[go: up one dir, main page]

HK1209521B - System and methods for coping with doppler effects in distributed-input distributed-output wireless systems - Google Patents

System and methods for coping with doppler effects in distributed-input distributed-output wireless systems Download PDF

Info

Publication number
HK1209521B
HK1209521B HK15110250.7A HK15110250A HK1209521B HK 1209521 B HK1209521 B HK 1209521B HK 15110250 A HK15110250 A HK 15110250A HK 1209521 B HK1209521 B HK 1209521B
Authority
HK
Hong Kong
Prior art keywords
distributed
bts
base station
user
dido
Prior art date
Application number
HK15110250.7A
Other languages
Chinese (zh)
Other versions
HK1209521A1 (en
Inventor
安东尼奥‧福伦扎
斯蒂芬‧G‧珀尔曼
Original Assignee
李尔登公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/464,648 external-priority patent/US9312929B2/en
Application filed by 李尔登公司 filed Critical 李尔登公司
Priority claimed from PCT/US2013/039580 external-priority patent/WO2013166464A1/en
Publication of HK1209521A1 publication Critical patent/HK1209521A1/en
Publication of HK1209521B publication Critical patent/HK1209521B/en

Links

Description

用于处理分布式输入-分布式输出无线系统中的多普勒效应 的系统和方法System and method for handling the Doppler effect in a distributed-input-distributed-output wireless system

相关专利申请Related patent applications

本专利申请是以下共同待审的美国专利申请的部分继续申请:This patent application is a continuation-in-part of the following co-pending U.S. patent application:

2010年11月1日提交的名称为“Systems And Methods To CoordinateTransmissions In Distributed Wireless Systems Via User Clustering”(经由用户群集化协调分布式无线系统中的传输的系统和方法)的美国专利申请序列号12/917,257;2010年6月16日提交的名称为“Interference Management,Handoff,Power Control AndLink Adaptation In Distributed-Input Distributed-Output(DIDO)CommunicationSystems”(分布式输入分布式输出(DIDO)通信系统中的干扰管理、越区切换、功率控制及链路自适应)的美国专利申请序列号12/802,988;2010年6月16日提交的名称为“System AndMethod For Adjusting DIDO Interference Cancellation Based On Signal StrengthMeasurements”(基于信号强度测量调整DIDO干扰消除的系统和方法)的美国专利申请序列号12/802,976,现为2012年5月1日公布的美国授权专利8,170,081;2010年6月16日提交的名称为“System And Method For Managing Inter-Cluster Handoff Of Clients WhichTraverse Multiple DIDO Clusters”(用于管理越过多个DIDO群集的客户端的群集间越区切换的系统和方法)的美国专利申请序列号12/802,974;2010年6月16日提交的名称为“System And Method For Managing Handoff Of A Client Between DifferentDistributed-Input-Distributed-Output(DIDO)Networks Based On Detected VelocityOf The Client”(基于检测到的客户端速度管理不同的分布式输入分布式输出(DIDO)网络之间的客户端的越区切换的系统和方法)的美国专利申请序列号12/802,989;2010年6月16日提交的名称为“System And Method For Power Control And Antenna Grouping In ADistributed-Input-Distributed-Output(DIDO)Network”(用于分布式输入分布式输出(DIDO)网络中的功率控制和天线分组的系统和方法)的美国专利申请序列号12/802,958;2010年6月16日提交的名称为“System And Method For Link adaptation In DIDOMulticarrier Systems”(用于DIDO多载波系统中的链路自适应的系统和方法)的美国专利申请序列号12/802,975;2010年6月16日提交的名称为“System And Method For DIDOPrecoding Interpolation In Multicarrier Systems”(用于多载波系统中的DIDO预编码内插的系统和方法)的美国专利申请序列号12/802,938;2009年12月3日提交的名称为“System and Method For Distributed Antenna Wireless Communications”(用于分布式天线无线通信的系统和方法)的美国专利申请序列号12/630,627;2008年6月20日提交的名称为“System and Method For Distributed Input-Distributed Output WirelessCommunications”(用于分布式输入-分布式输出无线通信的系统和方法)的美国专利申请序列号12/143,503,现为2009年4月17日公布的美国授权专利8,160,121;2007年8月20日提交的名称为“System and Method for Distributed Input Distributed OutputWireless Communications”(用于分布式输入分布式输出无线通信的系统和方法)的美国专利申请序列号11/894,394,现为2009年10月6日公布的美国授权专利7,599,420;2007年8月20日提交的名称为“System and method for Distributed Input-DistributedWireless Communications”(用于分布式输入-分布式无线通信的系统和方法)的美国专利申请序列号11/894,362,现为2009年12月15日公布的美国授权专利7,633,994;2007年8月20日提交的名称为“System and Method For Distributed Input-Distributed OutputWireless Communications”(用于分布式输入-分布式输出无线通信的系统和方法)的美国专利申请序列号11/894,540,现为2009年12月22日公布的美国授权专利No.7,636,381;2005年10月21日提交的名称为“System and Method For Spatial-MultiplexedTropospheric Scatter Communications”(用于空间多路复用的对流层散射通信的系统和方法)的美国专利申请序列号11/256,478,现为2010年5月4日公布的美国授权专利7,711,030;2004年4月2日提交的名称为“System and Method For Enhancing Near VerticalIncidence Skywave(“NVIS”)Communication Using Space-Time Coding”(使用空时编码增强近垂直入射天波(“NVIS”)通信的系统和方法)的美国专利申请序列号10/817,731,现为2011年2月28日公布的美国授权专利No.7,885,354。U.S. patent application serial number 12/917,257, filed on November 1, 2010, entitled “Systems and Methods To Coordinate Transmissions In Distributed Wireless Systems Via User Clustering”; U.S. patent application serial number 12/802,988, filed on June 16, 2010, entitled “Interference Management, Handoff, Power Control And Link Adaptation In Distributed-Input Distributed-Output (DIDO) Communication Systems”; and U.S. patent application serial number 12/802,988, filed on June 16, 2010, entitled “System And Method For Adjusting DIDO Interference Cancellation Based On Signal No. 12/802,976, entitled “System and Method for Adjusting DIDO Interference Cancellation Based on Signal Strength Measurements,” now U.S. Granted Patent No. 8,170,081, published May 1, 2012; No. 12/802,974, entitled “System and Method for Managing Inter-Cluster Handoff Of Clients Which Traverse Multiple DIDO Clusters,” filed June 16, 2010; and No. 12/802,975, entitled “System and Method for Managing Handoff Of A Client Between Different Distributed-Input-Distributed-Output (DIDO) Networks Based On Detected Velocity Of The No. 12/802,989, filed on June 16, 2010, entitled “System and Method for Managing Handoff of Clients Between Distributed-Input-Distributed-Output (DIDO) Networks Based on Detected Client Speed”; No. 12/802,958, filed on June 16, 2010, entitled “System and Method For Power Control And Antenna Grouping In A Distributed-Input-Distributed-Output (DIDO) Network”; No. 12/802,975, filed on June 16, 2010, entitled “System and Method For Link Adaptation In DIDO Multicarrier Systems”; and No. 12/802,975, filed on June 16, 2010, entitled “System and Method For DIDO Precoding Interpolation In Multicarrier Systems”. No. 12/802,938, entitled “System and Method for DIDO Precoding Interpolation in Multicarrier Systems”, filed December 3, 2009; No. 12/630,627, entitled “System and Method For Distributed Antenna Wireless Communications”, filed December 3, 2009; No. 12/143,503, entitled “System and Method For Distributed Input-Distributed Output Wireless Communications”, filed June 20, 2008, now U.S. Granted Patent No. 8,160,121, issued April 17, 2009; No. 12/163,503, entitled “System and Method For Distributed Input-Distributed Output Wireless Communications”, filed August 20, 2007; and No. 12/163,503, entitled “System and Method For Distributed Input-Distributed Output Wireless Communications”, filed June 20, 2008. No. 11/894,394, entitled “System and method for Distributed Input-Distributed Wireless Communications,” filed on August 20, 2007, now U.S. Grant Patent No. 7,599,420, published on October 6, 2009; No. 11/894,362, entitled “System and method for Distributed Input-Distributed Wireless Communications,” filed on August 20, 2007, now U.S. Grant Patent No. 7,633,994, published on December 15, 2009; No. 11/894,540, entitled “System and Method For Distributed Input-Distributed Output Wireless Communications,” filed on August 20, 2007, now U.S. Grant Patent No. 7,636,381, published on December 22, 2009; and No. 11/894,570, entitled “System and Method For Distributed Input-Distributed Output Wireless Communications,” filed on October 21, 2005. No. 11/256,478, entitled “Spatial-Multiplexed Tropospheric Scatter Communications,” now U.S. Grant Patent No. 7,711,030, published May 4, 2010; and No. 10/817,731, entitled “System and Method For Enhancing Near Vertical Incidence Skywave (“NVIS”) Communication Using Space-Time Coding,” filed April 2, 2004, now U.S. Grant Patent No. 7,885,354, published February 28, 2011.

背景技术Background Art

现有技术的多用户无线系统可包括仅单个基站或若干个基站。Prior art multi-user wireless systems may include only a single base station or several base stations.

在不存在其他WiFi接入点(例如,连接到农村用户家中的DSL的WiFi接入点)的区域内连接到宽带有线互联网连接的单个WiFi基站(例如,利用2.4GHz 802.11b、g或n协议)是由在其发射范围内的一个或多个用户共享的单个基站的相对简单的多用户无线系统的示例。如果用户与无线接入点处于同一个房间中,则该用户通常将体验到几乎没有传输中断的高速链路(例如,可能由于2.4GHz干扰器(如,微波炉)而存在数据包丢失,但不会由于与其他WiFi装置的频谱共享而存在数据包丢失),如果用户为中等距离远或在用户与WiFi接入点之间的路径中有几处障碍,则用户将可能体验到中速链路。如果用户正在接近WiFi接入点的范围的边缘,则该用户将可能体验到低速链路,并且如果信道的变化导致信号SNR降到低于可用的水平,则用户可能经受周期性中断。并且最终,如果用户在WiFi基站的范围之外,则用户将完全没有链路。A single WiFi base station (e.g., utilizing the 2.4 GHz 802.11b, g, or n protocol) connected to a broadband wired internet connection in an area where no other WiFi access points exist (e.g., a WiFi access point connected to a DSL connection in a rural user's home) is an example of a relatively simple multi-user wireless system with a single base station shared by one or more users within its transmission range. If a user is in the same room as the wireless access point, the user will generally experience a high-speed link with few transmission interruptions (e.g., packet loss may occur due to a 2.4 GHz interferer (e.g., a microwave oven), but not due to spectrum sharing with other WiFi devices). If the user is moderately far away or there are several obstacles in the path between the user and the WiFi access point, the user will likely experience a medium-speed link. If the user is approaching the edge of the WiFi access point's range, the user will likely experience a low-speed link and may experience periodic interruptions if channel variations cause the signal SNR to drop below a usable level. Finally, if the user is out of range of the WiFi base station, the user will have no link at all.

当多个用户同时接入WiFi基站时,则在其间共享可用数据吞吐量。不同用户通常将在给定时间对WiFi基站提出不同吞吐量需求,但有时当聚集吞吐量需求超过从WiFi基站到用户的可用吞吐量时,则一些或所有用户将接收比其正寻求的数据吞吐量少的数据吞吐量。在WiFi接入点在非常大量的用户之间共享的极端情形中,到每一用户的吞吐量可减慢到蠕动速度,且更糟的是,到每一用户的数据吞吐量可按由完全没有数据吞吐量的长周期分开的短脉冲到达,在所述长周期时间期间为其他用户服务。该“断断续续的”数据传送可能损害类似媒体流的某些应用。When multiple users access a WiFi base station simultaneously, the available data throughput is shared among them. Different users will typically place different throughput demands on the WiFi base station at a given time, but sometimes when the aggregate throughput demands exceed the available throughput from the WiFi base station to the users, some or all users will receive less data throughput than they are seeking. In extreme cases where a WiFi access point is shared among a very large number of users, the throughput to each user can slow to a crawl, or worse, the data throughput to each user may arrive in short bursts separated by long periods of no data throughput at all, during which time other users are being served. This "intermittent" data transmission can harm certain applications, such as media streaming.

在具有大量用户的情形中添加额外的WiFi基站将仅在一定程度上有帮助。在美国的2.4GHz ISM频带内,存在可用于WiFi的3个非干扰信道,且如果在相同覆盖区域中的3个WiFi基站被配置为各自使用不同的非干扰信道,则在多个用户之间的覆盖区域的聚集吞吐量将增加最多至3倍。但除此之外,在相同覆盖区域中添加更多WiFi基站将不增加聚集吞吐量,因为它们将开始在其间共享相同的可用频谱,从而通过“轮流”使用该频谱而有效地利用时分多路复用接入(TDMA)。此情形常见于具有高人口密度的覆盖区域中(诸如,多住宅单元中)。例如,在具有WiFi适配器的大公寓建筑物中的用户可能归因于服务于同一覆盖区域中的其他用户的许多其他干扰WiFi网络(例如,在其他公寓中)而显著地经历非常差的吞吐量,即便用户的接入点在与接入基站的客户端设备相同的房间中也是如此。虽然链路质量可能在所述情形中是良好的,但用户将会接收来自在同一频带中工作的相邻WiFi适配器的干扰,从而减少到用户的有效吞吐量。Adding additional WiFi base stations in scenarios with a large number of users will only help to a certain extent. Within the 2.4 GHz ISM band in the United States, there are three non-interfering channels available for WiFi, and if three WiFi base stations in the same coverage area are configured to each use a different non-interfering channel, the aggregate throughput of the coverage area across multiple users will increase by up to three times. Beyond that, however, adding more WiFi base stations in the same coverage area will not increase aggregate throughput because they will begin to share the same available spectrum among themselves, effectively utilizing time division multiple access (TDMA) by “taking turns” using that spectrum. This scenario is common in coverage areas with high population density (such as in multi-dwelling units). For example, a user in a large apartment building with a WiFi adapter may experience significantly poor throughput due to the numerous interfering WiFi networks (e.g., in other apartments) serving other users in the same coverage area, even if the user's access point is in the same room as the client device accessing the base station. While the link quality may be good in this scenario, the user will receive interference from neighboring WiFi adapters operating in the same frequency band, reducing the user's effective throughput.

当前的多用户无线系统(包括未授权频谱(诸如WiFi)和授权频谱两者)遭受若干限制。这些限制包括覆盖区域、下行链路(DL)数据速率以及上行链路(UL)数据速率。下一代无线系统(诸如WiMAX和LTE)的关键目标是经由多输入多输出(MIMO)技术改善覆盖区域以及DL和UL数据速率。MIMO在无线链路的发射和接收侧使用多个天线以提升链路质量(产生较宽覆盖)或数据速率(通过创建到每一用户的多个非干扰空间信道)。然而,如果足够的数据速率可用于每一用户(注意,在本文中术语“用户”和“客户端”可互换地使用),则可需要根据多用户MIMO(MU-MIMO)技术利用信道空间分集来创建到多个用户(而非单个用户)的非干扰信道。参见,例如,以下参考文献:Current multi-user wireless systems (including both unlicensed spectrum (such as WiFi) and licensed spectrum) suffer from several limitations. These limitations include coverage area, downlink (DL) data rate, and uplink (UL) data rate. A key goal of next-generation wireless systems (such as WiMAX and LTE) is to improve coverage area and DL and UL data rates via multiple-input multiple-output (MIMO) technology. MIMO uses multiple antennas on the transmit and receive sides of a wireless link to improve link quality (producing wider coverage) or data rate (by creating multiple non-interfering spatial channels to each user). However, if sufficient data rate is available for each user (note that the terms "user" and "client" are used interchangeably in this article), it may be necessary to create non-interfering channels to multiple users (rather than a single user) using channel spatial diversity according to multi-user MIMO (MU-MIMO) technology. See, for example, the following references:

G.Caire and S.Shamai,“On the achievable throughput of a multiantennaGaussian broadcast channel,”IEEE Trans.Info.Th.,vol.49,pp.1691–1706,July 2003(G.Caire和S.Shamai,“关于多天线高斯广播信道的可实现吞吐量”,《IEEE信息理论学报》,第49卷,第1691-1706页,2003年7月)。G. Caire and S. Shamai, “On the achievable throughput of a multiantenna Gaussian broadcast channel,” IEEE Trans. Info. Th., vol. 49, pp. 1691–1706, July 2003.

P.Viswanath and D.Tse,“Sum capacity of the vector Gaussian broadcastchannel and uplink-downlink duality,”IEEE Trans.Info.Th.,vol.49,pp.1912–1921,Aug.2003(P.Viswanath和D.Tse,“向量高斯广播信道的总容量和上下行链路的对偶性”,《IEEE信息理论学报》,第49卷,第1912–1921页,2003年8月)。P.Viswanath and D.Tse, “Sum capacity of the vector Gaussian broadcast channel and uplink-downlink duality,” IEEE Trans.Info.Th., vol.49, pp.1912–1921, Aug.2003.

S.Vishwanath,N.Jindal,and A.Goldsmith,“Duality,achievable rates,andsum-rate capacity of Gaussian MIMO broadcast channels,”IEEE Trans.Info.Th.,vol.49,pp.2658–2668,Oct.2003(S.Vishwanath、N.Jindal和A.Goldsmith,“高斯MIMO广播信道的对偶性、可实现速率和总速率容量”,《IEEE信息理论学报》,第49卷,第2658–2668页,2003年10月)。S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels,” IEEE Trans. Info. Th., vol. 49, pp. 2658–2668, Oct. 2003.

W.Yu and J.Cioffi,“Sum capacity of Gaussian vector broadcastchannels,”IEEE Trans.Info.Th.,vol.50,pp.1875–1892,Sep.2004(W.Yu和J.Cioffi,“高斯向量广播信道的总容量”,《IEEE信息理论学报》,第50卷,第1875–1892页,2004年9月)。W.Yu and J.Cioffi, “Sum capacity of Gaussian vector broadcast channels,” IEEE Trans.Info.Th., vol.50, pp.1875–1892, Sep.2004.

M.Costa,“Writing on dirty paper,”IEEE Transactions on InformationTheory,vol.29,pp.439–441,May 1983(M.Costa,“在脏纸上书写”,《IEEE信息理论学报》,第29卷,第439–441页,1983年5月)。M. Costa, “Writing on dirty paper,” IEEE Transactions on Information Theory, vol. 29, pp. 439–441, May 1983.

M.Bengtsson,“A pragmatic approach to multi-user spatialmultiplexing,”Proc.of Sensor Array and Multichannel Sign.Proc.Workshop,pp.130–134,Aug.2002(M.Bengtsson,“多用户空间多路复用的务实方法”,传感器阵列和多信道信号处理研讨会论文集,第130–134页,2002年8月)。M. Bengtsson, “A pragmatic approach to multi-user spatial multiplexing,” Proc. of Sensor Array and Multichannel Sign. Proc. Workshop, pp. 130–134, Aug. 2002.

K.-K.Wong,R.D.Murch,and K.B.Letaief,“Performance enhancement ofmultiuser MIMO wireless communication systems,”IEEE Trans.Comm.,vol.50,pp.1960–1970,Dec.2002(K.-K.Wong、R.D.Murch和K.B.Letaief,“多用户MIMO无线通信系统的性能增强”,《IEEE通信学报》,第50卷,第1960–1970页,2002年12月)。K.-K. Wong, R.D. Murch, and K.B. Letaief, “Performance enhancement of multiuser MIMO wireless communication systems,” IEEE Trans. Comm., vol. 50, pp. 1960–1970, Dec. 2002.

M.Sharif and B.Hassibi,“On the capacity of MIMO broadcast channelwith partial side information,”IEEE Trans.Info.Th.,vol.51,pp.506–522,Feb.2005(M.Sharif和B.Hassibi,“关于具有部分边信息的MIMO广播信道的容量”,《IEEE信息理论学报》,第51卷,第506–522页,2005年2月)。M. Sharif and B. Hassibi, “On the capacity of MIMO broadcast channel with partial side information,” IEEE Trans. Info. Th., vol. 51, pp. 506–522, Feb. 2005.

例如,在10MHz带宽、16-QAM调制且具有3/4速率的前向纠错(FEC)编码(产生3bps/Hz的频谱效率)的MIMO 4×4系统(即,四个发射天线和四个接收天线)中,对于每一用户在物理层处可实现的理想峰值数据速率为4×30Mbps=120Mbps,其比传送高清晰度视频内容(其可能仅需要约10Mbps)所需的速率高得多。在具有四个发射天线、四个用户以及每一用户单个天线的MU-MIMO系统中,在理想情形(即,独立且恒等分布(i.i.d.)信道)中,下行链路数据速率可在四个用户中共享且可利用信道空间分集以创建到用户的四个平行30Mbps数据链路。For example, in a MIMO 4×4 system (i.e., four transmit antennas and four receive antennas) with a 10 MHz bandwidth, 16-QAM modulation, and forward error correction (FEC) coding at a rate of 3/4 (yielding a spectral efficiency of 3 bps/Hz), the ideal peak data rate achievable at the physical layer for each user is 4×30 Mbps = 120 Mbps, which is much higher than the rate required to transmit high-definition video content (which may only require about 10 Mbps). In a MU-MIMO system with four transmit antennas, four users, and a single antenna per user, in an ideal case (i.e., independent and identically distributed (i.i.d.) channels), the downlink data rate can be shared among the four users and channel spatial diversity can be exploited to create four parallel 30 Mbps data links to the users.

已提议不同MU-MIMO方案作为LTE标准的一部分,如在例如以下文献中所述:3GPP,“Multiple Input Multiple Output in UTRA”,3GPP TR 25.876V7.0.0,Mar.2007(3GPP,“UTRA中的多输入多输出”,3GPP TR 25.876V7.0.0,2007年3月);3GPP,“Base Physicalchannels and modulation”,TS 36.211,V8.7.0,May 2009(3GPP,“基础物理信道和调制”,TS 36.211,V8.7.0,2009年5月);和3GPP,“Multiplexing and channel coding”,TS36.212,V8.7.0,May 2009(3GPP,“多路复用和信道编码”,TS 36.212,V8.7.0,2009年5月。然而,这些方案仅可通过四个发射天线提供DL数据速率方面的最多至2倍的改进。由类似爱瑞通信(ArrayComm)的公司在标准及专属蜂窝式系统中对MU-MIMO技术的实际实施(参见,例如,爱瑞通信(ArrayComm),“Field-proven results”(现场验证结果),http://www.arraycomm.com/serve.php?page=proo)已经由空分多址(SDMA)产生DL数据速率方面的最多至约3倍的增加(通过四个发射天线)。蜂窝式网络中的MU-MIMO方案的关键限制是在发射侧处缺乏空间分集。空间分集随无线链路中的天线间距和多路径角展度而变。在使用MU-MIMO技术的蜂窝式系统中,基站处的发射天线通常归因于天线支撑结构(本文中称为“塔”,不论物理上是高还是不高)上的有限占地面积并归因于塔可位于何处的限制而群集在一起并仅相隔一个或两个波长而放置。此外,因为小区塔通常放置在障碍物之上很高处(10米或更多)以产生较宽覆盖,所以多路径角展度较低。Different MU-MIMO schemes have been proposed as part of the LTE standard, as described, for example, in 3GPP, “Multiple Input Multiple Output in UTRA,” 3GPP TR 25.876 V7.0.0, Mar. 2007; 3GPP, “Base Physical channels and modulation,” TS 36.211, V8.7.0, May 2009; and 3GPP, “Multiplexing and channel coding,” TS 36.212, V8.7.0, May 2009. 36.212, V8.7.0, May 2009. However, these schemes can only provide up to a 2x improvement in DL data rate with four transmit antennas. Practical implementations of MU-MIMO technology in standard and proprietary cellular systems by companies like ArrayComm (see, for example, ArrayComm, “Field-proven "(Field Verified Results), http://www.arraycomm.com/serve.php?page=proo) has produced up to a 3x increase in DL data rates (via four transmit antennas) from spatial division multiple access (SDMA). A key limitation of MU-MIMO schemes in cellular networks is the lack of spatial diversity on the transmit side. Spatial diversity is a function of antenna spacing and multipath angular spread in the wireless link. In cellular systems using MU-MIMO technology, the transmit antennas at the base station are typically clustered together and placed only one or two wavelengths apart due to the limited footprint on the antenna support structure (referred to herein as a "tower," whether physically tall or not) and due to restrictions on where the tower can be located. Furthermore, because cell towers are typically placed high above obstructions (10 meters or more) to produce wide coverage, the multipath angular spread is low.

蜂窝式系统部署的其他实际问题包括蜂窝式天线位置的过多成本及位置的有限可用性(例如,归因于对天线放置的市政限制、不动产的成本、物理障碍物等)以及到发射器的网络连接(本文中称为“回程”)的成本和/或可用性。此外,蜂窝式系统通常归因于由于墙壁、天花板、地板、家具和其他阻碍的损耗而难以到达位于建筑物深处的客户端。的确,广域无线网络的蜂窝式结构的整个概念预先假定了蜂窝式塔的相当固定的放置、相邻小区之间的频率的交替,以及频繁地扇区化,以便避免使用同一频率的发射器(基站或用户)之间的干扰。因此,给定小区的给定扇区最终成为所述小区扇区中的所有用户之间的DL和UL频谱的共享块,接着主要仅在时域中在这些用户之间共享所述DL和UL频谱。例如,基于时分多址(TDMA)和码分多址(CDMA)的蜂窝式系统两者均在时域中在用户之间共享频谱。通过用扇区化覆盖此类蜂窝式系统,也许能够实现2-3倍的空间域益处。并且,接着通过用MU-MIMO系统(诸如先前描述的那些)覆盖此类蜂窝式系统,也许能够实现另外的2-3倍空间-时间域益处。但是,考虑到蜂窝式系统的小区和扇区通常在固定位置(常由可放置塔的位置指定)中,如果在给定时间用户密度(或数据速率需求)不与塔/扇区放置很好地匹配,则甚至这些有限益处也难以利用。蜂窝式智能电话用户通常经历下述结果:今天用户可能完全无任何问题地在电话中交谈或下载网页,且接着在行驶(或甚至步行)到一个新位置之后将突然发现语音质量降低或网页减缓到蠕动速度,或甚至完全丢失连接。但是,在不同日子,用户可在每一位置中遭遇完全相反的情况。假定环境条件相同,用户可能正在经历的情况是用户密度(或数据速率需求)为高度变化的,但待在给定位置处在用户之间共享的可用总频谱(且因此总数据速率,使用现有技术的技术)很大程度上固定的事实。Other practical issues with cellular system deployment include the excessive cost and limited availability of cellular antenna locations (e.g., due to municipal restrictions on antenna placement, real estate costs, physical obstructions, etc.), as well as the cost and/or availability of network connectivity to transmitters (referred to herein as "backhaul"). Furthermore, cellular systems often struggle to reach clients located deep within buildings due to losses through walls, ceilings, floors, furniture, and other obstructions. Indeed, the entire concept of a cellular architecture for wide-area wireless networks presupposes relatively fixed placement of cellular towers, alternation of frequencies between adjacent cells, and frequent sectorization to avoid interference between transmitters (base stations or users) using the same frequency. Consequently, a given sector of a given cell ultimately becomes a shared block of DL and UL spectrum among all users in that cell sector, which is then primarily shared between these users only in the time domain. For example, cellular systems based on time division multiple access (TDMA) and code division multiple access (CDMA) both share spectrum between users in the time domain. By overlaying such cellular systems with sectorization, perhaps a 2-3x spatial domain benefit can be achieved. And, then, by overlaying such cellular systems with MU-MIMO systems (such as those described previously), perhaps another 2-3x space-time domain benefit could be achieved. However, given that the cells and sectors of a cellular system are typically in fixed locations (often dictated by where towers can be placed), even these limited benefits are difficult to exploit if the user density (or data rate demand) at a given time doesn't match the tower/sector placement well. Cellular smartphone users often experience the following: one day, the user may be talking on the phone or downloading a web page with no problems, and then, after driving (or even walking) to a new location, suddenly find that the voice quality degrades, the web page slows to a crawl, or even loses the connection completely. However, on different days, the user may encounter completely opposite situations in each location. Assuming the same environmental conditions, the situation the user may be experiencing is that the user density (or data rate demand) is highly variable, but the total available spectrum shared among users at a given location (and therefore the total data rate, using existing technology) is largely fixed.

