS pseudorange measurement NLOS detection and correction S200B setup has four stages. First, GNSS NLOS detection 251 is used for model validation based on satellite visibility classification using SWM, which effectively identifies LOS and NLOS satellites. Next, if a satellite is classified as NLOS, GNSS NLOS correction 252 is performed as a model calibration stage, which re-estimates the GNSS measurements by correcting the NLOS pseudorange measurements (CNLOS). However, if a satellite is classified as NLOS but its reflector is not within SWM (FNLOS), NLOS correction is unavailable. The third stage is NLOS reconstruction 253, a model repair stage, which deweights the NLOS measurements for further positioning. GNSS positioning is estimated based on the pseudorange measurements using a least squares algorithm 254.

通过模型验证251进行的GNSS NLOS检测GNSS NLOS detection performed through model validation 251

不需要对象检测算法来恢复检测到的动态对象或建筑物表面的实际高度。由于SWM仅提供无组织的离散点,因此基于实时SWM使用快速搜索的方法直接检测NLOS接收,不需要对象检测过程。No object detection algorithm is needed to recover the actual height of detected dynamic objects or building surfaces. Since SWM only provides unorganized discrete points, a fast search method based on real-time SWM can be used to directly detect NLOS reception, eliminating the need for an object detection process.

快速搜索方法的输入包括:卫星s的仰角历元t处的方位角最大搜索距离Dthres和恒定增量值Δdpix。快速搜索方法用于确定卫星s的卫星可见度在步骤1中,在ENU坐标系中由示的3D LiDAR中心,初始化搜索点。连接GNSS接收器130和卫星的搜索方向由卫星的仰角和方位角确定。SWM被转换为kdTree结构用于查找相邻点。kdTree是一种用于点云处理的特殊结构,可以在搜索相邻点时高效执行。在步骤2中,给定一个固定的增量值Δdpix,利用以下等式,根据图5示例性所示的搜索方向将搜索点移动到下一个点The inputs to the fast search method include: the maximum search distance D <sub>thres</sub> at the azimuth epoch of the elevation angle of satellite s and a constant increment value Δd<sub> pix </sub>. The fast search method is used to determine the satellite visibility of satellite s. In step 1, the search point is initialized in the ENU coordinate system by the 3D LiDAR center shown. The search direction connecting the GNSS receiver 130 and the satellite is determined by the satellite's elevation and azimuth angles. The SWM is converted into a kdTree structure for finding neighboring points. A kdTree is a special structure for point cloud processing that can be performed efficiently when searching for neighboring points. In step 2, given a fixed increment value Δd<sub>pix</sub> , the search point is moved to the next point according to the search direction exemplarily shown in Figure 5, using the following equation.

k表示搜索点的索引。计算搜索点附近的相邻点(Nk)的数量。根据步骤3,如果Nk超过预定阈值Nthres,,则在搜索点附近有一些来自建筑物或动态对象的地图点,并且连接GNSS接收器130和卫星的视距被认为是被阻挡的。因此,卫星s被归类为NLOS卫星。否则,重复上述步骤2和3。如果kΔdpix>Dthres,则GNSS接收器130和卫星之间的方向是沿着LOS。Dthres可以设置为定义距离,其中,在该距离内的位置被考虑用于NLOS检测。使用快速搜索方法,可以对卫星能见度进行分类。k represents the index of the search point. The number of neighboring points ( Nk ) near the search point is calculated. According to step 3, if Nk exceeds a predetermined threshold Nthres , then there are map points near the search point originating from buildings or moving objects, and the line-of-sight between the GNSS receiver 130 and the satellite is considered blocked. Therefore, the satellite s is classified as an NLOS satellite. Otherwise, steps 2 and 3 are repeated. If kΔdpix > Dthres , then the direction between the GNSS receiver 130 and the satellite is along the LOS. Dthres can be set to define a distance where locations within that distance are considered for NLOS detection. Satellite visibility can be classified using a fast search method.

具有NLOS和LOS卫星的卫星可见性分类结果的演示示于图6中。灰色圆圈代表受污染(多径效应)的GNSS卫星,白色圆圈代表健康的GNSS卫星。每个圆圈旁边提供的数字表示每颗卫星的仰角。从这个例子中,检测到54°的仰角。如前所述,最大截止高度角为76°,而基于SWM的仰角可能与街道宽度显著相关。街道越窄,可以实现更高的截止高度角。然而,低仰角的NLOS卫星可能会导致大部分GNSS定位误差。即使对于具有挑战性的城市峡谷,提供本公开以检测和恢复信号遮挡和反射以实现高度准确的GNSS定位。A demonstration of satellite visibility classification results with NLOS and LOS satellites is shown in Figure 6. Gray circles represent contaminated (multipath effect) GNSS satellites, and white circles represent healthy GNSS satellites. The number provided next to each circle indicates the elevation angle of each satellite. In this example, an elevation angle of 54° was detected. As previously mentioned, the maximum cutoff elevation angle is 76°, and SWM-based elevation angles can be significantly correlated with street width. Narrower streets can achieve higher cutoff elevation angles. However, low elevation angles of NLOS satellites can cause most GNSS positioning errors. This disclosure is provided to detect and recover signal obstruction and reflections for highly accurate GNSS positioning, even in challenging urban canyons.

通过模型校准252进行的GNSS NLOS校正GNSS NLOS correction via model calibration 252

NLOS校正通过基于SWM的模型校准来执行。为了有效估计潜在的NLOS误差,GNSS接收器、卫星仰角和方位角之间的距离需要基于NLOS误差模型。特别地,模型校准包括检测对应于NLOS接收的反射点。传统上,光线追踪技术用于模拟NLOS信号传输路径以找到NLOS反射器。然而,这种技术具有计算能力高的缺点。本公开提供了一种不产生连续的建筑表面和清晰的建筑边界的方法。相反,SWM仅提供大量密集、离散、无组织的点云。从SWM中搜索反射器是使用基于反射器检测算法的有效kdTree结构执行的。NLOS correction is performed through SWM-based model calibration. To effectively estimate potential NLOS errors, the distance between the GNSS receiver, satellite elevation, and azimuth needs to be based on an NLOS error model. Specifically, model calibration involves detecting reflection points corresponding to the NLOS receiver. Traditionally, ray tracing techniques are used to simulate NLOS signal transmission paths to locate NLOS reflectors. However, this technique suffers from high computational costs. This disclosure provides a method that does not produce continuous building surfaces and sharp building boundaries. Instead, SWM only provides a large amount of dense, discrete, and unorganized point clouds. Reflector search from the SWM is performed using an efficient kdTree structure based on a reflector detection algorithm.

