HK1231998B - Systems and methods for probabilistic semantic sensing in a sensory network - Google Patents
Systems and methods for probabilistic semantic sensing in a sensory network Download PDFInfo
- Publication number
- HK1231998B HK1231998B HK17105405.9A HK17105405A HK1231998B HK 1231998 B HK1231998 B HK 1231998B HK 17105405 A HK17105405 A HK 17105405A HK 1231998 B HK1231998 B HK 1231998B
- Authority
- HK
- Hong Kong
- Prior art keywords
- event
- classifier
- data
- sensor
- application
- Prior art date
Links
Description
相关申请案Related applications
本申请案主张2015年3月5日提出申请的第14/639,901号美国专利申请案的优先权,且主张2014年3月6日提出申请的第61/948,960号美国临时申请案的优先权权益,所述美国临时申请案以其全文引用方式并入。本申请案涉及2013年9月11日提出申请的标题为“用于感测应用的联网照明基础设施(Networked Lighting Infrastructure for SensingApplications)”的第14/024,561号美国非临时专利申请案,以及2012年9月12日提出申请的为相同名称的其第61/699,968号美国临时申请案。This application claims priority to U.S. Patent Application No. 14/639,901, filed on March 5, 2015, and to U.S. Provisional Application No. 61/948,960, filed on March 6, 2014, which are incorporated by reference in their entirety. This application is related to U.S. Non-Provisional Patent Application No. 14/024,561, filed on September 11, 2013, entitled “Networked Lighting Infrastructure for Sensing Applications,” and U.S. Provisional Application No. 61/699,968, filed on September 12, 2012, of the same title.
技术领域Technical Field
本发明涉及数据通信的技术领域。更特定来说,本发明涉及用于在传感网络中进行概率语义感测的系统及方法。The present invention relates to the technical field of data communications. More particularly, the present invention relates to a system and method for probabilistic semantic sensing in a sensor network.
背景技术Background Art
传感网络包含可用于感测并识别物体的多个传感器。正被感测的物体可包含人、车辆或其它实体。实体可为静止的或处于运动中。有时传感器可并不经定位以完全感测整个实体。其它时间,阻碍物可削弱对实体的感测。在两个实例中,真实世界削弱可导致不可靠结果。A sensor network includes multiple sensors that can be used to sense and identify objects. The objects being sensed may include people, vehicles, or other entities. The entities may be stationary or in motion. Sometimes, sensors may not be positioned to fully sense the entire entity. Other times, obstructions may impair sensing of the entity. In both instances, real-world impairments can lead to unreliable results.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1图解说明根据一实施例的用于在传感网络中进行概率语义感测的系统;FIG1 illustrates a system for probabilistic semantic sensing in a sensor network according to one embodiment;
图2进一步图解说明根据一实施例的用于在传感网络中进行概率语义感测的系统;FIG2 further illustrates a system for probabilistic semantic sensing in a sensor network according to an embodiment;
图3是图解说明根据一实施例的用于在传感网络中进行概率语义感测的系统的框图;3 is a block diagram illustrating a system for probabilistic semantic sensing in a sensor network according to an embodiment;
图4A是图解说明根据一实施例的所感测事件信息的框图。4A is a block diagram illustrating sensed event information according to an embodiment.
图4B是图解说明根据一实施例的所导出事件信息的框图。4B is a block diagram illustrating derived event information according to an embodiment.
图5是图解说明根据一实施例的使用者输入信息的框图;FIG5 is a block diagram illustrating user input information according to one embodiment;
图6是图解说明根据一实施例的用于在传感网络中进行概率语义感测的方法的框图;FIG6 is a block diagram illustrating a method for probabilistic semantic sensing in a sensor network according to an embodiment;
图7图解说明根据一实施例的照明基础设施应用程序框架(LIAF)的总体架构的一部分;FIG7 illustrates a portion of the overall architecture of a lighting infrastructure application framework (LIAF) according to an embodiment;
图8图解说明根据一实施例的处于较高级的系统的架构;FIG8 illustrates the architecture of a system at a higher level according to one embodiment;
图9是根据一实施例的节点平台的框图。FIG9 is a block diagram of a node platform according to an embodiment.
图10是根据一实施例的网关平台的框图。FIG10 is a block diagram of a gateway platform according to an embodiment.
图11是根据一实施例的服务平台的框图。FIG11 is a block diagram of a service platform according to an embodiment.
图12是图解说明根据一实施例的照明基础设施应用程序的收入模型的图式;FIG12 is a diagram illustrating a revenue model for a lighting infrastructure application according to an embodiment;
图13图解说明根据一实施例的联网照明系统的停车库应用程序;FIG13 illustrates a parking garage application for a networked lighting system according to one embodiment;
图14图解说明根据一实施例的联网照明系统的照明维护应用程序;FIG14 illustrates a lighting maintenance application for a networked lighting system according to one embodiment;
图15A图解说明根据一实施例的联网照明系统的仓库库存应用程序;FIG15A illustrates a warehouse inventory application for a networked lighting system according to an embodiment;
图15B图解说明根据一实施例的联网照明系统的仓库库存应用程序;FIG15B illustrates a warehouse inventory application for a networked lighting system according to an embodiment;
图16图解说明根据一实施例的用于监视装货码头的联网照明系统的应用;FIG16 illustrates an application of a networked lighting system for monitoring a loading dock, according to an embodiment;
图17是图解说明根据一实施例的节点处的电力监视及控制电路的框图;FIG17 is a block diagram illustrating power monitoring and control circuitry at a node according to an embodiment;
图18是图解说明根据一实施例的节点处的应用程序控制器的框图;FIG18 is a block diagram illustrating an application controller at a node according to an embodiment;
图19是图解说明根据一些实例性实施例的可安装于机器上的软件架构的实例的框图;且FIG19 is a block diagram illustrating an example of a software architecture that may be installed on a machine in accordance with some example embodiments; and
图20是图解说明根据一些实例性实施例的机器的组件的框图,所述机器能够从机器可读媒体(例如,机器可读存储媒体)读取指令且执行本文中所讨论的方法中的任一者或多者。20 is a block diagram illustrating components of a machine capable of reading instructions from a machine-readable medium (eg, a machine-readable storage medium) and performing any one or more of the methodologies discussed herein, according to some example embodiments.
本文中所提供的标题仅出于方便目的且未必影响所使用的术语的范围或含义。The headings provided herein are for convenience only and do not necessarily affect the scope or meaning of the terms used.
出于解释的目的,在以下说明中,陈述了众多具体细节以便提供对一些实例性实施例的透彻理解。然而,所属领域的技术人员将显而易见,可不具有这些特定细节的情况下实践本发明的实施例。For purposes of explanation, in the following description, numerous specific details are set forth in order to provide a thorough understanding of some exemplary embodiments. However, it will be apparent to one skilled in the art that embodiments of the present invention may be practiced without these specific details.
具体实施方式DETAILED DESCRIPTION
以下说明包含体现本发明的说明性实施例的系统、方法、技术、指令序列及计算机器程序产品。在以下说明中,出于解释的目的,陈述众多特定细节以便提供对发明性标的物的各种实施例的理解。然而,所属领域的技术人员将显而易见,可在不具有这些特定细节的情况下实践发明性标的物的实施例。一般来说,未必详细地展示众所周知的指令实例、协议、结构及技术。The following description includes systems, methods, techniques, instruction sequences, and computer program products that embody illustrative embodiments of the present invention. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide an understanding of various embodiments of the inventive subject matter. However, it will be apparent to one skilled in the art that embodiments of the inventive subject matter can be practiced without these specific details. Generally, well-known instruction examples, protocols, structures, and techniques are not necessarily presented in detail.
本发明针对于传感网络中的概率语义感测。本发明解决在存在真实世界阻碍物或损坏时准确地感测可观察现象的问题。本发明通过并行感测相同基础物理现象且产生与所述物理现象的含义或语义相关联的单个概率而解决所述问题。具体来说,本发明通过以下操作解决所述问题:并行感测相同基础物理现象以产生描述所述物理现象的呈各自包含语义数据(例如,停车地点为空)的所感测事件的形式的语义数据,使每一语义数据与量化语义数据的可靠性的概率相关联,基于分类符使所感测事件相关以产生语义数据的逻辑聚合(例如,相同停车地点),用概率引擎分析语义数据的聚合以产生多个所感测事件的单个所导出事件(其中单个所导出事件包含单个所导出概率)及实现使用所导出事件的一个或多个应用。所属领域的技术人员将认识到,虽然主要在光传感网络的上下文中讨论本发明,但本发明也针对于能够感测所有类型的物理现象(例如,视觉、声音、触觉等)的传感网络。The present invention is directed to probabilistic semantic sensing in sensor networks. The present invention addresses the problem of accurately sensing observable phenomena in the presence of real-world obstructions or damage. The present invention addresses this problem by sensing the same underlying physical phenomenon in parallel and generating a single probability associated with the meaning or semantics of the physical phenomenon. Specifically, the present invention addresses this problem by sensing the same underlying physical phenomenon in parallel to generate semantic data describing the physical phenomenon in the form of sensed events that each contain semantic data (e.g., "parking lot is empty"), associating each semantic data with a probability quantifying the reliability of the semantic data, correlating the sensed events based on classifiers to generate a logical aggregation of semantic data (e.g., "same parking lot"), analyzing the aggregation of semantic data with a probability engine to generate a single derived event for multiple sensed events (wherein the single derived event contains a single derived probability), and implementing one or more applications that utilize the derived event. Those skilled in the art will recognize that while the present invention is primarily discussed in the context of optical sensor networks, the present invention is also directed to sensor networks capable of sensing all types of physical phenomena (e.g., visual, acoustic, tactile, etc.).
光传感网络或具有用于应用程序平台、感测、联网及处理的经嵌入能力的照明基础设施的到来创建了以显著规模及空间密度分布传感器且实现基于感测的应用程序的机会。然而,由光传感网络实现的应用的成功可受传感器数据的可靠性限制,所述传感器数据的可靠性可部分地由于传感器部署的位置或由真实世界阻碍物(树叶、汽车、人、其它物体等)导致的干扰而被约束。另外,对于任何给定传感器,所产生的数据的各种部分可为较可靠或较不可靠的-举例来说,由于有限的分辨率,视频传感器在检测处于传感器正前方的汽车停车地点的占用状态时可比其处于更远的位置更可靠。另外,传递在光传感网络中的每一节点处收集的全部数据的不可行性强烈建议在数据或数据输出经组合之前在中间步骤处得出关于数据的结论。换句话说,并非所有原始数据均可在相同位置中存取。在多个传感器可针对与光传感网络的应用有关的特定计算而产生相关数据的程度上,或在外部数据输入可影响此计算的程度上,创建这些多个数据源可经最优地组合以产生最有用的计算结果且因此最成功的应用的系统为最优的。The advent of optical sensor networks, or lighting infrastructure with embedded capabilities for application platforms, sensing, networking, and processing, creates the opportunity to distribute sensors at significant scale and spatial density and enable sensing-based applications. However, the success of applications enabled by optical sensor networks can be limited by the reliability of sensor data, which can be constrained in part by the location of sensor deployment or interference caused by real-world obstructions (foliage, cars, people, other objects, etc.). Furthermore, for any given sensor, various portions of the generated data may be more or less reliable—for example, due to limited resolution, a video sensor may be more reliable at detecting the occupancy status of a parking space directly in front of the sensor than one located further away. Furthermore, the impracticality of transmitting all data collected at every node in an optical sensor network strongly suggests drawing conclusions about the data at intermediate steps before the data or data outputs are combined. In other words, not all raw data may be accessible in the same location. To the extent that multiple sensors can produce relevant data for a particular calculation relevant to an application of the optical sensing network, or to the extent that external data input can influence such calculation, it is optimal to create a system in which these multiple data sources can be optimally combined to produce the most useful calculation results and therefore the most successful application.
本发明描述概率系统及方法的创建,所述概率系统及方法基于来自光传感网络的具有有限可靠性的数据而优化结论的有用性。所描述的系统及方法包含使每一语义数据与表示所述数据的确定性或置信度的相关联概率相关联,及使用语义数据的参数来使不同语义数据相关并使用概率引擎用所导出概率导出事件。在以下各项的上下文中描述增强的可靠性:照明管理及监视、停车管理、监控、交通监视、零售监视、商务智能监视、资产监视及环境监视。This disclosure describes the creation of a probabilistic system and method that optimizes the usefulness of conclusions based on data with limited reliability from a light sensor network. The system and method described involve associating each semantic datum with an associated probability representing the certainty or confidence of the datum, using parameters of the semantic data to correlate different semantic data, and using a probabilistic engine to derive events using the derived probabilities. The enhanced reliability is described in the context of lighting management and monitoring, parking management, surveillance, traffic monitoring, retail monitoring, business intelligence monitoring, asset monitoring, and environmental monitoring.
用于实施所描述的方法的一个系统可包含光传感网络(LSN)。LSN可包含集成应用平台、传感器及网络容量,如下文所描述。可以使得对原始传感器数据的某一处理在网络内的每一节点上本地发生的方式建造与本发明相关的LSN。此处理的输出可为语义数据,或换句话说,表示在处理期间检测到的关键特征的元数据或所导出数据。产生语义数据的目的是减小数据的规模以便接着传递下去以供进一步分析。也可以使得将语义数据传递超过原点节点使得语义数据与其它语义数据聚合并相关的方式建造与本发明相关的LSN。LSN的网络连接性可采用多种拓扑,但本发明对特定拓扑(毂辐状(hub-and-spoke),专门的等)不可知,只要网络内的聚合点发生在语义数据的多个源经组合处即可。A system for implementing the described method may include an optical sensor network (LSN). The LSN may include an integrated application platform, sensors, and network capacity, as described below. An LSN associated with the present invention may be constructed in a manner such that some processing of the raw sensor data occurs locally at each node within the network. The output of this processing may be semantic data, or in other words, metadata or derived data representing key features detected during processing. The purpose of generating semantic data is to reduce the size of the data so that it can then be passed on for further analysis. An LSN associated with the present invention may also be constructed in a manner such that the semantic data is passed beyond the origin node so that the semantic data is aggregated and correlated with other semantic data. The network connectivity of the LSN may adopt a variety of topologies, but the present invention is agnostic to the particular topology (hub-and-spoke, specialized, etc.), as long as the aggregation point within the network occurs where multiple sources of semantic data are combined.
图1图解说明根据一实施例的用于在传感网络中进行概率语义感测的系统101。系统101可包含传感网络,所述传感网络包含定位于左侧上的“灯A”及定位于右侧上的“灯B”。“灯A”及“灯B”可各自包含彼此通信的感测节点及作为传感网络的部分的其它感测节点(未展示)。传感节点中的每一者含有一个或多个传感器,所述一个或多个传感器感测停车场的不同部分及更具体来说停车场中的停车地点的占用状态的原始传感器数据。举例来说,“灯A”经图解说明为接收停车场的部分的原始传感器数据并产生包含针对停车地点X1的语义数据及针对停车地点X2的语义数据的语义数据。此外举例来说,“灯B”经图解说明为接收停车场的不同部分的原始传感器数据并产生包含针对停车地点X2的语义数据及针对停车地点X3的语义数据的语义数据。更具体来说,“灯A”捕获呈以下形式的语义数据:停车地点X1以99%的概率(例如,P(X1)=.99)为“空”的占用状态(“空”状态为准确的)及停车地点X2以75%的概率(例如,P(X2)=.75)为“空”的占用状态(“空”状态为准确的)。针对停车地点X2的更低概率可由于由“灯A”感测到的停车地点X2的有限可见性(例如,较少像素)。此外,“灯B”捕获呈以下形式的语义数据:停车地点X2以25%的概率为“空”的占用状态及停车地点X3以99%的概率为“空”的占用状态,其中针对停车地点X2的更低百分比再次由于有限可见性。即,图1图解说明包含取决于位置而变化的概率的语义数据。FIG1 illustrates a system 101 for performing probabilistic semantic sensing in a sensor network according to one embodiment. System 101 may include a sensor network that includes a “light A” positioned on the left and a “light B” positioned on the right. “Light A” and “light B” may each include sensing nodes that communicate with each other and other sensing nodes (not shown) that are part of the sensor network. Each of the sensor nodes contains one or more sensors that sense raw sensor data of different portions of a parking lot and, more specifically, the occupancy status of parking spots in the parking lot. For example, “light A” is illustrated as receiving raw sensor data for a portion of the parking lot and generating semantic data including semantic data for parking spot X1 and semantic data for parking spot X2 . Also for example, “light B” is illustrated as receiving raw sensor data for a different portion of the parking lot and generating semantic data including semantic data for parking spot X2 and semantic data for parking spot X3 . More specifically, "Light A" captures semantic data in the following form: parking spot X1 has an occupancy state of "empty" with a probability of 99% (e.g., P( X1 ) = 0.99) (the "empty" state is accurate), and parking spot X2 has an occupancy state of "empty" with a probability of 75% (e.g., P( X2 ) = 0.75) (the "empty" state is accurate). The lower probability for parking spot X2 may be due to the limited visibility of parking spot X2 sensed by "Light A" (e.g., fewer pixels). Furthermore, "Light B" captures semantic data in the following form: parking spot X2 has an occupancy state of "empty" with a probability of 25% and parking spot X3 has an occupancy state of "empty" with a probability of 99%, where the lower percentage for parking spot X2 is again due to limited visibility. That is, FIG1 illustrates semantic data including probabilities that vary depending on location.
图2图解说明根据一实施例的用于在传感网络中进行概率语义感测的系统103。系统103以类似于系统101的方式操作。系统103经图解说明以展示真实世界阻碍物(例如,树、其它车辆等)如何限制语义数据的概率。具体来说,“灯A”经图解说明为捕获指示停车地点X2以10%的概率为空的语义数据且“灯B”经图解说明为捕获指示停车地点X3以10%的概率为空的语义数据。针对停车地点X2的减小的置信度是由于树,所述树阻碍“灯A”处的传感器完全感测停车地点X2且针对停车地点X3的减小的置信度是由于运输车,所述运输车阻碍“灯B”处的传感器完全感测停车地点X3。即,图2图解说明包含取决于阻碍物而变化的概率的语义数据。FIG2 illustrates a system 103 for probabilistic semantic sensing in a sensor network, according to one embodiment. System 103 operates in a manner similar to system 101. System 103 is illustrated to show how real-world obstructions (e.g., trees, other vehicles, etc.) limit the probability of semantic data. Specifically, “Light A” is illustrated as capturing semantic data indicating that parking spot X2 is empty with a probability of 10%, and “Light B” is illustrated as capturing semantic data indicating that parking spot X3 is empty with a probability of 10%. The reduced confidence for parking spot X2 is due to the tree, which prevents the sensor at “Light A” from fully sensing parking spot X2 , and the reduced confidence for parking spot X3 is due to a transport vehicle, which prevents the sensor at “Light B” from fully sensing parking spot X3 . That is, FIG2 illustrates semantic data containing probabilities that vary depending on obstructions.
关于依据原始传感器数据确定语义数据的过程,除仅有的以下各项例外以外,本发明不主张此过程的任何细节:(i)使每一语义数据与所述语义数据的概率相关联,(ii)使每一语义数据与传感器的位置的空间及时间坐标相关联,及(iii)使每一语义数据与从传感器远程检测到的事件的空间及时间坐标相关联。Regarding the process of determining semantic data based on raw sensor data, the present invention does not claim any details of this process, except for the following exceptions: (i) associating each semantic data with a probability of the semantic data, (ii) associating each semantic data with the spatial and temporal coordinates of the location of the sensor, and (iii) associating each semantic data with the spatial and temporal coordinates of an event remotely detected from the sensor.