此外,现有技术蜂窝式系统依赖在不同的相邻小区中使用不同频率,通常3个不同频率。对于给定频谱量,此将可用数据速率减少到三分之一。Furthermore, prior art cellular systems rely on using different frequencies in different adjacent cells, typically 3 different frequencies. For a given amount of spectrum, this reduces the available data rate by one-third.

所以,总而言之,现有技术的蜂窝式系统可归因于蜂窝化而丢失也许3倍的频谱利用,并且可通过扇区化提升频谱利用也许3倍并经由MU-MIMO技术再提升也许3倍,从而产生净3*3/3=3倍的可能频谱利用。接着,所述带宽通常基于用户在给定时间属于何小区的何扇区而在时域中在用户之间分割。甚至进一步存在归因于给定用户的数据速率需求通常无关于用户的位置但可用数据速率视用户与基站之间的链路质量而变化的事实而导致的低效率。例如,距蜂窝式基站更远的用户通常将具有比更接近基站的用户小的可用数据速率。因为数据速率通常在给定蜂窝式扇区中的所有用户之间共享,所以此情况的结果是所有用户均受来自具有差链路质量的远方用户(例如,在小区的边缘)的高数据速率需求影响,因为这些用户仍将需求相同量的数据速率,然而他们将消耗更多的共享频谱才能得到所述数据速率。So, in summary, a prior art cellular system can lose perhaps 3x spectrum utilization due to cellularization, and can improve spectrum utilization by perhaps 3x through sectorization and perhaps another 3x through MU-MIMO technology, resulting in a net 3*3/3 = 3x possible spectrum utilization. The bandwidth is then typically divided among users in the time domain based on which sector of which cell a user belongs to at a given time. Even further inefficiencies arise due to the fact that a given user's data rate requirements are generally independent of the user's location, but the available data rate varies depending on the link quality between the user and the base station. For example, users farther from a cellular base station will generally have a lower available data rate than users closer to the base station. Because the data rate is typically shared among all users in a given cellular sector, the consequence of this is that all users are impacted by high data rate demands from distant users with poor link quality (e.g., at the cell's edge), as these users will still demand the same amount of data rate, but will consume more of the shared spectrum to achieve it.

其他提议的频谱共享系统(诸如由WiFi使用的频谱共享系统(例如802.11b、g和n)和由白空间联盟(White Spaces Coalition)提议的那些系统)非常低效地共享频谱,因为由在用户的范围内的基站进行的同时发射导致干扰,且因而系统利用冲突避免和共享协议。这些频谱共享协议在时域内,且因此当存在大量的干扰基站和用户时,不论每个基站自身在频谱利用方面效率如何,基站集体地受限于彼此之间的频谱的时域共享。其他现有技术频谱共享系统类似地依赖类似方法以减轻基站(无论是具有在塔上的天线的蜂窝式基站还是小规模基站,诸如WiFi接入点(AP))之间的干扰。这些方法包括:限制来自基站的发射功率以便限制干扰的范围;波束成形(经由合成或物理方式)以使干扰的区域变窄;频谱的时域多路复用;以及/或者在用户设备、基站或两者上具有多个群集天线的MU-MIMO技术。并且,就现今已安排好或在规划中的高级蜂窝式网络而言,经常同时使用这些技术中的许多技术。Other proposed spectrum sharing systems, such as those used by WiFi (e.g., 802.11b, g, and n) and those proposed by the White Spaces Coalition, share spectrum very inefficiently because simultaneous transmissions by base stations within range of users cause interference, and thus the systems utilize collision avoidance and sharing protocols. These spectrum sharing protocols are in the time domain, and therefore, when there are a large number of interfering base stations and users, regardless of how efficient each base station is in spectrum utilization, the base stations are collectively limited to time-domain sharing of spectrum with each other. Other prior art spectrum sharing systems similarly rely on similar methods to mitigate interference between base stations (whether cellular base stations with tower-mounted antennas or small-scale base stations such as WiFi access points (APs)). These methods include: limiting the transmit power from the base stations to limit the range of interference; beamforming (via synthesis or physical means) to narrow the area of interference; time-domain multiplexing of spectrum; and/or MU-MIMO technology with multiple clustered antennas on user devices, base stations, or both. And, with advanced cellular networks deployed today or in planning, many of these technologies are often used simultaneously.

但是,通过与单个用户利用频谱相比甚至高级蜂窝式系统也仅可实现频谱利用的约3倍增加的事实显而易见的是,所有这些技术对增大给定覆盖区域中的共享用户之间的聚集数据速率成效不彰。具体而言,当给定覆盖区域在用户方面缩放时,变得越来越难以在给定频谱量内缩放可用数据速率以跟上用户的增长。例如,在使用蜂窝式系统的情况下,为了增大给定区域内的聚集数据速率,小区通常被细分成较小小区(通常称为微型小区(nano-cell)或超微型小区(femto-cell))。考虑到对塔可放置于何处的限制,以及对塔必须以适当结构化样式放置以便提供具有最小“死区”的覆盖,然而避免使用同一频率的邻近小区之间的干扰的要求,这些小的小区可能变得极端昂贵。实质上,覆盖区域必须被绘出,用于放置塔或基站的可用位置必须经识别,且接着考虑到这些约束条件,蜂窝式系统的设计者必须尽其最大努力设法完成。并且,当然,如果用户数据速率需求随时间而增长,则蜂窝式系统的设计者必须再一次重新绘制覆盖区域,设法找到塔或基站的位置,并再次在环境的约束条件内工作。并且,常常根本没有好的解决方案,从而导致覆盖区域中的死区或不充足的聚集数据速率容量。换言之,为了避免利用同一频率的塔或基站之间的干扰的对蜂窝式系统的严格物理放置要求导致蜂窝式系统设计中的显著困难和约束条件,且常常不能满足用户数据速率和覆盖要求。However, as is evident from the fact that even advanced cellular systems can only achieve a roughly three-fold increase in spectrum utilization compared to single-user spectrum utilization, all of these techniques are ineffective in increasing the aggregate data rate among shared users within a given coverage area. Specifically, as a given coverage area scales in terms of users, it becomes increasingly difficult to scale the available data rate within a given amount of spectrum to keep pace with the increase in users. For example, in the case of cellular systems, to increase the aggregate data rate within a given area, cells are typically subdivided into smaller cells (often referred to as nano-cells or femto-cells). These small cells can be extremely expensive given the restrictions on where towers can be placed, and the requirement that towers be placed in a suitably structured pattern to provide coverage with minimal "dead zones" while avoiding interference between neighboring cells using the same frequency. Essentially, the coverage area must be mapped, available locations for tower or base station placement must be identified, and then, given these constraints, designers of cellular systems must do their best to accomplish this. And, of course, if user data rate demands increase over time, cellular system designers must once again redraw the coverage area, try to locate towers or base stations, and once again work within the constraints of the environment. And often, there simply is no good solution, resulting in dead zones in the coverage area or insufficient aggregate data rate capacity. In other words, the strict physical placement requirements of cellular systems to avoid interference between towers or base stations utilizing the same frequency lead to significant difficulties and constraints in cellular system design, and user data rate and coverage requirements are often not met.

所谓的现有技术“协作式”和“认知式”无线电系统设法通过在无线电内使用智能算法以使得无线电能够最小化彼此之间的干扰并且/或者使得无线电能够潜在地“收听”其他频谱使用以便等到信道无干扰为止来增加给定区域中的频谱利用。此类系统被提议以尤其用于未授权频谱中以便增加对此频谱的频谱利用。So-called prior art "cooperative" and "cognitive" radio systems seek to increase spectrum utilization in a given area by using intelligent algorithms within the radios to enable the radios to minimize interference between each other and/or to enable the radios to potentially "listen" to other spectrum usage in order to wait until the channel is free of interference. Such systems are proposed to be used particularly in unlicensed spectrum in order to increase spectrum utilization of this spectrum.

移动自组网络(MANET)(参见http://en.wikipedia.org/wiki/Mobile_ad_hoc_network)为旨在用于提供对等通信的协作式自配置网络的示例,且可用于在没有蜂窝式基础结构的情况下在无线电之间创建通信,且在具有充分低功率通信的情况下可潜在地减轻在彼此范围之外的同时发射之间的干扰。针对MANET系统已提议并实施了大量路由协议(对于各种类别的许多路由协议的列表,参见http://en.wikipedia.org/wiki/List_of_ad-hoc_routing_protocols),但它们之间的共同主题是它们都是为了达到特定效率或可靠性典范的目标的用于路由(例如,重复)发射以使得最小化在可用频谱内的发射器干扰的技术。Mobile ad hoc networks (MANETs) (see http://en.wikipedia.org/wiki/Mobile_ad_hoc_network) are examples of cooperative, self-configuring networks designed to provide peer-to-peer communications and can be used to create communications between radios without cellular infrastructure and, with sufficiently low-power communications, can potentially mitigate interference between simultaneous transmissions that are out of range of each other. A large number of routing protocols have been proposed and implemented for MANET systems (see http://en.wikipedia.org/wiki/List_of_ad-hoc_routing_protocols for a list of many routing protocols in various categories), but the common theme among them is that they are all techniques for routing (e.g., repeating) transmissions so as to minimize transmitter interference within the available spectrum with the goal of achieving a specific efficiency or reliability paradigm.

所有现有技术的多用户无线系统均设法通过利用允许在基站与多个用户之间的同时频谱利用的技术而提升给定覆盖区域内的频谱利用。注意,在所有这些状况下,用于在基站与多个用户之间的同时频谱利用的技术通过减轻到多个用户的波形之间的干扰而实现多个用户的同时频谱使用。例如,在3个基站各自使用不同的频率来发射到3个用户中的一者的情况下,因为3个发射是在3个不同的频率下,所以其中干扰被减轻。在从基站到3个不同用户的扇区化(相对于基站,每一者相隔180度)的情况下,因为波束成形防止3个发射在任一用户处重叠,所以干扰被减轻。All prior art multi-user wireless systems seek to improve spectrum utilization within a given coverage area by utilizing techniques that allow simultaneous spectrum utilization between a base station and multiple users. Note that in all of these cases, the techniques for simultaneous spectrum utilization between a base station and multiple users enable simultaneous spectrum use by multiple users by mitigating interference between the waveforms to the multiple users. For example, in the case of three base stations each using a different frequency to transmit to one of three users, interference is mitigated because the three transmissions are at three different frequencies. In the case of sectorization from a base station to three different users (each 180 degrees apart relative to the base station), interference is mitigated because beamforming prevents the three transmissions from overlapping at any one user.

当此类技术通过MU-MIMO强化,并且(例如)每个基站具有4个天线时,则此通过创建到给定覆盖区域中的用户的四个非干扰空间信道而具有将下行链路吞吐量增加4倍的潜力。但情况仍是必须利用一些技术以减轻到不同覆盖区域中的多个用户的多个同时发射之间的干扰。When such technology is enhanced with MU-MIMO, and (for example) each base station has 4 antennas, this has the potential to increase downlink throughput by a factor of 4 by creating four non-interfering spatial channels to users in a given coverage area. However, some techniques must still be utilized to mitigate interference between multiple simultaneous transmissions to multiple users in different coverage areas.

并且,如先前所述,这些现有技术的技术(例如,蜂窝化、扇区化)不仅通常因增加多用户无线系统的成本和/或部署的灵活性而受损,而且其通常会遇上对给定覆盖区域中的聚集吞吐量的物理或实际限制。例如,在蜂窝式系统中,可能没有足够的可用位置来安装更多基站以创建更小的小区。并且,在MU-MIMO系统中,考虑到在每个基站位置处的群集天线间距,随着更多天线被添加到基站,有限的空间分集导致吞吐量的渐近收益递减。Furthermore, as previously mentioned, these prior art techniques (e.g., cellularization, sectorization) not only typically suffer from increasing the cost and/or deployment flexibility of multi-user wireless systems, but they also typically encounter physical or practical limitations on the aggregate throughput in a given coverage area. For example, in a cellular system, there may not be enough available locations to install more base stations to create smaller cells. Furthermore, in a MU-MIMO system, given the clustered antenna spacing at each base station location, limited spatial diversity leads to diminishing returns in throughput as more antennas are added to the base station.

并且此外,在用户位置和密度不可预测的多用户无线系统的情况下,其导致不可预测的吞吐量(具有频繁急剧变化),这对于用户是不方便的且致使一些应用(例如,要求可预测吞吐量的服务的传送)不实际或低质量。因此,现有技术的多用户无线系统在其为用户提供可预测和/或高质量服务的能力方面仍有许多待改进之处。Furthermore, in the case of multi-user wireless systems where user locations and densities are unpredictable, this results in unpredictable throughput (with frequent and dramatic changes), which is inconvenient for users and renders some applications (e.g., delivery of services requiring predictable throughput) impractical or of low quality. Therefore, prior art multi-user wireless systems still leave much to be desired in terms of their ability to provide predictable and/or high-quality services to users.

尽管随时间推移现有技术的多用户无线系统已变得非常精密和复杂,但存在共同的主题:将发射分布于不同基站(或自组收发器)之间并且结构化和/或控制发射,以便避免来自不同基站和/或不同自组收发器的RF波形发射在给定用户的接收器处彼此干扰。While prior art multi-user wireless systems have become very sophisticated and complex over time, a common theme exists: distributing transmissions among different base stations (or ad hoc transceivers) and structuring and/or controlling the transmissions so as to avoid RF waveform transmissions from different base stations and/or different ad hoc transceivers interfering with each other at a given user's receiver.

或者,换言之,被认为是已知的事实是如果用户碰巧同时接收到来自一个以上基站或自组收发器的发射,则来自多个同时发射的干扰将导致到用户的信号的SNR和/或带宽的减小,其(如果足够严重)将导致原本会由用户接收到的潜在数据(或模拟信息)中的全部或一些丢失。Or, in other words, it is considered a known fact that if a user happens to receive transmissions from more than one base station or ad hoc transceiver simultaneously, the interference from the multiple simultaneous transmissions will result in a reduction in the SNR and/or bandwidth of the signal to the user, which (if severe enough) will result in the loss of all or some of the potential data (or analog information) that would otherwise be received by the user.

因此,在多用户无线系统中,必须利用一个或多个频谱共享方法或另一方法来避免或减轻来自同时以同一频率发射的多个基站或自组收发器的对用户的这种干扰。存在避免这种干扰的大量现有技术方法,包括控制基站的物理位置(例如,蜂窝化),限制基站和/或自组收发器的功率输出(例如,限制发射范围),波束成形/扇区化,以及时域多路复用。简言之,所有这些频谱共享系统均设法解决多用户无线系统的限制,即:在同时以同一频率发射的多个基站和/或自组收发器由同一用户接收时,所得干扰减少或破坏到受影响用户的数据吞吐量。如果多用户无线系统中的用户中的大部分或全部经受来自多个基站和/或自组收发器的干扰(例如,在多用户无线系统的组件发生故障的情况下),则其可能导致多用户无线系统的聚集吞吐量急剧减少或甚至丧失功能的情形。Therefore, in a multi-user wireless system, one or more spectrum sharing methods or another method must be utilized to avoid or mitigate such interference to users from multiple base stations or ad hoc transceivers transmitting simultaneously at the same frequency. Numerous prior art methods exist for avoiding such interference, including controlling the physical location of base stations (e.g., cellularization), limiting the power output of base stations and/or ad hoc transceivers (e.g., limiting the transmission range), beamforming/sectorization, and time domain multiplexing. In short, all of these spectrum sharing systems address a limitation of multi-user wireless systems: when multiple base stations and/or ad hoc transceivers transmitting simultaneously at the same frequency are received by the same user, the resulting interference reduces or destroys the data throughput to the affected users. If most or all of the users in a multi-user wireless system experience interference from multiple base stations and/or ad hoc transceivers (e.g., in the event of a component failure in the multi-user wireless system), this can result in a situation where the aggregate throughput of the multi-user wireless system is drastically reduced or even loses functionality.

现有技术的多用户无线系统增加复杂度并对无线网络引入限制,且频繁地导致给定用户的体验(例如,可用带宽、延迟、可预测性、可靠性)受区域中的其他用户对频谱的利用影响的情形。考虑到对于由多个用户共享的无线频谱内的聚集带宽的渐增的需求,以及可依赖用于给定用户的多用户无线网络的可靠性、可预测性和低延迟的应用的不断增长,显然现有技术的多用户无线技术遭受许多限制。实际上,由于适用于特定类型的无线通信(例如,在可有效穿透建筑物墙壁的波长下)的频谱的有限可用性,可能的情况是现有技术的无线技术将不足以满足对于可靠、可预测和低延迟的带宽的渐增的需求。Prior art multi-user wireless systems add complexity and introduce limitations to wireless networks, frequently leading to situations where a given user's experience (e.g., available bandwidth, latency, predictability, reliability) is impacted by the spectrum utilization of other users in the area. Given the increasing demand for aggregate bandwidth within a wireless spectrum shared by multiple users, and the growing number of applications that can rely on the reliability, predictability, and low latency of a multi-user wireless network for a given user, it is clear that prior art multi-user wireless technologies suffer from numerous limitations. Indeed, due to the limited availability of spectrum suitable for certain types of wireless communications (e.g., at wavelengths that can effectively penetrate building walls), it is likely that prior art wireless technologies will be insufficient to meet the increasing demand for reliable, predictable, and low-latency bandwidth.

与本发明相关的现有技术描述了用于在多用户情形中零控的波束成形系统和方法。最初构想波束成形以通过动态地调整馈送至阵列的天线的信号的相位和/或振幅(即,波束成形权重)来最大化所接收的信噪比(SNR),从而朝用户的方向集中能量。在多用户情形中,波束成形可用于抑制干扰源并最大化信号对干扰加噪声比(SINR)。例如,当在无线链路的接收器处使用波束成形时,计算权重以在干扰源方向上创建零点(null)。当在多用户下行链路情形中在发射器处使用波束成形时,计算权重以预先消除用户间干扰并最大化到每一用户的SINR。用于多用户系统的替代技术(诸如BD预编码)计算预编码权重,以最大化下行链路广播信道中的吞吐量。以引用方式并入本文的共同待审的专利申请描述了上述技术(参见共同待审的专利申请以获得特定引用内容)。Prior art related to the present invention describes beamforming systems and methods for null steering in multi-user scenarios. Beamforming was originally conceived to maximize the received signal-to-noise ratio (SNR) by dynamically adjusting the phase and/or amplitude (i.e., beamforming weights) of the signal fed to the antennas of the array, thereby concentrating energy in the direction of the user. In multi-user scenarios, beamforming can be used to suppress interference sources and maximize the signal-to-interference-plus-noise ratio (SINR). For example, when beamforming is used at the receiver of a wireless link, weights are calculated to create a null in the direction of the interference source. When beamforming is used at the transmitter in a multi-user downlink scenario, weights are calculated to pre-eliminate inter-user interference and maximize the SINR to each user. Alternative techniques for multi-user systems, such as BD precoding, calculate precoding weights to maximize throughput in the downlink broadcast channel. The co-pending patent application incorporated herein by reference describes the above technology (see the co-pending patent application for specific citations).

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

通过结合附图的以下详细描述可以获得对本发明的更好理解,其中:A better understanding of the present invention may be obtained from the following detailed description taken in conjunction with the accompanying drawings, in which:

图1示出了本发明的一个实施例中由相邻DIDO群集环绕的主DIDO群集。FIG1 illustrates a main DIDO cluster surrounded by neighboring DIDO clusters in one embodiment of the present invention.

图2示出了用于本发明的一个实施例中的频分多址(FDMA)技术。FIG2 illustrates a frequency division multiple access (FDMA) technique used in one embodiment of the present invention.

图3示出了用于本发明的一个实施例中的时分多址(TDMA)技术。FIG3 illustrates a time division multiple access (TDMA) technique used in one embodiment of the present invention.

图4示出了本发明的一个实施例中解决的不同类型的干扰区。FIG4 illustrates different types of interference zones addressed in one embodiment of the present invention.

图5示出了用于本发明的一个实施例中的框架。FIG5 shows a framework used in one embodiment of the present invention.

图6示出了一个曲线图,其显示了SER随SNR的变化关系,对于干扰区中的目标客户端假定SIR=10dB。FIG6 shows a graph illustrating the variation of SER with SNR, assuming SIR=10 dB for a target client in an interference zone.

图7示出了一个曲线图,其显示了通过两种IDCI-预编码技术得出的SER。FIG7 shows a graph illustrating the SER obtained by two IDCI-precoding techniques.

图8示出了目标客户端从主DIDO群集向干扰群集移动的示例性情形。FIG8 shows an exemplary scenario where a target client moves from a primary DIDO cluster to an interfering cluster.

图9示出了信号对干扰加噪声比(SINR)随距离(D)的变化关系。FIG9 shows the relationship between the signal to interference plus noise ratio (SINR) and the distance (D).

图10示出了在平坦衰落窄带信道中对于4-QAM调制的三种情形的符号错误率(SER)性能。FIG10 shows the symbol error rate (SER) performance for three cases of 4-QAM modulation in a flat fading narrowband channel.

图11示出了根据本发明的一个实施例的用于IDCI预编码的方法。FIG11 shows a method for IDCI precoding according to an embodiment of the present invention.

图12示出了一个实施例中SINR变化随客户端距主DIDO群集中心的距离的变化关系。FIG. 12 shows the SINR variation as a function of the distance of the client from the center of the primary DIDO cluster, in one embodiment.

图13示出了一个实施例,其中针对4-QAM调制得出SER。FIG13 shows an embodiment where the SER is derived for 4-QAM modulation.

图14示出了本发明的一个实施例,其中有限状态机实施越区切换算法。FIG. 14 illustrates an embodiment of the present invention in which a finite state machine implements a handoff algorithm.

图15示出了在存在遮蔽的情况下越区切换策略的一个实施例。FIG. 15 illustrates one embodiment of a handoff strategy in the presence of shadowing.

图16示出了当在图15的任何两种状态之间切换时的滞后回路机制。FIG. 16 illustrates the hysteresis loop mechanism when switching between any two states of FIG. 15 .

图17示出了具有功率控制的DIDO系统的一个实施例。FIG17 illustrates one embodiment of a DIDO system with power control.

图18示出了在不同情形中假定四个DIDO发射天线及四个客户端的情况下的SER与SNR的关系。FIG18 shows the SER versus SNR relationship in different scenarios assuming four DIDO transmit antennas and four clients.

图19示出了根据本发明的一个实施例针对不同发射功率值,MPE功率密度随距RF辐射源的距离的变化关系。FIG. 19 shows the relationship between the MPE power density and the distance from the RF radiation source for different transmit power values according to one embodiment of the present invention.

图20a-图20b示出了低功率和高功率DIDO分布式天线的不同分布。20a-20b illustrate different distributions of low-power and high-power DIDO distributed antennas.

图21a-图21b分别示出了对应于图20a和图20b中的配置的两种功率分布。21a-21b show two power distributions corresponding to the configurations in FIG. 20a and FIG. 20b , respectively.

图22a-图22b分别示出了图21a和21b中所示的两种情形的速率分布。22a-22b show the rate distributions for the two scenarios shown in FIG. 21a and FIG. 21b , respectively.

图23示出了具有功率控制的DIDO系统的一个实施例。FIG23 illustrates one embodiment of a DIDO system with power control.

图24示出了根据用于传输数据的循环调度策略在所有天线组上重复的方法的一个实施例。FIG. 24 illustrates one embodiment of a method that is repeated across all antenna groups according to a cyclic scheduling strategy for transmitting data.

图25示出了具有天线分组的功率控制的未编码SER性能与美国专利No.7,636,381中的常规本征模式选择的比较。FIG. 25 shows a comparison of the uncoded SER performance of power control with antenna grouping and conventional eigenmode selection in U.S. Patent No. 7,636,381.

图26a-图26c示出了其中BD预编码动态地调整预编码权重,以考虑在DIDO天线与客户端之间的无线链路上的不同功率电平的三种情形。26a-26c illustrate three scenarios where BD precoding dynamically adjusts the precoding weights to account for different power levels on the wireless link between the DIDO antennas and the clients.

图27示出了DIDO 2×2系统的在延迟域或瞬时PDP(上部曲线)和频域(下部曲线)上的低频率选择性信道(假定β=1)的振幅。27 shows the amplitude of a low frequency selective channel (assuming β=1) for a DIDO 2×2 system in the delay domain or instantaneous PDP (upper curve) and the frequency domain (lower curve).

图28示出了针对DIDO 2×2的信道矩阵频率响应的一个实施例,其中每一客户端单个天线。FIG. 28 shows one embodiment of the channel matrix frequency response for DIDO 2×2 with a single antenna per client.

图29示出了针对DIDO 2×2的信道矩阵频率响应的一个实施例,其中对于通过高频率选择性(例如,其中β=1)特征化的信道,每一客户端单个天线。FIG. 29 shows one embodiment of the channel matrix frequency response for DIDO 2×2 with a single antenna per client for a channel characterized by high frequency selectivity (eg, with β=1).

图30示出了不同的QAM方案(即4-QAM、16-QAM、64-QAM)的示例性SER。FIG30 shows exemplary SERs for different QAM schemes (ie, 4-QAM, 16-QAM, 64-QAM).

图31示出了用于实施链路自适应(LA)技术的方法的一个实施例。FIG31 illustrates one embodiment of a method for implementing link adaptation (LA) technology.

图32示出了链路自适应(LA)技术的一个实施例的SER性能。FIG32 illustrates the SER performance of one embodiment of the Link Adaptation (LA) technique.

图33示出了对于其中NFFT=64及L0=8的DIDO 2×2系统,等式(28)中矩阵的项随OFDM音调索引的变化关系。FIG33 shows how the entries of the matrix in Equation (28) vary with OFDM tone index for a DIDO 2×2 system with NFFT = 64 and L0 = 8.