用于执行模型校准的反射器检测算法的输入包括:卫星s的仰角历元t处的方位角以及方位角分辨率αres。输出是最近的反射点它是NLOS卫星s最可能的反射面。The inputs to the reflector detection algorithm used to perform model calibration include: the azimuth angle at elevation epoch t of satellite s and the azimuth resolution αres . The output is the nearest reflection point, which is the most likely reflecting surface of NLOS satellites s.

在步骤1中,在3D LiDAR的中心初始化搜索点。搜索方向是根据卫星仰角和方位角确定的。In step 1, the search point is initialized at the center of the 3D LiDAR. The search direction is determined based on the satellite elevation and azimuth angles.

对于典型的信号反射路径,包括两个段。第一段是从卫星到反射器的信号传输。第二段是从反射器到GNSS接收器130的信号传输。由于反射信号应具有与预期定向信号相同的仰角,因此反射器检测算法的步骤2包括遍历从0°到360°的所有方位角,方位角分辨率为αres,仰角为从而找到所有可能的NLOS传输路径。A typical signal reflection path consists of two segments. The first segment is the signal transmission from the satellite to the reflector. The second segment is the signal transmission from the reflector to the GNSS receiver 130. Since the reflected signal should have the same elevation angle as the expected directional signal, step 2 of the reflector detection algorithm involves traversing all azimuth angles from 0° to 360°, with an azimuth resolution of α<sub> res </sub> and an elevation angle of α<sub>el</sub>, to find all possible NLOS transmission paths.

在步骤3中,如果与方向相关联的视距被点pj阻挡,则该点pj可能是反射点。特别是,如果连接点pj和卫星的视距没有被阻挡,则点pj被认为是可能的反射器并保存到In step 3, if the line-of-sight associated with the direction is blocked by point pj , then point pj is likely a reflecting point. Specifically, if the line-of-sight connecting point pj and the satellite is not blocked, then point pj is considered a possible reflector and saved.

在步骤4中,重复步骤2和3直到αs>360°,从而基于相同仰角的假设来识别所有可能的反射器。In step 4, steps 2 and 3 are repeated until αs > 360°, thereby identifying all possible reflectors based on the assumption of the same elevation angle.

最后,步骤5基于最短距离假设,从以GNSS接收器130和反射器之间的最短距离检测唯一反射器。Finally, step 5, based on the shortest distance assumption, detects the unique reflector from the shortest distance between the GNSS receiver 130 and the reflector.

有利地,反射器检测算法不依赖于建筑物表面的检测精度。短距离假设可以有效地防止过度校正,因为只有最近的反射器被识别为唯一的反射器。卫星s的潜在NLOS延迟可以计算为:Advantageously, the reflector detection algorithm does not depend on the detection accuracy of the building surface. The short-range assumption effectively prevents overcorrection because only the nearest reflector is identified as the unique reflector. The potential NLOS delay of the satellites can be calculated as:

其中,运算符||*||用于计算给定向量的范数。sec(*)表示正割函数。由于SWM的稀疏性,虽然它仍然比3D实时点云更密集,但仍然存在一些使用SWM无法找到反射器的卫星。因此,如果一颗卫星被归类为NLOS,但在SWM内部没有找到其反射点,则建议进行NLOS重构。The operator ||*|| is used to calculate the norm of a given vector. sec(*) denotes the secant function. Due to the sparsity of SWM, although it is still denser than 3D real-time point clouds, there are still some satellites whose reflectors cannot be found using SWM. Therefore, if a satellite is classified as NLOS but its reflector cannot be found within SWM, NLOS reconstruction is recommended.

用于模型修复的NLOS重构253NLOS Reconstruction for Model Repair 253

具有较低仰角和较小SNR的卫星具有较高的被NLOS误差污染的可能性。传统的基于卫星仰角和信噪比的伪距不确定性建模方法可以在开阔地区产生令人满意的性能,但在城市峡谷深处却不行。特别地,加权方案以相同的方式处理LOS和NLOS,这在已经检测到NLOS时是不可取的。本公开通过执行NLOS重构来校正GNSS NLOS接收,该重构实质上使用加权方案对LOS和NLOS的不确定性进行建模,其中添加了比例因子以对NLOS测量值进行去加权。加权方案包括:(1)如果卫星被归类为LOS测量值,则根据卫星SNR和仰角计算比例因子;(2)如果卫星被归类为NLOS测量值并且校正了伪距误差,则根据卫星SNR和仰角计算比例因子;(3)如果卫星被归类为NLOS测量值但未检测到反射点,则基于卫星SNR和仰角以及比例因子Kw计算比例因子。Satellites with low elevation angles and low SNRs are more likely to be contaminated by NLOS errors. Traditional pseudorange uncertainty modeling methods based on satellite elevation angle and SNR can produce satisfactory performance in open areas, but not in deep urban canyons. In particular, weighted schemes treat LOS and NLOS in the same way, which is undesirable when NLOS has been detected. This disclosure corrects GNSS NLOS reception by performing NLOS reconstruction, which essentially models the uncertainties of LOS and NLOS using a weighted scheme in which a scaling factor is added to deweight the NLOS measurements. The weighted scheme includes: (1) calculating a scaling factor based on satellite SNR and elevation angle if the satellite is classified as a LOS measurement; (2) calculating a scaling factor based on satellite SNR and elevation angle if the satellite is classified as an NLOS measurement and pseudorange errors have been corrected; and (3) calculating a scaling factor based on satellite SNR and elevation angle and a scaling factor Kw if the satellite is classified as an NLOS measurement but no reflection point has been detected.

通过最小二乘算法的GNSS定位254GNSS positioning using the least squares algorithm 254

来自GNSS接收器的伪距测量值表示为:The pseudorange measurement from the GNSS receiver is expressed as:

其中:in:

是卫星和GNSS接收器之间的几何范围;It is the geometric range between the satellite and the GNSS receiver;

是电离层延迟距离;It is the ionospheric delay distance;

是对流层延迟距离;和It is the tropospheric delay distance; and

是由多径效应、NLOS接收、接收机噪声和天线相位相关噪声引起的噪声。It is noise caused by multipath effect, NLOS reception, receiver noise and antenna phase-dependent noise.