可经分析以便产生语义数据的原始传感器数据的类型包含但不限于环境传感器数据、气体数据、加速计数据、微粒数据、电力数据、RF信号、周围光数据、运动检测数据、静止图像、视频数据、音频数据等。根据一些实施例,LSN中的多种传感器节点可采用对原始传感器数据的处理以产生概率语义数据。概率语义数据可表示事件,所述事件包含经由计算机视觉(视频分析)处理或对在网络中的节点上本地发生的大数据集的其它分析而对人、车辆或其它物体的检测。The types of raw sensor data that can be analyzed to generate semantic data include, but are not limited to, environmental sensor data, gas data, accelerometer data, particle data, power data, RF signals, ambient light data, motion detection data, still images, video data, audio data, and the like. According to some embodiments, various sensor nodes in an LSN can employ processing of raw sensor data to generate probabilistic semantic data. Probabilistic semantic data can represent events, including the detection of people, vehicles, or other objects, through computer vision (video analytics) processing or other analysis of large data sets occurring locally at nodes in the network.
图3是图解说明根据一实施例的用于在传感网络中进行概率语义感测的系统107的框图。系统107可包含两个或两个以上感测节点109、聚合节点125及一个或多个概率应用程序117。感测节点109(例如,机器)中的每一者可包含感测引擎111。广泛的来说,感测节点109各自包含一个或多个传感器30以用于感测作为原始传感器数据而经传递到感测引擎111的原始传感器数据,所述感测引擎继而处理所述原始传感器数据以产生语义数据121。语义数据121可包含呈所感测事件的形式的所感测事件信息123,所述所感测事件各自包含将语义数据121进行分类的分类符。分类符可包含将原始传感器数据的含义表示为包含双态的表达的离散事件的语义数据(未展示)。举例来说,双态可为针对停车地点(例如,经占用、闲置)、人(例如,存在、不存在)、车辆(例如,存在、不存在)来说的。额外分类符可与语义数据相关联,如下文所讨论。FIG3 is a block diagram illustrating a system 107 for performing probabilistic semantic sensing in a sensor network, according to one embodiment. The system 107 may include two or more sensing nodes 109, an aggregation node 125, and one or more probabilistic applications 117. Each of the sensing nodes 109 (e.g., machines) may include a sensing engine 111. Broadly speaking, each sensing node 109 includes one or more sensors 30 for sensing raw sensor data, which is passed as raw sensor data to the sensing engine 111. The sensing engine then processes the raw sensor data to generate semantic data 121. The semantic data 121 may include sensed event information 123 in the form of sensed events, each of which includes a classifier that categorizes the semantic data 121. The classifier may include semantic data (not shown) representing the meaning of the raw sensor data as a discrete event that includes a binary expression. For example, the binary expression may be for a parking space (e.g., occupied, unoccupied), a person (e.g., present, absent), or a vehicle (e.g., present, absent). Additional classifiers may be associated with semantic data, as discussed below.
感测节点109可将语义数据121传递到聚合节点125。聚合节点125可包含相关引擎113及概率引擎115。其它实施例可包含多个聚合节点125。感测相同基础现象(例如,停车地点#123)的感测节点109可将表示相同基础现象的语义数据121(所感测事件)传递到相同聚合节点125。因此,一些感测节点109可基于正由感测节点109感测并传递的基础现象而与两个或两个以上聚合节点125通信。聚合节点125可优选地在云中实施。其它实施例可在感测节点109或另一机器或类似物的任一组合上实施相关引擎113及概率引擎115。The sensing nodes 109 may communicate the semantic data 121 to an aggregation node 125. The aggregation node 125 may include a correlation engine 113 and a probability engine 115. Other embodiments may include multiple aggregation nodes 125. Sensing nodes 109 that sense the same underlying phenomenon (e.g., parking spot #123) may communicate semantic data 121 (sensed events) representing the same underlying phenomenon to the same aggregation node 125. Thus, some sensing nodes 109 may communicate with two or more aggregation nodes 125 based on the underlying phenomenon being sensed and communicated by the sensing nodes 109. The aggregation node 125 may preferably be implemented in the cloud. Other embodiments may implement the correlation engine 113 and the probability engine 115 on any combination of the sensing nodes 109, another machine, or the like.
相关引擎113经由网络(例如,LAN、WAN、因特网等)接收呈所感测事件的形式的所感测事件信息123,且基于所感测事件中的每一者中的分类符使语义数据121相关/聚合以产生语义数据127的聚合。语义数据121的聚合可经逻辑分组。根据一些实施例,相关引擎113可通过建构表示从传感网络中的一个或多个感测节点109接收的两个或两个以上语义数据121的相关性的抽象图而使语义数据121相关并聚合成经聚合语义数据127。相关引擎113可基于语义数据121的相似性或基于包含于所感测事件中的其它分类符而建构抽象图。相关引擎113可进一步基于分类符之间的包含与每一语义数据相关联的空间及时间坐标的关系而建构抽象图。仅举例来说,相关引擎113可使在一定时间段内从感测节点109接收的所有所感测事件相关并聚合,所述所感测事件分别包含对停车场中的特定停车地点的占用状态(例如,占用、未占用)的断言及关于所述断言的置信度的概率。进一步举例来说,相关引擎113可使在一定时间段内从感测节点109接收的所有所感测事件相关并聚合,所述所感测事件分别表示停车场中的特定位置处的人的存在(例如,存在、不存在)及关于所述断言的置信度的概率。相关引擎113可利用分类符141的确切匹配(图4A)、分类符141的模糊匹配或两者的组合来建构抽象图。根据一些实施例,相关引擎113可基于传感器30的位置及/或语义数据的位置(例如,被断言为空或经占用的停车地点的位置)之间的数学关系而使语义数据121相关并聚合成经聚合语义数据127。举例来说,相关引擎113可识别传感器30的位置(以空间及时间坐标表达)及/或语义数据的位置(例如,匹配、近似匹配等)(以空间及时间坐标表达)之间的数学关系。The correlation engine 113 receives sensed event information 123 in the form of sensed events via a network (e.g., a LAN, a WAN, the Internet, etc.) and correlates/aggregates semantic data 121 based on classifiers in each of the sensed events to generate aggregates of semantic data 127. The aggregates of semantic data 121 may be logically grouped. According to some embodiments, the correlation engine 113 may correlate and aggregate the semantic data 121 into aggregated semantic data 127 by constructing an abstract graph representing the correlation of two or more semantic data 121 received from one or more sensor nodes 109 in the sensor network. The correlation engine 113 may construct the abstract graph based on similarities of the semantic data 121 or based on other classifiers included in the sensed events. The correlation engine 113 may further construct the abstract graph based on relationships between the classifiers, including spatial and temporal coordinates associated with each piece of semantic data. By way of example only, the correlation engine 113 may correlate and aggregate all sensed events received from the sensing nodes 109 within a time period, each of which includes an assertion of the occupancy state (e.g., occupied, unoccupied) of a particular parking spot in a parking lot and a probability associated with the confidence level of the assertion. By way of further example, the correlation engine 113 may correlate and aggregate all sensed events received from the sensing nodes 109 within a time period, each of which indicates the presence of a person (e.g., present, absent) at a particular location in the parking lot and a probability associated with the confidence level of the assertion. The correlation engine 113 may construct the abstract graph using exact matches of the classifiers 141 ( FIG. 4A ), fuzzy matches of the classifiers 141, or a combination of both. According to some embodiments, the correlation engine 113 may correlate and aggregate the semantic data 121 into aggregated semantic data 127 based on a mathematical relationship between the locations of the sensors 30 and/or the locations of the semantic data (e.g., the locations of parking spots asserted as empty or occupied). For example, the correlation engine 113 may identify mathematical relationships between the locations of the sensor 30 (expressed in spatial and temporal coordinates) and/or the locations (eg, matches, near matches, etc.) of the semantic data (expressed in spatial and temporal coordinates).
相关引擎113可将经聚合语义数据127传递到概率引擎115,所述概率引擎继而处理经聚合语义数据127以产生呈所导出事件的形式的所导出事件信息129。所属领域的技术人员将了解,传感网络可包含将所导出事件信息129传递到相同传感处理接口131的多个聚合节点125。概率引擎115通过使用包含于每一所感测事件中的每一语义数据的个别概率的关系连同外部数据输入来计算具有所导出概率的所导出事件以处理经聚合语义数据127。根据一些实施例,外部数据输入可包含具有所要准确性的用户输入、应用程序输入或其它用户定义的所要参数,如下文进一步描述。概率引擎115处理语义数据127的单个聚合以产生单个所导出事件。因此,概率引擎115可智能地减少继而传递下去以供进一步分析的数据的量。仅举例来说,语义数据127的单个聚合中的数据的量由概率引擎115减少到单个所导出事件。此外,概率引擎115可智能地减小语义数据127的聚合中的概率以产生包含单个所导出概率的单个所导出事件。概率引擎115可进一步基于阈值137及加权值139产生所导出事件信息129。概率引擎115可使用与每一语义数据相关联的阈值137来确定所导出事件的性质。阈值137的初始确定可以启发式方式定义或可由任何其它次最优过程产生。概率引擎115可基于对语义数据121的概率的持续分析而更改阈值137,如由图解说明既进入又离开概率引擎115的阈值137的移动的箭头所表示。概率引擎115可基于对语义数据121的概率的持续分析而更改权重的指派,如由图解说明既进入又离开概率引擎115的加权值139的移动的箭头所表示。概率引擎115可将较高加权值139指派给具有较高概率或确定性的语义数据121。概率引擎115可接收以启发式方式定义或由任何其它次最优过程产生的初始加权。概率引擎115可在随机过程中基于对语义数据121的概率的持续分析而更改权重的指派,如由图解说明既进入又离开概率引擎115的阈值137的移动的箭头所表示。根据一些实施例,概率引擎115可利用所导出概率以进行额外处理,或可将所导出事件中的所导出概率传递到传感处理接口131(例如,应用程序处理接口)。传感处理接口131可由一个或多个概率应用程序117(例如,“应用程序W”、“应用程序X”、“应用程序Y”、“应用程序X”)读取,所述概率应用程序继而处理所导出事件以使得所述一个或多个应用程序能够执行服务。The correlation engine 113 may pass the aggregated semantic data 127 to the probability engine 115, which then processes the aggregated semantic data 127 to generate derived event information 129 in the form of derived events. Those skilled in the art will appreciate that a sensor network may include multiple aggregation nodes 125 that pass derived event information 129 to the same sensor processing interface 131. The probability engine 115 processes the aggregated semantic data 127 by calculating derived events with derived probabilities using the relationship between the individual probabilities of each semantic data included in each sensed event, along with external data input. According to some embodiments, the external data input may include user input, application input, or other user-defined parameters with a desired accuracy, as further described below. The probability engine 115 processes a single aggregation of semantic data 127 to generate a single derived event. Thus, the probability engine 115 can intelligently reduce the amount of data that is then passed on for further analysis. By way of example only, the amount of data in a single aggregation of semantic data 127 is reduced by the probability engine 115 to a single derived event. Furthermore, the probability engine 115 can intelligently reduce the probabilities in the aggregation of semantic data 127 to produce a single derived event comprising a single derived probability. The probability engine 115 can further generate derived event information 129 based on thresholds 137 and weighting values 139. The probability engine 115 can use the thresholds 137 associated with each semantic data to determine the nature of the derived event. The initial determination of the thresholds 137 can be defined heuristically or generated by any other suboptimal process. The probability engine 115 can modify the thresholds 137 based on the ongoing analysis of the probabilities of the semantic data 121, as represented by the arrows illustrating the movement of the thresholds 137 both into and out of the probability engine 115. The probability engine 115 can modify the assignment of weights based on the ongoing analysis of the probabilities of the semantic data 121, as represented by the arrows illustrating the movement of the weighting values 139 both into and out of the probability engine 115. The probability engine 115 can assign higher weighting values 139 to semantic data 121 with higher probabilities or certainties. The probability engine 115 may receive initial weights defined heuristically or generated by any other suboptimal process. The probability engine 115 may change the assignment of weights based on ongoing analysis of the probabilities of the semantic data 121 in a stochastic process, as represented by the arrows illustrating the movement of the threshold 137 both into and out of the probability engine 115. According to some embodiments, the probability engine 115 may utilize the derived probabilities for additional processing, or may pass the derived probabilities in the derived events to the sensor processing interface 131 (e.g., an application processing interface). The sensor processing interface 131 may be read by one or more probabilistic applications 117 (e.g., "Application W," "Application X," "Application Y," "Application X"), which in turn process the derived events to enable the one or more applications to perform services.
图4A是图解说明根据一实施例的所感测事件信息123的框图。所感测事件信息123可体现为由感测节点109产生并传递到聚合节点125的所感测事件,在聚合节点125处所述所感测事件由相关引擎113接收。所感测事件可包含用于表征语义数据121的分类符141。分类符141可包含语义数据、应用程序识别符、概率、传感器30的位置、语义数据的位置及类似物。语义数据分类符描述在感测节点109处由传感器30感测的离散事件且可包含表达双态的语义数据,如先前所描述(例如,停车地点占用或未占用)。应用程序识别符分类符可识别一个或多个概率应用程序117,所述概率应用程序接收基于含有应用程序识别符的所感测事件而产生的所导出事件信息129。概率分类符描述所感测事件的确定性或可靠性,如在相关联语义数据中所断言。举例来说,所感测事件可包含停车地点以99%的概率为空的语义数据,从而指示停车地点确实为空的置信度为99%。传感器的位置分类符描述感测相关联语义数据的传感器30的位置。传感器的位置分类符可体现为感测相关联语义数据的传感器30的空间坐标且体现为指示由传感器30感测的相关联语义数据的日期及时间的时间坐标。语义数据的位置分类符描述相关联语义数据的位置。语义数据的位置分类符可体现为相关联语义数据的空间坐标及指示由传感器30感测的相关联语义数据的日期及时间的时间坐标。4A is a block diagram illustrating sensed event information 123 according to one embodiment. Sensed event information 123 may be embodied as sensed events generated by sensing nodes 109 and communicated to aggregation nodes 125, where they are received by correlation engine 113. Sensed events may include classifiers 141 for characterizing semantic data 121. Classifiers 141 may include semantic data, application identifiers, probabilities, locations of sensors 30, locations of semantic data, and the like. Semantic data classifiers describe discrete events sensed by sensors 30 at sensing nodes 109 and may include semantic data expressing binary states, as previously described (e.g., parking lot occupied or unoccupied). Application identifier classifiers may identify one or more probabilistic applications 117 that receive derived event information 129 generated based on sensed events containing application identifiers. Probabilistic classifiers describe the certainty or reliability of a sensed event, as asserted in the associated semantic data. For example, a sensed event may include semantic data that the parking spot is empty with a probability of 99%, thereby indicating a 99% confidence that the parking spot is indeed empty. The sensor's location classifier describes the location of the sensor 30 that sensed the associated semantic data. The sensor's location classifier may be embodied as the spatial coordinates of the sensor 30 that sensed the associated semantic data and as a time coordinate indicating the date and time the associated semantic data was sensed by the sensor 30. The location classifier of the semantic data describes the location of the associated semantic data. The location classifier of the semantic data may be embodied as the spatial coordinates of the associated semantic data and as a time coordinate indicating the date and time the associated semantic data was sensed by the sensor 30.
图4B是图解说明根据一实施例的所导出事件信息129的框图。所导出事件信息129可体现为由概率引擎115产生并传递到传感处理接口131的所导出事件。所导出事件可包含用于表征所导出事件信息129的分类符143。所导出事件中的分类符143的含义对应于所感测事件中的分类符141的含义,如先前所描述。语义数据分类符描述由分别位于感测节点109处的一个或多个传感器30感测的离散事件且可包含表达双态的描述符,如先前所描述(例如,停车地点占用或未占用)。在一些实例中,两个或两个以上传感器30可位于同一感测节点109处。应用程序识别符分类符可识别接收所导出事件信息129的一个或多个概率应用程序117。所导出事件中的概率分类符描述所导出事件的确定性或可靠性,如在相关联语义数据中所断言。概率分类符143可包含如由概率引擎115确定的基于两个或两个以上所感测事件的概率。举例来说,所导出事件可包含停车地点以99%的概率(基于两个或两个以上所感测事件)为空的语义数据。传感器的位置分类符描述感测相关联语义数据的一个或多个传感器30的位置。传感器的位置分类符可体现为感测相关联语义数据的一个或多个传感器30的空间坐标且体现为指示由一个或多个对应传感器30感测的相关联语义数据的日期及时间的对应时间坐标。语义数据的位置分类符描述相关联语义数据的位置。语义数据的位置分类符可体现为相关联语义数据的空间坐标及指示由对应一个或多个传感器30感测的相关联语义数据的日期及时间的时间坐标。Figure 4B is a block diagram illustrating the derived event information 129 according to one embodiment. The derived event information 129 may be embodied as derived events generated by the probability engine 115 and passed to the sensor processing interface 131. The derived event may include a classifier 143 for characterizing the derived event information 129. The meaning of the classifier 143 in the derived event corresponds to the meaning of the classifier 141 in the sensed event, as previously described. The semantic data classifier describes a discrete event sensed by one or more sensors 30 respectively located at a sensing node 109 and may include a descriptor expressing a binary state, as previously described (e.g., a parking space occupied or not occupied). In some instances, two or more sensors 30 may be located at the same sensing node 109. The application identifier classifier may identify one or more probabilistic applications 117 that receive the derived event information 129. The probabilistic classifier in the derived event describes the certainty or reliability of the derived event, as asserted in the associated semantic data. The probability classifier 143 may include a probability based on two or more sensed events as determined by the probability engine 115. For example, the derived event may include semantic data that the parking place is empty with a probability of 99% (based on the two or more sensed events). The location classifier of the sensor describes the location of the one or more sensors 30 that sensed the associated semantic data. The location classifier of the sensor may be embodied as the spatial coordinates of the one or more sensors 30 that sensed the associated semantic data and as corresponding time coordinates indicating the date and time of the associated semantic data sensed by the one or more corresponding sensors 30. The location classifier of the semantic data describes the location of the associated semantic data. The location classifier of the semantic data may be embodied as the spatial coordinates of the associated semantic data and as time coordinates indicating the date and time of the associated semantic data sensed by the corresponding one or more sensors 30.
图5是图解说明根据一实施例的使用者输入信息135的框图。使用者输入信息135可包含由概率引擎115接收并由概率引擎115用于产生所导出事件信息129的参数或配置值。使用者输入信息135可包含所要准确性信息、应用程序输入信息及用户偏好信息。所要准确性信息可经接收以识别在由概率引擎115产生所导出事件之前需要的原始传感器数据的最小等级。应用程序输入信息可经接收以配置用于特定概率应用程序117的等级。举例来说,停车概率应用程序117可利用可配置以用于作出停车地点是否为空的决定的等级。将等级配置为低(例如,0)可迫使概率引擎115作出停车地点是否为空的决定,不论可用于作出决定的经聚合语义数据127的数量为何。将等级配置得较高(例如,1到X,其中X>0)可使得概率引擎115能够针对低于经配置等级的经聚合语义数据127的数量而报告不充足信息且针对等于或大于经配置等级的经聚合语义数据127的数量而报告空(或不空)。举例来说,报告(例如,所感测事件)可包含指示停车空间为“空”(或不空)的语义数据或指示“不充足信息”的语义数据。FIG5 is a block diagram illustrating user input information 135 according to one embodiment. User input information 135 may include parameters or configuration values received by the probability engine 115 and used by the probability engine 115 to generate derived event information 129. User input information 135 may include desired accuracy information, application input information, and user preference information. Desired accuracy information may be received to identify a minimum level of raw sensor data required before the probability engine 115 generates derived events. Application input information may be received to configure the level for a particular probabilistic application 117. For example, the parking probability application 117 may utilize a configurable level for determining whether a parking spot is vacant. Configuring the level to a low level (e.g., 0) may force the probability engine 115 to make a parking spot vacant determination regardless of the amount of aggregated semantic data 127 available for making the determination. Configuring the level higher (e.g., 1 to X, where X>0) can enable the probability engine 115 to report insufficient information for amounts of aggregated semantic data 127 below the configured level and to report empty (or not empty) for amounts of aggregated semantic data 127 equal to or greater than the configured level. For example, a report (e.g., a sensed event) can include semantic data indicating that a parking space is "empty" (or not empty) or semantic data indicating "insufficient information."