图34示出了对于L0=8、M=Nt=2个发射天线以及可变数量的P的SER与SNR的关系。FIG34 shows the SER versus SNR for L 0 =8, M=N t =2 transmit antennas, and a variable number of P. ...

图35示出了针对不同DIDO阶数及L0=16的内插方法的一个实施例的SER性能。FIG35 shows the SER performance of one embodiment of the interpolation method for different DIDO orders and L 0 =16.

图36示出了使用超级群集、DIDO-群集和用户群集的系统的一个实施例。FIG36 illustrates one embodiment of a system using super clusters, DIDO-clusters, and user clusters.

图37示出了根据本发明的一个实施例的具有用户群集的系统。FIG37 illustrates a system with user clustering according to one embodiment of the present invention.

图38a-图38b示出了用于本发明的一个实施例中的链路质量量度阈值。38a-38b illustrate link quality metric thresholds used in one embodiment of the present invention.

图39-图41示出了用于创建用户群集的链路质量矩阵的例子。39-41 show examples of link quality matrices used to create user clusters.

图42示出了客户端跨越不同的DIDO群集移动的实施例。FIG42 illustrates an embodiment of a client moving across different DIDO clusters.

图43-图46示出了本发明的一个实施例中球形阵列的分辨率与其面积A之间的关系。43-46 show the relationship between the resolution of a spherical array and its area A in one embodiment of the present invention.

图47示出了在实际的室内和室外传播情形中MIMO系统的自由度。Figure 47 shows the degrees of freedom of a MIMO system in practical indoor and outdoor propagation scenarios.

图48示出了DIDO系统中的自由度随阵列直径的变化关系。FIG48 shows the degrees of freedom in a DIDO system as a function of array diameter.

图49示出了一个实施例,其包括通过有线或无线连接通信的多个集中式处理器(CP)和分布式节点(DN)。FIG49 illustrates an embodiment comprising multiple centralized processors (CPs) and distributed nodes (DNs) communicating via wired or wireless connections.

图50示出了一个实施例,其中CP与未授权DN交换控制信息并重新配置它们以关闭用于授权使用的频带。FIG50 shows an embodiment in which the CP exchanges control information with unlicensed DNs and reconfigures them to shut down the frequency band for licensed use.

图51示出了一个实施例,其中整个频谱被分配给新的服务,并且CP使用控制信息关闭所有未授权的DN,以避免干扰授权的DN。Figure 51 shows an embodiment where the entire spectrum is allocated to the new service and the CP uses control information to shut down all unlicensed DNs to avoid interfering with the licensed DNs.

图52示出了云无线系统的一个实施例,该云无线系统包括多个CP、分布式节点和将CP与DN互连的网络。FIG52 illustrates an embodiment of a cloud wireless system including a plurality of CPs, distributed nodes, and a network interconnecting the CPs and DNs.

图53-图59示出了多用户(MU)多天线系统(MAS)的实施例,其自适应地重新配置参数,以补偿由于用户移动性或传播环境的改变而造成的多普勒效应。53-59 illustrate embodiments of a multi-user (MU) multi-antenna system (MAS) that adaptively reconfigures parameters to compensate for the Doppler effect due to changes in user mobility or propagation environment.

图60示出了多个BTS,其中一些具有良好的SNR,并且其中一些相对于UE具有低多普勒。FIG. 60 shows multiple BTSs, some of which have good SNR and some of which have low Doppler relative to the UE.

图61示出了矩阵的一个实施例,其包含由CP记录的多个BTS-UE链路的SNR和多普勒的值。FIG61 shows one embodiment of a matrix containing the values of SNR and Doppler for multiple BTS-UE links recorded by the CP.

图62示出了根据本发明的一个实施例的在不同时间的信道增益(或CSI)。FIG62 shows channel gains (or CSI) at different times according to one embodiment of the present invention.

具体实施方式DETAILED DESCRIPTION

克服上述现有技术限制中的许多限制的一个解决方案是分布式输入分布式输出(DIDO)技术的一个实施例。DIDO技术在以下专利和专利申请中有所描述,所述专利和专利申请全部转让给本专利的受让人,并且以引用方式并入。本专利申请为这些专利申请的部分继续申请(CIP)。这些专利和专利申请有时在本文中被统称为“相关专利和专利申请”。One solution to overcome many of the limitations of the prior art described above is an embodiment of Distributed Input Distributed Output (DIDO) technology. DIDO technology is described in the following patents and patent applications, all of which are assigned to the assignee of this patent and incorporated by reference. This patent application is a continuation-in-part (CIP) of these patent applications. These patents and patent applications are sometimes collectively referred to herein as "related patents and patent applications."

2011年9月14日提交的名称为“Systems And Methods To Exploit Areas ofCoherence in Wirless Systems”(在无线系统中利用同调性区域的系统和方法)的美国专利申请序列号13/232,996U.S. Patent Application Serial No. 13/232,996, filed September 14, 2011, entitled “Systems and Methods To Exploit Areas of Coherence in Wirless Systems”

2011年9月14日提交的名称为“Systems and Methods for Planned Evoluationand Obsolescence of Multiuser Spectrum”(用于多用户频谱的计划演进和过时的系统和方法)的美国专利申请序列号13/233,006。U.S. patent application serial number 13/233,006, filed September 14, 2011, entitled “Systems and Methods for Planned Evoluation and Obsolescence of Multiuser Spectrum.”

2010年11月1日提交的名称为“Systems And Methods To CoordinateTransmissions In Distributed Wireless Systems Via User Clustering”(通过用户群集化协调分布式无线系统中的传输的系统和方法)的美国专利申请序列号12/917,257U.S. Patent Application Serial No. 12/917,257, filed November 1, 2010, entitled “Systems and Methods To Coordinate Transmissions In Distributed Wireless Systems Via User Clustering”

2010年6月16日提交的名称为“Interference Management,Handoff,PowerControl And Link Adaptation In Distributed-Input Distributed-Output(DIDO)Communication Systems”(分布式输入分布式输出(DIDO)通信系统中的干扰管理、越区切换、功率控制及链路自适应)的美国专利申请序列号12/802,988U.S. patent application Ser. No. 12/802,988, filed on June 16, 2010, entitled “Interference Management, Handoff, Power Control And Link Adaptation In Distributed-Input Distributed-Output (DIDO) Communication Systems”

2010年6月16日提交的名称为“System And Method For Adjusting DIDOInterference Cancellation Based On Signal Strength Measurements”(基于信号强度测量调整DIDO干扰消除的系统和方法)的美国专利申请序列号12/802,976U.S. Patent Application Serial No. 12/802,976, filed June 16, 2010, entitled “System And Method For Adjusting DIDO Interference Cancellation Based On Signal Strength Measurements”

2010年6月16日提交的名称为“System And Method For Managing Inter-Cluster Handoff Of Clients Which Traverse Multiple DIDO Clusters”(用于管理越过多个DIDO群集的客户端的群集间越区切换的系统和方法)的美国专利申请序列号12/802,974U.S. Patent Application Serial No. 12/802,974, filed June 16, 2010, entitled “System And Method For Managing Inter-Cluster Handoff Of Clients Which Traverse Multiple DIDO Clusters”

2010年6月16日提交的名称为“System And Method For Managing Handoff Of AClient Between Different Distributed-Input-Distributed-Output(DIDO)NetworksBased On Detected Velocity Of The Client”(基于检测到的客户端速度管理不同的分布式输入分布式输出(DIDO)网络之间的客户端的越区切换的系统和方法)的美国专利申请序列号12/802,989U.S. Patent Application Serial No. 12/802,989, filed June 16, 2010, entitled “System And Method For Managing Handoff Of A Client Between Different Distributed-Input-Distributed-Output (DIDO) Networks Based On Detected Velocity Of The Client”

2010年6月16日提交的名称为“System And Method For Power Control AndAntenna Grouping In A Distributed-Input-Distributed-Output(DIDO)Network”(用于分布式输入分布式输出(DIDO)网络中的功率控制和天线分组的系统和方法)的美国专利申请序列号12/802,958U.S. patent application serial number 12/802,958, entitled “System And Method For Power Control And Antenna Grouping In A Distributed-Input-Distributed-Output (DIDO) Network,” filed June 16, 2010

2010年6月16日提交的名称为“System And Method For Link adaptation InDIDO Multicarrier Systems”(用于DIDO多载波系统中的链路自适应的系统和方法)的美国专利申请序列号12/802,975U.S. Patent Application Serial No. 12/802,975, filed June 16, 2010, entitled “System And Method For Link Adaptation In DIDO Multicarrier Systems”

2010年6月16日提交的名称为“System And Method For DIDO PrecodingInterpolation In Multicarrier Systems”(用于多载波系统中的DIDO预编码内插的系统和方法)的美国专利申请序列号12/802,938U.S. Patent Application Serial No. 12/802,938, filed June 16, 2010, entitled “System And Method For DIDO Precoding Interpolation In Multicarrier Systems”

2009年12月2日提交的名称为“System and Method For Distributed AntennaWireless Communications”(用于分布式天线无线通信的系统和方法)的美国专利申请序列号12/630,627U.S. Patent Application Serial No. 12/630,627, filed December 2, 2009, entitled “System and Method For Distributed Antenna Wireless Communications”

2007年8月20日提交、2009年10月6日公布的名称为“System and Method forDistributed Input Distributed Output Wireless Communication”(用于分布式输入分布式输出无线通信的系统和方法)的美国专利No.7,599,420;U.S. Patent No. 7,599,420, entitled “System and Method for Distributed Input Distributed Output Wireless Communication,” filed on August 20, 2007 and published on October 6, 2009;

2007年8月20日提交、2009年12月15日公布的名称为“System and Method forDistributed Input Distributed Output Wireless Communication”(用于分布式输入分布式输出无线通信的系统和方法)的美国专利No.7,633,994;U.S. Patent No. 7,633,994, “System and Method for Distributed Input Distributed Output Wireless Communication,” filed on August 20, 2007 and published on December 15, 2009;

2007年8月20日提交、2009年12月22日公布的名称为“System and Method forDistributed Input Distributed Output Wireless Communication”(用于分布式输入分布式输出无线通信的系统和方法)的美国专利No.7,636,381;U.S. Patent No. 7,636,381, “System and Method for Distributed Input Distributed Output Wireless Communication,” filed on August 20, 2007 and published on December 22, 2009;

2008年6月20日提交的名称为“System and Method For Distributed Input-Distributed Output Wireless Communications”(用于分布式输入-分布式输出无线通信的系统和方法)的美国专利申请序列号12/143,503;U.S. patent application serial number 12/143,503, entitled “System and Method For Distributed Input-Distributed Output Wireless Communications,” filed on June 20, 2008;

2005年10月21日提交的名称为“System and Method For Spatial-MultiplexedTropospheric Scatter Communications”(用于空间多路复用对流层散射通信的系统和方法)的美国专利申请序列号11/256,478;U.S. patent application serial number 11/256,478, entitled “System and Method For Spatial-Multiplexed Tropospheric Scatter Communications,” filed on October 21, 2005;

2004年7月30日提交、2008年8月26日公布的名称为“System and Method forDistributed Input Distributed Output Wireless Communication”(用于分布式输入分布式输出无线通信的系统和方法)的美国专利No.7,418,053;U.S. Patent No. 7,418,053, “System and Method for Distributed Input Distributed Output Wireless Communication,” filed on July 30, 2004 and published on August 26, 2008;

2004年4月2日提交的名称为“System and Method For Enhancing NearVertical Incidence Skywave(“NVIS”)Communication Using Space-Time Coding”(使用空时编码增强近垂直入射天波(“NVIS”)通信的系统和方法)的美国专利申请序列号10/817,731。U.S. patent application serial number 10/817,731, filed April 2, 2004, entitled “System and Method For Enhancing Near Vertical Incidence Skywave (“NVIS”) Communication Using Space-Time Coding”.

为了减小本专利申请的篇幅及复杂度,下文没有明确地列出相关专利和专利申请中的一些的公开内容。请参见相关专利和专利申请来获取本公开内容的完整的详细描述。In order to reduce the length and complexity of this patent application, the disclosures of some of the related patents and patent applications are not explicitly listed below. Please refer to the related patents and patent applications for a complete and detailed description of the present disclosure.

需注意,以下章节I(来自相关专利申请序列号12/802,988的公开内容)使用其自身的一组尾注,该尾注是指现有技术参考文献和转让给本专利申请的受让人的先前专利申请。尾注引用列出于章节I的结尾处(恰好在章节II标头前)。章节II中使用的引用针对其与章节I中使用的那些引用重叠的引用可以具有数字标记,甚至通过这些数字标记标识不同参考文献(列出于章节II的结尾处)。因此,可在使用特定数字标记的章节中识别由该数字标记标识的参考文献。It should be noted that the following Section I (from the disclosure of related patent application Ser. No. 12/802,988) uses its own set of endnotes that refer to prior art references and prior patent applications assigned to the assignee of the present patent application. The endnote references are listed at the end of Section I (just before the Section II header). The references used in Section II can have numerical labels for their references that overlap with those used in Section I, and even identify different references (listed at the end of Section II) by these numerical labels. Thus, the references identified by a particular numerical label can be identified in the section that uses that numerical label.

I.来自相关专利申请序列号12/802,988的公开内容I. Disclosure from Related Patent Application Serial No. 12/802,988

1.移除群集间干扰的方法1. Methods for Removing Inter-Cluster Interference

下文描述了利用多个分布式发射天线在空间中创建具有零RF能量的位置的无线射频(RF)通信系统和方法。当使用M个发射天线时,可以在预定义位置中创建最多至(M-1)个零RF能量点。在本发明的一个实施例中,零RF能量点为无线设备,并且发射天线知晓发射器与接收器之间的信道状态信息(CSI)。在一个实施例中,CSI在接收器处被计算并反馈至发射器。在另一个实施例中,假定利用信道互易性,经由来自接收器的训练而在发射器处计算CSI。发射器可利用CSI来确定将被同时发射的干扰信号。在一个实施例中,在发射天线处使用块对角化(BD)预编码以生成零RF能量点。The following describes a wireless radio frequency (RF) communication system and method for creating locations with zero RF energy in space using multiple distributed transmit antennas. When M transmit antennas are used, up to (M-1) zero RF energy points can be created in predefined locations. In one embodiment of the present invention, the zero RF energy point is a wireless device, and the transmit antenna is aware of the channel state information (CSI) between the transmitter and the receiver. In one embodiment, the CSI is calculated at the receiver and fed back to the transmitter. In another embodiment, assuming channel reciprocity, the CSI is calculated at the transmitter via training from the receiver. The transmitter can use the CSI to determine the interfering signals that will be transmitted simultaneously. In one embodiment, block diagonalization (BD) precoding is used at the transmit antenna to generate the zero RF energy point.

本文所述的系统和方法与上文所述的常规接收/发射波束成形技术不同。实际上,接收波束成形计算权重以抑制接收侧处的干扰(经由零控),而本文所述的本发明的一些实施例在发射侧应用权重以创建在空间中导致具有“零RF能量”的一个或多个位置的干扰样式。不同于分别被设计用于最大化到每一用户的信号质量(或SINR)或下行链路吞吐量的常规发射波束成形或BD预编码,本文所述的系统和方法最小化在某些条件下以及/或者来自某些发射器的信号质量,从而在客户端设备(在本文中有时称为“用户”)处创建零RF能量点。此外,在分布式输入分布式输出(DIDO)系统(在我们的相关专利和专利申请中有所描述)的语境中,分布在空间中的发射天线提供可用于创建多个零RF能量点以及/或者到不同用户的最大SINR的较高自由度(即,较高的信道空间分集)。例如,通过M个发射天线,可创建最多至(M-1)个RF能量点。相比之下,实际波束成形或BD多用户系统通常被设计为在发射侧处具有密集的天线,从而针对发射天线的任一数目M限制可在无线链路上服务的同时用户的数目。The systems and methods described herein differ from the conventional receive/transmit beamforming techniques described above. While receive beamforming computes weights to suppress interference on the receive side (via null steering), some embodiments of the invention described herein apply weights on the transmit side to create interference patterns that result in one or more locations in space with “zero RF energy.” Unlike conventional transmit beamforming or BD precoding, which are designed to maximize signal quality (or SINR) or downlink throughput to each user, respectively, the systems and methods described herein minimize signal quality under certain conditions and/or from certain transmitters, thereby creating zero RF energy points at client devices (sometimes referred to herein as “users”). Furthermore, in the context of Distributed Input Distributed Output (DIDO) systems (described in our related patents and patent applications), the transmit antennas distributed in space provide higher degrees of freedom (i.e., higher channel spatial diversity) for creating multiple zero RF energy points and/or maximum SINR to different users. For example, with M transmit antennas, up to (M-1) RF energy points can be created. In contrast, practical beamforming or BD multi-user systems are typically designed with densely packed antennas at the transmit side, limiting the number of simultaneous users that can be served on the wireless link for any number M of transmit antennas.

考虑到具有M个发射天线和K个用户的系统,其中K<M,我们假定发射器知晓M个发射天线与K个用户之间的CSI(H∈CKxM)。为简单起见,假定每个用户都配备有单个天线,但相同的方法可扩展至每一用户多个接收天线。计算在K个用户位置处创建零RF能量的预编码权重(w∈CMx1),以满足以下条件Considering a system with M transmit antennas and K users, where K < M, we assume that the transmitter knows the CSI between the M transmit antennas and the K users (H∈C KxM ). For simplicity, each user is assumed to be equipped with a single antenna, but the same approach can be extended to multiple receive antennas per user. The precoding weights (w∈C Mx1 ) that create zero RF energy at the K user locations are calculated to satisfy the following condition:

Hw=0Kx1 Hw=0 Kx1

其中0Kx1为具有所有零项的向量,并且H为通过将从M个发射天线至K个用户的信道向量(hk∈C1xM)组合而获得的信道矩阵如下where 0 Kx1 is a vector with all zero entries, and H is the channel matrix obtained by combining the channel vectors (h kC 1xM ) from M transmit antennas to K users as follows

在一个实施例中,计算信道矩阵H的奇异值分解(SVD),并将预编码权重w定义为对应于H的零子空间(用零奇异值识别)的右奇异向量。In one embodiment, the singular value decomposition (SVD) of the channel matrix H is computed, and the precoding weights w are defined as the right singular vectors corresponding to the null subspace of H (identified by zero singular values).

发射天线使用上文所定义的权重向量发射RF能量,同时在K个用户的位置处创建K个零RF能量点,使得第k个用户处所接收的信号由下式给出The transmit antenna transmits RF energy using the weight vector defined above, while creating K zero RF energy points at the locations of K users, so that the signal received at the kth user is given by

rk=hkwsk+nk=0+nk r k = h k ws k + n k = 0 + n k

其中nk∈C1x1为第k个用户处的加性高斯白噪声(AWGN)。where n kC 1x1 is the additive white Gaussian noise (AWGN) at the k-th user.

在一个实施例中,计算信道矩阵H的奇异值分解(SVD),并将预编码权重w定义为对应于H的零子空间(用零奇异值识别)的右奇异向量。In one embodiment, the singular value decomposition (SVD) of the channel matrix H is computed, and the precoding weights w are defined as the right singular vectors corresponding to the null subspace of H (identified by zero singular values).

在另一个实施例中,无线系统为DIDO系统,并创建零RF能量点以预先消除对不同DIDO覆盖区域之间的客户端的干扰。在美国专利申请序列号12/630,627中,描述了DIDO系统,其包括:In another embodiment, the wireless system is a DIDO system and creates zero RF energy points to preemptively eliminate interference to clients between different DIDO coverage areas. In U.S. patent application serial number 12/630,627, a DIDO system is described that includes:

·DIDO客户端DIDO client

·DIDO分布式天线DIDO distributed antenna

·DIDO收发器基站(BTS)DIDO base transceiver station (BTS)

·DIDO基站网络(BSN)DIDO Base Station Network (BSN)

每个BTS经由BSN连接至多个分布式天线,所述多个分布式天线为被称为DIDO群集的给定覆盖区域提供服务。在本专利申请中,我们描述了用于移除相邻DIDO群集之间的干扰的系统和方法。如图1所示,我们假定主DIDO群集代管受来自相邻群集的干扰(或目标客户端)影响的客户端(即,由多用户DIDO系统服务的用户设备)。Each BTS is connected via the BSN to multiple distributed antennas that serve a given coverage area, known as a DIDO cluster. In this patent application, we describe systems and methods for removing interference between adjacent DIDO clusters. As shown in Figure 1, we assume that the primary DIDO cluster hosts clients (i.e., user devices served by a multi-user DIDO system) that are affected by interference (or target clients) from a neighboring cluster.

在一个实施例中,相邻群集类似于常规蜂窝式系统根据频分多址(FDMA)技术在不同的频率下工作。例如,在频率复用因子为3的情况下,每隔三个DIDO群集重新使用相同的载波频率,如图2所示。在图2中,不同的载波频率被识别为F1、F2和F3。虽然该实施例可用于一些具体实施中,但该解决方案产生频谱效率的损失,因为可用频谱被分成多个子频带并且仅DIDO群集的子集在相同子频带中工作。此外,它需要复杂的小区规划将不同的DIDO群集与不同的频率相关联,从而防止干扰。类似于现有技术的蜂窝式系统,此蜂窝式规划需要天线的特定放置和发射功率的限制,以避免使用相同频率的群集之间的干扰。In one embodiment, adjacent clusters operate at different frequencies using frequency division multiple access (FDMA) techniques, similar to conventional cellular systems. For example, with a frequency reuse factor of 3, every third DIDO cluster reuses the same carrier frequency, as shown in Figure 2. In Figure 2, the different carrier frequencies are identified as F1 , F2 , and F3 . While this embodiment may be used in some implementations, the solution incurs a loss in spectral efficiency because the available spectrum is divided into multiple sub-bands and only a subset of DIDO clusters operate in the same sub-band. Furthermore, it requires complex cell planning to associate different DIDO clusters with different frequencies to prevent interference. Similar to prior art cellular systems, this cellular planning requires specific placement of antennas and limitations on transmit power to avoid interference between clusters using the same frequency.

在另一个实施例中,相邻群集根据时分多址(TDMA)技术在相同的频带中但在不同的时隙处工作。例如,如图3所示,仅针对某些群集允许在时隙T1、T2和T3中的DIDO发射,如图所示。时隙可被均等地分配给不同的群集,使得根据循环策略调度不同的群集。如果不同的群集通过不同的数据速率要求(即,拥挤城市环境中的群集相对于每个覆盖区域具有更少量客户端的农村区域中的群集)特征化,则将不同的优先级分配给不同的群集,使得将更多时隙分配给具有更大数据速率要求的群集。虽然如上所述的TDMA可用于本发明的一个实施例,但TDMA方法可要求跨越不同群集的时间同步并可导致较低的频谱效率,因为干扰群集无法同时使用相同的频率。In another embodiment, adjacent clusters operate in the same frequency band but at different time slots according to a time division multiple access (TDMA) technique. For example, as shown in FIG3 , DIDO transmissions in time slots T 1 , T 2 , and T 3 are allowed only for certain clusters, as shown. Time slots can be equally allocated to different clusters, such that different clusters are scheduled according to a round-robin policy. If different clusters are characterized by different data rate requirements (i.e., clusters in a crowded urban environment versus clusters in a rural area with a smaller number of clients per coverage area), different priorities are assigned to different clusters, such that more time slots are allocated to clusters with greater data rate requirements. While TDMA as described above can be used for one embodiment of the present invention, the TDMA approach may require time synchronization across different clusters and may result in lower spectral efficiency because interfering clusters cannot use the same frequency simultaneously.

在一个实施例中,所有相邻群集同时在同一频带中发射,并使用跨越群集的空间处理以避免干扰。在该实施例中,多群集DIDO系统:(i)在主群集内使用常规DIDO预编码以在同一频带内将同步非干扰数据流发射至多个客户端(如相关专利和专利申请中所述,包括7,599,420;7,633,994;7,636,381;和专利申请序列号12/143,503);(ii)在相邻群集中使用具有干扰消除的DIDO预编码,以通过在目标客户端的位置处创建零射频(RF)能量点来避免对位于图4中干扰区8010中的客户端的干扰。如果目标客户端在干扰区410中,则其将接收含有来自主群集411的数据流的RF和来自干扰群集412-413的零RF能量的总和,其将只是含有来自主群集的数据流的RF。因此,相邻群集可同时使用相同的频率,而不会使干扰区中的目标客户端受到干扰。In one embodiment, all adjacent clusters transmit simultaneously in the same frequency band and use spatial processing across clusters to avoid interference. In this embodiment, the multi-cluster DIDO system: (i) uses conventional DIDO precoding within the primary cluster to transmit synchronized, non-interfering data streams to multiple clients within the same frequency band (as described in related patents and patent applications, including 7,599,420; 7,633,994; 7,636,381; and patent application serial number 12/143,503); and (ii) uses DIDO precoding with interference cancellation within the adjacent clusters to avoid interference with clients located in interference zone 8010 in FIG. 4 by creating a point of zero radio frequency (RF) energy at the location of the target client. If the target client is in interference zone 410, it will receive the sum of the RF containing the data stream from primary cluster 411 and the zero RF energy from interfering clusters 412-413, which will be the RF containing the data stream from the primary cluster. Thus, adjacent clusters can use the same frequency simultaneously without causing interference to the target client in the interference zone.

在实际系统中,DIDO预编码的性能可受到不同因素的影响,例如:信道估计错误或多普勒效应(在DIDO分布式天线处产生过时信道状态信息);多载波DIDO系统中的互调失真(IMD);时间或频率偏移。由于这些效应,实现零RF能量点可为不切实际的。然而,只要在目标客户端处来自干扰群集的RF能量与来自主群集的RF能量相比可忽略,目标客户端处的链路性能就不会受到干扰影响。例如,我们假定客户端需要20dB信噪比(SNR)以使用前向纠错(FEC)编码对4-QAM星座图进行解调,以实现10-6的目标误码率(BER)。如果在目标客户端处从干扰群集接收的RF能量比从主群集接收的RF能量低20dB,那么干扰可忽略并且客户端可成功地在预定义的BER目标内对数据进行解调。因此,如本文所用,术语“零RF能量”不一定意味着来自干扰RF信号的RF能量为零。相反,这意味着RF能量相对于所需RF信号的RF能量足够低,使得可在接收器处接收到所需的RF信号。此外,虽然描述了干扰RF能量相对于所需RF能量的某些所需阈值,但本发明的基本原理并不受任何特定阈值的限制。In practical systems, the performance of DIDO precoding can be affected by various factors, such as channel estimation errors or the Doppler effect (which produces outdated channel state information at the DIDO distributed antennas); intermodulation distortion (IMD) in multicarrier DIDO systems; and time or frequency offsets. Due to these effects, achieving the zero RF energy point can be impractical. However, as long as the RF energy from the interfering cluster at the target client is negligible compared to the RF energy from the primary cluster, the link performance at the target client will not be affected by the interference. For example, let's assume that the client requires a 20dB signal-to-noise ratio (SNR) to demodulate a 4-QAM constellation using forward error correction (FEC) coding to achieve a target bit error rate (BER) of 10-6 . If the RF energy received from the interfering cluster at the target client is 20dB lower than the RF energy received from the primary cluster, the interference is negligible and the client can successfully demodulate the data within the predefined BER target. Therefore, as used herein, the term "zero RF energy" does not necessarily mean that the RF energy from the interfering RF signal is zero. Rather, it means that the RF energy is sufficiently low relative to the RF energy of the desired RF signal so that the desired RF signal can be received at the receiver. Furthermore, while certain desired thresholds of interfering RF energy relative to desired RF energy are described, the underlying principles of the present invention are not limited to any particular threshold.