同时,分别使用传统的Saastamoinen模型和Klobuchar模型来补偿大气效应(和)。来自给定卫星s的GNSS伪距测量值的观测模型表示为:Simultaneously, the traditional Saastamoinen model and the Klobuchar model are used to compensate for atmospheric effects (and), respectively. The observation model for GNSS pseudorange measurements from a given satellite s is expressed as:

其中,是与相关的噪声。Among them, there is the associated noise.

假设在用于进一步的GNSS定位之前从中减去NLOS误差观测函数的雅可比矩阵可以表示为:Suppose that the Jacobian matrix, after subtracting the NLOS error observation function from it before further GNSS positioning, can be expressed as:

其中,m表示历元t的卫星总数。Where m represents the total number of satellites in epoch t.

GNSS接收器的位置可以通过加权最小二乘迭代地估计如下:The location of the GNSS receiver can be estimated iteratively using weighted least squares as follows:

其中,Wt表示基于在NLOS重构253中估计的权重的权重矩阵,如下所示:Where W<sub>t</sub> represents the weight matrix based on the weights estimated in NLOS Reconstruction 253, as shown below:

其中,in,

被定义为基于卫星SNR和仰角计算LOS测量值的权重如下:The weights defined for calculating LOS measurements based on satellite SNR and elevation angle are as follows:

其中,T表示信噪比阈值;a、A、F是预先确定的。Where T represents the signal-to-noise ratio threshold; a, A, and F are predetermined.

图7为本发明第一实施例所开发的3D LiDAR辅助GNSS实时动态差分定位方法应用前后的定位表现。传统GNSS解决方案的经验有大约30米的误差,导致车辆在城市峡谷中行驶的车道误判。本改进的技术可以提供强大而精确的定位结果,以支持L4自动驾驶汽车的运行。Figure 7 shows the positioning performance before and after applying the 3D LiDAR-assisted GNSS real-time dynamic differential positioning method developed in the first embodiment of the present invention. Traditional GNSS solutions have an error of approximately 30 meters, leading to lane misjudgments when vehicles are driving in urban canyons. This improved technology can provide powerful and accurate positioning results to support the operation of L4 autonomous vehicles.

实验结果Experimental results

为了验证所提出方法的有效性,在具有静态建筑物、树木和动态对象(例如双层巴士)的典型城市峡谷中进行了两个实验。第一个实验是在街道宽度为22米,建筑高度为35米的城市峡谷1中进行的。第二个实验是在街道宽度为12.1米,建筑高度为65米的城市峡谷2中进行的。To verify the effectiveness of the proposed method, two experiments were conducted in typical urban canyons with static buildings, trees, and dynamic objects (such as double-decker buses). The first experiment was conducted in urban canyon 1, with a street width of 22 meters and a building height of 35 meters. The second experiment was conducted in urban canyon 2, with a street width of 12.1 meters and a building height of 65 meters.

车辆配备有u-blox M8TGNSS接收器,用于以1Hz的频率收集原始GNSS测量值。3DLiDAR传感器是Velodyne 32,配置为以10Hz的频率收集原始3D点云。Xsens Ti-10 INS用于以100Hz的频率收集数据。此外,NovAtel SPAN-CPT是一种GNSS(GPS、GLONASS和北斗)RTK/INS(光纤陀螺仪,FOG)综合导航系统,用于提供地面实况定位。FOG的陀螺零偏运行稳定性为每小时1度,其随机游走为每小时0.067度。流动站与GNSS基站之间的基线约为7公里。使用ROS收集和同步所有数据。评估了以下五组配置:(1)仅u-blox GNSS接收器;(2)加权最小二乘法(WLS);(3)排除所有NLOS卫星的加权最小二乘法(WLS-NE);(4)借助对所有NLOS卫星重新加权的加权最小二乘法(R-WLS);(5)加权最小二乘法,如果检测到反射器,则借助NLOS校正,如果未检测到反射器,则重新加权NLOS卫星(CR-WLS)。The vehicle is equipped with a u-blox M8TGNSS receiver for collecting raw GNSS measurements at a frequency of 1 Hz. The 3D LiDAR sensor is a Velodyne 32, configured to collect raw 3D point clouds at a frequency of 10 Hz. An Xsens Ti-10 INS is used to collect data at a frequency of 100 Hz. Additionally, a NovAtel SPAN-CPT, a GNSS (GPS, GLONASS, and BeiDou) RTK/INS (fiber optic gyroscope, FOG) integrated navigation system, is used to provide ground-based positioning. The FOG's gyro zero-bias operation stability is 1 degree per hour, and its random walk is 0.067 degrees per hour. The baseline between the rover and the GNSS base station is approximately 7 kilometers. All data is collected and synchronized using ROS. The following five configurations were evaluated: (1) u-blox GNSS receiver only; (2) weighted least squares (WLS); (3) weighted least squares excluding all NLOS satellites (WLS-NE); (4) weighted least squares with reweighting of all NLOS satellites (R-WLS); and (5) weighted least squares with NLOS correction if a reflector is detected, and reweighting of NLOS satellites if no reflector is detected (CR-WLS).

表1:城市峡谷1中GNSSSPP的定位性能Table 1: Localization performance of GNSSSPP in City Canyon 1

使用五种方法的GNSS定位实验的结果如上表1所示。使用u-blox接收器的定位结果平均误差为31.02米,标准差为37.69米。由于来自周围建筑物的严重多径和NLOS接收,最大误差达到177.59米。对于WLS,定位误差降至9.57米,标准偏差为7.32米。最大误差也降低到不到50米。排除所有探测到的非视距卫星后,定位误差增加到11.63米,比WLS还要差。出现这种情况是因为过度的NLOS排除会显著扭曲卫星的感知几何分布。可用性从100%略微下降到96.01%。因此The results of GNSS positioning experiments using five methods are shown in Table 1 above. The average positioning error using the u-blox receiver was 31.02 meters, with a standard deviation of 37.69 meters. The maximum error reached 177.59 meters due to severe multipath interference from surrounding buildings and NLOS reception. For WLS, the positioning error decreased to 9.57 meters, with a standard deviation of 7.32 meters. The maximum error also decreased to less than 50 meters. After excluding all detected non-line-of-sight satellites, the positioning error increased to 11.63 meters, worse than WLS. This occurred because excessive NLOS exclusion significantly distorts the perceived geometry of the satellites. Availability decreased slightly from 100% to 96.01%. Therefore…