图6是图解说明根据一实施例的用于在传感网络中进行概率语义感测的方法147的框图。方法147可在操作151处以光传感网络接收原始传感器数据而开始。举例来说,光传感网络可包含分别定位于两个灯杆的顶部处的两个感测节点109,所述两个灯杆分别包含照射停车场的两个灯。所述灯可经识别为“灯A”及“灯B”。感测节点109可各自包含接收原始传感器数据的传感器30及处理原始传感器数据的感测引擎111。原始传感器数据表示停车场中的多个停车位的占用状态。在一个实例中,在传感器节点109中的每一者处收集的原始传感器数据表示相同停车地点。6 is a block diagram illustrating a method 147 for performing probabilistic semantic sensing in a sensor network according to one embodiment. The method 147 may begin at operation 151 with the light sensing network receiving raw sensor data. For example, the light sensing network may include two sensing nodes 109 positioned at the tops of two light poles, each of which includes two lights illuminating a parking lot. The lights may be identified as "Light A" and "Light B". The sensing nodes 109 may each include a sensor 30 that receives the raw sensor data and a sensing engine 111 that processes the raw sensor data. The raw sensor data represents the occupancy status of multiple parking spaces in the parking lot. In one example, the raw sensor data collected at each of the sensor nodes 109 represents the same parking location.
在操作153处,感测引擎111基于原始感测数据产生语义数据121。举例来说,在感测节点109中的每一者处的感测引擎111可处理原始感测数据以产生呈所感测事件信息123的形式的语义数据121,所述所感测事件信息呈两个所感测事件的形式。“灯A”处的感测引擎111可产生包含呈以下形式的分类符的第一所感测事件:断言停车地点为空的语义数据,识别停车地点应用程序的应用程序识别符,所断言语义数据为真(例如,停车地点确实为空)的95%的概率,识别在“灯A”处感测所断言语义数据的传感器30的位置的坐标(例如,纬度、经度/全球定位系统(GPS)坐标及类似物),及识别所断言语义数据的位置的坐标(例如,识别停车地点的位置的纬度、经度/GPS坐标及类似物)。规定传感器30经操作以获取语义数据的日期及时间的分类符与传感器30的位置坐标进一步相关联。规定由传感器30感测到语义数据的日期及时间的分类符与语义数据的位置坐标进一步相关联。At operation 153, the sensing engine 111 generates semantic data 121 based on the raw sensed data. For example, the sensing engine 111 at each of the sensing nodes 109 may process the raw sensed data to generate semantic data 121 in the form of sensed event information 123 in the form of two sensed events. The sensing engine 111 at "Light A" may generate a first sensed event that includes a classifier in the following form: semantic data asserting that the parking spot is empty, an application identifier identifying the parking spot application, a 95% probability that the asserted semantic data is true (e.g., the parking spot is indeed empty), coordinates (e.g., latitude, longitude/Global Positioning System (GPS) coordinates, and the like) identifying the location of the sensor 30 that sensed the asserted semantic data at "Light A," and coordinates identifying the location of the asserted semantic data (e.g., latitude, longitude/GPS coordinates, and the like identifying the location of the parking spot). A classifier specifying the date and time at which the sensor 30 was operated to acquire the semantic data is further associated with the location coordinates of the sensor 30. A classifier specifying the date and time at which the semantic data was sensed by the sensor 30 is further associated with the location coordinates of the semantic data.
“灯B”处的感测引擎111产生包含呈以下形式的分类符141的第二所感测事件:断言相同语义数据的语义数据(例如,停车地点为空),识别停车地点应用程序的应用程序识别符,所断言语义数据为真(例如,停车地点确实为空)的85%的概率,识别在“灯B”处感测所断言语义数据的传感器30的位置的坐标(例如,纬度、经度/GPS坐标及类似物),及识别所断言语义数据的位置的坐标(例如,识别停车地点的位置的纬度、经度/GPS坐标及类似物)。规定传感器30经操作以获取语义数据的日期及时间的分类符141与传感器30的位置坐标进一步相关联。规定由传感器30感测到语义数据的日期及时间的分类符141与语义数据的位置坐标进一步相关联。The sensing engine 111 at "Light B" generates a second sensed event that includes a classifier 141 in the following form: semantic data asserting the same semantic data (e.g., the parking spot is empty), an application identifier identifying the parking spot application, an 85% probability that the asserted semantic data is true (e.g., the parking spot is indeed empty), coordinates (e.g., latitude, longitude/GPS coordinates, and the like) identifying the location of the sensor 30 that sensed the asserted semantic data at "Light B," and coordinates identifying the location of the asserted semantic data (e.g., latitude, longitude/GPS coordinates, and the like identifying the location of the parking spot). A classifier 141 specifying the date and time the sensor 30 was operated to acquire the semantic data is further associated with the location coordinates of the sensor 30. A classifier 141 specifying the date and time the semantic data was sensed by the sensor 30 is further associated with the location coordinates of the semantic data.
最后,“灯A”处的感测引擎111将在“灯A”处产生的上文所描述第一所感测事件经由网络(例如,LAN、WAN、因特网等)传递到聚合节点125,在聚合节点125处所述第一所感测事件由相关引擎113接收。同样地,“灯B”处的感测引擎111将在“灯B”处产生的上文所描述第二所感测事件经由网络(例如,LAN、WAN、因特网等)传递到相同聚合节点125,在聚合节点125处所述第二所感测事件由相关引擎113接收。所属领域的技术人员将了解其它实施例可包含用于感测同一停车地点的额外感测节点109。根据另一实施例,包含相关引擎113的聚合节点125可位于云中。根据另一实施例,相关引擎113可位于感测节点109处。Finally, the sensing engine 111 at "Light A" transmits the first sensed event described above, generated at "Light A," to the aggregation node 125 via a network (e.g., a LAN, WAN, the Internet, etc.), where it is received by the correlation engine 113. Similarly, the sensing engine 111 at "Light B" transmits the second sensed event described above, generated at "Light B," to the same aggregation node 125 via a network (e.g., a LAN, WAN, the Internet, etc.), where it is received by the correlation engine 113. Those skilled in the art will appreciate that other embodiments may include additional sensing nodes 109 for sensing the same parking location. According to another embodiment, the aggregation node 125 including the correlation engine 113 may be located in the cloud. According to another embodiment, the correlation engine 113 may be located at the sensing node 109.
在操作157处,相关引擎113可基于语义数据121中的分类符141而使语义数据121相关以产生语义数据121的聚合。相关引擎113可实时地从多个感测节点109连续接收所感测事件。相关引擎113可基于所感测事件中的分类符141而使所感测事件相关以产生语义数据的聚合127。在本发明实例中,相关引擎113接收第一及第二所感测事件且基于从可用分类符的群组选择一个或多个分类符141而使两者在一起相关。举例来说,一个或多个分类符141可包含语义数据(例如,停车地点为空)及/或应用程序识别符及/或识别正被断言的语义数据的位置的坐标。举例来说,相关引擎113可基于以下各项而使第一所感测事件与第二所感测事件相关并聚合在一起:匹配的语义数据(例如,停车地点为空)及/或匹配的应用程序识别符(例如,识别停车地点应用程序)及/或识别所断言语义数据的位置的匹配的坐标(例如,识别停车地点的位置的纬度、经度/GPS坐标及类似物)。可从可用分类符的群组选择用于经聚合语义数据127(例如,所感测事件的聚合)的相关及产生的其它分类符141。最后,在操作157处,相关引擎113将经聚合语义数据127传递到概率引擎115。根据一个实施例,相关引擎113及概率引擎115在云中的聚合节点125中执行。在另一实施例中,相关引擎113及概率引擎115在不同计算平台上执行且相关引擎113将经聚合语义数据127经由网络(例如,LAN、WAN、因特网等)传递到概率引擎115。At operation 157, the correlation engine 113 may correlate the semantic data 121 based on the classifiers 141 in the semantic data 121 to generate an aggregate of the semantic data 121. The correlation engine 113 may continuously receive sensed events from the plurality of sensing nodes 109 in real time. The correlation engine 113 may correlate the sensed events based on the classifiers 141 in the sensed events to generate an aggregate 127 of semantic data. In the present example, the correlation engine 113 receives the first and second sensed events and correlates the two together based on selecting one or more classifiers 141 from the group of available classifiers. For example, the one or more classifiers 141 may include semantic data (e.g., parking lot is empty) and/or an application identifier and/or coordinates identifying the location of the semantic data being asserted. For example, the correlation engine 113 may correlate and aggregate the first sensed event with the second sensed event based on matching semantic data (e.g., parking lot is empty) and/or matching application identifiers (e.g., identifying the parking lot application) and/or matching coordinates identifying the location of the asserted semantic data (e.g., latitude, longitude/GPS coordinates, and the like, identifying the location of the parking lot). Other classifiers 141 for correlation and generation of aggregated semantic data 127 (e.g., aggregation of sensed events) may be selected from a group of available classifiers. Finally, at operation 157, the correlation engine 113 passes the aggregated semantic data 127 to the probability engine 115. According to one embodiment, the correlation engine 113 and the probability engine 115 execute in the aggregation node 125 in the cloud. In another embodiment, the correlation engine 113 and the probability engine 115 execute on different computing platforms and the correlation engine 113 passes the aggregated semantic data 127 to the probability engine 115 via a network (e.g., LAN, WAN, Internet, etc.).
在操作159处,概率引擎115可分析语义数据的聚合127中的每一者以产生所导出事件信息129(例如,所导出事件)。举例来说,概率引擎115可分析包含第一所感测事件及第二所感测事件的语义数据的聚合127以产生呈第一所导出事件的形式的所导出事件信息129。第一所导出事件可包含语义数据分类符143的概率(例如,停车地点为空的90%的概率),所述概率是由概率引擎115基于语义数据的聚合127而产生,所述概率包含在第一所感测事件中包含的语义数据分类符141的概率(例如,停车地点为空的85%的概率)及在第二所感测事件中包含的语义数据分类符141的概率(例如,停车地点为空的95%的概率)。举例来说,概率引擎115可对来自第一及第二所感测事件的两个语义数据141的概率(例如,85%及95%)求平均以产生针对第一所导出事件的语义数据的(单个)概率(例如,90%)。其它实例可包含在额外所感测事件中包含的语义数据分类符141的额外概率以产生针对第一所导出事件的语义数据的(单个)概率90%。概率引擎115可利用如先前所描述的使用者输入信息135、阈值137及加权值139来产生所导出事件。At operation 159, the probability engine 115 may analyze each of the aggregates 127 of semantic data to generate derived event information 129 (e.g., derived events). For example, the probability engine 115 may analyze the aggregates 127 of semantic data including the first sensed event and the second sensed event to generate derived event information 129 in the form of a first derived event. The first derived event may include a probability of the semantic data classifier 143 (e.g., a 90% probability that the parking lot is empty) generated by the probability engine 115 based on the aggregates 127 of semantic data, the probability including the probability of the semantic data classifier 141 included in the first sensed event (e.g., an 85% probability that the parking lot is empty) and the probability of the semantic data classifier 141 included in the second sensed event (e.g., a 95% probability that the parking lot is empty). For example, the probability engine 115 may average the probabilities of the two semantic data 141 from the first and second sensed events (e.g., 85% and 95%) to produce a (single) probability (e.g., 90%) for the semantic data of the first derived event. Other examples may include additional probabilities for the semantic data classifiers 141 included in additional sensed events to produce a (single) probability of 90% for the semantic data of the first derived event. The probability engine 115 may utilize the user input information 135, threshold 137, and weighting value 139 as previously described to generate the derived event.
在操作161处,概率引擎115可将所导出事件信息129传递到传感处理接口131以实现至少一个概率应用程序117。举例来说,概率应用程序117可从传感处理接口131读取所导出事件信息129(例如,所导出事件)且利用所导出事件中的分类符143来执行服务并产生报告。所述服务可包含控制传感网络内部或外部的装置及产生报告,如稍后在此文档中较完全描述。举例来说,概率引擎115可将呈第一所导出事件的形式的所导出事件信息129经由网络(例如,LAN、WAN、因特网等)传递到传感处理接口131,所述所导出事件信息继而由一个或多个概率应用程序117(例如,应用程序X)读取,所述一个或多个概率应用程序利用第一所导出事件来执行服务或产生报告。在一个实施例中,概率引擎115与传感处理接口131可处于相同计算平台上。在另一实施例中,概率引擎115与传感处理接口131可处于不同计算平台上。At operation 161, the probability engine 115 may pass the derived event information 129 to the sensor processing interface 131 to implement at least one probabilistic application 117. For example, the probabilistic application 117 may read the derived event information 129 (e.g., derived events) from the sensor processing interface 131 and utilize the classifiers 143 in the derived events to perform services and generate reports. The services may include controlling devices within or outside the sensor network and generating reports, as described more fully later in this document. For example, the probability engine 115 may pass the derived event information 129 in the form of a first derived event to the sensor processing interface 131 via a network (e.g., a LAN, a WAN, the Internet, etc.), where the derived event information is then read by one or more probabilistic applications 117 (e.g., Application X), which utilize the first derived event to perform services or generate reports. In one embodiment, the probability engine 115 and the sensor processing interface 131 may be on the same computing platform. In another embodiment, the probability engine 115 and the sensor processing interface 131 may be on different computing platforms.
根据一些实施例,语义数据121及所导出事件信息129的应用程序可包含照明能力的管理或监视。此类型的概率应用程序117可涉及包含人、车辆、其它实体的存在事件及相关联照射更改的分类符143。此类型的概率应用程序117还可包含对在照明网络的节点下方或周围区域中(包含在杆、壁或其它固定物体下或周围)的活动的确定。此类型的概率应用程序117还可包含对与照明基础设施相关联的篡改或盗窃的检测。在每一情形中,与每一语义数据相关联的概率可受传感器30的位置、由于真实世界阻碍物所致的传感器场的阻碍、照明照射的限制、网络带宽的可用性或计算能力的可用性限制。According to some embodiments, applications of semantic data 121 and derived event information 129 may include management or monitoring of lighting capabilities. This type of probabilistic application 117 may involve classifiers 143 including presence events of people, vehicles, other entities, and associated illumination changes. This type of probabilistic application 117 may also include the determination of activity in areas beneath or around nodes of the lighting network, including beneath or around poles, walls, or other fixed objects. This type of probabilistic application 117 may also include the detection of tampering or theft associated with the lighting infrastructure. In each case, the probability associated with each semantic data may be limited by the location of the sensor 30, obstruction of the sensor field due to real-world obstructions, limitations on lighting illumination, availability of network bandwidth, or availability of computing power.
根据一些实施例,语义数据121及所导出事件信息129的概率应用程序117可包含停车位置及占用检测、监视及报告。此类型的概率应用程序117可涉及包含人、汽车及其它车辆的存在及运动事件的分类符141及/或分类符143。此类型的概率应用程序117还可基于汽车或车辆的参数(其包含其品牌(make)、型号、类型及其它美学特征)而使用关于人、汽车及其它车辆的分类符143。在每一情形中,与每一语义数据相关联的概率可受传感器30的位置、由于真实世界阻碍物(包含其它车辆的停车位置或在停车空间的范围内的其它物体的位置)所致的传感器场的阻碍、照明照射的限制、网络带宽的可用性或计算能力的可用性限制。According to some embodiments, probabilistic applications 117 of semantic data 121 and derived event information 129 may include parking location and occupancy detection, monitoring, and reporting. This type of probabilistic application 117 may involve classifiers 141 and/or classifiers 143 for presence and motion events including people, cars, and other vehicles. This type of probabilistic application 117 may also use classifiers 143 for people, cars, and other vehicles based on parameters of the car or vehicle, including its make, model, type, and other aesthetic features. In each case, the probability associated with each semantic data may be limited by the location of the sensor 30, obstruction of the sensor field due to real-world obstructions (including the parking location of other vehicles or the location of other objects within the scope of the parking space), lighting limitations, availability of network bandwidth, or availability of computing power.
根据一些实施例,语义数据121及所导出事件信息129的概率应用程序117可包含监控及报告。此类型的概率应用程序117可涉及包含人或物体的检测或者人或物体的移动的分类符141及/或分类符143。此类型的概率应用程序117的目标可为增加公共安全或区域的安保。在每一情形中,与每一语义数据相关联的概率可受传感器30的位置、由于真实世界阻碍物所致的传感器场的阻碍、照明照射的限制、网络带宽的可用性或计算能力的可用性限制。According to some embodiments, probabilistic applications 117 of semantic data 121 and derived event information 129 may include monitoring and reporting. This type of probabilistic application 117 may involve classifiers 141 and/or 143, including detection of people or objects or movement of people or objects. The goal of this type of probabilistic application 117 may be to increase public safety or regional security. In each case, the probability associated with each semantic data item may be limited by the location of the sensor 30, obstruction of the sensor field due to real-world obstructions, lighting limitations, network bandwidth availability, or computing power availability.
根据一些实施例,语义数据121及所导出事件信息129的概率应用程序117可包含交通监视及报告。此类型的概率应用程序117可涉及包含人、汽车及其它车辆的存在及移动的分类符141及/或分类符143。此类型的概率应用程序117还可基于汽车的参数(包含其品牌、型号、类型及其它美学特征)而将人、汽车及其它车辆分类。在每一情形中,与每一语义数据相关联的概率可受传感器30的位置、由于真实世界阻碍物所致的传感器场的阻碍、照明照射的限制、网络带宽的可用性或计算能力的可用性限制。According to some embodiments, probabilistic applications 117 of semantic data 121 and derived event information 129 may include traffic monitoring and reporting. This type of probabilistic application 117 may involve classifiers 141 and/or 143 that include the presence and movement of people, cars, and other vehicles. This type of probabilistic application 117 may also classify people, cars, and other vehicles based on parameters of the car, including its make, model, type, and other aesthetic features. In each case, the probability associated with each semantic data may be limited by the location of the sensor 30, obstruction of the sensor field due to real-world obstacles, lighting limitations, availability of network bandwidth, or availability of computing power.
根据一些实施例,语义数据121及所导出事件信息129的概率应用程序117可包含零售客户监视及报告。此类型的概率应用程序117可涉及以可对零售商来说有用的方式包含人、汽车及其它车辆的存在及移动的分类符141及/或分类符143。此类型的概率应用程序117还可包含确定关于零售位置的使用的趋势。在每一情形中,与每一语义数据相关联的概率可受传感器30的位置、由于真实世界阻碍物所致的传感器场的阻碍、照明照射的限制、网络带宽的可用性或计算能力的可用性限制。According to some embodiments, probabilistic applications 117 of semantic data 121 and derived event information 129 may include retail customer monitoring and reporting. This type of probabilistic application 117 may involve classifiers 141 and/or classifiers 143 that include the presence and movement of people, cars, and other vehicles in a manner that can be useful to retailers. This type of probabilistic application 117 may also include determining trends regarding the use of a retail location. In each case, the probability associated with each semantic data may be limited by the location of the sensor 30, obstruction of the sensor field due to real-world obstructions, lighting limitations, availability of network bandwidth, or availability of computing power.
根据一些实施例,语义数据121及所导出事件信息129的概率应用程序117可包含商务智能监视。此类型的概率应用程序117涉及包含由企业用于操作目的、设施目的或商务目的的系统的状态(包含销售点(PoS)及其它战略位置处的活动)的分类符141及/或分类符143。此类型的概率应用程序117还可包含确定关于商务智能的趋势。在每一情形中,与每一语义数据相关联的概率可受传感器30的位置、由于真实世界阻碍物所致的传感器场的阻碍、照明照射的限制、网络带宽的可用性或计算能力的可用性限制。According to some embodiments, probabilistic applications 117 of semantic data 121 and derived event information 129 may include business intelligence monitoring. This type of probabilistic application 117 involves classifiers 141 and/or classifiers 143 that include the status of systems used by an enterprise for operational, facility, or business purposes, including activity at points of sale (PoS) and other strategic locations. This type of probabilistic application 117 may also include determining trends related to business intelligence. In each case, the probability associated with each semantic data may be limited by the location of the sensor 30, obstruction of the sensor field due to real-world obstructions, lighting limitations, network bandwidth availability, or computing power availability.