如图4所示,存在不同类型的干扰区8010。例如,“类型A”区(图4中用字母“A”表示)受到来自仅一个相邻群集的干扰的影响,而“类型B”区(用字母“B”表示)说明来自两个或多个相邻群集的干扰。As shown in Figure 4, there are different types of interference zones 8010. For example, a "Type A" zone (denoted by the letter "A" in Figure 4) is affected by interference from only one adjacent cluster, while a "Type B" zone (denoted by the letter "B") illustrates interference from two or more adjacent clusters.

图5示出了用于本发明的一个实施例中的框架。点表示DIDO分布式天线,十字是指DIDO客户端且箭头指示RF能量的传播方向。主群集中的DIDO天线将预编码的数据信号发射至该群集中的客户端MC 501。同样,干扰群集中的DIDO天线经由常规的DIDO预编码服务该群集内的客户端IC 502。绿色十字503代表干扰区中的目标客户端TC 503。主群集511中的DIDO天线经由常规的DIDO预编码将预编码的数据信号发射至目标客户端(黑色箭头)。干扰群集512中的DIDO天线使用预编码创建朝目标客户端503方向(绿色箭头)的零RF能量。Figure 5 illustrates a framework used in one embodiment of the present invention. The dots represent DIDO distributed antennas, the crosses represent DIDO clients, and the arrows indicate the direction of RF energy propagation. The DIDO antennas in the primary cluster transmit precoded data signals to client MC 501 in that cluster. Similarly, the DIDO antennas in the interfering cluster serve client IC 502 within that cluster via conventional DIDO precoding. The green cross 503 represents the target client TC 503 in the interference zone. The DIDO antennas in the primary cluster 511 transmit precoded data signals to the target client (black arrows) via conventional DIDO precoding. The DIDO antennas in the interfering cluster 512 use precoding to create an RF null in the direction of the target client 503 (green arrows).

图4中任何干扰区410A、410B中的目标客户端k处所接收的信号由下式给出The signal received at the target client k in any interference area 410A, 410B in FIG4 is given by

其中k=1,…,K,其中K为干扰区8010A、8010B中的客户端数量,U为主DIDO群集中的客户端数量,C为干扰DIDO群集412-413的数量,并且Ic为干扰群集c中的客户端数量。此外,rkCN×M为含有在客户端k处的接收数据流的向量,假定在客户端设备处有M个发射DIDO天线和N个接收天线;sk∈CN×1为到主DIDO群集中的客户端k的发射数据流的向量;su∈CN×1为到主DIDO群集中的客户端u的发射数据流的向量;sc,i∈CN×1为到第c个干扰DIDO群集中的客户端i的发射数据流的向量;nk∈CN×1为客户端k的N个接收天线处的加性高斯白噪声(AWGN)的向量;Hk∈CN×M为主DIDO群集中的客户端k处的从M个发射DIDO天线至N个接收天线的DIDO信道矩阵;Hc,k∈CN×M为第c个干扰DIDO群集中的客户端k处的从M个发射DIDO天线至N个接收天线的DIDO信道矩阵;Wk∈CM×N为到主DIDO群集中的客户端k的DIDO预编码权重的矩阵;Wk∈CM×N为到主DIDO群集中的客户端u的DIDO预编码权重的矩阵;Wc,i∈CM×N为到第c个干扰DIDO群集中的客户端i的DIDO预编码权重的矩阵。where k=1, ..., K, where K is the number of clients in the interfering zones 8010A, 8010B, U is the number of clients in the primary DIDO cluster, C is the number of interfering DIDO clusters 412-413, and Ic is the number of clients in the interfering cluster c. In addition, r kCN×M is a vector containing the received data streams at client k, assuming there are M transmit DIDO antennas and N receive antennas at the client device; skCN×1 is a vector of transmit data streams to client k in the primary DIDO cluster; suCN×1 is a vector of transmit data streams to client u in the primary DIDO cluster; sc ,iCN×1 is a vector of transmit data streams to client i in the c-th interfering DIDO cluster; n kCN×1 is a vector of additive white Gaussian noise (AWGN) at the N receive antennas of client k; H kCN×M is the DIDO channel matrix from the M transmit DIDO antennas to the N receive antennas at client k in the primary DIDO cluster; H c,kCN×M is the DIDO channel matrix from the M transmit DIDO antennas to the N receive antennas at client k in the c-th interfering DIDO cluster; W k ∈ C M×N is the matrix of DIDO precoding weights to client k in the primary DIDO cluster; Wk∈C M×N is the matrix of DIDO precoding weights to client u in the primary DIDO cluster; Wc,i∈C M×N is the matrix of DIDO precoding weights to client i in the c-th interfering DIDO cluster.

为了简化记法且不失一般性,我们假定所有客户端都配备有N个接收天线,并且每个DIDO群集中存在M个DIDO分布式天线,其中M≥(N·U)和如果M大于群集中接收天线的总数,则使用额外的发射天线预先消除对干扰区中的目标客户端的干扰,或通过相关专利和专利申请中所述的分集方案提高到同一群集内的客户端的链路稳健性,所述相关专利和专利申请包括7,599,420;7,633,994;7,636,381;和专利申请序列号12/143,503。For simplicity of notation and without loss of generality, we assume that all clients are equipped with N receive antennas and that there are M DIDO distributed antennas in each DIDO cluster, where M ≥ (N·U) and if M is greater than the total number of receive antennas in the cluster, then additional transmit antennas are used to preemptively cancel interference to target clients in the interference zone or to improve link robustness to clients within the same cluster through diversity schemes described in related patents and patent applications including 7,599,420; 7,633,994; 7,636,381; and patent application serial number 12/143,503.

计算DIDO预编码权重,以预先消除同一DIDO群集内的客户端间干扰。例如,可使用相关专利和专利申请(包括7,599,420、7,633,994、7,636,381、和专利申请序列号12/143,503以及[7])中所述的块对角化(BD)预编码来移除客户端间干扰,使得在主群集中满足以下条件DIDO precoding weights are calculated to preemptively eliminate inter-client interference within the same DIDO cluster. For example, block diagonalization (BD) precoding as described in related patents and patent applications (including 7,599,420, 7,633,994, 7,636,381, and patent application serial number 12/143,503 and [7]) can be used to remove inter-client interference such that the following condition is satisfied in the primary cluster:

相邻DIDO群集中的预编码权重矩阵被设计为使得满足以下条件The precoding weight matrices in adjacent DIDO clusters are designed such that the following conditions are satisfied

为了计算预编码矩阵Wc,i,估计从M个发射天线到干扰群集中的Ic客户端以及到干扰区中的客户端k的下行链路信道,并通过干扰群集中的DIDO BTS计算预编码矩阵。如果用BD方法计算干扰群集中的预编码矩阵,则构建以下有效信道矩阵来计算到相邻群集中的第i个客户端的权重To calculate the precoding matrix W c,i , the downlink channels from the M transmit antennas to the Ic clients in the interfering cluster and to the client k in the interference zone are estimated, and the precoding matrix is calculated by the DIDO BTS in the interfering cluster. If the BD method is used to calculate the precoding matrix in the interfering cluster, the following effective channel matrix is constructed to calculate the weight to the i-th client in the neighboring cluster:

其中为从用于干扰群集c的信道矩阵获得的矩阵,其中对应于第i个客户端的行被移除。where is the matrix obtained from the channel matrix for interfering cluster c with the row corresponding to the i-th client removed.

将条件(2)和(3)代入(1),我们获得用于目标客户端k所接收的数据流,其中移除了群集内和群集间干扰Substituting conditions (2) and (3) into (1), we obtain the data stream received by target client k, where intra-cluster and inter-cluster interference are removed

rk=HkWksk+nk. (5)r k =H k W k s k +n k . (5)

在相邻群集中计算的(1)中的预编码权重Wc,i被设计用于将预编码数据流发射至那些群集中的所有客户端,同时预先消除对干扰区中的目标客户端的干扰。目标客户端仅从其主群集接收预编码数据。在不同的实施例中,从主群集和相邻群集将相同数据流发送至目标客户端,以获得分集增益。在这种情况下,将(5)中的信号模型表示为The precoding weights Wc ,i in (1) calculated in the neighboring clusters are designed to transmit the precoded data stream to all clients in those clusters while pre-cancelling the interference to the target client in the interference zone. The target client receives the precoded data only from its primary cluster. In a different embodiment, the same data stream is sent to the target client from both the primary cluster and the neighboring clusters to obtain diversity gain. In this case, the signal model in (5) is expressed as

其中Wc,k为从第c个群集中的DIDO发射器至干扰区中的目标客户端k的DIDO预编码矩阵。需注意,(6)中的方法要求跨越相邻群集的时间同步,在大型系统中实现这一点可能是很复杂的,但尽管如此,如果分集增益益处使实施成本合理化,那么它还是相当可行的。where W c,k is the DIDO precoding matrix from the DIDO transmitter in the cth cluster to the target client k in the interference zone. Note that the approach in (6) requires time synchronization across neighboring clusters, which can be complex to implement in large systems, but nonetheless it is quite feasible if the diversity gain benefits justify the implementation cost.

我们以依据符号错误率(SER)随信噪比(SNR)的变化关系来评估所提议的方法的性能开始。在不失一般性的情况下,我们假定每个客户端具有单个天线而定义以下信号模型,并将(1)重新公式化为We begin by evaluating the performance of the proposed method in terms of the symbol error rate (SER) versus the signal-to-noise ratio (SNR). Without loss of generality, we define the following signal model assuming each client has a single antenna and reformulate (1) as

其中INR为干扰对噪声比,定义为INR=SNR/SIR,并且SIR为信号对干扰比。Where INR is the interference-to-noise ratio, defined as INR=SNR/SIR, and SIR is the signal-to-interference ratio.

图6示出了SER随SNR的变化关系,对于干扰区中的目标客户端假定SIR=10dB。在不失一般性的情况下,我们测量无需前向纠错(FEC)编码的4-QAM和16-QAM的SER。对于未编码系统,我们将目标SER固定为1%。该目标根据调制阶数对应于SNR的不同值(即,对于4-QAM,SNR=20dB,且对于16-QAM,SNR=28dB)。当使用FEC编码时,归因于编码增益,针对相同的SNR值可满足较低的SER目标。我们考虑其中每一群集具有两个DIDO天线和两个客户端(各自配备有单个天线)的两个群集(一个主群集和一个干扰群集)的情形。主群集中的客户端之一位于干扰区中。我们假定平坦衰落窄带信道,但可将以下结果扩展至频率选择性多载波(OFDM)系统,其中每个子载波经历平坦衰落。我们考虑两种情形:(i)一种具有DIDO群集间干扰(IDCI)的情形,其中在不考虑干扰区中的目标客户端的情况下计算预编码权重wc,i;和(ii)另一种情形,其中通过计算权重wc,i来移除IDCI以消除对目标客户端的IDCI。我们观察到,在存在IDCI的情况下,SER为高的且高于预定义的目标。通过相邻群集处的IDCI-预编码,移除了对目标客户端的干扰,并且对于SNR>20dB达到SER目标。Figure 6 shows the SER as a function of SNR, assuming SIR = 10 dB for the target client in the interference zone. Without loss of generality, we measure the SER for 4-QAM and 16-QAM without forward error correction (FEC) coding. For the uncoded system, we fix the target SER to 1%. This target corresponds to different values of SNR depending on the modulation order (i.e., SNR = 20 dB for 4-QAM and SNR = 28 dB for 16-QAM). When FEC coding is used, due to the coding gain, a lower SER target can be met for the same SNR value. We consider the case of two clusters (one primary cluster and one interfering cluster), each with two DIDO antennas and two clients (each equipped with a single antenna). One of the clients in the primary cluster is located in the interference zone. We assume a flat-fading narrowband channel, but the following results can be extended to frequency selective multicarrier (OFDM) systems, where each subcarrier experiences flat fading. We consider two scenarios: (i) one with DIDO inter-cluster interference (IDCI), where the precoding weights w c,i are calculated without considering the target client in the interference zone; and (ii) another scenario where the IDCI is removed by calculating the weights w c,i to cancel the IDCI for the target client. We observe that in the presence of IDCI, the SER is high and above the predefined target. By using IDCI-precoding at neighboring clusters, the interference for the target client is removed, and the SER target is achieved for SNR > 20 dB.

图6中的结果假定如(5)中的IDCI-预编码。如果相邻群集处的IDCI-预编码还用于如(6)中对至干扰区中的目标客户端的数据流进行预编码,则获得另外的分集增益。图7比较了通过以下两种技术得出的SER:(i)使用(5)中的IDCI-预编码的“方法1”;(ii)采用(6)中的IDCI-预编码的“方法2”,其中相邻群集还将预编码的数据流发射至目标客户端。与常规的IDCI-预编码相比,归因于相邻群集中的用于将预编码的数据流发射至目标客户端的DIDO天线所提供的另外的阵列增益,方法2产生约3dB增益。更一般地,方法2相对于方法1的阵列增益与10*log10(C+1)成正比,其中C为相邻群集的数量,并且因子“1”是指主群集。The results in Figure 6 assume IDCI-precoding as in (5). If the IDCI-precoding at the neighboring clusters is also used to precode the data stream to the target client in the interference zone as in (6), an additional diversity gain is obtained. Figure 7 compares the SER obtained by the following two techniques: (i) "Method 1" using IDCI-precoding as in (5); (ii) "Method 2" using IDCI-precoding as in (6), where the neighboring clusters also transmit the precoded data stream to the target client. Compared to conventional IDCI-precoding, Method 2 produces about 3dB gain due to the additional array gain provided by the DIDO antennas in the neighboring clusters used to transmit the precoded data stream to the target client. More generally, the array gain of Method 2 relative to Method 1 is proportional to 10*log10(C+1), where C is the number of neighboring clusters and the factor "1" refers to the master cluster.

然后,我们评估上述方法的性能随目标客户端相对于干扰区的位置的变化关系。我们考虑了一种简单的情形,其中目标客户端8401从主DIDO群集802向干扰群集803移动,如图8所示。我们假定主群集802内的所有DIDO天线812都采用BD预编码消除群集间干扰,以满足条件(2)。我们假定具有单个干扰DIDO群集,客户端设备801处的单个接收器天线,并且从主群集或干扰群集中的所有DIDO天线(即,围绕客户端成圆形放置的DIDO天线)到客户端的相等路径损耗。我们使用具有路径损耗指数4(如在典型的城市环境中)的一个简化的路径损耗模型[11]。We then evaluate the performance of the above approach as the target client's location relative to the interference zone varies. We consider a simple scenario where the target client 8401 moves from the primary DIDO cluster 802 to the interfering cluster 803, as shown in Figure 8. We assume that all DIDO antennas 812 within the primary cluster 802 use BD precoding to eliminate inter-cluster interference to satisfy condition (2). We assume a single interfering DIDO cluster, a single receiver antenna at the client device 801, and equal path loss from all DIDO antennas in the primary or interfering cluster (i.e., DIDO antennas placed in a circle around the client) to the client. We use a simplified path loss model [11] with a path loss exponent of 4 (as in a typical urban environment).

下文的分析基于扩展(7)以考虑路径损耗的以下简化信号模型The following analysis is based on the following simplified signal model that extends (7) to take path loss into account:

其中信号对干扰比(SIR)导出为SIR=((1-D)/D)4。在模型化IDCI中,我们考虑三种情形:i)没有IDCI的理想情况;ii)在干扰群集中经由BD预编码预先消除IDCI以满足条件(3);iii)具有未由相邻群集预先消除的IDCI。where the signal-to-interference ratio (SIR) is derived as SIR=((1-D)/D) 4 . In modeling IDCI, we consider three cases: i) the ideal case without IDCI; ii) pre-cancelling IDCI in the interfering cluster via BD precoding to satisfy condition (3); iii) with IDCI not pre-cancelled by the neighboring cluster.

图9示出了信号对干扰加噪声比(SINR随与D的函数变化关系(即,当目标客户端从主群集802朝干扰群集8403中的DIDO天线813移动时)。SINR为使用(8)中的信号模型而导出为信号功率与干扰加噪声功率的比率。我们假定对于D=Do,Do=0.1且SNR=50dB。在无IDCI的情况下,无线链路性能仅受噪声影响,并且SINR由于路径损耗而减少。在存在IDCI(即,无IDCI-预编码)的情况下,来自相邻群集中的DIDO天线的干扰有助于减少SINR。FIG9 shows the signal-to-interference-plus-noise ratio (SINR) as a function of D (i.e., when the target client moves from the primary cluster 802 toward the DIDO antenna 813 in the interfering cluster 8403). SINR is derived as the ratio of signal power to interference-plus-noise power using the signal model in (8). We assume that for D=D o , D o =0.1 and SNR=50 dB. In the absence of IDCI, the radio link performance is only affected by noise, and SINR is reduced due to path loss. In the presence of IDCI (i.e., no IDCI-precoding), interference from DIDO antennas in neighboring clusters helps to reduce SINR.

图10示出了对于平坦衰落窄带信道中的4-QAM调制而言,上述三种情形的符号错误率(SER)性能。这些SER结果对应于图9中的SINR。我们假定用于未编码系统(即,无FEC)的1%的SER阈值对应于图9中的SINR阈值SINRT=20dB。SINR阈值取决于用于数据发射的调制阶数。较高的调制阶数通常通过较高的SINRT特征化,以实现相同的目标错误率。通过FEC,归因于编码增益,对于相同的SINR值可实现较低的目标SER。在无预编码的IDCI的情况下,仅在范围D<0.25内实现目标SER。通过在相邻群集处的IDCI-预编码,满足目标SER的范围扩展至最高至D<0.6。在所述范围外,SINR由于路径损耗而增加,且SER目标未被满足。Figure 10 shows the symbol error rate (SER) performance of the above three cases for 4-QAM modulation in a flat fading narrowband channel. These SER results correspond to the SINR in Figure 9. We assume that a SER threshold of 1% for an uncoded system (i.e., without FEC) corresponds to the SINR threshold SINR T = 20 dB in Figure 9. The SINR threshold depends on the modulation order used for data transmission. Higher modulation orders are typically characterized by higher SINR T to achieve the same target error rate. With FEC, due to coding gain, a lower target SER can be achieved for the same SINR value. In the case of IDCI without precoding, the target SER is only achieved within the range D < 0.25. With IDCI-precoding at adjacent clusters, the range of meeting the target SER is extended to up to D < 0.6. Outside the range, SINR increases due to path loss and the SER target is not met.

图11中示出了用于IDCI预编码的方法的一个实施例,其包括以下步骤:FIG11 shows an embodiment of a method for IDCI precoding, which includes the following steps:

·SIR估计1101:客户端估计来自主DIDO群集的信号功率(即,基于所接收的预编码数据)和来自相邻DIDO群集的干扰加噪声信号功率。在单载波DIDO系统中,框架结构可设计用短的静寂周期。例如,静寂周期可被定义为用于信道估计的训练与信道状态信息(CSI)反馈期间的预编码数据发射之间。在一个实施例中,来自相邻群集的干扰加噪声信号功率是在静寂周期期间由主群集中的DIDO天线测量。在实际DIDO多载波(OFDM)系统中,零音调通常用于防止直流(DC)偏移和归因于在发射侧和接收侧处的滤波的在频带边缘处的衰减。在使用多载波系统的另一个实施例中,由零音调估计干扰加噪声信号功率。可以用校正因子补偿频带边缘处的发射/接收滤波器衰减。一旦估计出来自主群集的信号加干扰和噪声功率(PS)和来自相邻群集的干扰加噪声功率(PIN),客户端就将SINR计算为SIR estimation 1101: The client estimates the signal power from the primary DIDO cluster (i.e., based on the received precoded data) and the interference plus noise signal power from the neighboring DIDO clusters. In a single-carrier DIDO system, the framework structure can be designed with short silent periods. For example, the silent period can be defined between the transmission of precoded data during training for channel estimation and channel state information (CSI) feedback. In one embodiment, the interference plus noise signal power from the neighboring clusters is measured by the DIDO antennas in the primary cluster during the silent period. In practical DIDO multi-carrier (OFDM) systems, null tones are typically used to prevent direct current (DC) offsets and attenuation at the band edges due to filtering at the transmit and receive sides. In another embodiment using a multi-carrier system, the interference plus noise signal power is estimated by the null tones. A correction factor can be used to compensate for the transmit/receive filter attenuation at the band edges. Once the signal plus interference and noise power ( PS ) from the primary cluster and the interference plus noise power ( PIN ) from the neighboring cluster are estimated, the client calculates the SINR as

或者,由用于典型的无线通信系统中以测量无线电信号功率的接收信号强度指示(RSSI)得出SINR估计值。Alternatively, the SINR estimate is derived from the Received Signal Strength Indicator (RSSI) used in typical wireless communication systems to measure radio signal power.

我们观察到(9)中的量度无法区分噪声与干扰功率电平。例如,在无干扰环境中受到遮蔽影响(即,在使来自主群集中的所有DIDO分布式天线的信号功率衰减的障碍物后面)的客户端可以估计低SINR,即使它们未受到群集间干扰的影响也是如此。We observe that the metric in (9) cannot distinguish between noise and interference power levels. For example, clients that are affected by shadowing in an interference-free environment (i.e., behind an obstacle that attenuates the signal power from all DIDO distributed antennas in the primary cluster) may estimate a low SINR even though they are not affected by inter-cluster interference.

所提议方法的更可靠量度为SIR,经计算为A more reliable measure of the proposed method is SIR, which is calculated as

其中PN为噪声功率。在实际多载波OFDM系统中,由零音调估计(10)中的噪声功率PN,假定来自主群集和相邻群集的所有DIDO天线使用同一组零音调。由如上所述的静寂周期估计干扰加噪声功率(PIN)。最后,由数据音调得出信号加干扰和噪声功率(PS)。由这些估计值,客户端计算(10)中的SIR。where PN is the noise power. In a practical multi-carrier OFDM system, the noise power PN in (10) is estimated from the null tones, assuming that all DIDO antennas from the primary and neighboring clusters use the same set of null tones. The interference plus noise power ( PIN ) is estimated from the silent periods as described above. Finally, the signal plus interference and noise power ( Ps ) is derived from the data tones. From these estimates, the client calculates the SIR in (10).

·相邻群集处的信道估计1102-1103:如果在图11的8702处确定,(10)中估计的SIR低于预定义阈值(SIRT),那么客户端开始倾听来自相邻群集的训练信号。需注意,SIRT取决于用于数据发射的调制和FEC编码方案(MCS)。不同的SIR目标根据客户端的MCS定义。当来自不同群集的DIDO分布式天线时间同步(即,被锁定至相同的秒脉冲PPS,时间基准)时,在8703处客户端利用训练序列将其信道估计值递送至相邻群集中的DIDO天线。用于相邻群集中的信道估计的训练序列被设计用于正交于来自主群集的训练。或者,当不同群集中的DIDO天线未经时间同步时,正交序列(具有良好的互相关特性)用于不同DIDO群集中的时间同步。一旦客户端锁定至相邻群集的时间/频率基准,就在1103处执行信道估计。Channel estimation at neighboring clusters 1102-1103: If it is determined at 8702 of FIG11 that the estimated SIR in (10) is below a predefined threshold (SIR T ), then the client starts listening for training signals from the neighboring cluster. Note that SIR T depends on the modulation and FEC coding scheme (MCS) used for data transmission. Different SIR targets are defined based on the client's MCS. When the DIDO distributed antennas from different clusters are time synchronized (i.e., locked to the same pulse per second (PPS) time reference), the client delivers its channel estimates to the DIDO antennas in the neighboring cluster using a training sequence at 8703. The training sequences used for channel estimation in the neighboring cluster are designed to be orthogonal to the training from the master cluster. Alternatively, when the DIDO antennas in different clusters are not time synchronized, orthogonal sequences (with good cross-correlation properties) are used for time synchronization in the different DIDO clusters. Once the client is locked to the time/frequency reference of the neighboring cluster, channel estimation is performed at 1103.

·IDCI预编码1104:一旦信道估计值在相邻群集中的DIDO BTS处可用,就计算IDCI-预编码,以满足(3)中的条件。相邻群集中的DIDO天线仅发射预编码数据流至其群集中的客户端,同时预先消除对图4中的干扰区410中的客户端的干扰。我们观察到,如果客户端位于图4中的B型干扰区410中,那么对客户端的干扰由多个群集生成并且IDCI-预编码由所有的相邻群集同时执行。IDCI Precoding 1104: Once channel estimates are available at the DIDO BTSs in neighboring clusters, IDCI-precoding is calculated to satisfy the condition in (3). The DIDO antennas in the neighboring clusters transmit only the precoded data stream to the clients in their cluster while pre-cancelling interference to the clients in the interference zone 410 in Figure 4. We observe that if a client is located in the Type B interference zone 410 in Figure 4, then the interference to the client is generated by multiple clusters and IDCI-precoding is performed simultaneously by all neighboring clusters.

越区切换方法Handoff method

下文中,我们描述用于跨越DIDO群集移动的客户端的不同越区切换方法,所述DIDO群集由位于独立区域中或提供不同类型的服务(即,低或高移动性服务)的分布式天线所填充。In the following, we describe different handoff methods for clients moving across a DIDO cluster populated by distributed antennas located in separate areas or providing different types of services (i.e., low or high mobility services).

a.相邻DIDO群集之间的越区切换a. Handoff between adjacent DIDO clusters

在一个实施例中,用于移除上文所述的群集间干扰的IDCI预编码器用作DIDO系统中的越区切换方法的基线。将蜂窝式系统中的常规越区切换设想为客户端跨越由不同基站服务的小区无缝切换。在DIDO系统中,越区切换允许客户端在不损失连接的情况下从一个群集移至另一个群集。In one embodiment, the IDCI precoder used to remove inter-cluster interference described above is used as the baseline for handoff methods in DIDO systems. Conventional handoff in cellular systems is envisioned as a client seamlessly switching across cells served by different base stations. In DIDO systems, handoff allows a client to move from one cluster to another without losing connectivity.

为了说明DIDO系统的越区切换策略的一个实施例,我们再次考虑图8中的具有仅两个群集802和803的例子。当客户端801从主群集(C1)802向相邻群集(C2)803移动时,越区切换方法的一个实施例动态地计算不同群集中的信号质量并为客户端选择产生最低错误率性能的群集。To illustrate one embodiment of a handoff strategy for a DIDO system, let's again consider the example of Figure 8 with only two clusters 802 and 803. When client 801 moves from primary cluster (C1) 802 to neighboring cluster (C2) 803, one embodiment of a handoff method dynamically calculates the signal quality in the different clusters and selects the cluster that yields the lowest error rate performance for the client.