表2:城市峡谷2中GNSSSPP的定位性能Table 2: Location performance of GNSSSPP in City Canyon 2

在城市峡谷2更具挑战性的情况下,发现可能无法检测到由高于40米的建筑物反射的一些NLOS卫星。使用u-blox接收器获得30.68米的定位误差,最大误差为92.32米。基于来自u-blox接收器的原始伪距测量值,使用WLS获得了23.79米的GNSS定位误差。与使用直接来自u-blox接收器的数据的GNSS定位相比,最大误差略微增加至104.83米。从GNSS定位(WLS-NE)中排除所有检测到的NLOS卫星后,均值和标准差分别增加到25.14米和23.73米。由于缺乏用于GNSS定位的卫星,GNSS定位数据的可用性下降到95.52%,这再次表明在城市峡谷中完全排除NLOS并不可取。在NLOS重构的帮助下,使用R-WLS的2D误差降低到19.61米。保证百分百的可用性。使用CR-WLS方法将GNSS定位误差进一步降低到17.09米。结果的改进表明了所提出的3D LiDAR辅助GNSS定位方法的有效性。最大误差仍达到71.28米,因为并非所有NLOS卫星都可以被检测和缓解。In the more challenging scenario of Urban Canyon 2, some NLOS satellites reflected by buildings taller than 40 meters were found to be undetectable. A positioning error of 30.68 meters was obtained using a u-blox receiver, with a maximum error of 92.32 meters. Based on raw pseudorange measurements from the u-blox receiver, a GNSS positioning error of 23.79 meters was obtained using WLS. Compared to GNSS positioning using data directly from the u-blox receiver, the maximum error increased slightly to 104.83 meters. After excluding all detected NLOS satellites from GNSS positioning (WLS-NE), the mean and standard deviation increased to 25.14 meters and 23.73 meters, respectively. Due to the lack of satellites for GNSS positioning, the availability of GNSS positioning data dropped to 95.52%, again demonstrating that completely excluding NLOS in Urban Canyon is not advisable. With the aid of NLOS reconstruction, the 2D error using R-WLS was reduced to 19.61 meters, guaranteeing 100% availability. The GNSS positioning error was further reduced to 17.09 meters using the CR-WLS method. The improved results demonstrate the effectiveness of the proposed 3D LiDAR-assisted GNSS positioning method. The maximum error still reaches 71.28 meters because not all NLOS satellites can be detected and mitigated.

图8是根据本公开的示例性实施例的车辆中的3D LiDAR辅助GNSS NLOS缓解方法的一种可能实现和结合的系统图。车辆使用LiDAR辅助GNSS来使用卫星定位系统支持车辆进行定位。在某些实施例中,该系统包括3D LiDAR传感器110、AHRS 160、GNSS接收器130、处理器810、存储器820、用户接口830、自主控制840和通信接口850。在某些实施例中,在不脱离本公开的范围和精神的情况下,3D LiDAR传感器110、AHRS160和/或GNSS接收器130可以集成到处理器810中。在这种情况下,处理器810是具有能够接收GNSS卫星信号、方向和/或本地3D点云地图的内置组件的专用设备。Figure 8 is a system diagram of a possible implementation and combination of a 3D LiDAR-assisted GNSS NLOS mitigation method in a vehicle according to an exemplary embodiment of the present disclosure. The vehicle uses LiDAR-assisted GNSS to support vehicle positioning using a satellite positioning system. In some embodiments, the system includes a 3D LiDAR sensor 110, an AHRS 160, a GNSS receiver 130, a processor 810, a memory 820, a user interface 830, autonomous control 840, and a communication interface 850. In some embodiments, without departing from the scope and spirit of the present disclosure, the 3D LiDAR sensor 110, the AHRS 160, and/or the GNSS receiver 130 may be integrated into the processor 810. In this case, the processor 810 is a dedicated device with built-in components capable of receiving GNSS satellite signals, direction, and/or local 3D point cloud maps.

处理器810可以是一个或多个通用处理器、专用处理器、数字信号处理芯片、专用集成电路(ASIC)或可被配置为执行以下一项或多项上述方法的其他处理结构。处理器810通信地连接到3D LiDAR传感器110、AHRS 160和GNSS接收器130,用于分别接收局部地图、方向和GNSS测量值。处理器810可以包括存储器820,或者与存储器820(作为分立组件)通信,用于存储定位数据和/或其他接收到的信号并检索有利于增强3D LiDAR传感器110的FOV的SWM的先前关键帧点云数据。Processor 810 may be one or more general-purpose processors, special-purpose processors, digital signal processing chips, application-specific integrated circuits (ASICs), or other processing structures configured to perform one or more of the methods described above. Processor 810 is communicatively connected to 3D LiDAR sensor 110, AHRS 160, and GNSS receiver 130 for receiving local maps, orientation, and GNSS measurements, respectively. Processor 810 may include, or communicate with, memory 820 (as a discrete component), for storing positioning data and/or other received signals and retrieving previous keyframe point cloud data of the SWM that enhances the FOV of 3D LiDAR sensor 110.

在某些实施例中,存储器820可以包括但不限于固态存储设备,例如随机存取存储器(RAM)和/或只读存储器(ROM),ROM可以是可编程的、闪存可更新的和/或诸如此类的。这样的存储设备可以被配置为实现任何适当的数据存储,包括但不限于各种文件系统、数据库结构等。存储器820还可包括软件指令,其被配置为使处理器810执行根据本公开的方法一个或多个功能。因此,上述功能和方法可以被实现为可由处理器810执行的计算机代码和/或指令。然后,在一方面,这样的代码和/或指令可以用于配置和/或适配计算机(或其他计算机设备)根据所描述的方法执行一个或多个操作。存储器820因此可以包括具有嵌入其中的指令和/或计算机代码的非暂时性机器可读介质。计算机可读介质的常见形式包括例如硬盘、磁性或光学介质、RAM、PROM、EPROM、FLASH-EPROM、USB记忆棒、任何其他存储芯片或盒、载波,或计算机可以从中读取指令和/或代码的任何其他介质。In some embodiments, memory 820 may include, but is not limited to, solid-state storage devices, such as random access memory (RAM) and/or read-only memory (ROM), the ROM being programmable, flash-updatable, and/or the like. Such storage devices can be configured to implement any suitable data storage, including but not limited to various file systems, database structures, etc. Memory 820 may also include software instructions configured to cause processor 810 to perform one or more functions according to the methods of this disclosure. Thus, the functions and methods described above can be implemented as computer code and/or instructions executable by processor 810. Then, in one aspect, such code and/or instructions can be used to configure and/or adapt a computer (or other computer device) to perform one or more operations according to the described methods. Memory 820 may therefore include a non-transitory machine-readable medium having instructions and/or computer code embedded therein. Common forms of computer-readable media include, for example, hard disks, magnetic or optical media, RAM, PROM, EPROM, FLASH-EPROM, USB memory sticks, any other memory chip or cartridge, carrier waves, or any other medium from which a computer can read instructions and/or code.