根据一些实施例,语义数据121及所导出事件信息129的概率应用程序117可包含资产监视。此类型的概率应用程序117可涉及包含对高价值或其它战略资产(例如车辆、库存股票、贵重物品、工业装备等)的监视的分类符141及/或分类符143。在每一情形中,与每一语义数据相关联的概率可受传感器30的位置、由于真实世界阻碍物所致的传感器场的阻碍、照明照射的限制、网络带宽的可用性或计算能力的可用性限制。According to some embodiments, probabilistic applications 117 of semantic data 121 and derived event information 129 may include asset monitoring. This type of probabilistic application 117 may involve classifiers 141 and/or classifiers 143 that include monitoring of high-value or other strategic assets, such as vehicles, inventory, valuables, industrial equipment, etc. In each case, the probability associated with each semantic data may be limited by the location of the sensor 30, obstruction of the sensor field due to real-world obstructions, lighting limitations, availability of network bandwidth, or availability of computing power.
根据一些实施例,语义数据121及所导出事件信息129的概率应用程序117可包含环境监视。此类型的概率应用程序117可涉及分类符141及/或分类符143,包含与对风、温度、压力、气体浓度、空中浮游的微粒物质浓度或其它环境参数的监视有关的分类符。在每一情形中,与每一语义数据相关联的概率可受传感器30的位置、由于真实世界阻碍物所致的传感器场的阻碍、照明照射的限制、网络带宽的可用性或计算能力的可用性限制。在一些实施例中,环境监视可包含地震感测。According to some embodiments, probabilistic applications 117 of semantic data 121 and derived event information 129 may include environmental monitoring. This type of probabilistic application 117 may involve classifiers 141 and/or 143, including classifiers related to monitoring wind, temperature, pressure, gas concentration, airborne particulate matter concentration, or other environmental parameters. In each case, the probability associated with each semantic data may be limited by the location of the sensor 30, obstruction of the sensor field due to real-world obstructions, lighting limitations, network bandwidth availability, or computing power availability. In some embodiments, environmental monitoring may include seismic sensing.
照明基础设施应用程序框架Lighting Infrastructure Application Framework
本发明进一步涉及作为实现室外或室内空间的照明以外的功能性的传感器30、平台、控制器及软件的网络的基础的街道或其它照明系统的使用。The present invention further relates to the use of street or other lighting systems as the basis for a network of sensors 30, platforms, controllers, and software that implement functionality beyond lighting of outdoor or indoor spaces.
全世界的工业化国家具有广泛的室内及室外照明网络。街道、公路、停车场、工厂、办公楼及所有类型的设施通常具有广泛的室内及室外照明。基本上所有此照明直到最近均使用白炽或高强度气体放电(HID)技术。然而,白炽或HID照明在电力转换为光输出时是低效的。用于白炽照明的电力的很大部分作为热而耗散。此不仅浪费能源,而且通常导致灯泡本身以及照明设备的故障。Industrialized countries around the world have extensive indoor and outdoor lighting networks. Streets, highways, parking lots, factories, office buildings, and all types of facilities typically feature extensive indoor and outdoor lighting. Until recently, virtually all of this lighting used incandescent or high-intensity discharge (HID) technology. However, incandescent and HID lighting are inefficient at converting electricity into light output. A significant portion of the electricity used for incandescent lighting is dissipated as heat. This not only wastes energy but also often leads to failure of the bulbs themselves and the lighting fixtures.
由于这些缺点以及发光二极管或其它固态照明技术的操作及维护成本效率,因此大量白炽或HID灯具的许多所有者正将其转换为使用固态照明。固态照明不仅提供较长寿命的灯泡,借此减少用于替换的劳工成本,而且所得器具还在低温下操作达较长时间段,从而进一步减少维护器具的需要。本申请案的代理人给各个市政机关、商业及私人所有者提供照明替换服务及装置,从而使得其能够以减少的维护成本及减少的能源成本操作其设施。Because of these shortcomings and the operational and maintenance cost efficiencies of LED or other solid-state lighting technologies, many owners of large incandescent or HID lamps are converting them to solid-state lighting. Solid-state lighting not only provides longer-life bulbs, thereby reducing labor costs for replacement, but the resulting fixtures also operate at lower temperatures for longer periods of time, further reducing the need for maintenance. The attorney for this application provides lighting replacement services and devices to various municipalities, businesses, and private owners, enabling them to operate their facilities with reduced maintenance costs and reduced energy costs.
已开发用于部署在街道或其它照明系统中的联网传感器及应用程序框架。此系统的架构允许已适当地或在其初始安装时联网系统在照明基础设施内的部署。虽然系统通常部署于室外街道照明中,但其还可部署于室内,举例来说,在工厂或办公楼中。此外,当系统部署于室外时,其可在路灯灯泡从白炽照明改变为较高效照明(举例来说使用发光二极管(LED))时被安装。替换此些白炽灯泡的成本较高,此主要由于劳工成本及必需使用特殊装备来到达每一路灯中的每一灯泡所致。通过在所述时间处安装此处所描述的网络,与仅用LED灯泡替换现有白炽灯泡相比,增加的成本是最小的。A networked sensor and application framework has been developed for deployment in street or other lighting systems. The architecture of this system allows for the deployment of a networked system within the lighting infrastructure, either already in place or at the time of its initial installation. While the system is typically deployed in outdoor street lighting, it can also be deployed indoors, for example, in factories or office buildings. Furthermore, when the system is deployed outdoors, it can be installed when streetlight bulbs are changing from incandescent lighting to more efficient lighting, such as using light-emitting diodes (LEDs). Replacing these incandescent bulbs is expensive, primarily due to labor costs and the need to use special equipment to reach each bulb in each streetlight. By installing the network described herein at the time described, the added cost is minimal compared to simply replacing the existing incandescent bulbs with LED bulbs.
由于此系统实现众多不同用途,因此将此处所描述的所部署网络、传感器30、控制器及软件系统称为照明基础设施应用程序框架(LIAF)。系统使用照明基础设施作为使用硬件与软件的组合实施的商务及客户应用程序的平台。框架的主要组件为节点硬件及软件、传感器硬件、位点特定或基于云的服务器硬件、网络硬件及软件以及实现数据收集、分析、动作调用及与应用程序及用户的通信的广域网资源。Because this system enables many different uses, the deployed network, sensors 30, controllers, and software system described herein is referred to as the Lighting Infrastructure Application Framework (LIAF). The system uses the lighting infrastructure as a platform for business and customer applications implemented using a combination of hardware and software. The main components of the framework are node hardware and software, sensor hardware, site-specific or cloud-based server hardware, network hardware and software, and wide area network resources that enable data collection, analysis, action invocation, and communication with applications and users.
所属领域的技术人员将了解,LIAF可用于体现用于概率语义感测(且更特定来说在光传感网络中进行概率语义感测)的方法及系统,如先前所描述。尽管此处所描述的系统是在街道照明的上下文中,但依据以下说明将明了,所述系统对其它环境(举例来说,在停车库或工厂环境中)也具有适用性。Those skilled in the art will appreciate that LIAF can be used to embody methods and systems for probabilistic semantic sensing, and more specifically probabilistic semantic sensing in light sensing networks, as previously described. Although the system described herein is in the context of street lighting, it will be apparent from the following description that the system also has applicability to other environments, for example, in parking garages or factory environments.
在一个实施例中,此系统提供使用现有室外停车结构及室内工业灯的照明系统网络。每一灯可成为网络中的节点,且每一节点包含:电力控制端子,其用于接收电力;光源,其耦合到电力控制端子;处理器,其耦合到电力控制端子;网络接口,其耦合于处理器与照明系统网络之间;及传感器30,其耦合到处理器以用于检测节点处的状况。在如下文所描述的一些应用中,所述网络不依赖照明系统。在组合中,此系统允许每一节点将关于节点处的状况的信息传达到其它节点及中心位置。处理可因此分布于LIAF中的节点当中。In one embodiment, this system provides a lighting system network that utilizes existing outdoor parking structures and indoor industrial lights. Each light can become a node in the network, and each node includes: a power control terminal for receiving power; a light source coupled to the power control terminal; a processor coupled to the power control terminal; a network interface coupled between the processor and the lighting system network; and a sensor 30 coupled to the processor for detecting conditions at the node. In some applications, as described below, the network is independent of the lighting system. In combination, this system allows each node to communicate information about its conditions to other nodes and a central location. Processing can thus be distributed among the nodes in the LIAF.
使用耦合到一些LIAF节点的网络接口的网关来将来自所述节点处的传感器30的信息提供到本地或基于云的服务平台,在所述服务平台处应用程序软件存储、处理、分布并显示信息。此软件执行与由节点处的传感器30检测到的状况有关的所要操作。另外,网关可从服务平台接收信息且将所述信息提供到在其域中的节点平台中的每一者。所述信息可用于促进对灯的维护、对灯的控制,控制摄像机,定位未经占用停车空间,测量一氧化碳水平或众多其它应用,本文中描述所述应用中的数种典型应用。靠近节点布置或靠近节点的传感器30可与控制器一起使用来控制光源,并且将控制信号(例如锁定或解锁停车区域)提供到耦合到节点的设备。出于单个应用程序的目的,多个网关可用于将照明系统的多个区耦合在一起。A gateway coupled to the network interfaces of some LIAF nodes is used to provide information from the sensors 30 at the nodes to a local or cloud-based service platform where application software stores, processes, distributes, and displays the information. This software performs the desired operations related to the conditions detected by the sensors 30 at the nodes. In addition, the gateway can receive information from the service platform and provide the information to each of the node platforms in its domain. The information can be used to facilitate maintenance of lights, control of lights, control cameras, locate unoccupied parking spaces, measure carbon monoxide levels, or numerous other applications, several typical of which are described herein. Sensors 30 arranged near or close to the nodes can be used with controllers to control light sources and provide control signals (e.g., locking or unlocking a parking area) to devices coupled to the nodes. Multiple gateways can be used to couple together multiple zones of a lighting system for the purposes of a single application.
通常,每一节点将包含交流(AC)/直流(DC)转换器以将所供应AC电力转换为DC以供由处理器、传感器30等使用。网关可通过蜂窝式电话、Wi-Fi或到服务平台的其它手段彼此通信。传感器30通常为检测特定状况的装置,举例来说,来自玻璃破碎或汽车报警器的音频、用于安保及停车有关感测的视频摄像机、运动传感器、光传感器、射频识别检测器、天气传感器或针对其它状况的检测器。Typically, each node will include an alternating current (AC)/direct current (DC) converter to convert the supplied AC power to DC for use by processors, sensors 30, etc. Gateways can communicate with each other via cellular phones, Wi-Fi, or other means to a service platform. Sensors 30 are typically devices that detect specific conditions, for example, audio from broken glass or car alarms, video cameras for security and parking-related sensing, motion sensors, light sensors, radio frequency identification detectors, weather sensors, or detectors for other conditions.
在另一实施例中,提供用于通过使用具有带光源的器具的现有照明系统而收集信息的传感器30网络。方法包含:用包含电力控制端子的模块替换每一器具处的光源,所述电力控制端子连接到现有灯具、替换光源、处理器、耦合到处理器的网络接口及耦合到处理器的传感器30的电力供应器。传感器30检测节点处及节点周围的状况,且将关于所述状况的信息转发到处理器。优选地,每一器具处的每一模块的网络接口通常使用宽带或蜂窝式通信网络耦合在一起。使用通信网络从传感器30收集信息,且经由所述网络将所述信息提供到在位点处的本地服务器或在云中的服务器上运行的应用程序。本地或基于位点的应用程序服务器被称为位点控制器。在位点控制器上运行的应用程序可管理来自一个或多个特定客户位点的数据。In another embodiment, a network of sensors 30 is provided for collecting information using an existing lighting system having fixtures with light sources. The method includes replacing the light source at each fixture with a module including power control terminals that are connected to the existing fixture, the replacement light source, a processor, a network interface coupled to the processor, and a power supply for the sensor 30 coupled to the processor. The sensor 30 detects conditions at and around the node and forwards information about the conditions to the processor. Preferably, the network interface of each module at each fixture is coupled together, typically using a broadband or cellular communication network. Information is collected from the sensors 30 using a communication network and provided via the network to an application running on a local server at the site or on a server in the cloud. The local or site-based application server is referred to as a site controller. Applications running on the site controller can manage data from one or more specific customer sites.
在一个实施例中,在器具中的每一者处的每一模块包含控制器及耦合到控制器的设备,且所述控制器用于致使由设备执行动作。如上文所提及,信号可经由通信网络从计算装置发射到模块且借此发射到控制器以致使由照明系统的设备执行动作。In one embodiment, each module at each of the fixtures includes a controller and a device coupled to the controller, and the controller is used to cause an action to be performed by the device. As mentioned above, a signal can be transmitted from a computing device to the module and thereby to the controller via a communication network to cause the device of the lighting system to perform an action.
此处所描述的照明基础设施应用程序框架是基于节点、网关及服务架构。节点架构由部署于照明基础设施中的各种位置处(例如个别街道灯具处)的节点平台组成。至少一些节点包含收集数据并将数据报告到其它节点且(在一些情形中)报告到架构中的较高级的传感器30。举例来说,在个别节点等级处,周围光传感器可提供关于照明器具的位置处的照明状况的信息。摄像机可提供关于发生于节点处的事件的信息。The lighting infrastructure application framework described here is based on a node, gateway, and service architecture. The node architecture consists of a node platform deployed at various locations in the lighting infrastructure, such as at individual street lamps. At least some nodes include sensors 30 that collect and report data to other nodes and, in some cases, higher levels in the architecture. For example, at the individual node level, ambient light sensors can provide information about lighting conditions at the location of a lighting fixture. Cameras can provide information about events occurring at the node.
图7图解说明此系统的总体架构的一部分。如图所展示,除光源本身以外,照明节点还包含节点平台10(例如,“NP”)(例如,感测节点109)。取决于所要的特定应用程序,节点平台10包含由照明节点的所有者选择的各种类型的传感器30。在图解中,描绘日光传感器31及占用传感器32。照明节点还可包含用于响应于传感器30而执行功能或响应于从其它源接收的控制信号而执行功能的控制器40。在图式中图解说明三个示范性控制器40,即用于控制灌溉系统的灌溉控制件42、用于打开及关闭附近门的门控制件45及光控制器48。光控制器48可用于控制节点平台10中的照明源,举例来说,在一天的不同时间处关断或接通照明源、对照明源进行调光、致使照明源闪光、感测光源本身的状况以确定是否需要维护或提供其它功能性。传感器30、控制器40、电力供应器及其它所要组件可经共同地组装到节点平台10的外壳中。FIG7 illustrates a portion of the overall architecture of such a system. As shown, a lighting node includes a node platform 10 (e.g., "NP") (e.g., a sensing node 109) in addition to the light source itself. Depending on the specific application desired, the node platform 10 includes various types of sensors 30 selected by the owner of the lighting node. In the illustration, a daylight sensor 31 and an occupancy sensor 32 are depicted. The lighting node may also include a controller 40 for performing functions in response to the sensors 30 or in response to control signals received from other sources. Three exemplary controllers 40 are illustrated in the figure: an irrigation control 42 for controlling an irrigation system, a door control 45 for opening and closing a nearby door, and a light controller 48. The light controller 48 can be used to control the lighting sources in the node platform 10, for example, turning the lighting sources off or on at different times of the day, dimming the lighting sources, causing the lighting sources to flash, sensing the condition of the light sources themselves to determine whether maintenance is required, or providing other functionality. The sensor 30 , controller 40 , power supply, and other required components may be collectively assembled into a housing of the node platform 10 .
这些或类似控制器40实现的控制功能的其它实例可包含:对电力分配的管理、电力的测量及监视以及需求/响应管理。控制器40可激活及去激活传感器30,且可测量及监视传感器输出。另外,控制器40提供对通信功能(例如用于软件下载及安保管理的网关操作)的管理及对视频及音频处理(举例来说,事件的检测或监视)的管理。Other examples of these or similar control functions implemented by the controller 40 may include management of power distribution, power measurement and monitoring, and demand/response management. The controller 40 may activate and deactivate the sensors 30 and measure and monitor sensor outputs. Additionally, the controller 40 provides management of communication functions (such as gateway operations for software downloads and security management) and management of video and audio processing (for example, detection or monitoring of events).
在所述一个实施例中,此联网系统的架构实现照明节点处的传感器30的“即插即用”部署。照明基础设施应用程序框架(LIAF)提供用以实现传感器即插即用架构的实施的硬件及软件。当部署新传感器30时,软件及硬件管理传感器30,但LIAF提供对与传感器30相关联的一般性功能的支持。此可减少或消除传感器30对定制硬件及软件支持的需要。传感器30可需要电力(通常为电池或有线低电压DC),且优选地传感器30产生模拟或数字信号作为输出。In one embodiment, the architecture of this networked system enables "plug-and-play" deployment of sensors 30 at lighting nodes. The Lighting Infrastructure Application Framework (LIAF) provides the hardware and software to implement the sensor plug-and-play architecture. When a new sensor 30 is deployed, the software and hardware manage the sensor 30, but LIAF provides support for generic functionality associated with the sensor 30. This can reduce or eliminate the need for custom hardware and software support for the sensor 30. The sensor 30 may require power (typically a battery or wired low-voltage DC), and preferably generates an analog or digital signal as output.
LIAF允许在不具有额外硬件及软件组件的情况下进行照明节点处的传感器30的部署。在一个实施方案中,LIAF将DC电力提供到传感器30。LIAF还监视与传感器30相关联的模拟或数字接口,以及节点处的所有其它活动。LIAF allows for the deployment of sensors 30 at lighting nodes without additional hardware and software components. In one embodiment, LIAF provides DC power to the sensors 30. LIAF also monitors the analog or digital interfaces associated with the sensors 30, as well as all other activity at the node.
位于一些灯处的节点平台10一起耦合到网关平台50(例如,“GP”)(例如,聚合节点125)。网关平台50使用如下文进一步描述的技术与节点平台10通信,但可包含无线连接或有线连接。网关平台50将优选地使用众所周知的通信技术55(例如蜂窝式数据、Wi-Fi、GPRS或其它手段)与因特网80通信。当然,网关平台50不需要为独立实施方案。其可部署于节点平台10处。除由节点平台10提供的功能以外,网关平台50还提供广域网(WAN)功能性且可提供复杂数据处理功能性。Node platforms 10 located at some of the lamps are coupled together to a gateway platform 50 (e.g., "GP") (e.g., aggregation node 125). The gateway platform 50 communicates with the node platform 10 using techniques as further described below, but may include wireless or wired connections. The gateway platform 50 will preferably communicate with the Internet 80 using well-known communication technologies 55 (e.g., cellular data, Wi-Fi, GPRS, or other means). Of course, the gateway platform 50 need not be a stand-alone implementation. It can be deployed at the node platform 10. In addition to the functionality provided by the node platform 10, the gateway platform 50 also provides wide area network (WAN) functionality and can provide complex data processing functionality.
网关平台50与服务平台90(例如,“SP”)建立通信,从而使得节点能够将数据提供到各种应用程序100(例如,概率应用程序117)或从各种应用程序100接收指令。服务平台90优选地在云中实施以实现与应用程序100(例如,概率应用程序117)的互动。当服务平台90或具有所述功能性的子组在位点处本地实施时,那么所述服务平台或具有所述功能性的子组被称为位点控制器。提供最终用户可存取功能的多种应用程序100(例如,概率应用程序117)与服务平台90相关联。所有者、合伙人、客户或其它实体可提供这些应用程序100。举例来说,一个典型应用程序100提供关于节点处的当前天气状况的报告。应用程序100通常由他人开发且授权给基础设施所有者,但应用程序也可由节点所有者提供,或以其它方式变得可用以供在各种节点上使用。The gateway platform 50 establishes communication with the service platform 90 (e.g., "SP"), enabling the node to provide data to various applications 100 (e.g., probabilistic application 117) or receive instructions from various applications 100. The service platform 90 is preferably implemented in the cloud to enable interaction with the applications 100 (e.g., probabilistic application 117). When the service platform 90 or a subset with such functionality is implemented locally at a site, then the service platform or subset with such functionality is referred to as a site controller. A variety of applications 100 (e.g., probabilistic application 117) that provide end-user accessible functionality are associated with the service platform 90. These applications 100 can be provided by owners, partners, customers, or other entities. For example, a typical application 100 provides a report on current weather conditions at a node. Applications 100 are typically developed by others and licensed to infrastructure owners, but applications can also be provided by node owners or otherwise made available for use on various nodes.