图12示出了SINR变化随客户端距群集C1中心的距离的变化关系。对于无FEC编码的4-QAM调制,我们考虑目标SINR=20dB。当C1和C2均使用没有干扰消除的DIDO预编码时,用圆标识的线代表由C1中的DIDO天线服务的目标客户端的SINR。由于路径损耗和来自相邻群集的干扰,SINR随D而减小。当在相邻群集处实施IDCI-预编码时,因为干扰被完全移除,所以SINR损耗仅归因于路径损耗(如由具有三角形的线所示)。当客户端由相邻群集服务时,经历对称行为。越区切换策略的一个实施例被定义为使得在客户端从C1向C2移动时,算法在不同的DIDO方案之间切换,以保持SINR高于预定义目标。Figure 12 shows the SINR variation as a function of the distance of the client from the center of cluster C1. For 4-QAM modulation without FEC coding, we consider a target SINR = 20dB. The line marked with a circle represents the SINR of the target client served by the DIDO antenna in C1 when both C1 and C2 use DIDO precoding without interference cancellation. The SINR decreases with D due to path loss and interference from neighboring clusters. When IDCI-precoding is implemented at a neighboring cluster, the SINR loss is only due to path loss (as shown by the line with triangles) because the interference is completely removed. When the client is served by a neighboring cluster, a symmetric behavior is experienced. One embodiment of the handover strategy is defined so that when the client moves from C1 to C2, the algorithm switches between different DIDO schemes to keep the SINR above the predefined target.

从图12中的曲线图,我们得出图13中针对4-QAM调制的SER。我们观察到,通过在不同预编码策略之间切换,将SER保持在预定义目标内。From the graph in Figure 12, we derive the SER for 4-QAM modulation in Figure 13. We observe that by switching between different precoding strategies, the SER is kept within the predefined target.

越区切换策略的一个实施例如下。One embodiment of a handoff strategy is as follows.

·C1-DIDO和C2-DIDO预编码:当客户端位于C1内远离干扰区时,群集C1和C2均独立地通过常规的DIDO预编码工作。C1-DIDO and C2-DIDO precoding: When the client is located in C1 and away from the interference area, clusters C1 and C2 both work independently with conventional DIDO precoding.

·C1-DIDO和C2-IDCI预编码:当客户端朝干扰区移动时,其SIR或SINR降低。当达到目标SINRT1时,目标客户端开始估计来自C2中所有DIDO天线的信道并将CSI提供至C2的BTS。C2中的BTS计算IDCI-预编码并发射至C2中的所有客户端,同时防止对目标客户端的干扰。只要目标客户端在干扰区内,它会继续将其CSI提供至C1和C2两者。C1-DIDO and C2-IDCI precoding: As a client moves toward an interference zone, its SIR or SINR decreases. When the target SINR T1 is reached, the target client begins estimating the channel from all DIDO antennas in C2 and provides CSI to the BTS in C2. The BTS in C2 calculates the IDCI precoding and transmits it to all clients in C2 while preventing interference to the target client. As long as the target client remains within the interference zone, it continues to provide its CSI to both C1 and C2.

·C1-IDCI和C2-DIDO预编码:当客户端朝C2移动时,其SIR或SINR不断减小,直到其再次达到目标。这时,客户端决定切换至相邻群集。在这种情况下,C1开始使用来自目标客户端的CSI通过IDCI-预编码以创建朝其方向的零干扰,而相邻群集使用CSI用于常规DIDO-预编码。在一个实施例中,当SIR估计值接近目标时,群集C1和C2均交替地尝试DIDO-预编码方案和IDCI-预编码方案两者,以允许客户端估计两种情况下的SIR。然后客户端选择最佳方案,以最大化某些错误率性能量度。当应用该方法时,用于越区切换策略的交叉点出现在图12中具有三角形和菱形的曲线的交汇处。一个实施例使用(6)中所述的经修改的IDCI-预编码方法,其中相邻群集还将预编码的数据流发射至目标客户端,以提供阵列增益。通过该方法,越区切换策略被简化,因为客户端不需要估计在交叉点处两种策略的SINR。· C1-IDCI and C2-DIDO precoding: As the client moves towards C2, its SIR or SINR continues to decrease until it reaches the target again. At this point, the client decides to switch to a neighboring cluster. In this case, C1 starts using the CSI from the target client through IDCI-precoding to create zero interference in its direction, while the neighboring cluster uses CSI for conventional DIDO-precoding. In one embodiment, when the SIR estimate approaches the target, clusters C1 and C2 both try both DIDO-precoding schemes and IDCI-precoding schemes alternately to allow the client to estimate the SIR in both cases. The client then selects the best scheme to maximize some error rate performance metric. When this method is applied, the intersection point for the handover strategy appears at the intersection of the curves with triangles and diamonds in Figure 12. One embodiment uses the modified IDCI-precoding method described in (6), where the neighboring cluster also transmits the precoded data stream to the target client to provide array gain. With this method, the handover strategy is simplified because the client does not need to estimate the SINR of the two strategies at the intersection point.

·C1-DIDO和C2-DIDO预编码:当客户端朝C2移出干扰区外时,主群集C1停止经由IDCI-预编码预先消除朝向目标客户端的干扰,并且对保留在C1中的所有客户端切换回到常规的DIDO-预编码。我们的越区切换策略中的该最终交叉点可用于避免从目标客户端至C1的不必要的CSI反馈,从而减少反馈信道上的开销。在一个实施例中,定义第二目标SINRT2。当SINR(或SIR)增加至该目标以上时,将策略切换到C1-DIDO和C2-DIDO。在一个实施例中,群集C1保持在DIDO-预编码与IDCI-预编码之间交替,以允许客户端估计SINR。然后客户端选择从上方更紧密接近目标SINRT1的用于C1的方法。· C1-DIDO and C2-DIDO precoding: When the client moves out of the interference zone towards C2, the main cluster C1 stops pre-cancelling interference towards the target client via IDCI-precoding and switches back to conventional DIDO-precoding for all clients remaining in C1. This final intersection in our handover strategy can be used to avoid unnecessary CSI feedback from the target client to C1, thereby reducing overhead on the feedback channel. In one embodiment, a second target SINR T2 is defined. When the SINR (or SIR) increases above this target, the strategy is switched to C1-DIDO and C2-DIDO. In one embodiment, cluster C1 keeps alternating between DIDO-precoding and IDCI-precoding to allow the client to estimate the SINR. The client then selects the method for C1 that more closely approaches the target SINR T1 from above.

上文所述的方法实时计算不同方案的SINR或SIR估计值并用它们来选择最佳方案。在一个实施例中,基于图14中所示的有限状态机设计越区切换算法。当SINR或SIR降至低于或高于图12中所示的预定义阈值时,客户端跟踪其当前状态并切换至下一个状态。如上所述,在状态1201中,群集C1和C2均独立地通过常规的DIDO预编码工作,并且客户端由群集C1服务;在状态1202中,客户端由群集C1服务,C2中的BTS计算IDCI-预编码,并且群集C1用常规的DIDO预编码工作;在状态1203中,客户端由群集C2服务,C1中的BTS计算IDCI-预编码,并且群集C2用常规的DIDO预编码工作;以及在状态1204中,客户端由群集C2服务,并且群集C1和C2均独立地通过常规的DIDO预编码工作。The method described above calculates SINR or SIR estimates for different schemes in real time and uses them to select the optimal scheme. In one embodiment, a handoff algorithm is designed based on the finite state machine shown in FIG14. When the SINR or SIR drops below or above the predefined threshold shown in FIG12, the client tracks its current state and switches to the next state. As described above, in state 1201, clusters C1 and C2 both independently operate with conventional DIDO precoding, and the client is served by cluster C1; in state 1202, the client is served by cluster C1, the BTS in C2 calculates IDCI-precoding, and cluster C1 operates with conventional DIDO precoding; in state 1203, the client is served by cluster C2, the BTS in C1 calculates IDCI-precoding, and cluster C2 operates with conventional DIDO precoding; and in state 1204, the client is served by cluster C2, and clusters C1 and C2 both independently operate with conventional DIDO precoding.

在存在遮蔽效应的情况下,信号质量或SIR可如图15所示在阈值周围波动,从而引起在图14中的连续状态之间反复切换。反复改变状态是不期望的效应,因为其导致在客户端与BTS之间的控制信道上的用以实现在发射方案之间切换的显著开销。图15示出了在存在遮蔽的情况下越区切换策略的一个例子。在一个实施例中,遮蔽系数根据具有方差3的对数正态分布来模拟[3]。在下文中,我们定义一些用以防止在DIDO越区切换期间的反复切换效应的方法。In the presence of shadowing, the signal quality or SIR may fluctuate around a threshold as shown in FIG15 , causing iterative switching between the successive states in FIG14 . Iteratively changing states is an undesirable effect because it results in significant overhead on the control channel between the client and the BTS to implement switching between transmission schemes. FIG15 shows an example of a handoff strategy in the presence of shadowing. In one embodiment, the shadowing coefficient is modeled according to a lognormal distribution with variance 3 [3]. In the following, we define some methods to prevent the iterative switching effect during DIDO handoff.

本发明的一个实施例采用滞后回路来解决状态切换效应。例如,当在图14中的“C1-DIDO,C2-IDCI”9302与“C1-IDCI,C2-DIDO”9303状态之间切换(或反之亦然)时,阈值SINRT1可调整为在范围A1内。该方法在信号质量在SINRT1周围振荡时避免在状态之间的反复切换。例如,图16示出了在图14中的任何两种状态之间切换时的滞后回路机制。为了从状态B切换至状态A,SIR必须大于(SIRT1+A1/2),但为了从A切换回到B时,SIR必须降至低于(SIRT1-A1/2)。One embodiment of the present invention uses a hysteresis loop to address state switching effects. For example, when switching between the "C1-DIDO, C2-IDCI" 9302 and "C1-IDCI, C2-DIDO" 9303 states in Figure 14 (or vice versa), the threshold SINR T1 can be adjusted to be within the range A 1. This method avoids repeated switching between states when the signal quality oscillates around SINR T1 . For example, Figure 16 shows the hysteresis loop mechanism when switching between any two states in Figure 14. In order to switch from state B to state A, the SIR must be greater than (SIR T1 +A 1 /2), but in order to switch back from A to B, the SIR must drop below (SIR T1 -A 1 /2).

在不同的实施例中,调整阈值SINRT2以避免在图14中有限状态机的第一状态和第二状态(或第三状态和第四状态)之间反复切换。例如,可以定义值A2的范围,使得根据信道条件和遮蔽效应而在该范围内挑选阈值SINRT2In various embodiments, the threshold SINR T2 is adjusted to avoid repeated switching between the first and second states (or the third and fourth states) of the finite state machine in Figure 14. For example, a range of values A2 can be defined such that the threshold SINR T2 is selected within the range according to channel conditions and shadowing effects.

在一个实施例中,根据无线链路上预期的遮蔽的方差,在范围[SINRT2,SINRT2+A2]内动态地调节SINR阈值。当客户端从其当前群集向相邻群集移动时,可根据所接收信号强度(或RSSI)的方差估计对数正态分布的方差。In one embodiment, the SINR threshold is dynamically adjusted within the range [SINR T2 , SINR T2 + A 2 ] based on the variance of expected shadowing on the wireless link. The variance of the log-normal distribution can be estimated based on the variance of the received signal strength (or RSSI) as the client moves from its current cluster to a neighboring cluster.

上述方法假定客户端触发越区切换策略。在一个实施例中,假定启用跨越多个BTS的通信,延期到DIDO BTS的越区切换决策。The above method assumes that the client triggers the handoff strategy.In one embodiment, assuming that communication across multiple BTSs is enabled, the handoff decision is deferred to the DIDO BTS.

为简单起见,假定无FEC编码和4-QAM而得出上述方法。更一般地,针对不同调制编码方案(MCS)而得出SINR或SIR阈值,并结合链路自适应(参见,例如,美国专利No.7,636,381)设计越区切换策略,以优化干扰区中每个客户端的下行链路数据速率。For simplicity, the above method is derived assuming no FEC coding and 4-QAM. More generally, SINR or SIR thresholds are derived for different modulation and coding schemes (MCSs), and handoff strategies are designed in conjunction with link adaptation (see, e.g., U.S. Patent No. 7,636,381) to optimize the downlink data rate for each client in the interference zone.

b.低多普勒DIDO网络与高多普勒DIDO网络之间的越区切换b. Handoff between Low-Doppler DIDO Network and High-Doppler DIDO Network

DIDO系统采用封闭回路发射方案对下行链路信道上的数据流进行预编码。封闭回路方案固有地受到反馈信道上的延迟的约束。在实际DIDO系统中,当将CSI和基带预编码数据从BTS递送到分布式天线时,可以通过具有高处理能力的收发器缩短计算时间,并且预期大多数延迟是由DIDOBSN引入。BSN可包含各种网络技术,包括但不限于数字用户线路(DSL)、电缆调制解调器、光纤环、T1线路、光纤同轴混合(HFC)网络和/或固定无线(例如,WiFi)。专用光纤通常具有非常大的带宽和低延迟,在局部区域可能小于1毫秒,但其部署范围不及DSL和电缆调制解调器。今天,在美国DSL和电缆调制解调器连接通常具有在10-25ms之间的最后一英里延迟,但其部署非常广泛。The DIDO system uses a closed-loop transmission scheme to precode the data stream on the downlink channel. The closed-loop scheme is inherently constrained by the delay on the feedback channel. In an actual DIDO system, when delivering CSI and baseband precoding data from the BTS to the distributed antenna, the calculation time can be shortened by a transceiver with high processing power, and most of the delay is expected to be introduced by the DIDO BSN. The BSN may include various network technologies, including but not limited to digital subscriber lines (DSL), cable modems, fiber rings, T1 lines, hybrid fiber-coaxial (HFC) networks, and/or fixed wireless (e.g., WiFi). Dedicated optical fiber typically has very large bandwidth and low latency, which may be less than 1 millisecond in local areas, but its deployment range is not as wide as DSL and cable modems. Today, DSL and cable modem connections in the United States typically have last-mile delays between 10-25ms, but their deployment is very widespread.

BSN上的最大延迟确定在不降低DIDO预编码性能的情况下在DIDO无线链路上可容许的最大多普勒频率。例如,在[1]中,我们示出了在400MHz的载波频率处,具有约10毫秒的延迟的网络(即DSL)可容许客户端的速度最高至8mph(奔跑速度),而具有1毫秒延迟的网络(即,光纤环)可支持最高至70mph的速度(即,高速公路交通)。The maximum delay at the BSN determines the maximum Doppler frequency that can be tolerated on the DIDO wireless link without degrading DIDO precoding performance. For example, in [1], we showed that at a carrier frequency of 400 MHz, a network with a delay of about 10 milliseconds (i.e., DSL) can tolerate client speeds of up to 8 mph (running speed), while a network with a delay of 1 millisecond (i.e., a fiber ring) can support speeds of up to 70 mph (i.e., highway traffic).

我们根据BSN上可容许的最大多普勒频率而定义两个或更多个DIDO子网络。例如,在DIDO BTS与分布式天线之间的高延迟DSL连接的BSN仅可提供低移动性或固定无线服务(即,低多普勒网络),而低延迟光纤环上的低延迟BSN可容许高移动性(即,高多普勒网络)。我们观察到,大多数宽带用户在使用宽带时是不移动的,且进一步大多数人不大可能位于许多高速物体移动经过的区域附近(如靠近高速公路),因为此类位置通常是不太理想的居住或办公地点。然而,也有在高速下(如,当在高速公路上行驶的汽车中时)使用宽带或在高速物体附近(如,在位于高速公路附近的商店里)的宽带用户。为了解决这两种不同的用户多普勒情形,在一个实施例中,低多普勒DIDO网络由散布于宽广区域的具有相对低功率(即,对于室内或屋顶安装而言,1W至100W)的通常较大数量的DIDO天线组成,而高多普勒网络由高功率发射(即,对于屋顶或塔安装而言,100W)的通常较少数量的DIDO天线组成。低多普勒DIDO网络服务通常较大数量的低多普勒用户并且可以使用便宜的高延迟宽带连接(如DSL和电缆调制解调器)而以通常较低的连接成本执行。高多普勒DIDO网络服务通常较少数量的高多普勒用户并且可以使用更昂贵的低延迟宽带连接(如光纤)而以通常较高的连接成本执行。We define two or more DIDO subnetworks based on the maximum Doppler frequency that can be tolerated on the BSN. For example, a BSN with high-latency DSL connections between the DIDO BTS and distributed antennas can only provide low-mobility or fixed wireless services (i.e., a low-Doppler network), while a low-latency BSN on a low-latency fiber ring can tolerate high mobility (i.e., a high-Doppler network). We observe that most broadband users are immobile when using broadband, and furthermore, most are unlikely to be located near areas with many high-speed moving objects (e.g., near highways) because such locations are generally less desirable residential or business locations. However, there are also broadband users who use broadband at high speeds (e.g., while in a car traveling on a highway) or near high-speed objects (e.g., in a store located near a highway). To address these two different user Doppler scenarios, in one embodiment, a low-Doppler DIDO network consists of a typically large number of DIDO antennas with relatively low power (i.e., 1W to 100W for indoor or rooftop installations) spread over a wide area, while a high-Doppler network consists of a typically smaller number of DIDO antennas transmitting at high power (i.e., 100W for rooftop or tower installations). A low-Doppler DIDO network serves a typically larger number of low-Doppler users and can use inexpensive high-latency broadband connections (such as DSL and cable modems) with a typically lower connection cost. A high-Doppler DIDO network serves a typically smaller number of high-Doppler users and can use more expensive low-latency broadband connections (such as fiber) with a typically higher connection cost.

为了避免不同类型DIDO网络(例如,低多普勒和高多普勒)之间的干扰,可以采用不同的多址接入技术,如:时分多址(TDMA)、频分多址(FDMA)或码分多址(CDMA)。To avoid interference between different types of DIDO networks (e.g., low-Doppler and high-Doppler), different multiple access technologies can be used, such as time division multiple access (TDMA), frequency division multiple access (FDMA), or code division multiple access (CDMA).

在下文中,我们提议用以将客户端分配至不同类型的DIDO网络并允许实现其间的越区切换的方法。网络选择基于每个客户端的移动性类型。根据以下等式[6],客户端的速度(v)与最大多普勒频移成正比,In the following, we propose a method to assign clients to different types of DIDO networks and allow handoff between them. Network selection is based on the mobility type of each client. The client's velocity (v) is proportional to the maximum Doppler shift according to the following equation [6],

其中fd为最大多普勒频移,λ为对应于载波频率的波长,并且θ为指示方向发射器-客户端的向量与速度向量之间的角度。where fd is the maximum Doppler shift, λ is the wavelength corresponding to the carrier frequency, and θ is the angle between the vector indicating the direction transmitter-client and the velocity vector.

在一个实施例中,通过盲估计技术计算每个客户端的多普勒频移。例如,类似于多普勒雷达系统,可通过发送RF能量至客户端并分析反射信号来估计多普勒频移。In one embodiment, the Doppler shift of each client is calculated by a blind estimation technique. For example, similar to a Doppler radar system, the Doppler shift can be estimated by sending RF energy to the client and analyzing the reflected signal.

在另一个实施例中,一个或多个DIDO天线发送训练信号到客户端。基于那些训练信号,客户端使用诸如对信道增益的过零率进行计数或进行频谱分析的技术估计多普勒频移。我们观察到,对于固定速度v和客户端的轨线而言,vsinθ(11)中的角速度可取决于客户端与每个DIDO天线的相对距离。例如,靠近移动客户端的DIDO天线产生比远离的天线大的角速度和多普勒频移。在一个实施例中,由距客户端不同距离处的多个DIDO天线估计多普勒速度,并将平均数、加权平均数或标准偏差用作客户端移动性的指示符。基于估计的多普勒指示符,DIDO BTS决定将客户端分配至低多普勒网络还是高多普勒网络。In another embodiment, one or more DIDO antennas send training signals to the client. Based on those training signals, the client estimates the Doppler shift using techniques such as counting the zero crossing rate of the channel gain or performing spectral analysis. We observe that for a fixed velocity v and the trajectory of the client, the angular velocity in vsinθ(11) can depend on the relative distance of the client from each DIDO antenna. For example, a DIDO antenna close to a mobile client produces a larger angular velocity and Doppler shift than an antenna farther away. In one embodiment, the Doppler velocity is estimated by multiple DIDO antennas at different distances from the client, and the average, weighted average, or standard deviation is used as an indicator of the client's mobility. Based on the estimated Doppler indicator, the DIDO BTS decides whether to assign the client to a low-Doppler network or a high-Doppler network.

针对所有客户端,定期监测多普勒指示符并将其发送回BTS。当一个或多个客户端改变其多普勒速度时(即,乘坐在公交车上的客户端相对于行走或坐着的客户端),那些客户端被动态地重新分配至可容许其移动性等级的不同DIDO网络。Doppler indicators are periodically monitored for all clients and sent back to the BTS. When one or more clients change their Doppler speed (i.e., a client riding a bus versus a client walking or sitting), those clients are dynamically reallocated to a different DIDO network that can accommodate their level of mobility.

尽管低速度客户端的多普勒可因在高速度物体附近(如靠近高速公路)而受到影响,但该多普勒通常远低于自身处于移动中的客户端的多普勒。因而,在一个实施例中,(例如,通过使用诸如用GPS监测客户端位置的方法)估计客户端的速度,并且如果速度低,则将客户端分配至低多普勒网络,而如果速度高,则将客户端分配至高多普勒网络。Although the Doppler of a low-speed client may be affected by being near high-speed objects (such as near a highway), the Doppler is generally much lower than the Doppler of a client that is itself in motion. Therefore, in one embodiment, the client's speed is estimated (e.g., by using methods such as monitoring the client's position using GPS), and if the speed is low, the client is assigned to a low-Doppler network, and if the speed is high, the client is assigned to a high-Doppler network.

用于功率控制和天线分组的方法Methods for power control and antenna grouping

图17示出了具有功率控制的DIDO系统的框图。首先将每个客户端(1,…,U)的一个或多个数据流(sk)乘以由DIDO预编码单元产生的权重。将预编码数据流乘以由功率控制单元基于输入信道质量信息(CQI)计算的功率缩放因子。CQI由客户端反馈至DIDO BTS或假定上行链路-下行链路信道互易性而从上行链路信道得出。然后不同客户端的U个预编码流经组合及多路复用成M个数据流(tm),数据流针对M个发射天线中的每一者。最后,将流tm发送至数模转换器(DAC)单元、射频(RF)单元、功率放大器(PA)单元,并最终至天线。Figure 17 shows a block diagram of a DIDO system with power control. First, one or more data streams ( sk ) for each client (1, ..., U) are multiplied by weights generated by the DIDO precoding unit. The precoded data streams are multiplied by a power scaling factor calculated by the power control unit based on input channel quality information (CQI). The CQI is fed back by the client to the DIDO BTS or derived from the uplink channel assuming uplink-downlink channel reciprocity. The U precoded streams from different clients are then combined and multiplexed into M data streams ( tm ), one for each of the M transmit antennas. Finally, the streams tm are sent to the digital-to-analog converter (DAC) unit, the radio frequency (RF) unit, the power amplifier (PA) unit, and finally to the antenna.

功率控制单元测量用于所有客户端的CQI。在一个实施例中,CQI为平均SNR或RSSI。根据路径损耗或遮蔽,对于不同客户端CQI有所不同。我们的功率控制方法调整不同客户端的发射功率缩放因子Pk,并将它们乘以经生成用于不同客户端的预编码数据流。需注意,可针对每个客户端生成一个或多个数据流,这取决于客户端接收天线的数量。The power control unit measures the CQI for all clients. In one embodiment, the CQI is the average SNR or RSSI. Depending on path loss or shadowing, the CQI may vary for different clients. Our power control method adjusts the transmit power scaling factors P k for each client and multiplies them by the precoded data streams generated for each client. Note that one or more data streams can be generated for each client, depending on the number of receive antennas on the client.

为了评估所提议方法的性能,我们基于(5)定义包括路径损耗和功率控制参数的以下信号模型:To evaluate the performance of the proposed method, we define the following signal model including path loss and power control parameters based on (5):

其中k=1,…,U,U为客户端的数量,SNR=Po/No,其中Po为平均发射功率,No为噪声功率,αk为路径损耗/遮蔽系数。为了模型化路径损耗/遮蔽,我们使用以下简化模型Where k = 1, ..., U, U is the number of clients, SNR = P o /N o , where P o is the average transmit power, N o is the noise power, and α k is the path loss/shadowing factor. To model path loss/shadowing, we use the following simplified model

其中a=4为路径损耗指数,并且我们假定路径损耗随客户端索引(即,客户端位于距DIDO天线的渐增距离处)而增大。where a=4 is the path loss exponent, and we assume that the path loss increases with client index (ie, clients are located at increasing distances from the DIDO antennas).

图18示出了在不同情形中假定四个DIDO发射天线和四个客户端的情况下,SER与SNR的关系。理想情况假定所有客户端具有相同的路径损耗(即a=0),针对所有客户端产生Pk=1。具有正方形的曲线是指客户端具有不同路径损耗系数并且无功率控制的情况。具有点的曲线是根据功率控制系数经挑选使得Pk=1/αk的相同情形(具有路径损耗)得出。通过功率控制方法,将更多的功率分配至预期用于发生较高路径损耗/遮蔽的客户端的数据流,从而与无功率控制的情况相比导致9dB SNR增益(对于该特定情形而言)。Figure 18 shows the SER vs. SNR for different scenarios assuming four DIDO transmit antennas and four clients. The ideal case assumes that all clients have the same path loss (i.e., a = 0), resulting in P k = 1 for all clients. The curve with squares refers to the case where clients have different path loss coefficients and there is no power control. The curve with dots is based on the same case (with path loss) with the power control coefficient chosen so that P k = 1/α k . With the power control method, more power is allocated to the data stream intended for clients with higher path loss/shadowing, resulting in a 9dB SNR gain (for this particular case) compared to the case without power control.

美国联邦通信委员会(FCC)(和其他国际监管机构)定义对可从无线设备发射的最大功率的约束条件,以限制人体在电磁(EM)辐射下的暴露。存在两种类型的限制[2]:i)“职业/受控”限制,其中让人们通过栅栏、警告或标牌使人完全知晓射频(RF)源;ii)“一般人群/不受控”限制,其中对暴露没有控制。The Federal Communications Commission (FCC) of the United States (and other international regulatory bodies) define constraints on the maximum power that can be transmitted from wireless devices to limit human exposure to electromagnetic (EM) radiation. There are two types of limits [2]: i) "occupational/controlled" limits, where people are fully aware of radio frequency (RF) sources through fencing, warnings, or signage; and ii) "general population/uncontrolled" limits, where there are no controls on exposure.