用户界面830允许与驾驶员、乘客和/或其他控制车辆的个人进行交互,其可以包括选自由触摸屏、触摸板、按钮、开关、麦克风等所组成的组中的一个或多个输入设备。驾驶员或控制车辆的人可以使用用户界面830来激活或停用自主控制840,或选择不同的操作模式和/或自主驾驶的程度。User interface 830 allows interaction with the driver, passengers, and/or other individuals controlling the vehicle, and may include one or more input devices selected from the group consisting of a touchscreen, touchpad, buttons, switches, microphone, etc. The driver or person controlling the vehicle can use user interface 830 to activate or deactivate autonomous control 840, or select different operating modes and/or the degree of autonomous driving.

自主控制840是用于基于GNSS定位控制车辆的输出设备。处理器810因此可以确定车辆、静态建筑物和动态对象的位置,这可以使车辆能够相应地改变导航路线、速度、加速度、车载警报系统和/或其他功能。自主控制840因此可以实现智能交通系统的各种功能,例如自动驾驶、半自动驾驶、导航等。The autonomous control unit 840 is an output device for controlling vehicles based on GNSS positioning. The processor 810 can thus determine the position of vehicles, static buildings, and dynamic objects, enabling the vehicle to adjust its navigation route, speed, acceleration, onboard alarm system, and/or other functions accordingly. The autonomous control unit 840 can therefore implement various functions of intelligent transportation systems, such as autonomous driving, semi-autonomous driving, and navigation.

通信接口850提供允许数据与网络、车辆、定位服务器、服务器、无线接入点、其他计算机系统和/或本文描述的任何其他电子设备进行通信的接口。在某些实施例中,通信接口850可以包括但不限于调制解调器、网卡、红外通信设备、无线通信设备和/或芯片组(例如蓝牙设备、IEEE 802.11设备、IEEE 802.15.4设备、WIFI设备、WiMAX设备、蜂窝通信设施等)等。Communication interface 850 provides an interface that allows data to communicate with networks, vehicles, positioning servers, servers, wireless access points, other computer systems, and/or any other electronic devices described herein. In some embodiments, communication interface 850 may include, but is not limited to, modems, network interface cards, infrared communication devices, wireless communication devices, and/or chipsets (e.g., Bluetooth devices, IEEE 802.11 devices, IEEE 802.15.4 devices, Wi-Fi devices, WiMAX devices, cellular communication facilities, etc.).

该系统图旨在提供3D LiDAR辅助GNSS的一般说明,而其他组件和系统块也可根据需要包括在内。系统内的一个或多个组件可以集成或分区,并且可以布置在车辆中的不同物理位置,或者以其他方式远程布置在服务器中或网络系统上。也可以提供超驰控制(未示出)或其他安全机制,以允许车辆的驾驶员或乘客在紧急情况下接管车辆的控制。This system diagram is intended to provide a general illustration of 3D LiDAR-assisted GNSS, while other components and system blocks may be included as needed. One or more components within the system may be integrated or partitioned and may be located in different physical locations within the vehicle, or otherwise remotely deployed on a server or network system. Override control (not shown) or other safety mechanisms may also be provided to allow the driver or passengers of the vehicle to take over control of the vehicle in an emergency.

如所证明的,本公开的方法提供了有效的方法来排除潜在的GNSS NLOS接收,借助3D LiDAR传感器和LIO生成的环境描述,或使用3D LiDAR传感器和AHRS的SWM。该方法即使在自动驾驶的城市峡谷中也能实现准确定位。本发明解决了定位精度不足阻碍自动驾驶应用部署的问题。在所有这些现有的定位解决方案之上,GNSS-RTK是一种不可或缺的方法,能够在稀疏场景中提供全球参考定位。但是,由于信号遮挡和反射导致GNSS NLOS接收,在城市峡谷中无法保证其准确性。本公开通过利用3D LiDAR的感知能力来检测和消除潜在的GNSS NLOS接收来解决这个问题。在某些实施例中,本文提供的方法即使在城市峡谷场景中也可以实现更高的精度,以满足自动驾驶的导航要求。As demonstrated, the method of this disclosure provides an effective way to eliminate potential GNSS NLOS reception using either an environment description generated by a 3D LiDAR sensor and LIO, or a SWM using a 3D LiDAR sensor and AHRS. This method achieves accurate positioning even in urban canyons for autonomous driving. This invention addresses the problem of insufficient positioning accuracy hindering the deployment of autonomous driving applications. Above all these existing positioning solutions, GNSS-RTK is an indispensable method capable of providing global reference positioning in sparse scenes. However, its accuracy cannot be guaranteed in urban canyons due to signal obstruction and reflections leading to GNSS NLOS reception. This disclosure solves this problem by leveraging the sensing capabilities of 3D LiDAR to detect and eliminate potential GNSS NLOS reception. In some embodiments, the method provided herein achieves higher accuracy even in urban canyon scenarios to meet the navigation requirements of autonomous driving.