典型照明相关应用程序100包含照明控制、照明维护及能源管理。这些应用程序100优选地在服务平台90或位点控制器上运行。还可存在合作伙伴应用程序100--可以利用机密数据且照明基础设施所有者授予特权的应用程序100。此些应用程序100可提供安保管理、停车管理、交通报告、环境报告、资产管理、物流管理及零售数据管理,仅举几个可能的服务。还存在使得客户能够利用一般性数据的客户应用程序100,其中对此数据的存取是(举例来说)由基础设施所有者所授权。另一类型的应用程序100为所有者提供的应用程序100。这些应用程序为由基础设施所有者开发并使用的应用程序100(例如,控制区中或沿着市政街道的交通流)。当然,还可存在使用来自框架的定制数据的应用程序100。Typical lighting-related applications 100 include lighting control, lighting maintenance, and energy management. These applications 100 preferably run on a service platform 90 or a site controller. There may also be partner applications 100—applications 100 that can utilize confidential data and for which the lighting infrastructure owner grants privileges. These applications 100 may provide security management, parking management, traffic reporting, environmental reporting, asset management, logistics management, and retail data management, to name a few possible services. There are also client applications 100 that enable clients to utilize general data, where access to this data is, for example, authorized by the infrastructure owner. Another type of application 100 is owner-provided applications 100. These are applications 100 developed and used by the infrastructure owner (e.g., to control traffic flow in an area or along municipal streets). Of course, there may also be applications 100 that utilize custom data from the framework.
图7中所图解说明的系统中所涉及的主要实体为照明基础设施所有者、应用程序框架提供商、应用程序100或应用程序服务所有者及最终用户。典型基础设施所有者包含市政机关、业主、租户、电公用事业或其它实体。The main entities involved in the system illustrated in Figure 7 are lighting infrastructure owners, application framework providers, application 100 or application service owners, and end users. Typical infrastructure owners include municipalities, property owners, tenants, electric utilities, or other entities.
图8是图解说明处于较高级的此系统的架构的图式。如在图8中所展示,节点平台10的群组彼此通信且通信到网关平台50。网关继而通过通信媒体55而通信到因特网80。在如所图解说明的典型实施方案中,将存在多个组的节点10、多个网关平台50、多个通信媒体55,其全部共同地一起耦合到通过因特网80可用的服务平台90。以此方式,多个应用程序100可通过系统中的网关将广泛程度的功能性提供到个别节点。FIG8 is a diagram illustrating the architecture of this system at a higher level. As shown in FIG8 , groups of node platforms 10 communicate with each other and with a gateway platform 50. The gateway, in turn, communicates to the Internet 80 via a communication medium 55. In a typical embodiment as illustrated, there will be multiple groups of nodes 10, multiple gateway platforms 50, and multiple communication media 55, all of which are collectively coupled together to a service platform 90 available via the Internet 80. In this way, multiple applications 100 can provide a wide range of functionality to individual nodes through the gateways in the system.
图8还图解说明针对节点的阵列的联网架构。在图式的左手部分11中,图解说明节点10的阵列。节点当中的实线表示数据平面,所述数据平面连接选定节点以实现高本地带宽业务。举例来说,这些连接可在这些节点当中实现本地视频或数据的交换。部分11中的虚线表示控制平面,所述控制平面将所有节点彼此连接且提供用于本地及远程业务的输送,从而交换关于事件、使用率、节点状态的信息且使得能够实施来自网关的控制命令及到网关的响应。FIG8 also illustrates a networking architecture for an array of nodes. In the left-hand portion 11 of the diagram, an array of nodes 10 is illustrated. The solid lines between the nodes represent the data plane, which connects selected nodes to facilitate high-bandwidth local services. For example, these connections can enable the exchange of local video or data between these nodes. The dashed lines in portion 11 represent the control plane, which connects all nodes to each other and provides transport for local and remote services, exchanging information about events, usage, and node status, and enabling control commands from and responses to the gateway.
图9更详细地图解说明节点平台10。节点基础设施包含通常实施为AC到DC转换器的电力模块12。在一个实施方案中,在节点经部署于室外路灯处的情况下,AC电力为对此些路灯的主要电力供应。由于大多数传感器30及控制器40结构使用基于半导体的组件,因此电力模块12将可用AC电力转换为适当DC电力电平以用于驱动节点组件。FIG9 illustrates the node platform 10 in more detail. The node infrastructure includes a power module 12, which is typically implemented as an AC to DC converter. In one embodiment, where the node is deployed at outdoor streetlights, AC power is the primary power supply for these streetlights. Since most sensor 30 and controller 40 structures use semiconductor-based components, the power module 12 converts the available AC power to an appropriate DC power level for driving the node components.
如还在图9中所展示,传感器30及控制器40的阵列连接到电力模块12,所述电力模块可包含AC/DC转换器以及其它众所周知的组件。运行处理器模块15的处理器协调传感器30与控制器40的操作以实施所要本地功能性,包含感测引擎111的操作,如先前所描述。处理器模块15还经由适当媒体提供到其它节点平台10的通信。应用程序100还可驱动光源模块16、耦合到适当的第三方光源模块18、在控制器40中的一者的控制下操作。实施方案可将电力模块12及光控制器48功能性组合到单个模块中。如由图式所指示,可视需要提供有线连接46及47以及无线连接44及49。As also shown in FIG9 , an array of sensors 30 and controllers 40 is connected to a power module 12, which may include an AC/DC converter and other well-known components. A processor running a processor module 15 coordinates the operation of the sensors 30 and controllers 40 to implement desired local functionality, including the operation of the sensing engine 111, as previously described. The processor module 15 also provides communication to other node platforms 10 via appropriate media. The application 100 may also drive the light source module 16, couple to appropriate third-party light source modules 18, and operate under the control of one of the controllers 40. Implementations may combine the functionality of the power module 12 and light controller 48 into a single module. As indicated by the diagram, wired connections 46 and 47 and wireless connections 44 and 49 may be provided as needed.
在图9中,照明基础设施由光源模块16、18组成,例如,(例如)可从代理人灵敏度系统公司(Sensity Systems Inc.)商购的LED组合件的LED组合件。当然,第三方制造商可提供第三方光源模块18以及其它组件。模块16还可耦合到控制器40。与节点相关联的传感器30可在节点本地,或其可为远程的。控制器40(除由代理人灵敏度系统公司提供的LED控制器以外)通常为远程的且使用无线通信。处理器模块15(也被称为节点应用程序控制器)管理节点内的所有功能。处理器模块15还实施与应用程序100相关联的管理、数据收集及动作指令。通常这些指令作为应用程序脚本而递送到控制器40。另外,应用程序控制器上的软件提供激活、管理、安保(验证及访问控制)及通信功能。网络模块14将基于射频(RF)的无线通信提供到其它节点。这些无线通信可基于邻域网(NAN)、WiFi、802.15.4或其它技术。可利用传感器模块来操作传感器30。处理器模块15进一步经图解说明为以通信方式耦合到如先前所描述地操作的感测引擎111。In FIG9 , the lighting infrastructure consists of light source modules 16 and 18, such as LED assemblies commercially available from Sensity Systems Inc. Of course, third-party manufacturers can provide third-party light source modules 18 and other components. Modules 16 can also be coupled to a controller 40. Sensors 30 associated with a node can be local to the node or remote. Controller 40 (except for the LED controller provided by Sensity Systems Inc.) is typically remote and uses wireless communication. Processor module 15 (also known as the node application controller) manages all functions within the node. Processor module 15 also implements management, data collection, and action instructions associated with application 100. These instructions are typically delivered to controller 40 as application scripts. In addition, software on the application controller provides activation, management, security (authentication and access control), and communication functions. Network module 14 provides radio frequency (RF)-based wireless communications to other nodes. These wireless communications can be based on neighborhood area networks (NANs), WiFi, 802.15.4, or other technologies. Sensor modules can be used to operate sensors 30. The processor module 15 is further illustrated as being communicatively coupled to the sensing engine 111 , which operates as previously described.
图10是网关平台50的框图。如由所述图所建议且如上文所提及,网关平台50可位于节点处或位于与节点分离的其自身外壳中。在图10的图式中,再次展示电力模块12、处理器模块15、LED光源模块16及第三方光源模块18组件以及传感器模块30及控制器模块40。进一步图解说明均如先前所描述地操作的相关引擎113及概率引擎115。FIG10 is a block diagram of a gateway platform 50. As suggested by the diagram and as mentioned above, the gateway platform 50 can be located at the node or in its own housing separate from the node. In the diagram of FIG10 , the power module 12, processor module 15, LED light source module 16, and third-party light source module 18 components are again shown, along with the sensor module 30 and controller module 40. Further illustrated are the correlation engine 113 and the probability engine 115, both operating as previously described.
除由节点平台10支持的功能以外,网关平台50硬件及软件组件还使用媒体模块105(例如以视频速率)以及中继或WAN网关110实现高带宽数据处理及分析。网关平台50可被视为节点平台10,但其具有额外功能性。高带宽数据处理媒体模块105支持可分析、检测、记录并报告应用程序特定事件的视频及音频数据处理功能。中继或WAN网关110可基于GSM、Wi-Fi、LAN到因特网或其它广域网技术。In addition to the functions supported by the node platform 10, the gateway platform 50 hardware and software components also implement high-bandwidth data processing and analysis using the media module 105 (e.g., at video rates) and the relay or WAN gateway 110. The gateway platform 50 can be considered the node platform 10, but with additional functionality. The high-bandwidth data processing media module 105 supports video and audio data processing functions that can analyze, detect, record, and report application-specific events. The relay or WAN gateway 110 can be based on GSM, Wi-Fi, LAN to Internet, or other wide area network technologies.
图11是服务平台90的框图。服务平台90支持应用程序网关120及定制节点应用程序构建器130。应用程序网关120管理到使用传感器及来自照明节点的事件数据实施的不同类型的应用程序(例如,概率应用程序117)的接口。具有应用程序网关120(根据一个实施例,例如,传感处理接口131)的服务平台90可经部署为客户照明位点处的位点控制器。因此,位点控制器为仅具有应用程序网关120功能性的服务平台90的实例。定制节点应用程序构建器130允许开发定制节点应用程序脚本(例如,概率应用程序117)。这些脚本对处理器模块15(参见图9)规定将在节点等级处执行的数据收集指令及操作。脚本对应用程序网关120规定如何将与脚本相关联的结果提供到应用程序(例如,概率应用程序117)。FIG11 is a block diagram of the service platform 90. The service platform 90 supports an application gateway 120 and a custom node application builder 130. The application gateway 120 manages interfaces to different types of applications (e.g., probabilistic applications 117) that are implemented using sensors and event data from lighting nodes. The service platform 90 with the application gateway 120 (e.g., sensor processing interface 131, according to one embodiment) can be deployed as a site controller at a customer lighting site. Thus, a site controller is an instance of the service platform 90 with only the functionality of the application gateway 120. The custom node application builder 130 allows for the development of custom node application scripts (e.g., probabilistic applications 117). These scripts specify to the processor module 15 (see FIG9 ) data collection instructions and operations to be performed at the node level. The scripts specify to the application gateway 120 how the results associated with the script are provided to the application (e.g., probabilistic application 117).
图11还图解说明所有者应用程序140(例如,概率应用程序117)、灵敏度应用程序144(例如,概率应用程序117)、合作伙伴应用程序146(例如,概率应用程序117)及客户应用程序149(例如,概率应用程序117)利用应用程序网关API 150(例如,传感处理接口131,根据一个实施例)。到此为止,代理人已开发并实施传感器30的许多用途所共有的各种类型的应用程序(例如,概率应用程序117)。一个此类应用程序100为照明管理。照明管理应用程序提供针对节点平台10处的光源的照明状态及控制功能性。由代理人提供的另一应用程序(例如,概率应用程序117)提供照明维护。照明维护应用程序(举例来说)通过实现监视每一节点处的灯的状态而允许用户维护其照明网络。能源管理应用程序(例如,概率应用程序117)允许用户监视照明基础设施能源使用率且因此更好地控制所述使用。FIG11 also illustrates an owner application 140 (e.g., probability application 117), a sensitivity application 144 (e.g., probability application 117), a partner application 146 (e.g., probability application 117), and a client application 149 (e.g., probability application 117) utilizing an application gateway API 150 (e.g., sensor processing interface 131, according to one embodiment). Thus far, the agent has developed and implemented various types of applications (e.g., probability application 117) that are common to many uses of sensor 30. One such application 100 is lighting management. The lighting management application provides lighting status and control functionality for light sources at the node platform 10. Another application provided by the agent (e.g., probability application 117) provides lighting maintenance. The lighting maintenance application, for example, allows users to maintain their lighting network by enabling monitoring of the status of lights at each node. Energy management applications (e.g., probability application 117) allow users to monitor lighting infrastructure energy usage and thereby better control that usage.
在图11中所展示的合作伙伴应用程序146通常为经代理人批准的应用程序及已建立针对各种所要功能(例如下文所列举的功能)的市场的应用程序服务公司。这些应用程序100利用应用程序网关API 150。典型合作伙伴应用程序146提供安保管理、停车管理、交通监视及报告、环境报告、资产管理及物流管理。The partner applications 146 shown in FIG11 are typically agency-approved applications and application service companies that have established a marketplace for various desired functions, such as those listed below. These applications 100 utilize the application gateway API 150. Typical partner applications 146 provide security management, parking management, traffic monitoring and reporting, environmental reporting, asset management, and logistics management.
客户应用程序149利用应用程序网关API 150来提供客户相关功能性。此API 150提供对公开可获得的、匿名的及经所有者批准的数据的存取。还展示由照明基础设施所有者开发并使用以满足其各种特定需要的所有者应用程序140。Client applications 149 utilize an application gateway API 150 to provide client-related functionality. This API 150 provides access to publicly available, anonymous, and owner-approved data. Also shown are owner applications 140 that are developed and used by lighting infrastructure owners to meet their various specific needs.
图12图解说明上文所描述的系统的照明基础设施应用程序收入模型。此收入模型图解说明收入如何产生并在照明基础设施中的关键利益相关者当中分配。一般来说,应用程序100及/或应用程序服务提供商从应用程序用户收集收入A。应用程序100所有者或服务提供商将费用B支付给照明基础设施应用程序框架服务提供商。LIAF服务提供商将费用C支付给照明基础设施所有者。Figure 12 illustrates the lighting infrastructure application revenue model for the system described above. This revenue model illustrates how revenue is generated and distributed among key stakeholders in the lighting infrastructure. Generally speaking, applications 100 and/or application service providers collect revenue A from application users. Application 100 owners or service providers pay fees B to the lighting infrastructure application framework service provider. The LIAF service provider pays fees C to the lighting infrastructure owner.
基于照明基础设施的应用程序100的关键利益相关者包含照明基础设施的所有者。这些所有者是拥有灯杆/器具及照明基础设施位于其上的财产的实体。系统所涉及的另一关键方为LIAF服务提供商。这些LIAF服务提供商是提供经部署以提供用于应用程序100的数据及服务的硬件及软件平台的实体。本文中的代理人是LIAF的服务提供商。其它重要实体包含应用程序(例如,概率应用程序117)开发者及所有者。这些实体出售应用程序100或应用程序服务。这些应用程序100及服务提供商是基于由LIAF收集、处理并分布的数据。Key stakeholders in lighting infrastructure-based applications 100 include lighting infrastructure owners. These owners are the entities that own the light poles/fixtures and the property on which the lighting infrastructure is located. Another key party involved in the system is the LIAF service provider. These LIAF service providers are the entities that provide the hardware and software platforms deployed to provide data and services for applications 100. Agents in this context are LIAF service providers. Other important entities include application (e.g., probabilistic application 117) developers and owners. These entities sell applications 100 or application services. These applications 100 and service providers are based on data collected, processed, and distributed by LIAF.
用于资助LIAF的收入来源当中有应用程序、应用程序服务及数据。存在针对应用程序100或应用程序服务提供商的收入选项。应用程序100或应用程序服务的用户支付许可证费用,所述许可证费用通常为基于时间间隔或作为一次性支付的许可证费用。此费用是基于不同使用率等级,举例来说,标准、专业及管理人员。使用率费用还可取决于数据的类型(例如原始或概括、实时对非实时等)、对历史数据的存取、基于按需求动态定价的数据及基于与数据相关联的位置。Among the revenue sources used to fund the LIAF are applications, application services, and data. Revenue options exist for applications 100 or application service providers. Users of applications 100 or application services pay a license fee, typically based on time intervals or as a one-time payment. This fee is based on different usage tiers, for example, standard, professional, and manager. Usage fees can also depend on the type of data (e.g., raw or summarized, real-time versus non-real-time, etc.), access to historical data, data based on dynamic pricing on demand, and the location associated with the data.
另一应用程序服务包含广告商。这些广告商是想要向应用程序100及应用程序服务用户做广告宣传产品或服务的企业。此些广告商支付针对每一应用程序100或服务的广告费用。Another application service includes advertisers. These advertisers are businesses that want to advertise their products or services to applications 100 and application service users. These advertisers pay advertising fees for each application 100 or service.
关于数据,应用程序100及应用程序服务开发者进行付款以存取数据。数据包含针对整个灯在每灯引擎基础上、在每灯引擎通道上或每传感器30的特定数据,例如节点处的能源使用率。另一类型的数据为灯的状态(例如管理状态),例如用以触发调光的温度阈值或能源成本、调光百分比、包含检测间隔及报告间隔的设定的灯状态的报告。此数据还可包含操作状态,例如灯的当前状态(接通或关断、经调光量及调光量、出故障、异常等)。其它类型的数据包含环境数据(例如节点处的温度、湿度及大气压)或照明数据(例如周围光及其颜色)。Regarding data, applications 100 and application service developers pay to access it. This data includes specific data for the entire light, such as energy usage at a node, on a per-light engine basis, per-light engine channel, or per sensor 30. Another type of data is light status (e.g., management status), such as temperature thresholds or energy costs to trigger dimming, dimming percentages, and reports on light status including settings for detection and reporting intervals. This data can also include operational status, such as the current state of the light (on or off, dimmed by and by, faulty, abnormal, etc.). Other types of data include environmental data (e.g., temperature, humidity, and atmospheric pressure at a node) or lighting data (e.g., ambient light and its color).
节点还可感测并提供众多其它类型的数据。举例来说,可检测到并数据报告气体,例如二氧化碳、一氧化碳、甲烷、天然气、氧气、丙烷、丁烷、氨或硫化氢。其它类型的数据包含指示地震事件的加速计状态、入侵检测器状态、蓝牙.RTM..sup.1媒体存取控制(MAC)_地址、有源射频识别(RFID)标签数据、ISO-18000-7及DASH 7数据。下文更详细地描述这些应用程序100中的一些应用程序及其可收集的数据。Nodes can also sense and provide numerous other types of data. For example, gases such as carbon dioxide, carbon monoxide, methane, natural gas, oxygen, propane, butane, ammonia, or hydrogen sulfide can be detected and reported. Other types of data include accelerometer status indicating seismic events, intrusion detector status, Bluetooth® RTM® sup.1 Media Access Control (MAC) addresses, active radio frequency identification (RFID) tag data, ISO-18000-7, and DASH 7 data. Some of these applications 100 and the data they can collect are described in more detail below.
应用程序特定传感器数据可包含用以检测杆或灯具的基座处的入侵、杆的基座处的盖的未授权打开、灯具的未授权打开的入侵传感器,用于入侵相关振动检测、地震相关振动检测或杆损坏相关振动检测的振动传感器。运动传感器可检测运动、运动的方向及所检测的运动的类型。Application-specific sensor data may include intrusion sensors for detecting intrusion at the base of a pole or light fixture, unauthorized opening of a cover at the base of a pole, or unauthorized opening of a light fixture; vibration sensors for detecting intrusion-related vibrations, earthquake-related vibrations, or pole damage-related vibrations. Motion sensors may detect motion, the direction of motion, and the type of motion detected.