将不同发射等级定义用于不同类型的无线设备。一般来讲,用于室内/室外应用的DIDO分布式天线符合FCC“移动”设备类别的要求,定义为[2]:Different emission classes are defined for different types of wireless devices. Generally speaking, DIDO distributed antennas for indoor/outdoor applications meet the requirements of the FCC "mobile" device category, which is defined as [2]:

“设计用于不在固定位置使用、通常在辐射结构保持在距用户或附近人员身体20cm或更远距离处的情况下使用的发射设备。”“Transmitting equipment designed for use in locations other than fixed locations, normally where the radiating structure is maintained at a distance of 20 cm or more from the body of the user or nearby persons.”

“移动”设备的EM发射是依据最大允许暴露量(MPE)(以mW/cm2表示)来测量。图19示出了在700MHz载波频率下针对发射功率的不同值,MPE功率密度随距RF辐射源的距离的变化关系。用以满足通常在距人体20cm外工作的设备的FCC“不受控”限制的最大允许发射功率为1W。EM emissions from "mobile" devices are measured in terms of Maximum Permissible Exposure (MPE) expressed in mW/ cm² . Figure 19 shows the MPE power density as a function of distance from the RF radiation source for various values of transmit power at a 700 MHz carrier frequency. The maximum permissible transmit power required to meet the FCC's "unregulated" limits for devices typically operating at distances greater than 20 cm from the human body is 1 W.

针对安装于远离“一般人群”的屋顶或建筑物上的发射器定义了较少限制性的功率发射约束条件。对于这些“屋顶发射器”,FCC定义依据有效辐射功率(ERP)测量的1000W的较宽松发射限制。Less restrictive power emission limits are defined for transmitters mounted on rooftops or buildings away from the “general public.” For these “rooftop transmitters,” the FCC defines a looser emission limit of 1000W measured in terms of effective radiated power (ERP).

基于上述FCC约束条件,在一个实施例中,我们定义了用于实际系统的两种类型的DIDO分布式天线:Based on the above FCC constraints, in one embodiment, we define two types of DIDO distributed antennas for practical systems:

·低功率(LP)发射器:位于任何高度的任何地方(即,室内或室外),具有1W的最大发射功率和5Mbps消费级宽带(例如DSL、电缆调制解调器、光纤到户(FTTH))回程连接。Low-power (LP) transmitter: Located anywhere at any altitude (i.e., indoors or outdoors) with a maximum transmit power of 1W and a 5Mbps consumer-grade broadband (e.g., DSL, cable modem, fiber-to-the-home (FTTH)) backhaul connection.

·高功率(HP)发射器:在高度为大约10米的屋顶或建筑物上安装的天线,具有100W的发射功率和商业级宽带(例如光纤环)回程(与DIDO无线链路上可用的吞吐量相比,具有实际上“无限”数据速率)。High-power (HP) transmitters: Rooftop or building-mounted antennas at approximately 10 meters in height, with 100W of transmit power and commercial-grade broadband (e.g., fiber ring) backhaul (with effectively “unlimited” data rates compared to the throughput available over the DIDO wireless link).

需注意,使用DSL或电缆调制解调器连接的LP发射器为低多普勒DIDO网络(如先前章节中所述)的良好候选者,因为它们的客户端大多是固定的或具有低移动性。使用商业光纤连接的HP发射器可容许更高的客户端移动性并可用于高多普勒DIDO网络。Note that LP transmitters connected using DSL or cable modems are good candidates for low-Doppler DIDO networks (as described in the previous section) because their clients are mostly stationary or have low mobility. HP transmitters connected using commercial fiber can allow for higher client mobility and can be used for high-Doppler DIDO networks.

为了获得对具有不同类型LP/HP发射器的DIDO系统的性能的实际直观感觉,我们考虑在加利福尼亚州帕洛阿尔托(Palo Alto,CA)市中心的DIDO天线安装的实际情况。图20a示出了帕洛阿尔托(Palo Alto)中的NLP=100个低功率DIDO分布式天线的随机分布。在图20b中,50个LP天线由NHP=50个高功率发射器替代。To get a realistic sense of the performance of a DIDO system with different types of LP/HP transmitters, we consider a real-world DIDO antenna installation in downtown Palo Alto, CA. Figure 20a shows a random distribution of N LP = 100 low-power DIDO distributed antennas in Palo Alto. In Figure 20b, the 50 LP antennas are replaced by N HP = 50 high-power transmitters.

基于图20a-图20b中的DIDO天线分布,我们得出使用DIDO技术的系统在帕洛阿尔托(Palo Alto)中的覆盖地图。图21a和图21b分别示出了对应于图20a和图20b中的配置的两种功率分布。假定在700MHz载波频率下由3GPP标准[3]定义的用于城市环境的路径损耗/遮蔽模型而得出所接收的功率分布(以dBm表示)。我们观察到使用50%的HP发射器产生对所选择的区域的较好覆盖。Based on the DIDO antenna distribution in Figures 20a-20b, we derive coverage maps for a system using DIDO technology in Palo Alto. Figures 21a and 21b show two power distributions corresponding to the configurations in Figures 20a and 20b, respectively. The received power distribution (in dBm) is derived assuming the path loss/shadowing model defined by the 3GPP standard [3] for urban environments at a 700 MHz carrier frequency. We observe that using 50% HP transmitters results in better coverage for the selected area.

图22a-图22b示出了用于以上两种情形的速率分布。基于[4,5]中3GPP长期演进(LTE)标准中所定义的不同调制编码方案的功率阈值而得出吞吐量(以Mbps表示)。在700MHz载波频率下,总可用带宽固定到10MHz。考虑两种不同的频率分配计划:i)仅分配5MHz频谱到LP站;ii)分配9MHz到HP发射器,分配1MHz到LP发射器。需注意,通常较低的带宽归因于其具有有限吞吐量的DSL回程连接而分配到LP站。图22a-图22b显示,当使用50%的HP发射器时,可以显著提高速率分布,从而将平均每客户端数据速率从图22a中的2.4Mbps提高至图22b中的38Mbps。Figures 22a-22b show the rate distribution for the two scenarios above. The throughput (in Mbps) is derived based on the power thresholds for different modulation and coding schemes defined in the 3GPP Long Term Evolution (LTE) standard in [4,5]. At a 700 MHz carrier frequency, the total available bandwidth is fixed to 10 MHz. Two different frequency allocation plans are considered: i) only 5 MHz of spectrum is allocated to LP stations; ii) 9 MHz is allocated to HP transmitters and 1 MHz is allocated to LP transmitters. Note that the lower bandwidth is generally allocated to LP stations due to their DSL backhaul connections with limited throughput. Figures 22a-22b show that the rate distribution can be significantly improved when 50% of the HP transmitters are used, increasing the average per-client data rate from 2.4 Mbps in Figure 22a to 38 Mbps in Figure 22b.

然后,我们定义算法以控制LP站的功率发射,使得在任何给定时间都允许较高的功率,从而增加图22b中的DIDO系统的下行链路信道上的吞吐量。我们观察到,对功率密度的FCC限制是基于时间平均而定义为[2]We then define an algorithm to control the power transmission of the LP stations such that higher power is allowed at any given time, thereby increasing the throughput on the downlink channel of the DIDO system in Figure 22b. We observe that the FCC limit on power density is defined based on time averaging as [2]

其中为MPE平均时间,tn为暴露于具有功率密度Sn的辐射的时间周期。对于“受控的”暴露,平均时间为6分钟,而对于“不受控”暴露,其增加最多至30分钟。然后,允许任何功率源以大于MPE限制的功率电平发射,只要(14)中的平均功率密度满足FCC的对于不受控”暴露的30分钟平均值的限制。Where is the MPE averaging time and tn is the time period of exposure to radiation with power density Sn . For "controlled" exposure, the averaging time is 6 minutes, while for "uncontrolled" exposure, it increases to a maximum of 30 minutes. Then, any power source is allowed to transmit at a power level greater than the MPE limit, as long as the average power density in (14) meets the FCC limit of 30 minutes for "uncontrolled" exposure.

基于该分析,我们定义自适应功率控制方法,以增加瞬时每天线发射功率,同时保持每个DIDO天线的平均功率低于MPE限制。我们考虑具有比活动客户端多的发射天线的DIDO系统。考虑到DIDO天线可被设想为便宜的无线设备(类似于WiFi接入点)并且可被放置在存在DSL、电缆调制解调器、光纤或其他互联网连接的任何地方,这是合理的假定。Based on this analysis, we define an adaptive power control method to increase the instantaneous per-antenna transmit power while keeping the average power per DIDO antenna below the MPE limit. We consider a DIDO system with more transmit antennas than active clients. This is a reasonable assumption considering that DIDO antennas can be conceived as inexpensive wireless devices (similar to WiFi access points) and can be placed anywhere there is a DSL, cable modem, fiber, or other Internet connection.

图23示出了具有自适应每天线功率控制的DIDO系统的框架。在由多路复用器234产生的数字信号被发送至DAC单元235之前,用功率缩放因子S1,…,SM动态地调整其振幅。由功率控制单元232基于CQI 233计算功率缩放因子。Figure 23 shows the framework of a DIDO system with adaptive per-antenna power control. Before the digital signal generated by the multiplexer 234 is sent to the DAC unit 235, its amplitude is dynamically adjusted using power scaling factors S 1 ,…, SM . The power scaling factors are calculated by the power control unit 232 based on the CQI 233.

在一个实施例中,定义Ng个DIDO天线组。每个组包含至少与活动客户端(K)数量一样多的DIDO天线。在任何给定时间,仅一个组具有以大于MPE限制的功率电平(So)发射到客户端的Na>K个活动DIDO天线。根据图24中所示的循环调度策略的一种方法在跨越所有天线组上重复。在另一个实施例中,采用不同的调度技术(即比例公平调度[8])进行群集选择,以优化错误率或吞吐量性能。In one embodiment, N g DIDO antenna groups are defined. Each group contains at least as many DIDO antennas as the number of active clients (K). At any given time, only one group has Na > K active DIDO antennas transmitting to clients at a power level (So) greater than the MPE limit. A method according to the round-robin scheduling strategy shown in Figure 24 is repeated across all antenna groups. In another embodiment, a different scheduling technique (i.e., proportional fair scheduling [8]) is used for cluster selection to optimize error rate or throughput performance.

假定循环功率分配,我们将每一DIDO天线的平均发射功率由(14)导出为Assuming cyclic power allocation, we derive the average transmit power of each DIDO antenna from (14) as

其中to为天线组为活动时的时间周期,并且TMPE=30min为由FCC准则[2]定义的平均时间。(15)中的比率为所述组的占空比(DF),其被定义为使得来自每个DIDO天线的平均发射功率满足MPE限制根据以下定义,占空比取决于活动客户端的数量、组的数量及每组的活动天线的数量where t is the time period during which the antenna group is active, and T MPE = 30 min is the averaging time defined by FCC guidelines [2]. The ratio in (15) is the duty cycle (DF) of the group, which is defined such that the average transmit power from each DIDO antenna meets the MPE limit. The duty cycle depends on the number of active clients, the number of groups, and the number of active antennas per group according to the following definition:

在具有功率控制和天线分组的DIDO系统中获得的SNR增益(以dB计)被如下表示为占空比的函数The SNR gain (in dB) achieved in a DIDO system with power control and antenna grouping is expressed as a function of duty cycle as follows

我们观察到(17)中的增益是以所有DIDO天线上的GdB额外发射功率为代价而实现。We observe that the gain in (17) is achieved at the cost of G dB additional transmit power across all DIDO antennas.

一般来讲,来自所有Ng个组的所有Na的总发射功率被定义为In general, the total transmit power of all Na from all Ng groups is defined as

其中Pij为平均每天线发射功率,由下式给出Where Pij is the average daily antenna transmit power, which is given by the following formula

并且Sij(t)为第j个组内的第i个发射天线的功率谱密度。在一个实施例中,针对每个天线设计(19)中的功率谱密度,以优化错误率或吞吐量性能。and S ij (t) is the power spectral density of the i-th transmit antenna in the j-th group. In one embodiment, the power spectral density in (19) is designed for each antenna to optimize error rate or throughput performance.

为了获得对于所提议方法的性能的某种直观感觉,考虑在给定覆盖区域中的400个DIDO分布式天线和订阅经由DIDO系统提供的无线互联网服务的400个客户端。不可能每个互联网连接将一直被完全地利用。我们假定客户端中的10%将在任何给定时间活动地使用无线互联网连接。然后,可将400个DIDO天线分成Ng=10个组,每个组有Na=40个天线,每个组以占空比DF=0.1在任何给定时间服务K=40个活动客户端。由此发射方案产生的SNR增益为GdB=10log10(1/DF)=10dB,由来自所有DIDO天线的10dB额外发射功率提供。然而,我们观察到平均每天线发射功率为恒定的且在MPE限制内。To get some intuition about the performance of the proposed approach, consider 400 DIDO distributed antennas in a given coverage area and 400 clients subscribing to wireless internet service provided via the DIDO system. It is unlikely that every internet connection will be fully utilized at all times. We assume that 10% of the clients will actively use the wireless internet connection at any given time. The 400 DIDO antennas can then be divided into Ng = 10 groups, each with Na = 40 antennas, with each group serving K = 40 active clients at any given time with a duty cycle DF = 0.1. The resulting SNR gain from this transmission scheme is GdB = 10log10 (1/DF) = 10dB, provided by the 10dB additional transmit power from all DIDO antennas. However, we observe that the average per-antenna transmit power is constant and within the MPE limit.

图25比较具有天线分组的上述功率控制的(未编码的)SER性能与美国专利No.7,636,381中的常规本征模式选择。所有方案使用具有四个客户端的BD预编码,每个客户端配备有单个天线。SNR是指每发射天线功率与噪声功率的比率(即,每天线发射SNR)。以DIDO 4×4表示的曲线假定四个发射天线和BD预编码。具有正方形的曲线表示具有本征模式选择的具有两个额外发射天线和BD的SER性能,从而产生相对于常规BD预编码的10dB SNR增益(在1%SER目标处)。具有天线分组和DF=1/10的功率控制也在相同SER目标处产生10dB的增益。我们观察到归因于分集增益,本征模式选择改变SER曲线的斜率,而我们的功率控制方法归因于增加的平均发射功率而将SER曲线向左位移(维持相同斜率)。为了比较,示出具有较大占空比DF=1/50的SER而提供与DF=1/10相比的额外7dB增益。Figure 25 compares the (uncoded) SER performance of the above power control with antenna grouping with conventional eigenmode selection in U.S. Patent No. 7,636,381. All schemes use BD precoding with four clients, each equipped with a single antenna. SNR refers to the ratio of power per transmit antenna to noise power (i.e., transmit SNR per antenna). The curves represented by DIDO 4×4 assume four transmit antennas and BD precoding. The curve with squares represents the SER performance with two additional transmit antennas and BD with eigenmode selection, resulting in a 10dB SNR gain relative to conventional BD precoding (at a 1% SER target). Power control with antenna grouping and DF=1/10 also produces a 10dB gain at the same SER target. We observe that eigenmode selection changes the slope of the SER curve due to diversity gain, while our power control method shifts the SER curve to the left (maintaining the same slope) due to the increased average transmit power. For comparison, the SER with a larger duty cycle DF=1/50 is shown, providing an additional 7dB gain compared to DF=1/10.

需注意,我们的功率控制可以具有比常规的本征模式选择方法低的复杂度。实际上,可以预先计算每个组的天线ID并经由查找表在DIDO天线与客户端之间共享,使得在任何给定时间只要求K个信道估计值。对于本征模式选择,计算(K+2)个信道估计值且需要额外计算处理以选择在任何给定时间最小化所有客户端的SER的本征模式。Note that our power control can be less complex than conventional eigenmode selection methods. In fact, the antenna IDs for each group can be pre-computed and shared between the DIDO antennas and clients via a lookup table, requiring only K channel estimates at any given time. For eigenmode selection, (K+2) channel estimates are computed, and additional computational processing is required to select the eigenmode that minimizes the SER for all clients at any given time.

然后,我们描述用以在一些特殊情形中减少CSI反馈开销的涉及DIDO天线分组的另一种方法。图26a示出了一种情形,其中客户端(点)随机散布于由多个DIDO分布式天线(十字)覆盖的一个区域中。每个发射-接收无线链路上的平均功率可经计算为We then describe another approach involving DIDO antenna grouping to reduce CSI feedback overhead in some special cases. Figure 26a shows a scenario where clients (points) are randomly scattered in an area covered by multiple DIDO distributed antennas (crosses). The average power on each transmit-receive radio link can be calculated as

A={|H|2}. (20)A={|H| 2 }. (20)

其中H为可用于DIDO BTS处的信道估计矩阵。where H is the channel estimation matrix available at the DIDO BTS.

通过在1000个例项上平均信道矩阵而在数值上获得图26a-图26c中的矩阵A。图26b和图26c中分别描绘两种替代情形,其中客户端环绕DIDO天线的子集而分组在一起且客户端接收来自位于遥远地方的DIDO天线的可忽略功率。例如,图26b示出了产生块对角矩阵A的两组天线。一种极端的情形是当每个客户端仅非常接近一个发射器且发射器彼此远离,使得来自所有其他DIDO天线的功率可忽略时。在这种情况下,DIDO链路在多个SISO链路中退化且A为如图26c中的对角矩阵。The matrix A in Figures 26a-26c was numerically obtained by averaging the channel matrix over 1000 instances. Figures 26b and 26c depict two alternative scenarios, respectively, where clients are grouped together around a subset of DIDO antennas and the clients receive negligible power from distant DIDO antennas. For example, Figure 26b shows two sets of antennas that produce a block diagonal matrix A. An extreme case is when each client is very close to only one transmitter and the transmitters are far enough away from each other that the power from all other DIDO antennas is negligible. In this case, the DIDO link degenerates into multiple SISO links and A is a diagonal matrix as in Figure 26c.

在上述所有三种情形中,BD预编码动态地调整预编码权重以考虑DIDO天线与客户端之间的无线链路上的不同功率电平。然而,识别DIDO群集内的多个组并仅在每个组内操作DIDO预编码是方便的。我们所提议的分组方法产生以下优点:In all three cases described above, BD precoding dynamically adjusts the precoding weights to account for the varying power levels on the wireless link between the DIDO antennas and the clients. However, it is convenient to identify multiple groups within a DIDO cluster and operate DIDO precoding only within each group. Our proposed grouping approach yields the following advantages:

·计算增益:仅在群集中的每个组内计算DIDO预编码。例如,如果使用BD预编码,则奇异值分解(SVD)具有复杂度O(n3),其中n为信道矩阵H的最小维数。如果H可缩减为块对角矩阵,则以减小的复杂度计算每个块的SVD。实际上,如果将信道矩阵分成具有维数n1和n2的两个块矩阵,使得n=n1+n2,则SVD的复杂度仅为O(n1 3)+O(n2 3)<O(n3)。在极端情况下,如果H为对角矩阵,则DIDO链路缩减到多个SISO链路且无需SVD计算。Computational Gain: DIDO precoding is computed only within each group in the cluster. For example, if BD precoding is used, the singular value decomposition (SVD) has complexity O( n3 ), where n is the minimum dimension of the channel matrix H. If H can be reduced to a block diagonal matrix, the SVD of each block is computed with reduced complexity . In fact, if the channel matrix is split into two block matrices with dimensions n1 and n2 , such that n = n1 + n2 , the complexity of SVD is only O( n13 ) + O( n23 ) < O( n3 ). In the extreme case, if H is a diagonal matrix, the DIDO link is reduced to multiple SISO links and no SVD computation is required.

·减少的CSI反馈开销:当DIDO天线和客户端被分成组时,在一个实施例中,仅在同一组内计算从客户端到天线的CSI。在TDD系统中,假定信道互易性,天线分组减少用以计算信道矩阵H的信道估计的数量。在其中CSI是在无线链路上反馈的FDD系统中,天线分组进一步产生DIDO天线与客户端之间的无线链路上的CSI反馈开销的减少。Reduced CSI feedback overhead: When DIDO antennas and clients are grouped, in one embodiment, CSI is computed from clients to antennas only within the same group. In TDD systems, assuming channel reciprocity, antenna grouping reduces the number of channel estimates used to compute the channel matrix H. In FDD systems, where CSI is fed back over the wireless link, antenna grouping further reduces CSI feedback overhead over the wireless link between DIDO antennas and clients.

用于DIDO上行链路信道的多址接入技术Multiple access technology for DIDO uplink channels

在本发明的一个实施例中,不同多址接入技术被定义用于DIDO上行链路信道。这些技术可用于在上行链路上从客户端到DIDO天线反馈CSI或发射数据流。下文中,我们将反馈CSI和数据流称为上行链路流。In one embodiment of the present invention, different multiple access techniques are defined for the DIDO uplink channel. These techniques can be used to feed back CSI or transmit data streams from the client to the DIDO antennas on the uplink. Hereinafter, we refer to the fed back CSI and data streams as uplink streams.

·多输入多输出(MIMO):上行链路流是经由开放回路MMO多路复用方案从客户端发射到DIDO天线。此方法假定所有客户端经时间/频率同步。在一个实施例中,客户端之间的同步是经由来自下行链路的训练而实现且所有DIDO天线经假定为锁定到同一时间/频率基准时钟。需注意,在不同客户端处的延迟扩展的变化可生成在不同客户端的时钟之间的抖动,所述抖动可影响MIMO上行链路方案的性能。在客户端经由MMO多路复用方案发送上行链路流后,接收DIDO天线可使用非线性(即,最大似然,ML)或线性(即,逼零最小均方差)接收器来消除同信道干扰并个别地解调上行链路流。Multiple Input Multiple Output (MIMO): The uplink streams are transmitted from the clients to the DIDO antennas via an open-loop MIMO multiplexing scheme. This approach assumes that all clients are time/frequency synchronized. In one embodiment, synchronization between the clients is achieved via training from the downlink and all DIDO antennas are assumed to be locked to the same time/frequency reference clock. Note that variations in delay spread at different clients can generate jitter between the clocks of different clients, which can affect the performance of the MIMO uplink scheme. After the client sends the uplink streams via the MIMO multiplexing scheme, the receiving DIDO antennas can use nonlinear (i.e., maximum likelihood, ML) or linear (i.e., zero-forcing minimum mean square error) receivers to cancel co-channel interference and individually demodulate the uplink streams.

·时分多址(TDMA):将不同的客户端分配至不同的时隙。每个客户端在其时隙可用时发送其上行链路流。Time Division Multiple Access (TDMA): Different clients are assigned to different time slots. Each client sends its uplink stream when its time slot is available.

·频分多址(FDMA):将不同的客户端分配至不同的载波频率。在多载波(OFDM)系统中,将音调的子集分配给同时发射上行链路流的不同客户端,从而减少延迟。Frequency Division Multiple Access (FDMA): Assigns different clients to different carrier frequencies. In multi-carrier (OFDM) systems, subsets of tones are assigned to different clients transmitting uplink streams simultaneously, thus reducing latency.

·码分多址(CDMA):将每个客户端分配至不同的伪随机序列并在码域中实现跨越客户端的正交性。Code Division Multiple Access (CDMA): Assigns each client a different pseudo-random sequence and achieves orthogonality across clients in the code domain.

在本发明的一个实施例中,客户端为以比DIDO天线低得多的功率发射的无线设备。在这种情况下,DIDO BTS基于上行链路SNR信息定义客户端子集,使得跨越子组的干扰被最小化。在每个子组内,将上述多址接入技术用以创建在时域、频域、空间域或码域中的正交信道,从而避免跨越不同客户端的上行链路干扰。In one embodiment of the present invention, clients are wireless devices that transmit at significantly lower power than the DIDO antennas. In this case, the DIDO BTS defines client subsets based on uplink SNR information to minimize interference across the subsets. Within each subset, the aforementioned multiple access techniques are used to create orthogonal channels in the time, frequency, spatial, or code domains, thereby avoiding uplink interference across different clients.

在另一个实施例中,结合先前章节中提出的天线分组方法使用上文描述的上行链路多址接入技术以定义DIDO群集内的不同客户端组。In another embodiment, the uplink multiple access technique described above is used in conjunction with the antenna grouping method proposed in the previous section to define different client groups within a DIDO cluster.

用于DIDO多载波系统中的链路自适应的系统和方法Systems and methods for link adaptation in DIDO multi-carrier systems

在美国专利No.7,636,381中定义利用无线信道的时间、频率和空间选择性的DIDO系统的链路自适应方法。下文描述用于利用无线信道的时间/频率选择性的多载波(OFDM)DIDO系统中的链路自适应的本发明的实施例。A link adaptation method for a DIDO system that exploits the time, frequency, and spatial selectivity of a wireless channel is defined in U.S. Patent No. 7,636,381. The following describes embodiments of the present invention for link adaptation in a multi-carrier (OFDM) DIDO system that exploits the time/frequency selectivity of a wireless channel.

我们根据[9]中的按指数规律衰减功率延迟分布(PDP)或萨利赫-巴伦苏埃拉模型(Saleh-Valenzuela model)来模拟瑞利衰落信道。为简单起见,我们假定具有多路径PDP的单群集信道被定义为We model the Rayleigh fading channel according to the exponentially decaying power delay profile (PDP) or Saleh-Valenzuela model in [9]. For simplicity, we assume a single cluster channel with multipath PDP defined as

Pn=e-βn (21)P n =e -βn (21)

其中n=0,…,L-1为信道抽头的索引,L为信道抽头的数量,β=1/σDS是为信道相干带宽的指示符、与信道延迟扩展(σDS)成反比的PDP指数。β的低值产生频率平坦信道,而β的高值产生频率选择性信道。对(21)中的PDP进行归一化,使得所有L信道抽头的总平均功率为统一的where n = 0, ..., L-1 is the index of the channel tap, L is the number of channel taps, and β = 1/σ DS is the PDP index, which is an indicator of the channel coherence bandwidth and is inversely proportional to the channel delay spread (σ DS ). Low values of β produce frequency-flat channels, while high values of β produce frequency-selective channels. The PDP in (21) is normalized so that the total average power of all L channel taps is unity

图27示出了DIDO 2×2系统的在延迟域或瞬时PDP(上部曲线)和频域(下部曲线)上的低频选择性信道(假定β=1)的振幅。第一个下标指示客户端,第二个下标指示发射天线。高频选择性信道(其中β=0.1)示于图28中。Figure 27 shows the amplitude of a low-frequency selective channel (assuming β = 1) for a DIDO 2×2 system in the delay domain or instantaneous PDP (upper curve) and the frequency domain (lower curve). The first subscript indicates the client and the second subscript indicates the transmit antenna. A high-frequency selective channel (where β = 0.1) is shown in Figure 28.