上述方法可以直接应用于自动驾驶行业。具体而言,即使在城市峡谷中,本发明也可用于提供准确的定位解决方案。此外,该方法还可以应用于其他有导航需求的自主系统,例如移动机器人和无人机。同时,该方法还可用于城市峡谷的大地测绘。这说明了根据本公开的具有改进的定位性能的3D LiDAR辅助全球导航卫星系统。显然,上述公开的变体和其他特征和功能或其替代方案可以组合成许多其他不同的配置、设备、装置和系统。因此,本实施例在所有方面都被认为是说明性的而不是限制性的。本公开的范围由所附权利要求而不是由前面的描述来表示,并且旨在包含落入权利要求的等同意义和范围内的所有变化。The above method can be directly applied to the autonomous driving industry. Specifically, even in urban canyons, the present invention can be used to provide accurate positioning solutions. Furthermore, the method can also be applied to other autonomous systems with navigation needs, such as mobile robots and drones. Simultaneously, the method can also be used for geodetic mapping of urban canyons. This illustrates a 3D LiDAR-assisted global navigation satellite system with improved positioning performance according to this disclosure. Obviously, variations and other features and functions or alternatives thereof disclosed above can be combined into many other different configurations, devices, apparatuses, and systems. Therefore, this embodiment is to be considered illustrative rather than restrictive in all respects. The scope of this disclosure is defined by the appended claims rather than by the foregoing description and is intended to include all changes falling within the equivalent meaning and scope of the claims.

缩写列表List of abbreviations

3D 三维3D

3DMA 3D地图构建辅助3DMA 3D Map Building Assist

ADAS 高级驾驶辅助系统ADAS (Advanced Driver Assistance System)

ADV 自动驾驶车辆ADV (Autonomous Vehicle)

AHRS 姿态航向参考系统AHRS Attitude and Heading Reference System

DOP 精度衰减因子DOP Precision Attenuation Factor

ECEF 地心地固坐标系ECEF Geocentric-Earth-Fixed Coordinate System

ENU 东北天ENU Northeast

FOV 视场FOV (Field of View)

GNSS 全球导航卫星系统GNSS Global Navigation Satellite System

GNSS-RTK 全球导航卫星系统实时动态差分定位GNSS-RTK Global Navigation Satellite System Real-time Dynamic Differential Positioning

GPS 全球定位系统GPS Global Positioning System

LiDAR 光探测和测距(激光雷达)LiDAR (Light Detection and Ranging)

LIO LiDAR-惯性里程计LIO LiDAR - Inertial Odometry

IMU 惯性测量单元IMU (Inertial Measurement Unit)

LOS 视距LOS (Location of View)

NLOS 非视距NLOS (Non-line-of-sight)

PCM 点云地图PCM point cloud map

ROS 机器人操作系统ROS Robot Operating System

RTK 实时动态差分定位RTK Real-time Dynamic Differential Positioning

SLAM 同步定位与地图构建SLAM (Simultaneous Localization and Mapping)

SWM 滑动窗口地图SWM sliding window map

t GNSS历元t GNSS epoch

G ECEF坐标系GECEF coordinate system

L ENU坐标系LENU coordinate system

s 卫星索引s Satellite Index

r GNSS接收器r GNSS receiver

BI AHRS载体坐标系BI AHRS Carrier Coordinate System

BL LiDAR载体坐标系BL LiDAR carrier coordinate system

BR GNSS接收器载体坐标系BR GNSS receiver carrier coordinate system

ρ 伪距ρ pseudo-distance

 历元t处的卫星的伪距pseudorange of the satellite at epoch t

 历元t处的卫星的位置The position of the satellite at epoch t

 历元t处的卫星GNSS接收器的位置Location of satellite GNSS receiver at epoch t

δr,t GNSS接收器钟差 δr,t GNSS receiver clock bias

 卫星钟差Satellite clock bias

 信噪比(SNR)Signal-to-noise ratio (SNR)

Kw 用于加权的比例因子 Kw is the weighting scaling factor.

 卫星仰角Satellite elevation angle

 卫星方位角Satellite azimuth

k 搜索点索引k Search point index

Nk 相邻点数量N k neighboring points

Claims (11)