音频传感器可提供另一类型的可收集数据。音频传感器可检测玻璃破碎、枪击、车辆发动机的接通或关断事件、轮胎噪声、车辆门关闭、人类交流事件或人类痛苦噪声事件。Audio sensors can provide another type of collectible data. Audio sensors can detect glass breaking, gunshots, vehicle engine on/off events, tire noise, vehicle door closing, human communication events, or human distress noise events.
人检测传感器可检测单个人、多个人及人的计数。车辆检测可包含单个车辆、多个车辆及传感器可见性的持续时间。车辆检测可提供车辆计数或关于品牌、型号、颜色、牌照等的辨识信息。People detection sensors can detect a single person, multiple people, and count people. Vehicle detection can include a single vehicle, multiple vehicles, and the duration of sensor visibility. Vehicle detection can provide a vehicle count or identification information such as make, model, color, license plate, etc.
此系统还可通常通过使用来自多个传感器30的数据而提供关于相关事件的数据。举例来说,来自运动检测器及人检测器的传感器数据可经组合以激发用以接通灯、关断灯、对灯进行调光或使灯变亮的照明功能。借助运动检测对人的计数提供关于安保、零售活动或交通相关事件的信息。与车辆检测耦合的运动检测可用于指示设施的安保的破坏。This system can also provide data about relevant events, typically by using data from multiple sensors 30. For example, sensor data from motion detectors and people detectors can be combined to trigger a lighting function to turn a light on, off, dim a light, or brighten a light. Counting people with motion detection can provide information about security, retail activity, or traffic-related events. Motion detection coupled with vehicle detection can be used to indicate a breach in a facility's security.
传感器30的组合(例如运动与车辆计数或运动与音频)的使用提供用于执行各种动作的有用信息。数据收集的时间还可与来自传感器30的数据(例如上文所讨论的数据)组合以提供有用信息,例如在设施处的打开及关闭小时期间的运动检测。耦合到运动检测传感器的光等级传感器可提供用于照明控制的有用信息。运动检测可与视频组合以仅在事件发生时捕获数据。可使当前与历史传感器数据相关且将当前及历史传感器数据用于预测用于调整控制信号的事件或需要,例如交通流型样。The use of combinations of sensors 30 (e.g., motion and vehicle counting or motion and audio) provides useful information for performing various actions. The timing of data collection can also be combined with data from sensors 30 (such as the data discussed above) to provide useful information, such as motion detection during the opening and closing hours of a facility. A light level sensor coupled to a motion detection sensor can provide useful information for lighting control. Motion detection can be combined with video to capture data only when an event occurs. Current and historical sensor data can be correlated and used to predict events or the need to adjust control signals, such as traffic flow patterns.
在节点处收集的数据的另一用途是聚合。此允许使用数据事件来使用多种技术产生群组的代表值。举例来说,经聚合数据可用于收集关于以下各项的信息:位点处的照明器类型(例如柱顶及外墙照明器);环境保护对无保护照明器或曝光区域外部的照明器。可基于照明区域(例如道路、停车场、车道)、设施类型(例如制造业、R&D)、公司地区(例如国际对国内)等来收集数据。Another use for data collected at nodes is aggregation. This allows for the use of data events to generate representative values for groups using a variety of techniques. For example, aggregated data can be used to gather information about the type of luminaire at a location (e.g., pole-top vs. exterior wall luminaires); environmentally protected vs. unprotected luminaires; or luminaires located outside of exposed areas. Data can be collected based on lighting area (e.g., road, parking lot, driveway), facility type (e.g., manufacturing, R&D), company region (e.g., international vs. domestic), and more.
电力使用率可针对器具类型、设施、设施类型或地理区而聚合。环境感测相关聚合可针对地理区域或设施类型而提供。安保应用程序包含针对地理区域或设施类型的聚合。交通应用程序包含按天、周、月、年的时间或按地理区域(例如学校区域对零售区域)进行的聚合。零售应用程序包含按天、周、月等时间以及按地理区域或设施类型进行的聚合。数据还可基于用户规定的准则(例如一天中的时间)而进行过滤或聚合。Power usage can be aggregated by appliance type, facility, facility type, or geographic region. Environmental sensing-related aggregations can be provided for geographic regions or facility types. Security applications include aggregations for geographic regions or facility types. Transportation applications include aggregations by time of day, week, month, year, or by geographic region (e.g., school zones versus retail zones). Retail applications include aggregations by time of day, week, month, etc., as well as by geographic region or facility type. Data can also be filtered or aggregated based on user-specified criteria, such as time of day.
定制应用程序开发允许用户规定待收集并转发到定制应用程序100及服务的数据、待基于照明节点处的数据而执行的动作、将转发到应用程序100或应用程序服务的数据的格式及历史数据的管理。Custom application development allows users to specify data to be collected and forwarded to custom applications 100 and services, actions to be performed based on the data at the lighting nodes, the format of the data to be forwarded to the application 100 or application services, and management of historical data.
此收入分配模型允许收入在照明基础设施所有者、应用程序基础设施所有者及应用程序100或应用程序服务所有者当中分配。现今,对基础设施所有者来说,照明是涉及资本投资、能源账单及维护成本的成本中心。此处,代理人提供硬件、软件及网络资源以在每日基础上实现应用程序100及应用程序服务,从而允许基础设施所有者抵消资本、操作及维护费用中的至少一些费用。This revenue sharing model allows revenue to be distributed among the lighting infrastructure owner, the application infrastructure owner, and the application 100 or application service owner. Today, lighting is a cost center for infrastructure owners, with capital investment, energy bills, and maintenance costs. Here, the broker provides the hardware, software, and network resources to enable the application 100 and application services on a daily basis, allowing the infrastructure owner to offset at least some of the capital, operating, and maintenance costs.
图13到16图解说明上文所描述的系统的四个样本应用程序100。图13图解说明停车管理应用程序181(例如,概率应用程序117)。一系列车辆检测传感器180中的每一者定位在停车库中的每一停车空间上方,或单个多空间占用检测传感器定位于每一灯处。传感器180可使用检测停放在其下方的车辆的存在或不存在的任何众所周知技术而操作。当已部署停车空间特定传感器180时,那么每一传感器180包含显示所述空间是开放、经占用还是被保留的LED。此使得车库中的司机能够定位开放、可用及被保留空间。其还允许车库所有者在不必以视觉方式检验整个车库的情况下知晓空间何时可用。传感器180使用有线或无线技术耦合到节点平台10,例如针对以上系统而描述。节点平台10经由局域网(LAN)210通信到位点控制器200及/或使用网关平台50通信到服务平台90。网关平台50经由因特网80连接到服务平台90及用户220。位点控制器200可与服务平台90或停车管理应用程序181通信。停车管理应用程序181使得用户220能够通过经由因特网80访问所述应用程序181而保留空间。Figures 13 to 16 illustrate four sample applications 100 of the system described above. Figure 13 illustrates a parking management application 181 (e.g., a probability application 117). Each of a series of vehicle detection sensors 180 is positioned above each parking space in the parking garage, or a single multi-space occupancy detection sensor is positioned at each light. The sensors 180 can operate using any well-known technology that detects the presence or absence of a vehicle parked below it. When parking space-specific sensors 180 are deployed, each sensor 180 includes an LED that displays whether the space is open, occupied, or reserved. This enables drivers in the garage to locate open, available, and reserved spaces. It also allows garage owners to know when a space is available without having to visually inspect the entire garage. The sensors 180 are coupled to the node platform 10 using wired or wireless technology, such as described for the above system. The node platform 10 communicates to the site controller 200 via a local area network (LAN) 210 and/or communicates to the service platform 90 using a gateway platform 50. The gateway platform 50 is connected to the service platform 90 and the users 220 via the Internet 80. The site controller 200 can communicate with the service platform 90 or the parking management application 181. The parking management application 181 enables the users 220 to reserve a space by accessing the application 181 via the Internet 80.
图14图解说明照明维护应用程序229(例如,概率应用程序117)。照明维护应用程序229包含照明节点(例如,节点平台10),所述照明节点使用例如上文所描述的系统联网在一起且继而耦合到位点控制器200。使用上文所描述的技术将关于照明节点的信息(例如电力消耗、操作状态、接通-关断活动及传感器活动)报告给位点控制器200及/或服务平台90。另外,位点控制器200及/或服务平台90可收集性能数据(例如温度或电流)以及状态数据(例如发生在节点10处的活动)。提供照明维护相关功能的照明维护应用程序229存取来自服务平台90的原始维护数据。维护相关数据(例如LED温度、LED电力消耗、LED故障、网络故障及电力供应器故障)可由照明维护公司230从照明维护应用程序229存取以确定何时期望服务或何时需要其它关注。FIG14 illustrates a lighting maintenance application 229 (e.g., the probability application 117). The lighting maintenance application 229 includes lighting nodes (e.g., the node platform 10) that are networked together using a system such as that described above and, in turn, coupled to a site controller 200. Information about the lighting nodes (e.g., power consumption, operating status, on-off activity, and sensor activity) is reported to the site controller 200 and/or the service platform 90 using the techniques described above. In addition, the site controller 200 and/or the service platform 90 may collect performance data (e.g., temperature or current) as well as status data (e.g., activity occurring at the node 10). The lighting maintenance application 229, which provides lighting maintenance-related functionality, accesses raw maintenance data from the service platform 90. Maintenance-related data (e.g., LED temperature, LED power consumption, LED faults, network faults, and power supply faults) can be accessed from the lighting maintenance application 229 by the lighting maintenance company 230 to determine when service is desired or when other attention is needed.
图15A及15B图解说明上文所描述系统的库存应用程序238(例如,概率应用程序117)及空间利用应用程序237。如上文所图解说明,一系列RFID标签读取器250沿着节点平台10定位于整个仓库中。这些标签读取器250检测仓库中的各种物品上的RFID标签260。使用如本文中所描述的节点平台10网络,标签读取器250可将所述信息提供到位点控制器200及/或服务平台90。标签读取器250收集位置及识别信息且使用节点平台10将数据转发到位点控制器200及/或服务平台90。此数据接着从服务平台90转发到应用程序100(例如库存应用程序238)。位置及识别数据可用于在保护结构(例如仓库)内部跟踪货流。相同战略可用于监视仓库空间使用率。传感器30检测仓库中的物品的存在及这些物品占用的空间。此空间使用率数据可经转发到位点控制器200及/或服务平台90。监视并管理空间的应用程序100可利用空间利用应用程序237(例如,概率应用程序117)来存取来自服务平台90的描述空间的数据。Figures 15A and 15B illustrate the inventory application 238 (e.g., probability application 117) and space utilization application 237 of the system described above. As illustrated above, a series of RFID tag readers 250 are positioned throughout the warehouse along the node platforms 10. These tag readers 250 detect RFID tags 260 on various items in the warehouse. Using the network of node platforms 10 described herein, the tag readers 250 can provide this information to the site controller 200 and/or the service platform 90. The tag readers 250 collect location and identification information and forward the data to the site controller 200 and/or the service platform 90 using the node platform 10. This data is then forwarded from the service platform 90 to the application 100 (e.g., inventory application 238). The location and identification data can be used to track the flow of goods within a protective structure (e.g., a warehouse). The same strategy can be used to monitor warehouse space utilization. Sensors 30 detect the presence of items in the warehouse and the space these items occupy. This space utilization data can be forwarded to the site controller 200 and/or the service platform 90. The application 100 that monitors and manages the space can utilize the space utilization application 237 (eg, the probability application 117 ) to access data describing the space from the service platform 90 .
图16图解说明用于监视装货码头且从源到目的地跟踪货物的物流应用程序236(例如,概率应用程序117)。举例来说,RFID标签260可经定位以通过利用节点平台10而从源(例如,装货港码头)、中转站(例如,称重站或加油站)一直到目的地(例如,仓库)跟踪货物。类似地,RFID标签260可定位于货物及正运输货物的车辆上。RFID标签260使用节点平台10发射位置信息、识别信息及其它传感器数据信息,所述节点平台继而将前述信息发射到服务平台90。此可进一步在每一位点(例如,源、中转站及目的地)处使用网关平台50执行。服务平台90使此数据可用于应用程序100(例如物流应用程序236),从而使得访问物流应用程序236的用户220能够获得准确位置及货物状态信息。FIG16 illustrates a logistics application 236 (e.g., probabilistic application 117) for monitoring loading docks and tracking cargo from source to destination. For example, RFID tags 260 can be positioned to track cargo from the source (e.g., loading port dock), to a transfer station (e.g., a weigh station or gas station), all the way to the destination (e.g., a warehouse) by utilizing the node platform 10. Similarly, RFID tags 260 can be positioned on cargo and vehicles transporting the cargo. RFID tags 260 transmit location information, identification information, and other sensor data information using the node platform 10, which in turn transmits the aforementioned information to the service platform 90. This can further be performed using the gateway platform 50 at each point (e.g., source, transfer station, and destination). The service platform 90 makes this data available to applications 100 (e.g., logistics application 236), enabling users 220 accessing the logistics application 236 to obtain accurate location and cargo status information.
图17是用于在节点内进行电力监视及控制的电组件的框图。所图解说明的电力测量与控制模块测量传入AC电力且控制经提供到AC/DC转换器的电力。所述电力测量与控制模块还对节点组件提供浪涌抑制并给节点组件提供电力。FIG17 is a block diagram of electrical components used for power monitoring and control within a node. The illustrated power measurement and control module measures incoming AC power and controls the power provided to the AC/DC converter. The power measurement and control module also provides surge suppression and power to the node components.
此电路用于在个别节点处控制到发光二极管的电力。下文所概述的输入或输出的实际计数取决于客户应用程序规定。如在图式中所展示,经由线路300提供介于90伏特与305伏特之间的电压范围下的AC电力。由能源测量集成电路310感测电压及电流。AC到DC变压器320给电路310提供3.3伏特以对集成电路310进行供电。在图17中,虚线表示高压系统的非隔离部分。点线指示在高达10,000伏特下受保护的电路的部分。This circuit is used to control power to light-emitting diodes at individual nodes. The actual number of inputs or outputs outlined below depends on customer application specifications. As shown in the diagram, AC power is provided via line 300 at a voltage range between 90 volts and 305 volts. Voltage and current are sensed by energy measurement integrated circuit 310. AC-to-DC transformer 320 provides 3.3 volts to circuit 310 to power integrated circuit 310. In Figure 17, the dashed lines represent the non-isolated portion of the high-voltage system. The dotted lines indicate the portion of the circuit protected at up to 10,000 volts.
集成电路310为测量线路电压及电流的互补金属氧化物半导体(CMOS)电力测量装置。所述CMOS电力测量装置能够计算有功功率、无功功率及表观功率以及RMS电压及电流。所述CMOS电力测量装置将输出信号315提供到“通用异步接收器/发射器”(UART)装置330。UART装置330在并行接口与串行接口之间转换数据。UART 330经连接以将信号提供到微控制器340,所述微控制器控制经提供到负载350的输出电压,所述负载优选为LED照明系统350。此控制是使用开关355而实施。Integrated circuit 310 is a complementary metal oxide semiconductor (CMOS) power measurement device that measures line voltage and current. The CMOS power measurement device is capable of calculating active, reactive, and apparent power, as well as RMS voltage and current. The CMOS power measurement device provides an output signal 315 to a universal asynchronous receiver/transmitter (UART) device 330. The UART device 330 converts data between a parallel interface and a serial interface. UART 330 is connected to provide a signal to a microcontroller 340, which controls the output voltage provided to a load 350, preferably an LED lighting system 350. This control is implemented using a switch 355.
装置360及365也耦合到微控制器340,装置360及365实施控制器区域网络总线系统(通常被称为CAN总线)。CAN总线允许多个微控制器在不依赖主机计算机的情况下彼此通信。所述CAN总线提供基于消息的通信协议。所述CAN总线允许将多个节点菊花链在一起以在其当中通信。Devices 360 and 365 are also coupled to microcontroller 340 and implement a controller area network bus system (commonly known as a CAN bus). The CAN bus allows multiple microcontrollers to communicate with each other without relying on a host computer. The CAN bus provides a message-based communication protocol. The CAN bus allows multiple nodes to be daisy-chained together for communication therebetween.
电力模块370任选地提供于电路板上。电力模块370通过其输入端子接受AC电力且在其输出端子处提供受控制DC电力。如果需要,那么所述电力模块可为在图18中所图解说明的一些装置提供输入电力,此接下来讨论。A power module 370 is optionally provided on the circuit board. The power module 370 accepts AC power through its input terminals and provides controlled DC power at its output terminals. If desired, the power module can provide input power for some of the devices illustrated in FIG. 18 , which is discussed next.
图18是位于节点处的应用程序控制器的框图。所述节点提供与应用程序软件的无线通信。此应用程序软件实现对电力、照明及在微控制器400上运行的传感器30的控制。其还将电力提供到图中所图解说明的各种模块且实现与传感器30的通信。FIG18 is a block diagram of an application controller located at a node. The node provides wireless communication with application software. This application software controls power, lighting, and sensors 30 running on a microcontroller 400. It also provides power to the various modules illustrated in the figure and enables communication with sensors 30.
图18中的应用程序控制器在微控制器400的控制下操作,所述微控制器在图式的中心描绘。传入电力405(举例来说,由图17中的模块370供应)由变压器410降压到5伏特以提供用于Wi-Fi通信的电力,且还经提供到3.3伏特变压器420,变压器420对微控制器400进行供电。电力供应器430也接收输入电力且将其提供到传感器30(未展示)。3.3伏特电力还经提供到参考电压产生器440。The application controller in FIG18 operates under the control of microcontroller 400, which is depicted in the center of the figure. Incoming power 405 (for example, supplied by module 370 in FIG17 ) is stepped down to 5 volts by transformer 410 to provide power for Wi-Fi communication and is also provided to 3.3 volt transformer 420, which powers microcontroller 400. Power supply 430 also receives input power and provides it to sensor 30 (not shown). 3.3 volt power is also provided to reference voltage generator 440.
微控制器400提供若干输入及输出端子以用于与各种装置通信。特定来说,在一个实施例中,微控制器400经耦合以提供三个0伏特到10伏特模拟输出信号450,且接收两个0伏特到10伏特模拟输入信号460。这些输入及输出信号460及450可用于控制并感测各种传感器30的状况。与微控制器400通信是通过UART 470并使用CAN总线480而实现的。如关于图17所解释,CAN总线480在不需要主机计算机的情况下实现微控制器当中的通信。The microcontroller 400 provides several input and output terminals for communicating with various devices. Specifically, in one embodiment, the microcontroller 400 is coupled to provide three 0-10 volt analog output signals 450 and receive two 0-10 volt analog input signals 460. These input and output signals 460 and 450 can be used to control and sense the conditions of the various sensors 30. Communication with the microcontroller 400 is achieved through a UART 470 using a CAN bus 480. As explained with respect to FIG. 17 , the CAN bus 480 enables communication among the microcontrollers without the need for a host computer.
为实现未来应用程序100且提供灵活性,微控制器400还包含多个通用输入/输出引脚490。这些通用输入/输出引脚接受或提供介于从0伏特到36伏特的范围内的信号。这些通用输入/输出引脚为一般性引脚,其行为可通过软件控制或编程。具有这些额外控制线路允许在不需要替换硬件的情况下通过软件实现的额外功能性。To enable future applications 100 and provide flexibility, the microcontroller 400 also includes a number of general-purpose input/output pins 490. These general-purpose input/output pins accept or provide signals ranging from 0 volts to 36 volts. These general-purpose input/output pins are general-purpose pins whose behavior can be controlled or programmed through software. Having these additional control lines allows additional functionality to be implemented through software without requiring hardware replacement.