接下来,我们研究在频率选择性信道中DIDO预编码的性能。假定(1)中的信号模型满足(2)中的条件,我们经由BD计算DIDO预编码权重。我们通过(2)中的条件将(5)中的DIDO接收信号模型重新公式化为Next, we study the performance of DIDO precoding in frequency selective channels. Assuming that the signal model in (1) satisfies the conditions in (2), we calculate the DIDO precoding weights via BD. We reformulate the DIDO received signal model in (5) using the conditions in (2) as

rk=Heksk+nk· (23)r k =H ek s k +n k · (23)

其中Hek=HkWk为用户k的有效信道矩阵。对于每个客户端单个天线的DIDO 2×2,有效信道矩阵减少到具有图29中所示的频率响应并用于由图28中的高频率选择性(如,其中β=0.1)特征化的信道的一个值。图29中的实线指代客户端1,而具有点的线指代客户端2。基于图29中的信道质量量度,我们定义根据变化的信道条件而动态地调整MCS的时域/频域链路自适应(LA)方法。where Hek = Hk Wk is the effective channel matrix for user k. For DIDO 2×2 with a single antenna per client, the effective channel matrix reduces to a value with the frequency response shown in FIG29 and for a channel characterized by high frequency selectivity (e.g., with β = 0.1) in FIG28. The solid line in FIG29 refers to client 1, while the dotted line refers to client 2. Based on the channel quality metrics in FIG29, we define a time/frequency domain link adaptation (LA) method that dynamically adjusts the MCS according to changing channel conditions.

我们以评估AWGN和瑞利衰落SISO信道中的不同MCS的性能开始。为简单起见,我们假定无FEC编码,但以下LA方法可扩展到包括FEC的系统。We begin by evaluating the performance of different MCSs in AWGN and Rayleigh fading SISO channels. For simplicity, we assume no FEC coding, but the following LA method can be extended to systems including FEC.

图30示出了不同QAM方案(即4-QAM、16-QAM、64-QAM)的SER。在不失一般性的情况下,我们对于未编码系统假定1%的目标SER。用以在AWGN信道中满足所述目标SER的SNR阈值对于三个调制方案分别为8dB、15.5dB及22dB。在瑞利衰落信道中,熟知上述调制方案的SER性能比AWGN差[13],且SNR阈值分别为:18.6dB、27.3dB和34.1dB。我们观察到DIDO预编码将多用户下行链路信道变换成的一组并行SISO链路。因此,在逐客户端基础上,用于SISO系统的与图30中相同的SNR阈值适用于DIDO系统。此外,如果执行瞬时LA,则使用AWGN信道中的阈值。FIG30 shows the SER for different QAM schemes (i.e., 4-QAM, 16-QAM, 64-QAM). Without loss of generality, we assume a target SER of 1% for the uncoded system. The SNR thresholds used to meet the target SER in an AWGN channel are 8 dB, 15.5 dB, and 22 dB for the three modulation schemes, respectively. In Rayleigh fading channels, it is well known that the SER performance of the above modulation schemes is worse than that of AWGN [13], and the SNR thresholds are 18.6 dB, 27.3 dB, and 34.1 dB, respectively. We observe that DIDO precoding transforms the multi-user downlink channel into a set of parallel SISO links. Therefore, on a per-client basis, the same SNR thresholds used for the SISO system as in FIG30 apply to the DIDO system. Furthermore, if instantaneous LA is performed, the thresholds in the AWGN channel are used.

用于DIDO系统的所提议LA方法的关键思想是当信道经历时域或频域中的深衰落(示于图28中)时使用低MCS阶数以提供链路稳健性。相反,当信道被大增益特征化时,LA方法切换到较高MCS阶数以增加频谱效率。与美国专利No.7,636,381相比,本专利申请的一个贡献是使用(23)和图29中的有效信道矩阵作为量度以允许实现自适应。The key idea of the proposed LA method for DIDO systems is to use a low MCS order to provide link robustness when the channel experiences deep fading in the time or frequency domain (shown in FIG28 ). Conversely, when the channel is characterized by large gain, the LA method switches to a higher MCS order to increase spectral efficiency. One contribution of this patent application compared to U.S. Patent No. 7,636,381 is the use of (23) and the effective channel matrix in FIG29 as a metric to allow for adaptation.

LA方法的总框架示于图31中并定义如下:The overall framework of the LA method is shown in Figure 31 and defined as follows:

·CSI估计:在3171处,DIDO BTS计算来自所有用户的CSI。用户可以配备有单个或多个接收天线。• CSI estimation: The DIDO BTS calculates the CSI from all users at 3171. Users can be equipped with single or multiple receive antennas.

·DIDO预编码:在3172处,BTS计算所有用户的DIDO预编码权重。在一个实施例中,BD用于计算这些权重。预编码权重是基于逐音调地计算。DIDO Precoding: At 3172, the BTS calculates the DIDO precoding weights for all users. In one embodiment, BD is used to calculate these weights. The precoding weights are calculated on a tone-by-tone basis.

·链路质量量度计算:在3173处,BTS计算频域链路质量量度。在OFDM系统中,根据CSI和用于每个音调的DIDO预编码权重计算该量度。在本发明的一个实施例中,链路质量量度为所有OFDM音调上的平均SNR。我们将该方法定义为LA1(基于平均SNR性能)。在另一个实施例中,链路质量量度为(23)中的有效信道的频率响应。我们将该方法定义为LA2(基于逐音调性能以利用频率分集)。如果每个客户端具有单个天线,则频域有效信道示于图29中。如果客户端具有多个接收天线,则将链路质量量度定义为每个音调的有效信道矩阵的Frobenius范数。或者,对于每个客户端将多个链路质量量度定义为(23)中的有效信道矩阵的奇异值。· Link quality metric calculation: At 3173, the BTS calculates the frequency domain link quality metric. In an OFDM system, this metric is calculated based on the CSI and the DIDO precoding weights for each tone. In one embodiment of the present invention, the link quality metric is the average SNR over all OFDM tones. We define this method as LA1 (based on average SNR performance). In another embodiment, the link quality metric is the frequency response of the effective channel in (23). We define this method as LA2 (based on per-tone performance to exploit frequency diversity). If each client has a single antenna, the frequency domain effective channel is shown in Figure 29. If the client has multiple receive antennas, the link quality metric is defined as the Frobenius norm of the effective channel matrix for each tone. Alternatively, multiple link quality metrics are defined for each client as the singular values of the effective channel matrix in (23).

·比特加载算法:在3174处,基于链路质量量度,BTS确定用于不同客户端和不同OFDM音调的MCS。对于LA1方法,基于图30中的瑞利衰落信道的SNR阈值而将相同的MCS用于所有客户端和所有OFDM音调。对于LA2,将不同MCS分配至不同OFDM音调,以利用信道频率分集。Bitloading Algorithm: Based on the link quality metric, the BTS determines the MCS for different clients and different OFDM tones at 3174. For the LA1 method, the same MCS is used for all clients and all OFDM tones based on the SNR threshold for the Rayleigh fading channel in Figure 30. For LA2, different MCSs are assigned to different OFDM tones to exploit channel frequency diversity.

·预编码数据发射:在3175处,BTS使用由比特加载算法得出的MCS将预编码的数据流从DIDO分布式天线发射至客户端。将一个标头附接到预编码数据以将用于不同音调的MCS传送至客户端。例如,如果八个MCS可用且OFDM符号是以N=64个音调定义,则需要log2(8)*N=192个比特来将当前的MCS传送至每个客户端。假定用4-QAM(2比特/符号频谱效率)将那些比特映射到符号中,仅需要192/2/N=1.5个OFDM符号来映射MCS信息。在另一个实施例中,将多个子载波(或OFDM音调)分组成子频带,并将相同的MCS分配给相同子频带中的所有音调以减少归因于控制信息的开销。此外,基于信道增益的时间变化(与相干时间成正比)调整MCS。在固定无线信道(通过低多普勒效应特征化)中,每隔信道相干时间的一部分重新计算MCS,从而减少控制信息所需的开销。· Precoded data transmission: At 3175, the BTS transmits the precoded data stream from the DIDO distributed antenna to the client using the MCS derived by the bit loading algorithm. A header is attached to the precoded data to convey the MCS for the different tones to the client. For example, if eight MCSs are available and the OFDM symbol is defined with N=64 tones, then log2 (8)*N=192 bits are required to convey the current MCS to each client. Assuming that those bits are mapped into symbols with 4-QAM (2 bits/symbol spectral efficiency), only 192/2/N=1.5 OFDM symbols are required to map the MCS information. In another embodiment, multiple subcarriers (or OFDM tones) are grouped into subbands and the same MCS is assigned to all tones in the same subband to reduce the overhead due to control information. In addition, the MCS is adjusted based on the time variation of the channel gain (proportional to the coherence time). In fixed wireless channels (characterized by low Doppler effects), the MCS is recalculated every fraction of the channel coherence time, thereby reducing the overhead required for control information.

图32示出了上文所述的LA方法的SER性能。为了比较,针对所使用的三个QAM方案中的每一者绘制瑞利衰落信道中的SER性能。LA2方法使MCS适应有效信道在频域中的波动,从而与LA1相比提供用于低SNR(即SNR=20dB)的频谱效率的1.8bps/Hz的增益及SNR(对于SNR>35dB)中的15dB增益。Figure 32 shows the SER performance of the LA method described above. For comparison, the SER performance in a Rayleigh fading channel is plotted for each of the three QAM schemes used. The LA2 method adapts the MCS to the fluctuations of the effective channel in the frequency domain, providing a 1.8 bps/Hz gain in spectral efficiency for low SNRs (i.e., SNR = 20 dB) and a 15 dB gain in SNR (for SNR > 35 dB) compared to LA1.

用于多载波系统中的DIDO预编码内插的系统和方法Systems and methods for DIDO precoding interpolation in multi-carrier systems

DIDO系统的计算复杂度主要局限于集中式处理器或BTS。计算上代价最大的运算为根据所有客户端的CSI计算所有客户端的预编码权重。当使用BD预编码时,BTS必须执行与系统中的客户端数量一样多的奇异值分解(SVD)运算。减少复杂度的一种方式是通过并行处理,其中在用于每个客户端的独立处理器上计算SVD。The computational complexity of a DIDO system is primarily confined to the centralized processor or BTS. The most computationally expensive operation is the calculation of precoding weights for all clients based on their CSI. When using BD precoding, the BTS must perform as many singular value decomposition (SVD) operations as there are clients in the system. One way to reduce complexity is through parallel processing, where the SVD is calculated on a separate processor for each client.

在多载波DIDO系统中,每个子载波经历平坦衰落信道,并且在每个子载波上针对每个客户端执行SVD。显然,系统的复杂度随子载波数量线性增大。例如,在具有1MHz信号带宽的OFDM系统中,循环前缀(L0)必须具有至少八个信道抽头(即,8微秒的持续时间)以避免在具有大延迟扩展的室外城市巨型小区环境中的符号间干扰[3]。用于生成OFDM符号的快速傅里叶变换(FFT)的大小(NFFT)通常被设定为L0的倍数以减少数据速率的损失。如果NFFT=64,则系统的有效频谱效率由因子NFFT/(NFFT+L0)=89%限制。NFFT的较大值以DIDO预编码器处的较高计算复杂度为代价产生较高频谱效率。In a multi-carrier DIDO system, each subcarrier experiences a flat fading channel, and SVD is performed on each subcarrier for each client. Obviously, the complexity of the system increases linearly with the number of subcarriers. For example, in an OFDM system with a 1 MHz signal bandwidth, the cyclic prefix (L 0 ) must have at least eight channel taps (i.e., a duration of 8 microseconds) to avoid inter-symbol interference in an outdoor urban macrocell environment with large delay spread [3]. The size of the fast Fourier transform (FFT) used to generate OFDM symbols ( NFFT ) is typically set to a multiple of L0 to reduce the loss of data rate. If NFFT = 64, the effective spectral efficiency of the system is limited by the factor NFFT / ( NFFT + L 0 ) = 89%. Larger values of NFFT produce higher spectral efficiency at the expense of higher computational complexity at the DIDO precoder.

减少DIDO预编码器处的计算复杂度的一种方式是在音调的子集(我们称为导频音调)上执行SVD运算并经由内插导出用于剩余音调的预编码权重。权重内插为导致客户端间干扰的一个误差源。在一个实施例中,将最佳权重内插技术用以减少客户端间干扰,从而在多载波系统中产生改进的错误率性能及较低计算复杂度。在具有M个发射天线、U个客户端及每客户端N个接收天线的DIDO系统中,保证对其他客户端u的零干扰的第k个客户端的预编码权重(Wk)的条件是从(2)导出为One way to reduce the computational complexity at the DIDO precoder is to perform an SVD operation on a subset of tones (which we call pilot tones) and derive the precoding weights for the remaining tones via interpolation. Weight interpolation is a source of error that leads to inter-client interference. In one embodiment, an optimal weight interpolation technique is used to reduce inter-client interference, resulting in improved error rate performance and lower computational complexity in multi-carrier systems. In a DIDO system with M transmit antennas, U clients, and N receive antennas per client, the condition for the precoding weight ( Wk ) of the kth client to guarantee zero interference to other clients u is derived from (2) as

其中Hu为对应于系统中的其他DIDO客户端的信道矩阵。where Hu is the channel matrix corresponding to other DIDO clients in the system.

在本发明的一个实施例中,权重内插方法的目标函数被定义为In one embodiment of the present invention, the objective function of the weight interpolation method is defined as

其中θk为待针对用户k最优化的参数的集合,为权重内插矩阵且||·||F表示矩阵的Frobenius范数。最优化问题用公式表示为where θk is the set of parameters to be optimized for user k, is the weight interpolation matrix and ||·|| F represents the Frobenius norm of the matrix. The optimization problem is formulated as

其中Θk为最优化问题的可行集合,θk,opt为最佳解。Where Θk is the feasible set of the optimization problem and θk ,opt is the optimal solution.

(25)中的目标函数被定义用于一个OFDM音调。在本发明的另一个实施例中,目标函数被定义为待内插的所有OFDM音调的矩阵的(25)中的Frobenius范数的线性组合。在另一个实施例中,将OFDM频谱分成音调的子集且最佳解由下式给出The objective function in (25) is defined for one OFDM tone. In another embodiment of the present invention, the objective function is defined as a linear combination of the Frobenius norms in (25) of the matrices of all OFDM tones to be interpolated. In another embodiment, the OFDM spectrum is divided into subsets of tones and the optimal solution is given by

其中n为OFDM音调索引且A为音调的子集。where n is the OFDM tone index and A is the subset of tones.

将(25)中的权重内插矩阵Wkk)表示为参数θk的集合的函数。一旦根据(26)或(27)确定最佳集合,就能计算最佳权重矩阵。在本发明的一个实施例中,给定OFDM音调n的权重内插矩阵被定义为导频音调的权重矩阵的线性组合。用于具有单个客户端的波束成形系统的权重内插函数的一个例子定义于[11]中。在DIDO多客户端系统中,我们将权重内插矩阵写成The weight interpolation matrix Wk ( θk ) in (25) is expressed as a function of the set of parameters θk . Once the best set is determined according to (26) or (27), the optimal weight matrix can be calculated. In one embodiment of the present invention, the weight interpolation matrix for a given OFDM tone n is defined as a linear combination of the weight matrices of the pilot tones. An example of a weight interpolation function for a beamforming system with a single client is defined in [11]. In a DIDO multi-client system, we write the weight interpolation matrix as

其中0≤l≤(L0-1),L0为导频音调的数量且cn=(n-1)/N0,其中N0=NFFT/L0。然后对(28)中的权重矩阵进行归一化,使得以保证来自每个天线的统一功率发射。如果N=1(每客户端单个接收天线),则(28)中的矩阵变成关于其范数而归一化的向量。在本发明的一个实施例中,在OFDM音调的范围内均匀地挑选导频音调。在另一个实施例中,基于CSI自适应地挑选导频音调以最小化内插误差。where 0≤l≤( L0-1 ), L0 is the number of pilot tones and cn =(n-1)/ N0 , where N0 = NFFT / L0 . The weight matrix in (28) is then normalized so that to ensure uniform power transmission from each antenna. If N=1 (single receive antenna per client), the matrix in (28) becomes a vector normalized with respect to its norm. In one embodiment of the present invention, the pilot tones are picked uniformly over the range of OFDM tones. In another embodiment, the pilot tones are picked adaptively based on the CSI to minimize interpolation error.

我们观察到[11]中的系统和方法与本专利申请中所提议的系统和方法的一个关键差异为目标函数。具体地讲,[11]中的系统假定多个发射天线和单个客户端,因而相关方法被设计用于最大化预编码权重乘信道的积以最大化客户端的接收SNR。然而,此方法在多客户端情形中不起作用,因为其归因于内插误差而产生客户端间干扰。相比之下,我们的方法被设计用于最小化客户端间干扰,从而对于所有客户端改进错误率性能。We observe that a key difference between the system and method in [11] and the system and method proposed in this patent application is the objective function. Specifically, the system in [11] assumes multiple transmit antennas and a single client, and thus the related method is designed to maximize the product of the precoding weight and the channel to maximize the client's received SNR. However, this method does not work in the multi-client scenario because it generates inter-client interference due to interpolation errors. In contrast, our method is designed to minimize inter-client interference, thereby improving the error rate performance for all clients.

图33示出了对于其中NFFT=64及L0=8的DIDO 2×2系统,(28)中的矩阵的项随OFDM音调索引的变化关系。信道PDP根据(21)中的模型(其中β=1)而生成,并且信道由仅八个信道抽头组成。我们观察到L0必须经挑选为大于信道抽头的数量。图33中的实线表示理想函数,而虚线为内插函数。根据(28)中的定义,对于导频音调,内插权重匹配理想函数。在剩余音调上计算的权重归因于估计误差而仅近似于理想情况。FIG33 shows how the entries of the matrix in (28) vary with the OFDM tone index for a DIDO 2×2 system with NFFT = 64 and L0 = 8. The channel PDP is generated according to the model in (21) with β = 1, and the channel consists of only eight channel taps. We observe that L0 must be chosen to be larger than the number of channel taps. The solid line in FIG33 represents the ideal function, while the dashed line is the interpolated function. According to the definition in (28), for the pilot tone, the interpolated weights match the ideal function. The weights computed on the remaining tones only approximate the ideal case due to estimation error.

实施权重内插方法的一种方式为经由对(26)中的可行集合Θk进行穷举搜索。为了减少搜索的复杂度,我们将可行集合量化成均匀地在范围[0,2π]内的P值。图34示出了对于L0=8、M=Nt=2个发射天线以及可变数量的P的SER与SNR的关系。当量化等级的数量增加时,SER性能改进。我们观察到归因于减少的搜索数量的低得多的计算复杂度,P=10的情况接近P=100的性能。One way to implement the weight interpolation method is via an exhaustive search of the feasible set Θk in (26). To reduce the complexity of the search, we quantize the feasible set to P values uniformly in the range [0, 2π]. Figure 34 shows the SER versus SNR for L0 = 8, M = Nt = 2 transmit antennas, and a variable number of P. As the number of quantization levels increases, the SER performance improves. We observe that the case of P = 10 approaches the performance of P = 100, due to the much lower computational complexity due to the reduced number of searches.

图35示出了针对不同DIDO阶数及L0=16的内插方法的SER性能。我们假定客户端数量与发射天线数量相同,并且每个客户端配备有单个天线。当客户端数量增大时,SER性能归因于由权重内插误差产生的客户端间干扰增加而降低。Figure 35 shows the SER performance for different DIDO orders and the interpolation method with L 0 = 16. We assume that the number of clients is the same as the number of transmit antennas and each client is equipped with a single antenna. When the number of clients increases, the SER performance decreases due to the increase in inter-client interference caused by weight interpolation errors.

在本发明的另一个实施例中,使用不同于(28)中的那些权重内插函数的权重内插函数。例如,可将线性预测自回归模型[12]用以基于对信道频率相关性的估计值而跨越不同OFDM音调内插权重。In another embodiment of the present invention, weight interpolation functions different from those in (28) are used. For example, a linear predictive autoregressive model [12] can be used to interpolate weights across different OFDM tones based on an estimate of the channel frequency correlation.

参考文献References

[1]A.Forenza and S.G.Perlman,“System and method for distributedantenna wireless communications”(A.Forenza和S.G.Perlman,“用于分布式天线无线通信的系统和方法”),2009年12月2日提交的名称为“System and Method For DistributedAntenna Wireless Communications”(用于分布式天线无线通信的系统和方法)的美国专利申请序列号12/630,627[1] A. Forenza and S. G. Perlman, “System and method for distributed antenna wireless communications,” U.S. patent application Ser. No. 12/630,627, filed Dec. 2, 2009, entitled “System and Method For Distributed Antenna Wireless Communications.”

[2]FCC,“Evaluating compliance with FCC guidelines for human exposureto radiofrequency electromagnetic fields,”OET Bulletin 65,Ed.97-01,Aug.1997(FCC,《评估是否符合对人体暴露于射频电磁场的FCC准则》,OET公告65,第97-01版,1997年8月)[2]FCC, “Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields,” OET Bulletin 65, Ed. 97-01, Aug. 1997

[3]3GPP,“Spatial Channel Model AHG(Combined ad-hoc from 3GPP&3GPP2)”,SCM Text V6.0,April 22,2003(3GPP,“空间信道模型AHG(来自3GPP&3GPP2的组合自组织)”,SCM文本V6.0,2003年4月22日)[3] 3GPP, “Spatial Channel Model AHG (Combined ad-hoc from 3GPP&3GPP2)”, SCM Text V6.0, April 22, 2003

[4]3GPP TR 25.912,“Feasibility Study for Evolved UTRA and UTRAN”,V9.0.0(2009-10)(3GPP TR 25.912,“演进的UTRA和UTRAN的可行性研究”,V9.0.0,2009年10月)[4] 3GPP TR 25.912, “Feasibility Study for Evolved UTRA and UTRAN”, V9.0.0 (2009-10)

[5]3GPP TR 25.913,“Requirements for Evolved UTRA(E-UTRA)and EvolvedUTRAN(E-UTRAN)”,V8.0.0(2009-01)(3GPP TR 25.913,“对于演进的UTRA(E-UTRA)和演进的UTRAN(E-UTRAN)的要求”),V8.0.0,2009年1月)[5] 3GPP TR 25.913, “Requirements for Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN)”, V8.0.0 (2009-01)

[6]W.C.Jakes,Microwave Mobile Communications,IEEE Press,1974(W.C.Jakes,《微波移动通信》,IEEE出版社,1974年)[6]W.C.Jakes, Microwave Mobile Communications, IEEE Press, 1974

[7]K.K.Wong,et al.,“A joint channel diagonalization for multiuserMIMO antenna systems,”IEEE Trans.Wireless Comm.,vol.2,pp.773-786,July 2003(K.K.Wong等人,“多用户MIMO天线系统的联合信道对角化”,《IEEE无线通信学报》,第2卷,第773-786页,2003年7月);[7] K.K.Wong, et al., “A joint channel diagonalization for multiuser MIMO antenna systems,” IEEE Trans. Wireless Comm., vol. 2, pp. 773-786, July 2003.

[8]P.Viswanath,et al.,“Opportunistic beamforming using dumpantennas,”IEEE Trans.On Inform.Theory,vol.48,pp.1277–1294,June 2002(P.Viswanath等人,“使用转储天线的机会式波束成形”,《IEEE信息理论学报》,第48卷,第1277–1294页,2002年6月)。[8] P.Viswanath, et al., “Opportunistic beamforming using dump antennas,” IEEE Trans.On Inform.Theory, vol.48, pp.1277–1294, June 2002.

[9]A.A.M.Saleh,et al.,“A statistical model for indoor multipathpropagation,”IEEE Jour.Select.Areas in Comm.,vol.195SAC-5,no.2,pp.128–137,Feb.1987(A.A.M.Saleh等人,“室内多路径传播的统计模型”,《IEEE通信选域期刊》,第195SAC-5卷,第2期,第128–137页,1987年2月)。[9]A.A.M.Saleh,et al.,“A statistical model for indoor multipath propagation,”IEEE Jour.Select.Areas in Comm.,vol.195SAC-5,no.2,pp.128–137,Feb.1987.

[10]A.Paulraj,et al.,Introduction to Space-Time WirelessCommunications,Cambridge University Press,40West 20th Street,New York,NY,USA,2003(A.Paulraj等人,《空时无线通信导论》,剑桥大学出版社,美国纽约州纽约市40西第二十街,2003年)。[10]A.Paulraj,et al.,Introduction to Space-Time Wireless Communications,Cambridge University Press,40 West 20th Street,New York,NY,USA,2003(A.Paulraj et al.,Introduction to Space-Time Wireless Communications,Cambridge University Press,40 West 20th Street,New York,NY,USA,2003).

[11]J.Choi,et al.,“Interpolation Based Transmit Beamforming for MIMO-OFDM with Limited Feedback,”IEEE Trans.on Signal Processing,vol.53,no.11,pp.4125-4135,Nov.2005(J.Choi等人,“用于具有有限反馈的MIMO-OFDM的基于插值的发射波束成形”,《IEEE信号处理学报》,第53卷,第11期,第4125-4135页,2005年11月)。[11] J. Choi, et al., “Interpolation Based Transmit Beamforming for MIMO-OFDM with Limited Feedback,” IEEE Trans. on Signal Processing, vol. 53, no. 11, pp. 4125-4135, Nov. 2005.

[12]I.Wong,et al.,“Long Range Channel Prediction for Adaptive OFDMSystems,”Proc.of the IEEE Asilomar Conf.on Signals,Systems,and Computers,vol.1,pp.723-736,Pacific Grove,CA,USA,Nov.7-10,2004(I.Wong等人,“用于自适应OFDM系统的长期信道预测”,《IEEE阿西洛马信号、系统与计算机会议论文集》,第1卷,第723-736页,美国加利福尼亚州太平洋丛林镇,2004年11月7-10日)。[12] I.Wong, et al., “Long Range Channel Prediction for Adaptive OFDM Systems,” Proc. of the IEEE Asilomar Conf. on Signals, Systems, and Computers, vol. 1, pp. 723-736, Pacific Grove, CA, USA, Nov. 7-10, 2004.

[13]J.G.Proakis,Communication System Engineering,Prentice Hall,1994(J.G.Proakis,《通信系统工程》,普伦蒂斯霍尔出版社,1994年)[13] J.G.Proakis, Communication System Engineering, Prentice Hall, 1994

[14]B.D.Van Veen,et al.,“Beamforming:a versatile approach to spatialfiltering,”IEEE ASSP Magazine,Apr.1988(B.D.Van Veen等人,“波束成形:用于空间滤波的通用方法”,《IEEE ASSP杂志》,1988年4月)。[14] B.D. Van Veen, et al., “Beamforming: a versatile approach to spatial filtering,” IEEE ASSP Magazine, Apr. 1988.