1.一种由车辆使用的、用于使用卫星定位系统支持所述车辆进行定位的方法,所述方法包括:1. A method for a vehicle to position itself using a satellite positioning system, the method comprising: 基于来自3D LiDAR传感器和姿态航向参考系统AHRS的3D点云实时地生成滑动窗口地图SWM,其中,所述SWM提供用于检测和校正非视距NLOS接收的环境描述;A sliding window map (SWM) is generated in real time based on 3D point clouds from a 3D LiDAR sensor and an attitude heading reference system (AHRS), wherein the SWM provides an environmental description for detecting and correcting non-line-of-sight (NLOS) reception. 通过排除远离GNSS接收器的点云来使所述SWM的点云容量最小化,使得所述3D点云位于滑动窗口内;The point cloud capacity of the SWM is minimized by excluding point clouds that are far from the GNSS receiver, so that the 3D point cloud is located within the sliding window. 将来自先前帧的3D点云累积到所述SWM中,以增强所述3D LiDAR传感器的视场FOV;The 3D point cloud from the previous frame is accumulated into the SWM to enhance the field of view (FOV) of the 3D LiDAR sensor; 通过GNSS接收器接收来自卫星的全球导航卫星系统GNSS测量值;Receive Global Navigation Satellite System (GNSS) measurements from satellites via a GNSS receiver; 使用所述SWM从所述GNSS测量值中检测所述NLOS接收;The NLOS reception is detected from the GNSS measurements using the SWM; 当在所述SWM中找不到反射点时,通过NLOS重构来校正所述NLOS接收;以及When no reflection point is found in the SWM, the NLOS reception is corrected by NLOS reconstruction; and 通过最小二乘算法估计GNSS定位;GNSS positioning is estimated using the least squares algorithm; 使用具有比例因子的加权方案来执行所述NLOS重构,其中,所述比例因子用于对所述NLOS接收进行去加权,所述加权方案包括以下定义:The NLOS reconstruction is performed using a weighting scheme with a scaling factor, wherein the scaling factor is used to deweight the NLOS reception, and the weighting scheme includes the following definitions: 如果卫星被归类为LOS测量值,则根据卫星信噪比SNR和仰角计算所述比例因子;If the satellite is classified as a LOS measurement, the scaling factor is calculated based on the satellite signal-to-noise ratio (SNR) and elevation angle. 如果所述卫星被归类为NLOS测量值并且校正了伪距误差,则根据所述卫星SNR和所述仰角计算所述比例因子;以及If the satellite is classified as an NLOS measurement and pseudorange error is corrected, then the scaling factor is calculated based on the satellite's SNR and elevation angle; and 如果所述卫星被归类为NLOS测量值但未检测到反射点,则根据所述卫星SNR、所述仰角和比例因子计算所述比例因子。If the satellite is classified as an NLOS measurement but no reflection point is detected, the scale factor is calculated based on the satellite SNR, the elevation angle, and the scale factor. 2.如权利要求1所述的方法,其中,生成所述SWM的步骤包括:2. The method of claim 1, wherein the step of generating the SWM comprises: 基于来自3D LiDAR传感器的所述3D点云,从LiDAR扫描匹配中获取局部地图;以及Based on the 3D point cloud from the 3D LiDAR sensor, a local map is obtained from LiDAR scan matching; and 采用AHRS的方向将所述SWM从载体坐标系转换为局部东北天ENU坐标系。The SWM is transformed from the carrier coordinate system to the local northeast-sky ENU coordinate system using the AHRS orientation. 3.如权利要求1所述的方法,其中,使用快速搜索方法执行所述从所述GNSS测量值中检测所述NLOS接收的步骤,其中,所述快速搜索方法包括:3. The method of claim 1, wherein the step of detecting the NLOS reception from the GNSS measurements is performed using a fast search method, wherein the fast search method comprises: 使所述3D LiDAR传感器的中心的搜索点初始化;Initialize the search point at the center of the 3D LiDAR sensor; 根据卫星的仰角和方位角确定连接所述GNSS接收器和卫星的搜索方向;The search direction connecting the GNSS receiver and the satellite is determined based on the satellite's elevation and azimuth angles; 以固定的增量值沿所述搜索方向移动所述搜索点;The search point is moved along the search direction by a fixed increment. 计算所述搜索点附近的相邻点数量;以及Calculate the number of neighboring points near the search point; and 如果超过预定阈值,则将所述搜索点归类为NLOS卫星。If the search point exceeds a predetermined threshold, it will be classified as an NLOS satellite. 4.如权利要求1所述的方法,进一步包括:通过使用基于所述SWM的模型校准重新估计所述GNSS测量值来校正所述NLOS接收,其中,所述SWM提供密集、离散和无组织的3D点云,而没有连续的建筑物表面或边界。4. The method of claim 1, further comprising: correcting the NLOS reception by re-estimating the GNSS measurements using a model calibration based on the SWM, wherein the SWM provides a dense, discrete, and unorganized 3D point cloud without continuous building surfaces or boundaries. 5.根据权利要求4所述的方法,其中,所述模型校准包括:5. The method according to claim 4, wherein the model calibration comprises: 使用基于反射器检测算法的高效kdTree结构检测所述NLOS接收对应的反射点,其中,所述反射器检测算法包括:The reflection point corresponding to the NLOS receiver is detected using an efficient kdTree structure based on a reflector detection algorithm, wherein the reflector detection algorithm includes: 遍历从0o到360o的所有方位角,方位角分辨率为,仰角为;Iterate through all azimuth angles from 0 ° to 360 ° , with azimuth resolution of and elevation angle of . 当连接点和卫星的视距没有被阻挡时,检测潜在反射器;以及Detect potential reflectors when the line of sight between the connection point and the satellite is unobstructed; and 检测所述GNSS接收器和所述潜在反射器之间距离最短的唯一反射器。The only reflector with the shortest distance between the GNSS receiver and the potential reflector is detected. 6.一种由车辆使用的、用于使用卫星定位系统支持所述车辆进行定位的LiDAR辅助全球导航卫星系统,所述系统包括:6. A LiDAR-assisted global navigation satellite system for use by a vehicle, used to support the vehicle's positioning using a satellite positioning system, the system comprising: 3D LiDAR传感器;3D LiDAR sensor; 姿态航向参考系统AHRS;Attitude and Heading Reference System (AHRS); 全球导航卫星系统GNSS接收器,配置为接收来自卫星的GNSS测量值;A Global Navigation Satellite System (GNSS) receiver, configured to receive GNSS measurements from satellites; 处理器,通信连接到所述3D LiDAR传感器、所述AHRS和所述GNSS接收器,其中,所述处理器被配置为:A processor, communicatively connected to the 3D LiDAR sensor, the AHRS, and the GNSS receiver, wherein the processor is configured to: 基于来自3D LiDAR传感器和所述AHRS的3D点云实时地生成滑动窗口地图SWM,其中,所述SWM提供用于检测和校正非视距NLOS接收的环境描述;A sliding window map (SWM) is generated in real time based on 3D point clouds from a 3D LiDAR sensor and the AHRS, wherein the SWM provides an environmental description for detecting and correcting non-line-of-sight (NLOS) reception. 通过排除远离所述GNSS接收器的点云来使所述SWM的点云容量最小化,使得所述3D点云位于滑动窗口内;The point cloud capacity of the SWM is minimized by excluding point clouds that are far from the GNSS receiver, so that the 3D point cloud is located within the sliding window. 将来自先前帧的3D点云累积到所述SWM中,以增强所述3D LiDAR传感器的视场FOV;The 3D point cloud from the previous frame is accumulated into the SWM to enhance the field of view (FOV) of the 3D LiDAR sensor; 使用所述SWM从所述GNSS接收器的所述GNSS测量值中检测NLOS接收;The SWM is used to detect NLOS reception from the GNSS measurements of the GNSS receiver; 当在所述SWM中未找到反射点时,通过NLOS重构纠正所述NLOS接收;以及When no reflection point is found in the SWM, the NLOS reception is corrected by NLOS reconstruction; and 通过最小二乘算法估计GNSS定位;GNSS positioning is estimated using the least squares algorithm; 使用具有比例因子的加权方案来执行所述NLOS重构,其中,所述比例因子用于对所述NLOS接收进行去加权,所述加权方案包括以下定义:The NLOS reconstruction is performed using a weighting scheme with a scaling factor, wherein the scaling factor is used to deweight the NLOS reception, and the weighting scheme includes the following definitions: 如果卫星被归类为LOS测量值,则根据卫星信噪比SNR和仰角计算所述比例因子;If the satellite is classified as a LOS measurement, the scaling factor is calculated based on the satellite signal-to-noise ratio (SNR) and elevation angle. 如果所述卫星被归类为NLOS测量值并且校正了伪距误差,则根据所述卫星SNR和所述仰角计算所述比例因子;和If the satellite is classified as an NLOS measurement and pseudorange error is corrected, then the scaling factor is calculated based on the satellite's SNR and elevation angle; and 如果所述卫星被归类为NLOS测量值但未检测到反射点,则根据所述卫星SNR、所述仰角和比例因子计算所述比例因子。If the satellite is classified as an NLOS measurement but no reflection point is detected, the scale factor is calculated based on the satellite SNR, the elevation angle, and the scale factor. 7.根据权利要求6所述的系统,其中,所述处理器被配置为基于来自所述3D LiDAR传感器的3D点云获得局部地图;并采用AHRS的方向将所述SWM从载体坐标系转换为局部东北天ENU坐标系。7. The system of claim 6, wherein the processor is configured to obtain a local map based on a 3D point cloud from the 3D LiDAR sensor; and to convert the SWM from the carrier coordinate system to the local northeast-sky ENU coordinate system using the orientation of the AHRS. 8.根据权利要求6所述的系统,其中,所述处理器被配置为使用快速搜索方法来检测来自所述GNSS测量值的所述非视距接收,其中,所述快速搜索方法包括:8. The system of claim 6, wherein the processor is configured to detect the non-line-of-sight reception from the GNSS measurements using a fast search method, wherein the fast search method comprises: 使所述3D LiDAR传感器的中心的搜索点初始化;Initialize the search point at the center of the 3D LiDAR sensor; 根据卫星的仰角和方位角确定连接所述GNSS接收器和卫星的搜索方向;The search direction connecting the GNSS receiver and the satellite is determined based on the satellite's elevation and azimuth angles; 以固定的增量值沿所述搜索方向移动所述搜索点;The search point is moved along the search direction by a fixed increment. 计算所述搜索点附近的相邻点数量;以及Calculate the number of neighboring points near the search point; and 如果超过预定阈值,则将所述搜索点归类为NLOS卫星。If the search point exceeds a predetermined threshold, it will be classified as an NLOS satellite. 9.根据权利要求6所述的系统,其中,所述处理器还被配置为通过使用基于所述SWM的模型校准重新估计所述GNSS测量值来校正所述NLOS接收,其中,所述SWM提供密集、离散和无组织的3D点云,而没有连续的建筑物表面或边界。9. The system of claim 6, wherein the processor is further configured to correct the NLOS reception by re-estimating the GNSS measurements using a model calibration based on the SWM, wherein the SWM provides a dense, discrete, and unorganized 3D point cloud without continuous building surfaces or boundaries. 10.根据权利要求9所述的系统,其中,所述模型校准包括:10. The system of claim 9, wherein the model calibration comprises: 使用基于反射器检测算法的高效kdTree结构检测所述NLOS接收对应的反射点,其中,所述反射器检测算法包括:The reflection point corresponding to the NLOS receiver is detected using an efficient kdTree structure based on a reflector detection algorithm, wherein the reflector detection algorithm includes: 遍历从0o到360o的所有方位角,方位角分辨率为,仰角为;Iterate through all azimuth angles from 0 ° to 360 ° , with azimuth resolution of and elevation angle of . 当连接点和卫星的视距没有被阻挡时,检测潜在反射器;以及Detect potential reflectors when the line of sight between the connection point and the satellite is unobstructed; and 检测所述GNSS接收器和所述潜在反射器之间距离最短的唯一反射器。The only reflector with the shortest distance between the GNSS receiver and the potential reflector is detected. 11.如权利要求6所述的系统,进一步包括:11. The system of claim 6, further comprising: 基于所述GNSS定位的车辆自主控制,实现智能交通系统的各种功能;Vehicle autonomous control based on GNSS positioning enables various functions of the intelligent transportation system. 用于激活或停用所述自主控制的用户界面;以及The user interface for activating or deactivating the autonomous control; and 通讯接口。Communication interface.
HK42022066335.5A 2021-07-30 2022-12-30 Method for precise 3d lidar aided satellite positioning HK40077647B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63/203,760 2021-07-30
US17/659,200 2022-04-14