微控制器400还耦合到一对I2C总线接口500。这些总线接口500可用于连接板上的其它组件或连接经由电缆链接的其它组件。I2C总线500不需要预定义带宽,但仍实现多主控(multi-mastering)、仲裁及碰撞检测。微控制器400还连接到SP1接口510以提供浪涌保护。另外,微控制器400耦合到USB接口520及JTAG接口530。各种输入及输出总线及控制信号使得节点接口处的应用程序控制器(包括广泛多种传感器30及其它装置)能够提供(举例来说)照明控制及传感器管理。The microcontroller 400 is also coupled to a pair of I2C bus interfaces 500. These bus interfaces 500 can be used to connect to other components on the board or to connect to other components linked via cables. The I2C bus 500 does not require a predefined bandwidth, but still implements multi-mastering, arbitration, and collision detection. The microcontroller 400 is also connected to an SP1 interface 510 to provide surge protection. In addition, the microcontroller 400 is coupled to a USB interface 520 and a JTAG interface 530. Various input and output buses and control signals enable the application controller at the node interface (including a wide variety of sensors 30 and other devices) to provide, for example, lighting control and sensor management.
前文是用于与感测应用程序100一起使用的联网照明基础设施的详细说明。如所描述,系统提供现有或未来照明基础设施的独特能力。尽管已提供关于系统的特定实施方案的众多细节,但将了解本发明的范围是由所附权利要求书定义。The foregoing is a detailed description of a networked lighting infrastructure for use with the sensing application 100. As described, the system provides unique capabilities for existing or future lighting infrastructures. While numerous details have been provided regarding a particular embodiment of the system, it will be understood that the scope of the invention is defined by the appended claims.
机器及软件架构Machine and software architecture
在多个机器及相关联软件架构的上下文中在一些实施例中实施结合图1到18描述的模块、方法、引擎、应用程序等等。以下部分描述适合于与所揭示实施例一起使用的代表性软件架构及机器(例如,硬件)架构。1-18 are implemented in some embodiments in the context of multiple machines and associated software architectures. The following section describes representative software architectures and machine (e.g., hardware) architectures suitable for use with the disclosed embodiments.
软件架构结合硬件架构使用以形成根据特定用途修整的装置及机器。举例来说,与特定软件架构耦合的特定硬件架构将形成移动装置,例如移动电话、平板装置或等等。稍微不同硬件及软件架构可产生以供在“物联网”中使用的智能装置。然而另一组合产生以供在云计算架构内使用的服务器计算机。此处并未呈现此些软件及硬件架构的所有组合,这是因为所属领域的技术人员可易于理解如何在不同于本文中所含有的揭示内容的上下文中实施本发明。Software architectures are used in conjunction with hardware architectures to create devices and machines tailored to specific applications. For example, a specific hardware architecture coupled with a specific software architecture will create a mobile device, such as a mobile phone, tablet device, or the like. Slightly different hardware and software architectures can create smart devices for use in the "Internet of Things." Yet another combination creates a server computer for use within a cloud computing architecture. Not all combinations of such software and hardware architectures are presented here, as those skilled in the art will readily understand how to implement the present invention in contexts other than the disclosure contained herein.
软件架构Software Architecture
图19是图解说明代表性软件架构2002的框图2000,所述代表性软件架构可结合本文中所描述的各种硬件架构一起使用。图19仅为软件架构2002的非限制性实例且将了解,可实施许多其它架构以促进本文中所描述的功能性。软件架构2002可在硬件(例如图20的机器2100)上执行,机器2100尤其包含处理器2110、存储器2130及I/O组件2150。返回到图19,代表性硬件层2004经图解说明且可表示(举例来说)图20的机器2100。代表性硬件层2004包括具有相关联可执行指令2008的一个或多个处理单元2006。可执行指令2008表示软件架构2002的可执行指令,包含图1到18的方法、引擎、模块等等的实施。硬件层2004还包含存储器及/或存储模块2010,所述存储器及/或存储模块也具有可执行指令2008。硬件层2004还可包括其它硬件,如由2012指示,其表示硬件层2004的任何其它硬件,例如经图解说明为机器2100的部分的其它硬件2012。FIG19 is a block diagram 2000 illustrating a representative software architecture 2002 that can be used in conjunction with the various hardware architectures described herein. FIG19 is merely a non-limiting example of the software architecture 2002, and it will be appreciated that many other architectures can be implemented to facilitate the functionality described herein. The software architecture 2002 can be executed on hardware, such as the machine 2100 of FIG20 , which includes, among other things, a processor 2110, a memory 2130, and I/O components 2150. Returning to FIG19 , a representative hardware layer 2004 is illustrated and can represent, for example, the machine 2100 of FIG20 . The representative hardware layer 2004 includes one or more processing units 2006 with associated executable instructions 2008. The executable instructions 2008 represent the executable instructions of the software architecture 2002, including implementations of the methods, engines, modules, and the like of FIG1 through FIG18 . Hardware layer 2004 also includes a memory and/or storage module 2010, which also has executable instructions 2008. Hardware layer 2004 may also include other hardware, as indicated by 2012, which represents any other hardware of hardware layer 2004, such as other hardware 2012 illustrated as part of machine 2100.
在图19的实例性架构中,软件2002可经概念化为层的堆叠,其中每一层提供特定功能性。举例来说,软件架构2002可包含例如以下各层:操作系统2014、库2016、框架/中间件2018、应用程序2020(例如,概率应用程序117)及呈现层2044。从操作上来说,应用程序2020及/或层内的其它组件可通过软件堆叠而调用应用程序编程接口(API)调用2024且响应于API调用2024而接收经图解说明为消息2026的响应、返回值等等。所图解说明的层本质上为代表性的且并非所有软件架构均具有所有层。举例来说,一些移动或专用操作系统2014可不提供框架/中间件层2018,而其它操作系统可提供此层。其它软件架构可包含额外或不同层。In the exemplary architecture of Figure 19, software 2002 can be conceptualized as a stack of layers, each of which provides specific functionality. For example, software architecture 2002 may include, for example, the following layers: operating system 2014, library 2016, framework/middleware 2018, application 2020 (e.g., probabilistic application 117), and presentation layer 2044. Operationally, application 2020 and/or other components within the layer may call application programming interface (API) calls 2024 through the software stack and receive responses, return values, etc., illustrated as messages 2026 in response to API calls 2024. The illustrated layers are representative in nature, and not all software architectures have all layers. For example, some mobile or dedicated operating systems 2014 may not provide framework/middleware layer 2018, while other operating systems may provide this layer. Other software architectures may include additional or different layers.
操作系统2014可管理硬件资源且提供共同服务。举例来说,操作系统2014可包含内核2028、服务2030及驱动程序2032。内核2028可充当硬件层与其它软件层之间的抽象层。举例来说,内核2028可负责存储器管理、处理器管理(例如,调度)、组件管理、联网、安保设定等等。服务2030可提供用于其它软件层的其它共同服务。驱动程序2032可负责控制下伏硬件或与下伏硬件介接。举例来说,驱动程序2032可取决于硬件配置而包含显示驱动程序、摄像机驱动程序、驱动程序、快闪存储器驱动程序、串行通信驱动程序(例如,通用串行总线(USB)驱动程序)、驱动程序、音频驱动程序、电力管理驱动程序等等。The operating system 2014 can manage hardware resources and provide common services. For example, the operating system 2014 can include a kernel 2028, services 2030, and drivers 2032. The kernel 2028 can serve as an abstraction layer between the hardware layer and other software layers. For example, the kernel 2028 can be responsible for memory management, processor management (e.g., scheduling), component management, networking, security settings, and the like. Services 2030 can provide other common services for other software layers. Drivers 2032 can be responsible for controlling or interfacing with the underlying hardware. For example, depending on the hardware configuration, the drivers 2032 can include a display driver, a camera driver, a driver, a flash memory driver, a serial communication driver (e.g., a universal serial bus (USB) driver), a driver, an audio driver, a power management driver, and the like.
库2016可提供可由应用程序2020及/或其它组件及/或层利用的共同基础设施。库2016通常提供允许其它软件模块以比与下伏操作系统2014功能性(例如,内核2028、服务2030及/或驱动程序2032)直接介接更容易的方式来执行任务的功能性。库2016可包含系统2034库(例如,C标准库),系统2034库可提供例如存储器分配功能、字符串操纵功能、数学功能及类似功能的功能。另外,库2016可包含API库2036,例如媒体库(例如,用以支持各种媒体格式(例如运动图片专家群组(MPEG)4、H.264、MPEG-1或MPEG-2音频层(MP3)、AAC、AMR、联合摄影专家群组(JPG)、便携式网络图形(PNG))的呈现及操纵的库),图形库(例如,可用于在显示器上渲染图形内容中的2D及3D的开放图形库(OpenGL)框架),数据库库(例如,可提供各种关系数据库功能的结构化查询语言(SQL)SQLite),网站库(例如,可提供网站浏览功能性的WebKit)及类似库。库2016还可包含广泛多种其它库2038以给应用程序2020及其它软件组件/模块提供许多其它API 2036。Libraries 2016 may provide a common infrastructure that may be utilized by applications 2020 and/or other components and/or layers. Libraries 2016 generally provide functionality that allows other software modules to perform tasks more easily than by directly interfacing with underlying operating system 2014 functionality (e.g., kernel 2028, services 2030, and/or drivers 2032). Libraries 2016 may include system 2034 libraries (e.g., C standard libraries) that may provide functionality such as memory allocation functions, string manipulation functions, mathematical functions, and the like. In addition, the libraries 2016 may include API libraries 2036, such as media libraries (e.g., libraries to support the rendering and manipulation of various media formats (e.g., Moving Picture Experts Group (MPEG) 4, H.264, MPEG-1 or MPEG-2 audio layers (MP3), AAC, AMR, Joint Photographic Experts Group (JPG), Portable Network Graphics (PNG)), graphics libraries (e.g., the Open Graphics Library (OpenGL) framework that can be used to render 2D and 3D graphics content on a display), database libraries (e.g., Structured Query Language (SQL) SQLite that can provide various relational database functions), website libraries (e.g., WebKit that can provide website browsing functionality), and the like. The libraries 2016 may also include a wide variety of other libraries 2038 to provide many other APIs 2036 to the applications 2020 and other software components/modules.
框架2018(有时也被称为中间件)可提供可由应用程序2020及/或其它软件组件/模块利用的较高级共同基础设施。举例来说,框架2018可提供各种图形用户接口(GUI)功能、高级资源管理、高级位置服务等等。框架2018可提供可由应用程序2020及/或其它软件组件/模块利用的宽广幅度的其它API 2036,所述其它API中的一些API可为特定操作系统2014或平台所特有的。The framework 2018 (sometimes also referred to as middleware) can provide a higher-level common infrastructure that can be utilized by applications 2020 and/or other software components/modules. For example, the framework 2018 can provide various graphical user interface (GUI) functions, advanced resource management, advanced location services, etc. The framework 2018 can provide a wide range of other APIs 2036 that can be utilized by applications 2020 and/or other software components/modules, some of which may be specific to a particular operating system 2014 or platform.
应用程序2020包含内建应用程序2040及/或第三方应用程序2042。代表性内建应用程序2040的实例可包含但不限于:联系人应用程序、浏览器应用程序、书阅读器应用程序、位置应用程序、媒体应用程序、消息接发应用程序及/或游戏应用程序。第三方应用程序2042可包含内建应用程序中的任一者以及广泛分类的其它应用程序2020。在特定实例中,第三方应用程序2042(例如,由除特定平台的供应商以外的实体使用AndroidTM或iOSTM软件开发工具包(SDK)开发的应用程序)可为在移动操作系统2014(例如iOSTM、AndroidTM、电话)或其它移动操作系统2014上运行的移动软件。在此实例中,第三方应用程序2042可调用由移动操作系统(例如操作系统2014)提供的API调用2024以促进本文中所描述的功能性。Applications 2020 include built-in applications 2040 and/or third-party applications 2042. Examples of representative built-in applications 2040 may include, but are not limited to, a contacts application, a browser application, a book reader application, a location application, a media application, a messaging application, and/or a game application. Third-party applications 2042 may include any of the built-in applications as well as a broad category of other applications 2020. In a specific example, third-party applications 2042 (e.g., applications developed using an Android ™ or iOS ™ software development kit (SDK) by an entity other than the vendor of a particular platform) may be mobile software running on a mobile operating system 2014 (e.g., iOS ™ , Android ™ , phone) or other mobile operating system 2014. In this example, third-party applications 2042 may invoke API calls 2024 provided by the mobile operating system (e.g., operating system 2014) to facilitate the functionality described herein.
应用程序2020可利用内建操作系统功能(例如,内核2028、服务2030及/或驱动程序2032)、库(例如,系统2034、API 2036及其它库2038)、框架/中间件2018来创建用户接口以与系统的用户220互动。或者或另外,在一些系统中,与用户220的互动可通过呈现层(例如呈现层2044)发生。在这些系统中,应用程序/模块“逻辑”可与和用户220互动的应用程序/模块的方面分离。Applications 2020 may utilize built-in operating system functionality (e.g., kernel 2028, services 2030, and/or drivers 2032), libraries (e.g., system 2034, API 2036, and other libraries 2038), and framework/middleware 2018 to create a user interface for interacting with users 220 of the system. Alternatively or additionally, in some systems, interaction with users 220 may occur through a presentation layer (e.g., presentation layer 2044). In these systems, the application/module "logic" may be separated from the aspects of the application/module that interact with users 220.
一些软件架构2002利用虚拟机器。在图19的实例中,此通过虚拟机器2048图解说明。虚拟机器2048创建其中应用程序/模块可执行(如同其执行于硬件机器(例如图20的机器2100,举例来说)上)的软件环境。虚拟机器2048由主机操作系统(图19中的操作系统2014)代管且通常(但并非始终)具有虚拟机器监视器2046,所述虚拟机器监视器管理虚拟机器2048以及与主机操作系统(即,操作系统2014)的接口的操作。软件架构2002在虚拟机器2048内执行,例如在操作系统2050、库2052、框架/中间件2054、应用程序2056及/或呈现层2058内。在虚拟机器2048内执行的软件架构2002的这些层可与先前所描述的对应层相同或可不同。Some software architectures 2002 utilize virtual machines. In the example of FIG. 19 , this is illustrated by virtual machine 2048. Virtual machine 2048 creates a software environment in which applications/modules can execute as if they were executed on a hardware machine (e.g., machine 2100 of FIG. 20 , for example). Virtual machine 2048 is hosted by a host operating system (operating system 2014 in FIG. 19 ) and typically, but not always, has a hypervisor 2046 that manages the operation of virtual machine 2048 and its interface with the host operating system (i.e., operating system 2014). Software architecture 2002 executes within virtual machine 2048, such as within operating system 2050, libraries 2052, framework/middleware 2054, applications 2056, and/or presentation layer 2058. These layers of software architecture 2002 executed within virtual machine 2048 may be the same as or different from the corresponding layers previously described.
实例性机器架构及机器可读媒体Example machine architecture and machine-readable medium
图20是图解说明根据一些实例性实施例的机器2100的组件的框图,所述机器能够从机器可读媒体(例如,机器可读存储媒体)读取指令且执行本文中所讨论的方法中的任一者或多者。具体来说,图20展示以计算机系统的实例性形式的机器2100的图解性表示,可在机器2100内执行用于致使机器2100执行本文中所讨论的方法中的任一者或多者的指令2116(例如,软件、程序、应用程序、小应用程序、app或其它可执行代码)。举例来说,指令2116可致使机器2100执行图6的流程图。另外或或者,指令2116可实施图3的感测引擎111、相关引擎113、概率引擎115及概率应用程序117等等,包含实施图9到11中的模块、引擎及应用程序。指令2116以所描述的方式将一般、未经编程机器2100变换成经编程以实施所描述及所图解说明功能的特定机器2100。在替代实施例中,机器2100操作为独立装置或可耦合(例如,联网)到其它机器2100。在联网部署中,机器2100可在服务器-客户端网络环境中以服务器机器或客户端机器的资格操作,或者在对等(或分布式)网络环境中作为对等机器操作。机器2100可包括但不限于:服务器计算机、客户端计算机、个人计算机(PC)、平板计算机、膝上型计算机、上网本、机顶盒(STB)、个人数字助理(PDA)、娱乐媒体系统、蜂窝式电话、智能电话、移动装置、可穿戴装置(例如,智能手表)、智能家用装置(例如,智能家电)、其它智能装置、web器具、网络路由器、网络切换器、网络桥接器或者能够依序或以其它方式执行规定将由机器2100采取的行动的指令2116的任何机器2100。此外,虽然仅图解说明单个机器2100,但还将采用术语“机器”来包含个别地或联合地执行指令2116以执行本文中所讨论的方法中的任一者或多者的机器2100的集合。FIG20 is a block diagram illustrating components of a machine 2100 capable of reading instructions from a machine-readable medium (e.g., a machine-readable storage medium) and performing any one or more of the methodologies discussed herein, according to some example embodiments. Specifically, FIG20 shows a diagrammatic representation of a machine 2100 in the example form of a computer system, within which instructions 2116 (e.g., software, programs, applications, applet, app, or other executable code) may be executed for causing the machine 2100 to perform any one or more of the methodologies discussed herein. For example, the instructions 2116 may cause the machine 2100 to execute the flowchart of FIG6 . Additionally or alternatively, the instructions 2116 may implement the sensing engine 111, correlation engine 113, probability engine 115, and probability application 117 of FIG3 , among others, including implementing the modules, engines, and applications of FIG9-11 . The instructions 2116 transform a generic, unprogrammed machine 2100 into a specialized machine 2100 programmed to perform the described and illustrated functionality in the manner described. In alternative embodiments, the machine 2100 operates as a standalone device or may be coupled (e.g., using a network) to other machines 2100. In a networked deployment, the machine 2100 may operate as a server or a client machine in server-client network environment, or as a peer machine in a peer-to-peer (or distributed) network environment. The machine 2100 may include, but is not limited to, a server computer, a client computer, a personal computer (PC), a tablet computer, a laptop computer, a netbook computer, a set-top box (STB), a personal digital assistant (PDA), an entertainment media system, a cellular phone, a smartphone, a mobile device, a wearable device (e.g., a smart watch), a smart home device (e.g., a smart appliance), other smart devices, a web appliance, a network router, a network switch, a network bridge, or any other machine 2100 capable of executing instructions 2116, or otherwise, that specify actions to be taken by the machine 2100. Further, while a single machine 2100 is illustrated, the term "machine" shall also be taken to include any collection of machines 2100 that individually or jointly execute instructions 2116 to perform any one or more of the methodologies discussed herein.
机器2100可包含可经配置以例如经由总线2102彼此通信的处理器2110、存储器2130及I/O组件2150。在实例性实施例中,处理器2110(例如,中央处理单元(CPU)、精简指令集计算(RISC)处理器、复杂指令集计算(CISC)处理器、图形处理单元(GPU)、数字信号处理器(DSP)、专用集成电路(ASIC)、射频集成电路(RFIC)、另一处理器或其任何适合组合)可包含(举例来说)可执行指令2116的处理器2112及处理器2114。术语“处理器”打算包含多核心处理器2112,所述多核心处理器可包括可同时执行指令2116的两个或两个以上独立处理器2112(有时被称为“核心”)。尽管图20展示多个处理器2112,但机器2100可包含具有单个核心的单个处理器2112、具有多个核心的单个处理器2112(例如,多核心处理器)、具有单个核心的多个处理器2112、具有多个核心的多个处理器2112或其任何组合。The machine 2100 may include a processor 2110, memory 2130, and I/O components 2150 that may be configured to communicate with one another, for example, via a bus 2102. In an example embodiment, the processor 2110 (e.g., a central processing unit (CPU), a reduced instruction set computing (RISC) processor, a complex instruction set computing (CISC) processor, a graphics processing unit (GPU), a digital signal processor (DSP), an application specific integrated circuit (ASIC), a radio frequency integrated circuit (RFIC), another processor, or any suitable combination thereof) may include, for example, a processor 2112 and a processor 2114 that may execute instructions 2116. The term "processor" is intended to include a multi-core processor 2112 that may include two or more independent processors 2112 (sometimes referred to as "cores") that may execute instructions 2116 concurrently. Although FIG. 20 shows multiple processors 2112, the machine 2100 may include a single processor 2112 with a single core, a single processor 2112 with multiple cores (e.g., a multi-core processor), multiple processors 2112 with a single core, multiple processors 2112 with multiple cores, or any combination thereof.