Publications (2)

Publication Number Publication Date
HK40077647A HK40077647A (en) 2023-03-17
HK40077647B true HK40077647B (en) 2025-09-05

Family

ID=

Similar Documents

Publication Publication Date Title
CN115343745B (en) High-precision satellite positioning method assisted by three-dimensional laser radar
Wen et al. 3D LiDAR aided GNSS NLOS mitigation in urban canyons
US12216211B2 (en) System and method for correcting satellite observations
Wen et al. GNSS NLOS exclusion based on dynamic object detection using LiDAR point cloud
US11875519B2 (en) Method and system for positioning using optical sensor and motion sensors
Lee et al. Seamless accurate positioning in deep urban area based on mode switching between DGNSS and multipath mitigation positioning
US10613231B2 (en) Portable GNSS survey system
WO2023198090A1 (en) 3d vision aided gnss real-time kinematic positioning for autonomous systems in urban canyons
CN109099912A (en) Outdoor accurate positioning air navigation aid, device, electronic equipment and storage medium
US20100176992A1 (en) Method and device for determining a position
JP2018526626A (en) Visual inertia odometry attitude drift calibration
JP2011209268A (en) Position estimating device and program
KR101470081B1 (en) A moving information determination apparatus, a receiver, and a method thereby
Wen et al. 3D vision aided GNSS real-time kinematic positioning for autonomous systems in urban canyons
Wen 3D LiDAR aided GNSS and its tightly coupled integration with INS via factor graph optimization
Karamat et al. Performance analysis of code-phase-based relative GPS positioning and its integration with land vehicle’s motion sensors
Huang et al. LiDAR aided cycle slip detection for GNSS real-time kinematic positioning in urban environments
Ćwian et al. GNSS-augmented lidar slam for accurate vehicle localization in large scale urban environments
Kumar et al. Identifying reflected gps signals and improving position estimation using 3d map simultaneously built with laser range scanner
JP2021143861A (en) Information processor, information processing method, and information processing system
HK40077647B (en) Method for precise 3d lidar aided satellite positioning
CA3156087C (en) 3d lidar aided global navigation satellite system and the method for non-line-of-sight detection and correction
Schaper et al. Multi-Agent Multi-Sensor Collaboration for Improved Positioning in Urban Environment
HK40077647A (en) Method for precise 3d lidar aided satellite positioning
CA3156087A1 (en) 3d lidar aided global navigation satellite system and the method for non-line-of-sight detection and correction