存储器/存储装置2130可包含存储器2132(例如主存储器或其它存储器存储装置)及存储单元2136,存储器2132及存储单元2136两者均可例如经由总线2102由处理器2110存取。存储单元2136及存储器2132存储指令2116,从而体现本文中所描述的方法或功能中的任一者或多者。指令2116还可在由机器2100进行的指令执行期间完全或部分地驻存于存储器2132内、驻存于存储单元2136内、驻存于处理器2110中的至少一者内(例如,驻存于处理器的高速缓冲存储器内)或其任何适合组合内。因此,存储器2132、存储单元2136及处理器2110的存储器为机器可读媒体的实例。The memory/storage 2130 may include a memory 2132 (e.g., main memory or other memory storage device) and a storage unit 2136, both of which are accessible by the processor 2110, for example, via the bus 2102. The storage unit 2136 and the memory 2132 store instructions 2116, embodying any one or more of the methodologies or functions described herein. The instructions 2116 may also reside, completely or partially, within the memory 2132, within the storage unit 2136, within at least one of the processors 2110 (e.g., within a cache memory of the processor), or within any suitable combination thereof during instruction execution by the machine 2100. Thus, the memory 2132, the storage unit 2136, and the memory of the processor 2110 are examples of machine-readable media.
如本文中所使用,“机器可读媒体”意指能够暂时地或永久地存储指令2116及数据的装置,且可包含但不限于:随机存取存储器(RAM)、只读存储器(ROM)、缓冲存储器、快闪存储器、光学媒体、磁性媒体、高速缓冲存储器、其它类型的存储装置(例如,可擦除可编程只读存储器(EEPROM))及/或其任何适合组合。应采用术语“机器可读媒体”来包含能够存储指令2116的单个媒体或多个媒体(例如,集中式或分布式数据库或相关联高速缓冲存储器及服务器)。还应采用术语“机器可读媒体”来包含能够存储指令(例如,指令2116)的任何媒体或多个媒体的组合,所述指令用于由机器(例如,机器2100)执行,使得在由机器2100的一个或多个处理器(例如,处理器2110)执行时,指令2116致使机器2100执行本文中所描述的方法中的任一者或多者。因此,“机器可读媒体”是指单个存储设备或装置,以及包含多个存储设备或装置的“基于云”的存储系统或存储网络。术语“机器可读媒体”本身排除信号。As used herein, a "machine-readable medium" means a device capable of temporarily or permanently storing instructions 2116 and data, and may include, but is not limited to, random access memory (RAM), read-only memory (ROM), buffer memory, flash memory, optical media, magnetic media, cache memory, other types of storage devices (e.g., erasable programmable read-only memory (EEPROM)), and/or any suitable combination thereof. The term "machine-readable medium" should be taken to include a single medium or multiple media (e.g., a centralized or distributed database or associated cache memory and server) capable of storing instructions 2116. The term "machine-readable medium" should also be taken to include any medium or combination of media capable of storing instructions (e.g., instructions 2116) for execution by a machine (e.g., machine 2100), such that when executed by one or more processors (e.g., processor 2110) of machine 2100, the instructions 2116 cause the machine 2100 to perform any one or more of the methodologies described herein. Thus, a "machine-readable medium" refers to a single storage device or apparatus, as well as a "cloud-based" storage system or storage network comprising multiple storage devices or apparatuses. The term "machine-readable medium" itself excludes signals.
I/O组件2150可包含用以接收输入、提供输出、产生输出、发射信息、交换信息、捕获测量等等的广泛多种组件。包含于特定机器2100中的特定I/O组件2150将取决于机器的类型。举例来说,便携式机器2100(例如移动电话)将可能包含触摸输入装置或其它此类输入机构,而无外设服务器机器将可能不包含此触摸输入装置。将了解,I/O组件2150可包含图20中未展示的许多其它组件。根据功能性将I/O组件2150分组,此仅为简化以下讨论且所述分组不具有任何限制性。在各种实例性实施例中,I/O组件2150可包含输出组件2152及输入组件2154。输出组件2152可包含视觉组件(例如,显示器,例如等离子显示面板(PDP)、发光二极管(LED)显示器、液晶显示器(LCD)、投影仪或阴极射线管(CRT))、听觉组件(例如,扬声器)、触觉组件(例如,振动电动机、抵抗机构)、其它信号产生器等等。输入组件2154可包含字母数字输入组件(例如,键盘、配置以接收字母数字输入的触摸屏、光-光学键盘或其它字母数字输入组件),基于点的输入组件(例如,鼠标、触摸垫、轨迹球、操纵杆、运动传感器或其它指向仪器)、触觉输入组件(例如,物理按钮、提供位置及/或触摸的力或触摸姿势的触摸屏或其它触觉输入组件)、音频输入组件(例如,麦克风)及类似输入组件。The I/O components 2150 may include a wide variety of components for receiving input, providing output, generating output, transmitting information, exchanging information, capturing measurements, and the like. The specific I/O components 2150 included in a particular machine 2100 will depend on the type of machine. For example, a portable machine 2100 (e.g., a mobile phone) will likely include a touch input device or other such input mechanism, while a peripheralless server machine will likely not include such a touch input device. It will be appreciated that the I/O components 2150 may include many other components not shown in FIG. 20 . The I/O components 2150 are grouped according to functionality merely to simplify the following discussion and are not intended to be limiting. In various exemplary embodiments, the I/O components 2150 may include an output component 2152 and an input component 2154. Output components 2152 may include visual components (e.g., a display such as a plasma display panel (PDP), a light emitting diode (LED) display, a liquid crystal display (LCD), a projector, or a cathode ray tube (CRT)), auditory components (e.g., a speaker), tactile components (e.g., a vibration motor, a resistive mechanism), other signal generators, etc. Input components 2154 may include alphanumeric input components (e.g., a keyboard, a touch screen configured to receive alphanumeric input, an opto-optical keyboard, or other alphanumeric input components), point-based input components (e.g., a mouse, touch pad, trackball, joystick, motion sensor, or other pointing instrument), tactile input components (e.g., a physical button, a touch screen or other tactile input component that provides position and/or force or touch gestures of touch), audio input components (e.g., a microphone), and the like.
在其它实例性实施例中,I/O组件2150可在广泛阵列的其它组件当中包含生物计量组件2156、运动组件2158、环境组件2160或定位组件2162。举例来说,生物计量组件2156可包含用以进行以下操作的组件及类似组件:检测表达(例如,手势表达、面部表情、声音表达、身体姿势或眼部跟踪)、测量生理信号(例如,血压、心率、体温、排汗或脑波)、识别人(例如,话音识别、视网膜识别、面部识别、指纹识别或基于脑电图的识别)。运动组件2158可包含加速传感器组件(例如,加速计)、重力传感器组件、旋转传感器组件(例如,陀螺仪)等等。环境组件2160可包含(举例来说)照射传感器组件(例如,光度计)、温度传感器组件(例如,检测周围温度的一个或多个温度计)、湿度传感器组件、压力传感器组件(例如,气压计)、听觉传感器组件(例如,检测背景噪声的一个或多个麦克风)、接近度传感器组件(例如,检测附近物体的红外传感器)、气体传感器(例如,为安全用以检测危险气体的浓度或用以测量大气中的污染物的气体检测传感器)或可提供对应周围物理环境的指示、测量或信号的其它组件。定位组件2162可包含位置传感器组件(例如,全球定位系统(GPS)接收器组件)、海拔高度传感器组件(例如,高度计或检测气压的气压计,可从所述气压导出海拔高度)、定向传感器组件(例如,磁力计)及类似传感器组件。In other exemplary embodiments, the I/O components 2150 may include, among a wide array of other components, a biometric component 2156, a motion component 2158, an environmental component 2160, or a positioning component 2162. For example, the biometric component 2156 may include components for detecting expressions (e.g., hand gestures, facial expressions, vocal expressions, body postures, or eye tracking), measuring physiological signals (e.g., blood pressure, heart rate, body temperature, perspiration, or brain waves), identifying people (e.g., voice recognition, retinal recognition, facial recognition, fingerprint recognition, or electroencephalogram-based recognition), and the like. The motion component 2158 may include an acceleration sensor component (e.g., an accelerometer), a gravity sensor component, a rotation sensor component (e.g., a gyroscope), and the like. Environmental components 2160 may include, for example, an illumination sensor component (e.g., a photometer), a temperature sensor component (e.g., one or more thermometers that detect ambient temperature), a humidity sensor component, a pressure sensor component (e.g., a barometer), an auditory sensor component (e.g., one or more microphones that detect background noise), a proximity sensor component (e.g., an infrared sensor that detects nearby objects), a gas sensor (e.g., a gas detection sensor used for safety to detect concentrations of hazardous gases or to measure pollutants in the atmosphere), or other components that can provide indications, measurements, or signals corresponding to the surrounding physical environment. Positioning components 2162 may include a position sensor component (e.g., a global positioning system (GPS) receiver component), an altitude sensor component (e.g., an altimeter or a barometer that detects air pressure, from which altitude can be derived), an orientation sensor component (e.g., a magnetometer), and the like.
可使用广泛多种技术实施通信。I/O组件2150可包含通信组件2164,所述通信组件可操作以分别经由耦合2182及耦合2172而将机器2100耦合到网络2180或装置2170。举例来说,通信组件2164可包含网络接口组件或用以与网络2180介接的其它适合装置。在其它实例中,通信组件2164可包含有线通信组件、无线通信组件、蜂窝式通信组件、近场通信(NFC)组件、组件(例如,低能耗)、组件及用以经由其它模态提供通信的其它通信组件。装置2170可为另一机器2100或广泛多种外围装置中的任一者(例如,经由通用串行总线(USB)耦合的外围装置)。Communication can be implemented using a wide variety of technologies. I/O components 2150 may include communication components 2164 operable to couple machine 2100 to network 2180 or device 2170 via coupling 2182 and coupling 2172, respectively. For example, communication components 2164 may include network interface components or other suitable devices for interfacing with network 2180. In other examples, communication components 2164 may include wired communication components, wireless communication components, cellular communication components, near-field communication (NFC) components, components (e.g., low-energy), components, and other communication components for providing communication via other modalities. Device 2170 can be another machine 2100 or any of a wide variety of peripheral devices (e.g., a peripheral device coupled via a universal serial bus (USB)).
此外,通信组件2164可检测识别符或包含可操作以检测识别符的组件。举例来说,通信组件2164可包含射频识别(RFID)标签读取器组件、NFC智能标签检测组件、光学读取器组件(例如,用以检测一维条形码(例如通用产品代码(UPC)条形码)、多维条形码(例如快速响应(QR)码、阿兹特克(Aztec)码、数据矩阵、Dataglyph、MaxiCode、PDF417、Ultra码、UCCRSS-2D条形码)及其它光学代码的光学传感器),或听觉检测组件(例如,用以识别经标记音频信号的麦克风)。另外,可经由通信组件2164导出多种信息,例如,经由因特网协议(IP)地理定位导出的位置、经由信号三角测量导出的位置、经由检测可指示特定位置的NFC信标信号导出的位置等等。Furthermore, the communication component 2164 can detect an identifier or include a component operable to detect an identifier. For example, the communication component 2164 can include a radio frequency identification (RFID) tag reader component, an NFC smart tag detection component, an optical reader component (e.g., an optical sensor for detecting one-dimensional barcodes (e.g., Universal Product Code (UPC) barcodes), multi-dimensional barcodes (e.g., Quick Response (QR) codes, Aztec codes, Data Matrix, Dataglyph, MaxiCode, PDF417, Ultra Code, UCCRSS-2D barcodes), and other optical codes), or an auditory detection component (e.g., a microphone for identifying tagged audio signals). Furthermore, various information can be derived via the communication component 2164, such as location derived via Internet Protocol (IP) geolocation, location derived via signal triangulation, location derived via detection of NFC beacon signals that can indicate a specific location, and the like.
发射媒体Launch Media
在各种实例性实施例中,网络2180的一个或多个部分可为特设网络、内联网、外联网、虚拟私用网络(VPN)、局域网(LAN)、无线LAN(WLAN)、广域网(WAN)、无线WAN(WWAN)、城域网(MAN)、因特网80、因特网80的一部分、公用交换电话网络(PSTN)的一部分、普通老式电话服务(POTS)网络、蜂窝式电话网络、无线网络、网络、另一类型的网络或者两个或两个以上此类网络的组合。举例来说,网络2180或网络2180的一部分可包含无线或蜂窝式网络且耦合2182可为码分多址(CDMA)连接、全球移动通信系统(GSM)连接或其它类型的蜂窝式或无线耦合。在此实例中,耦合2182可实施多种类型的数据传输技术中的任一者,例如单载波无线电发射技术(1xRTT)、演进数据优化(EVDO)技术、通用分组无线服务(GPRS)技术、GSM增强数据率演进(EDGE)技术、第三代合作伙伴计划(3GPP)(包含3G)、第四代无线(4G)网络、通用移动电信系统(UMTS)、高速分组接入(HSPA)、全球微波接入互操作性(WiMAX)、长期演进(LTE)标准、由各种标准设定组织定义的其它技术、其它远程协议或其它数据传输技术。In various exemplary embodiments, one or more portions of network 2180 may be an ad hoc network, an intranet, an extranet, a virtual private network (VPN), a local area network (LAN), a wireless LAN (WLAN), a wide area network (WAN), a wireless WAN (WWAN), a metropolitan area network (MAN), the Internet 80, a portion of the Internet 80, a portion of the public switched telephone network (PSTN), a plain old telephone service (POTS) network, a cellular telephone network, a wireless network, a network, another type of network, or a combination of two or more such networks. For example, network 2180 or a portion of network 2180 may include a wireless or cellular network and coupling 2182 may be a code division multiple access (CDMA) connection, a global system for mobile communications (GSM) connection, or other type of cellular or wireless coupling. In this example, coupling 2182 can implement any of a variety of types of data transmission technologies, such as single-carrier radio transmission technology (1xRTT), evolution-data optimized (EVDO) technology, general packet radio service (GPRS) technology, GSM enhanced data rates for evolution (EDGE) technology, the Third Generation Partnership Project (3GPP) (including 3G), fourth-generation wireless (4G) networks, Universal Mobile Telecommunications System (UMTS), high-speed packet access (HSPA), worldwide interoperability for microwave access (WiMAX), long-term evolution (LTE) standards, other technologies defined by various standards-setting organizations, other long-range protocols, or other data transmission technologies.
可经由网络接口装置(例如,包含于通信组件2164中的网络接口组件)使用发射媒体且利用若干众所周知传输协议中的任一者(例如,超文本传输协议(HTTP))而经由网络2180发射或接收指令2116。类似地,可使用发射媒体经由耦合2172(例如,对等耦合)而将指令2116发射或接收到装置2170。应采用术语“发射媒体”来包含能够存储、编码或携载以供由机器2100执行的指令2116的任何无形媒体,且术语“发射媒体”包含数字或模拟通信信号或其它无形媒体以促进此类软件的通信。Instructions 2116 may be transmitted or received over network 2180 using transmission media via a network interface device, such as that included in communication component 2164, and utilizing any of several well-known transfer protocols, such as the Hypertext Transfer Protocol (HTTP). Similarly, instructions 2116 may be transmitted or received to device 2170 using transmission media via coupling 2172, such as a peer-to-peer coupling. The term "transmission media" shall be taken to include any intangible medium capable of storing, encoding, or carrying instructions 2116 for execution by machine 2100, and includes digital or analog communication signals or other intangible media to facilitate communication of such software.
语言language
贯穿此说明书,多个实例可实施描述为单个实例的组件、操作或结构。尽管将一种或多种方法的个别操作图解说明并描述为单独操作,但可同时执行所述个别操作中的一者或多者,且不需要按所图解说明的次序执行所述操作。在实例性配置中呈现为单独组件的结构及功能性可实施为组合式结构或组件。类似地,呈现为单个组件的结构及功能性可实施为单独组件。这些及其它变化、修改、添加及改进均归属于本文中的标的物的范围内。Throughout this specification, multiple examples may implement components, operations, or structures described as a single example. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed simultaneously, and the operations need not be performed in the order illustrated. Structures and functionality presented as separate components in the example configurations may be implemented as combined structures or components. Similarly, structures and functionality presented as single components may be implemented as separate components. These and other variations, modifications, additions, and improvements are within the scope of the subject matter herein.
尽管已参考特定实例性实施例而描述发明性标的物的概述,但可在不脱离本发明的实施例的较宽广范围的情况下对这些实施例作出各种修改及改变。发明性标的物的此些实施例可在本文中个别地或共同地由术语“发明”指代,此仅为方便起见且并不打算在事实上已揭示一个以上发明或发明性概念的情形下将本申请案的范围自发地限制为任何单个发明或发明性概念。Although an overview of the inventive subject matter has been described with reference to specific exemplary embodiments, various modifications and changes may be made to these embodiments without departing from the broader scope of the embodiments of the present invention. Such embodiments of the inventive subject matter may be referred to herein, individually or collectively, by the term "invention," which is merely for convenience and is not intended to automatically limit the scope of this application to any single invention or inventive concept when, in fact, more than one invention or inventive concept is disclosed.
充分详细地描述本文中所图解说明的实施例以使得所属领域的技术人员能够实践所揭示的教示。可使用其它实施例且可从本发明推导出其它实施例,使得可在不脱离本发明的范围的情况下作出结构及逻辑替代及改变。因此,实施方式不应视为具有限制意义,且各种实施例的范围仅由所附权利要求书连同授权此权利要求书的等效物的全部范围定义。The embodiments illustrated herein are described in sufficient detail to enable those skilled in the art to practice the disclosed teachings. Other embodiments may be used and derived from the present invention, such that structural and logical substitutions and changes may be made without departing from the scope of the present invention. Therefore, the embodiments should not be construed in a limiting sense, and the scope of the various embodiments is defined solely by the appended claims, along with the full scope of equivalents to which such claims are entitled.
如本文中所使用,术语“或”应被理解为包含性或排他性意义。此外,可针对本文中描述为单个实例的资源、操作或结构而提供多个实例。另外,各种资源、操作、模块、引擎及数据存储之间的边界有些任意,且在特定说明性配置的上下文中图解说明特定操作。可设想其它功能性分配且其它功能性分配可归属于本发明的各种实施例的范围内。一般来说,在实例性配置中呈现为单独资源的结构及功能性可实施为组合式结构或资源。类似地,呈现为单个资源的结构及功能性可实施为单独资源。这些及其它变化、修改、添加及改进均归属于如由所附权利要求书表示的本发明的实施例的范围内。因此,说明书及图式应被视为具有说明性意义而非限制意义。As used herein, the term "or" should be understood as inclusive or exclusive. In addition, multiple instances may be provided for resources, operations, or structures described herein as single instances. In addition, the boundaries between various resources, operations, modules, engines, and data stores are somewhat arbitrary, and specific operations are illustrated in the context of specific illustrative configurations. Other functional allocations are conceivable and may fall within the scope of various embodiments of the present invention. In general, structures and functionality presented as separate resources in an exemplary configuration may be implemented as combined structures or resources. Similarly, structures and functionality presented as single resources may be implemented as separate resources. These and other variations, modifications, additions, and improvements all fall within the scope of embodiments of the present invention as represented by the appended claims. Therefore, the description and drawings should be regarded as having illustrative rather than restrictive meanings.
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61/948,960 | 2014-03-06 | ||
US14/639,901 | 2015-03-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
HK1231998A1 HK1231998A1 (en) | 2017-12-29 |
HK1231998B true HK1231998B (en) | 2020-07-03 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11544608B2 (en) | Systems and methods for probabilistic semantic sensing in a sensory network | |
US10290065B2 (en) | Lighting infrastructure and revenue model | |
JP6386217B2 (en) | Networked lighting infrastructure for sensing applications | |
HK1231998B (en) | Systems and methods for probabilistic semantic sensing in a sensory network | |
HK1231998A1 (en) | Systems and methods for probabilistic semantic sensing in a sensory network |