[15]R.G.Vaughan,“On optimum combining at the mobile,”IEEE Trans.OnVehic.Tech.,vol37,n.4,pp.181-188,Nov.1988(R.G.Vaughan,“关于移动时的最佳组合”,《IEEE运载工具技术学报》,第37卷,第4期,第181-188页,1988年11月)[15] R.G.Vaughan, “On optimum combining at the mobile,” IEEE Trans.On Vehic.Tech., vol. 37, n. 4, pp. 181-188, Nov. 1988

[16]F.Qian,“Partially adaptive beamforming for correlatedinterference rejection,”IEEE Trans.On Sign.Proc.,vol.43,n.2,pp.506-515,Feb.1995(F.Qian,“用于相关干扰抑制的部分自适应波束成形”,《IEEE信号处理学报》,第43卷,第2期,第506-515页,1995年2月)[16] F. Qian, “Partially adaptive beamforming for correlated interference rejection,” IEEE Trans. On Sign. Proc., vol. 43, n. 2, pp. 506-515, Feb. 1995

[17]H.Krim,et.al.,“Two decades of array signal processing research,”IEEE Signal Proc.Magazine,pp.67-94,July 1996(H.Krim等人,“阵列信号处理研究二十年”,《IEEE信号处理杂志》,第67-94页,1996年7月)[17] H. Krim, et al., “Two decades of array signal processing research,” IEEE Signal Proc. Magazine, pp. 67-94, July 1996

[19]W.R.Remley,“Digital beamforming system”,US Patent N.4,003,016,Jan.1977(W.R.Remley,“数字波束成形系统”,美国专利No.4,003,016,1977年1月)[19]W.R.Remley, “Digital beamforming system”, US Patent N.4,003,016, Jan. 1977

[18]R.J.Masak,“Beamforming/null-steering adaptive array”,US PatentN.4,771,289,Sep.1988(R.J.Masak,“波束成形/零控自适应阵列”,美国专利No.4,771,289,1988年9月)[18] R.J.Masak, “Beamforming/null-steering adaptive array”, US Patent No. 4,771,289, Sep. 1988

[20]K.-B.Yu,et.al.,“Adaptive digital Beamforming architecture andalgorithm for nulling mainlobe and multiple sidelobe radar jammers whilepreserving monopulse ratio angle estimation accuracy”,US Patent 5,600,326,Feb.1997(K.-B.Yu等人,“用于归零主瓣和多个旁瓣雷达干扰器同时保持单脉冲比的角度估计精度的自适应数字波束成形架构和算法”,美国专利5,600,326,1997年2月)[20] K.-B.Yu, et al., “Adaptive digital Beamforming architecture and algorithm for nulling mainlobe and multiple sidelobe radar jammers while preserving monopulse ratio angle estimation accuracy”, US Patent 5,600,326, Feb. 1997

[21]H.Boche,et al.,“Analysis of different precoding/decodingstrategies for multiuser Beamforming”,IEEE Vehic.Tech.Conf.,vol.1,Apr.2003(H.Boche等人,“对于多用户波束成形的不同预编码/解码策略分析”,《IEEE车载技术会议》,第1卷,2003年4月)[21] H. Boche, et al., “Analysis of different precoding/decoding strategies for multiuser Beamforming”, IEEE Vehic. Tech. Conf., vol. 1, Apr. 2003

[22]M.Schubert,et al.,“Joint'dirty paper'pre-coding and downlinkBeamforming”vol.2,pp.536-540,Dec.2002(M.Schubert等人,“联合‘脏纸’预编码和下行链路波束成形”,第2卷,第536-540页,2002年12月)[22] M. Schubert, et al., “Joint’dirty paper’ pre-coding and downlink Beamforming” vol. 2, pp. 536-540, Dec. 2002 (M. Schubert et al., “Joint’dirty paper’ pre-coding and downlink beamforming”, vol. 2, pp. 536-540, Dec. 2002)

[23]H.Boche,et al.“A general duality theory for uplink and downlinkBeamforming”,vol.1,pp.87-91,Dec.2002(H.Boche等人,“上行链路和下行链路波束成形的一般对偶理论”,第1卷,第87-91页,2002年12月)[23] H. Boche, et al. “A general duality theory for uplink and downlink Beamforming”, vol. 1, pp. 87-91, Dec. 2002

[24]K.K.Wong,R.D.Murch,and K.B.Letaief,“A joint channeldiagonalization for multiuser MIMO antenna systems,”IEEE Trans.WirelessComm.,vol.2,pp.773–786,Jul 2003(K.K.Wong、R.D.Murch和K.B.Letaief,“多用户MIMO天线系统的联合信道对角化”,《IEEE无线通信学报》,第2卷,第773-786页,2003年7月);[24] K.K.Wong, R.D.Murch, and K.B.Letaief, “A joint channel diagonalization for multiuser MIMO antenna systems,” IEEE Trans.Wireless Comm., vol. 2, pp. 773–786, Jul 2003.

[25]Q.H.Spencer,A.L.Swindlehurst,and M.Haardt,“Zero forcing methodsfor downlink spatial multiplexing in multiuser MIMO channels,”IEEETrans.Sig.Proc.,vol.52,pp.461–471,Feb.2004(Q.H.Spencer、A.L.Swindlehurst和M.Haardt,“用于多用户MIMO信道中的下行链路空间多路复用的迫零方法”,《IEEE信号处理学报》,第52卷,第461-471页,2004年2月)。[25] Q.H.Spencer, A.L.Swindlehurst, and M.Haardt, “Zero forcing methods for downlink spatial multiplexing in multiuser MIMO channels,” IEEE Trans.Sig.Proc., vol.52, pp.461–471, Feb.2004.

II.来自相关专利申请序列号12/917,257的公开内容II. Disclosure from Related Patent Application Serial No. 12/917,257

下文描述使用协作地操作以创建到给定用户的无线链路同时抑制对其他用户的干扰的多个分布式发射天线的无线射频(RF)通信系统和方法。经由用户群集化而允许实现跨越不同发射天线的协调。用户群集为其信号可由给定用户可靠地检测(即,所接收信号强度在噪声或干扰电平之上)的发射天线的子集。系统中的每个用户定义其自身用户群集(user-cluter)。由同一用户群集内的发射天线发送的波形相干地组合以在目标用户的位置处创建RF能量,并在可由那些天线达到的任何其他用户的位置处创建零RF干扰点。The following describes a wireless radio frequency (RF) communication system and method using multiple distributed transmit antennas that operate cooperatively to create a wireless link to a given user while suppressing interference to other users. Coordination across different transmit antennas is enabled through user clustering. A user cluster is a subset of transmit antennas whose signals can be reliably detected by a given user (i.e., the received signal strength is above the noise or interference level). Each user in the system defines its own user cluster (user-cluter). The waveforms transmitted by the transmit antennas within the same user cluster coherently combine to create RF energy at the location of the target user and create a zero RF interference point at the location of any other users that can be reached by those antennas.

考虑在一个用户群集内具有M个发射天线以及可由那些M个天线达到的K个用户的系统,其中K≤M。我们假定发射器知晓M个发射天线与K个用户之间的CSI(H∈CK×M)。为简单起见,假定每个用户都配备有单个天线,但可将相同的方法扩展至每个用户多个接收天线。考虑通过将从M个发射天线到K个用户的信道向量(hk∈C1×M)组合而获得的如下信道矩阵HConsider a system with M transmit antennas and K users reachable by those M antennas within a user cluster, where K ≤ M. We assume that the transmitter knows the CSI between the M transmit antennas and the K users (H∈C K×M ). For simplicity, each user is assumed to be equipped with a single antenna, but the same approach can be extended to multiple receive antennas per user. Consider the following channel matrix H obtained by combining the channel vectors from the M transmit antennas to the K users (h k ∈C 1×M )

计算创建到用户k的RF能量及到所有其他K-1个用户的零RF能量的预编码权重(wk∈CM×1),以满足以下条件Calculate the precoding weights (w kC M×1 ) that create RF energy to user k and zero RF energy to all other K-1 users, such that the following conditions are satisfied:

其中为通过移除矩阵H的第k行而获得的用户k的有效信道矩阵,且0K×1为具有全部零项的向量。where is the effective channel matrix for user k obtained by removing the kth row of matrix H, and 0 K×1 is a vector with all zero entries.

在一个实施例中,无线系统为DIDO系统且使用用户群集化以创建到目标用户的无线通信链路,同时预先消除对可由位于用户群集内的天线达到的任何其他用户的干扰。在美国专利申请序列号12/630,627中,描述了DIDO系统,其包括:In one embodiment, the wireless system is a DIDO system and uses user clustering to create a wireless communication link to a target user while preemptively eliminating interference to any other users reachable by antennas within the user cluster. In U.S. patent application Ser. No. 12/630,627, a DIDO system is described that includes:

·DIDO客户端:配备有一个或多个天线的用户终端;DIDO client: A user terminal equipped with one or more antennas;

·DIDO分布式天线:收发器基站,其协作地操作以发射预编码的数据流到多个用户,从而抑制用户间干扰;DIDO distributed antennas: base transceiver stations that operate cooperatively to transmit precoded data streams to multiple users, thereby suppressing inter-user interference;

·DIDO收发器基站(BTS):集中式处理器,其生成到DIDO分布式天线的预编码的波形;DIDO Base Transceiver Station (BTS): A centralized processor that generates precoded waveforms to the DIDO distributed antennas;

·DIDO基站网络(BSN):有线回程,其连接BTS与DIDO分布式天线或其他BTS。DIDO Base Station Network (BSN): The wired backhaul that connects the BTS to the DIDO distributed antennas or other BTSs.

DIDO分布式天线根据其相对于BTS或DIDO客户端位置的空间分布而被分组成不同的子集。我们定义三种类型的群集,如图36中所示:DIDO distributed antennas are grouped into different subsets based on their spatial distribution relative to the BTS or DIDO client locations. We define three types of clusters, as shown in Figure 36:

·超级群集3640:为连接到一个或多个BTS的DIDO分布式天线组,使得所有BTS与相应用户之间的往返延迟在DIDO预编码回路的约束条件内;Supercluster 3640: A DIDO distributed antenna group connected to one or more BTSs such that the round-trip delay between all BTSs and the corresponding users is within the constraints of the DIDO precoding loop.

·DIDO群集3641:为连接到相同BTS的DIDO分布式天线组。当超级群集仅含有一个BTS时,其定义与DIDO群集一致;DIDO cluster 3641: A group of DIDO distributed antennas connected to the same BTS. When a supercluster contains only one BTS, its definition is the same as that of a DIDO cluster.

·用户群集3642:为协作地发射预编码数据到给定用户的DIDO分布式天线组。User cluster 3642: is a group of DIDO distributed antennas that cooperatively transmit precoded data to a given user.

例如,BTS为经由BSN连接到其他BTS及DIDO分布式天线的本地集线器。BSN可包含各种网络技术,包括但不限于数字用户线路(DSL)、ADSL、VDSL[6]、电缆调制解调器、光纤环、T1线路、光纤同轴混合(HFC)网络和/或固定无线(例如,WiFi)。同一超级群集内的所有BTS经由BSN共享关于DIDO预编码的信息,使得往返延迟在DIDO预编码回路内。For example, a BTS is a local hub connected to other BTSs and DIDO distributed antennas via a BSN. The BSN can include various network technologies, including but not limited to digital subscriber lines (DSL), ADSL, VDSL[6], cable modems, fiber rings, T1 lines, hybrid fiber-coaxial (HFC) networks, and/or fixed wireless (e.g., WiFi). All BTSs within the same super cluster share information about DIDO precoding via the BSN, so that the round-trip delay is within the DIDO precoding loop.

在图37中,分别地,点表示DIDO分布式天线,十字为用户且虚线指示用户U1和U8的用户群集。下文中描述的方法被设计用于创建到目标用户U1的通信链路,同时创建对于用户群集内部或外部的任何其他用户(U2到U8)的零RF能量点。In Figure 37, dots represent DIDO distributed antennas, crosses represent users, and dashed lines indicate user clusters for users U1 and U8, respectively. The method described below is designed to create a communication link to the target user U1 while creating zero RF energy points for any other users (U2 to U8) inside or outside the user cluster.

我们提议[5]中的类似方法,其中创建零RF能量点以移除DIDO群集之间的重叠区域中的干扰。需要额外天线来发射信号到DIDO群集内的客户端,同时抑制群集间干扰。本专利专利申请中所提议的方法的一个实施例并不试图移除DIDO群集间干扰;而是其假定群集绑定到客户端(即,用户-群集)并保证不对在所述邻域中的任何其他客户端生成干扰(或干扰可忽略)。We propose a similar approach in [5], where zero RF energy points are created to remove interference in the overlapping areas between DIDO clusters. Additional antennas are required to transmit signals to clients within a DIDO cluster while suppressing inter-cluster interference. One embodiment of the method proposed in this patent application does not attempt to remove inter-DIDO cluster interference; rather, it assumes that clusters are bound to clients (i.e., user-clusters) and guarantees that no interference (or negligible interference) is generated to any other clients in the neighborhood.

与所提议方法相关联的一个思想是距用户-群集足够远的用户归因于大的路径损耗而不受来自发射天线的辐射影响。靠近或在用户-群集内的用户归因于预编码而接收无干扰信号。此外,可添加额外发射天线到用户-群集(如图37所示),使得满足条件K≤M。One concept associated with the proposed method is that users far enough away from a user cluster are not affected by radiation from the transmit antenna due to large path loss. Users close to or within the user cluster receive interference-free signals due to precoding. Furthermore, additional transmit antennas can be added to the user cluster (as shown in FIG37 ) such that the condition K ≤ M is satisfied.

使用用户群集化的方法的一个实施例由以下步骤组成:One embodiment of a method using user clustering consists of the following steps:

a.链路质量测量:将每一DIDO分布式天线与每一用户之间的链路质量报告到BTS。链路质量量度由信噪比(SNR)或信号对干扰加噪声比(SINR)组成。a. Link quality measurement: The link quality between each DIDO distributed antenna and each user is reported to the BTS. The link quality metric consists of the signal-to-noise ratio (SNR) or the signal-to-interference-plus-noise ratio (SINR).

在一个实施例中,DIDO分布式天线发射训练信号,并且用户基于该训练来估计所接收信号质量。训练信号被设计为在时域、频域或码域中正交,使得用户可区别不同发射器。或者,DIDO天线以一个特定频率(即,信标信道)发射窄带信号(即,单个音调),且用户基于该信标信号估计链路质量。一个阈值被定义为用以成功地对数据进行解调的在噪声电平之上的最小信号振幅(或功率),如图38a中所示。在此阈值之下的任一链路质量量度值皆被假定为零。通过有限数量的比特量化链路质量量度,并将其反馈到发射器。In one embodiment, DIDO distributed antennas transmit training signals, and users estimate the received signal quality based on the training. The training signals are designed to be orthogonal in the time, frequency, or code domains so that users can distinguish between different transmitters. Alternatively, DIDO antennas transmit narrowband signals (i.e., a single tone) at a specific frequency (i.e., the beacon channel), and users estimate the link quality based on the beacon signal. A threshold is defined as the minimum signal amplitude (or power) above the noise level for successful data demodulation, as shown in Figure 38a. Any link quality metric value below this threshold is assumed to be zero. The link quality metric is quantized by a finite number of bits and fed back to the transmitter.

在不同的实施例中,从用户发送训练信号或信标,并在DIDO发射天线处估计链路质量(如图38b中所示),假定上行链路(UL)路径损耗与下行链路(DL)路径损耗之间的互易性。需注意,当UL和DL频带相对接近时,路径损耗互易性为时分双工(TDD)系统(具有在同一频率下的UL及DL信道)和频分双工(FDD)系统中的现实假定。In various embodiments, training signals or beacons are sent from users and link quality is estimated at the DIDO transmit antennas (as shown in FIG38b ), assuming reciprocity between uplink (UL) path loss and downlink (DL) path loss. Note that path loss reciprocity is a realistic assumption in time division duplex (TDD) systems (with UL and DL channels at the same frequency) and frequency division duplex (FDD) systems when the UL and DL frequency bands are relatively close.

如图37中所示,经由BSN跨越不同BTS共享关于链路质量量度的信息,使得所有BTS知晓跨越不同DIDO群集的每一天线/用户耦合之间的链路质量。As shown in FIG. 37 , information about link quality metrics is shared across different BTSs via the BSN so that all BTSs are aware of the link quality between each antenna/user coupling across different DIDO clusters.

b.用户-群集的定义:DIDO群集中的所有无线链路的链路质量量度为经由BSN跨越所有BTS共享的链路质量矩阵的项。图37中情形的链路质量矩阵的一个例子示于图39中。b. Definition of User-Clusters: The link quality metrics of all wireless links in a DIDO cluster are entries of a link quality matrix shared across all BTSs via the BSN. An example of a link quality matrix for the scenario in FIG37 is shown in FIG39.

用链路质量矩阵定义用户群集。例如,图39示出了用于用户U8的用户群集的选择。首先识别到用户U8的具有非零链路质量量度的发射器子集(即,活动发射器)。这些发射器填充用于用户U8的用户-群集。然后选择含有从用户-群集内的发射器到其他用户的非零项的子矩阵。需注意,因为链路质量量度仅用以选择用户群集,所以其可仅通过两个比特来量化(即,以识别在图38中阈值之上或之下的状态),从而降低反馈开销。The link quality matrix is used to define user clusters. For example, FIG39 illustrates the selection of a user cluster for user U8. First, a subset of transmitters with non-zero link quality metrics for user U8 (i.e., active transmitters) is identified. These transmitters populate the user cluster for user U8. Then, a sub-matrix containing non-zero entries from transmitters within the user cluster to other users is selected. Note that because the link quality metric is only used to select the user cluster, it can be quantized using only two bits (i.e., to identify states above or below the threshold in FIG38 ), thereby reducing feedback overhead.

图40中示出了用于用户U1的另一个例子。在这种情况下,活动发射器的数量低于子矩阵中的用户数量,从而违反条件K≤M。因此,将一个或多个列添加到子矩阵以满足该条件。如果发射器的数量超过用户数量,可将额外的天线用于分集方案(即,天线或本征模式选择)。Another example is shown in Figure 40 for user U1. In this case, the number of active transmitters is lower than the number of users in the submatrix, violating the condition K ≤ M. Therefore, one or more columns are added to the submatrix to satisfy this condition. If the number of transmitters exceeds the number of users, additional antennas can be used for diversity schemes (i.e., antenna or eigenmode selection).

图41示出了用于用户U4的又一个例子。我们观察到,所述子矩阵可作为两个子矩阵的组合来获得。Yet another example for user U4 is shown in Figure 41. We observe that the sub-matrix can be obtained as a combination of two sub-matrices.

c.到BTS的CSI报告:一旦选择用户群集,就使从用户-群集内的所有发射器到由那些发射器达到的每一用户的CSI可用于所有BTS。经由BSN跨越所有BTS共享CSI信息。在TDD系统中,可利用UL/DL信道互易性以从UL信道上的训练得出CSI。在FDD系统中,需要从所有用户到BTS的反馈信道。为了减少反馈量,仅反馈对应于链路质量矩阵的非零项的CSI。c. CSI reporting to BTSs: Once a user cluster is selected, CSI from all transmitters within the user cluster to each user reached by those transmitters is made available to all BTSs. CSI information is shared across all BTSs via the BSN. In TDD systems, UL/DL channel reciprocity can be exploited to derive CSI from training on the UL channel. In FDD systems, a feedback channel from all users to the BTS is required. To reduce the amount of feedback, only CSI corresponding to non-zero entries in the link quality matrix is fed back.

d.DIDO预编码:最后,将DIDO预编码应用于对应于不同用户群集的每个CSI子矩阵(例如,如相关美国专利申请中所述)。d. DIDO precoding: Finally, DIDO precoding is applied to each CSI sub-matrix corresponding to a different user cluster (eg, as described in related US patent applications).

在一个实施例中,计算有效信道矩阵的奇异值分解(SVD),并将用于用户k的预编码权重wk定义为对应于的零子空间的右奇异向量。或者,如果M>K且SVD将有效信道矩阵分解为则用于用户k的DIDO预编码权重由下式给出In one embodiment, the singular value decomposition (SVD) of the effective channel matrix is computed and the precoding weights wk for user k are defined as the right singular vectors in the null subspace corresponding to . Alternatively, if M>K and the SVD decomposes the effective channel matrix into , then the DIDO precoding weights for user k are given by

wk=Uo(Uo H·hk T)w k =U o (U o H ·h k T )

其中Uo是列为的零子空间的奇异向量的矩阵。where U o is the matrix whose columns are the singular vectors of the null subspace of .

根据基本线性代数考虑,我们观察到矩阵的零子空间中的右奇异向量等于对应于零特征值的C的特征向量。From basic linear algebra considerations, we observe that the right singular vectors in the null subspace of a matrix are equal to the eigenvectors of C corresponding to the zero eigenvalues.

其中根据SVD而将有效信道矩阵分解为然后,计算的SVD的一个替代方法为计算C的特征值分解。存在计算特征值分解的若干方法,如幂法。因为我们仅对对应于C的零子空间的特征向量感兴趣,所以我们使用由以下迭代描述的反幂法where the effective channel matrix is decomposed according to the SVD into Then, an alternative method to computing the SVD of is to compute the eigenvalue decomposition of C. There are several methods for computing the eigenvalue decomposition, such as the power method. Since we are only interested in the eigenvectors corresponding to the zero subspace of C, we use the inverse power method described by the following iteration

其中首先迭代的向量(ui)为随机向量。The first iterated vector (u i ) is a random vector.

考虑到零子空间的特征值(λ)已知(即,零),反幂法仅要求一次迭代以收敛,从而减少了计算复杂度。然后,我们将预编码权重向量写为Considering that the eigenvalue (λ) of the null subspace is known (i.e., zero), the inverse power method requires only one iteration to converge, thus reducing the computational complexity. We then write the precoding weight vector as

w=C-1u1 w=C -1 u 1

其中u1为实项等于1的向量(即,预编码权重向量为C-1的列的总和)。where u 1 is a vector whose real entries are equal to 1 (ie, the precoding weight vector is the sum of the columns of C -1 ).

DIDO预编码计算要求一次矩阵求逆。存在若干数值求解方案以减少矩阵求逆的复杂度,如Strassen的算法[1]或Coppersmith-Winograd的算法[2,3]。由于C在定义上为埃尔米特矩阵,所以替代解决方案为将C分解成其实部和虚部并根据[4,章节11.4]中的方法计算实矩阵的矩阵求逆。The DIDO precoding computation requires a matrix inversion. Several numerical solutions exist to reduce the complexity of the matrix inversion, such as Strassen's algorithm [1] or the Coppersmith-Winograd algorithm [2,3]. Since C is a Hermitian matrix by definition, an alternative solution is to decompose C into its real and imaginary parts and compute the matrix inversion of the real matrix according to the method in [4, Section 11.4].

所提议方法及系统的另一特征为其可重配置性。当如图42所示客户端跨越不同的DIDO群集移动时,用户-群集跟随其移动。换句话讲,当客户端改变其位置时,发射天线的子集不断更新且有效信道矩阵(和相应的预编码权重)被重新计算。Another feature of the proposed method and system is its reconfigurability. As a client moves across different DIDO clusters, as shown in Figure 42, the user-cluster follows it. In other words, as the client changes its location, the subset of transmit antennas is continuously updated and the effective channel matrix (and corresponding precoding weights) is recalculated.

本文所提议的方法在图36中的超级群集内起作用,因为经由BSN的BTS之间的链路必须是低延迟的。为了抑制不同超级群集的重叠区域中的干扰,可以使用[5]中的我们的方法,其使用额外天线在DIDO群集之间的干扰区域中创建零RF能量点。The proposed method works within the super cluster in Figure 36 because the links between BTSs via the BSN must be low latency. To suppress interference in the overlapping areas of different super clusters, our method in [5] can be used, which uses additional antennas to create zero RF energy points in the interference area between DIDO clusters.

应当指出的是,术语“用户”和“客户端”在本文中可互换地使用。It should be noted that the terms "user" and "client" are used interchangeably herein.

参考文献References

[1]S.Robinson,“Toward an Optimal Algorithm for MatrixMultiplication”,SIAM News,Volume 38,Number 9,November 2005(S.Robinson,“用于矩阵乘法的最优算法”,《美国工业与应用数学学会新闻》,第38卷,第9期,2005年11月)。[1] S. Robinson, “Toward an Optimal Algorithm for Matrix Multiplication”, SIAM News, Volume 38, Number 9, November 2005.

[2]D.Coppersmith and S.Winograd,“Matrix Multiplication via ArithmeticProgression”,J.Symb.Comp.vol.9,p.251-280,1990(D.oppersmith和S.Winograd,“经由等差数列的矩阵乘法”,《符号计算杂志》,第9卷,第251-280页,1990年)[2] D.Coppersmith and S.Winograd, “Matrix Multiplication via Arithmetic Progression”, J.Symb.Comp.vol.9,pp.251-280,1990

[3]H.Cohn,R.Kleinberg,B.Szegedy,C.Umans,“Group-theoretic Algorithmsfor Matrix Multiplication”,p.379-388,Nov.2005(H.Cohn、R.Kleinberg、B.Szegedy、C.Umans,“用于矩阵乘法的群论算法”,第379-388页,2005年11月)。[3] H. Cohn, R. Kleinberg, B. Szegedy, C. Umans, “Group-theoretic Algorithms for Matrix Multiplication”, p. 379-388, Nov. 2005.

[4]W.H.Press,S.A.Teukolsky,W.T.Vetterling,B.P.Flannery“NUMERICALRECIPES IN C:THE ART OF SCIENTIFIC COMPUTING”,Cambridge University Press,1992(W.H.Press、S.A.Teukolsky、W.T.Vetterling、B.P.Flannery,“C语言中的数值方法:科学计算的艺术”,剑桥大学出版社,1992年)[4] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery "Numerical Recipes in C: The Art of Scientific Computing", Cambridge University Press, 1992

[5]A.Forenza and S.G.Perlman,“Interference Management,Handoff,PowerControl and Link Adaptation in Distributed-Input Distributed-Output(DIDO)Communication Systems”(A.Forenza和S.G.Perlman,“分布式输入分布式输出(DIDO)通信系统中的干扰管理、越区切换、功率控制和链路自适应”),2010年6月16日提交的专利申请序列号12/802,988。[5] A. Forenza and S. G. Perlman, “Interference Management, Handoff, Power Control and Link Adaptation in Distributed-Input Distributed-Output (DIDO) Communication Systems,” patent application serial number 12/802,988, filed June 16, 2010.

[6]Per-Erik Eriksson andOdenhammar,“VDSL2:Next importantbroadband technology”,Ericsson Review No.1,2006(Per-Erik Eriksson和Odenhammar,“VDSL2:下一个重要的宽带技术”,《爱立信电话公司评论》,第1期,2006年)。[6] Per-Erik Eriksson and Odenhammar, “VDSL2: Next important broadband technology”, Ericsson Review No. 1, 2006.

III.在无线系统中利用同调性区域的系统和方法III. Systems and Methods for Utilizing Coherence Regions in Wireless Systems

实际传播环境中的多天线系统(MAS)的容量随无线链路上可用的空间分集而变化。空间分集是由无线信道中的散射体的分布以及发射及接收天线阵列的几何形状来确定。The capacity of a multiple antenna system (MAS) in a real propagation environment varies with the available spatial diversity on the radio link. Spatial diversity is determined by the distribution of scatterers in the radio channel and the geometry of the transmit and receive antenna arrays.

MAS信道的一个流行模型为所谓的群集信道模型,其将散射体组定义为定位于发射器及接收器周围的群集。一般来讲,群集越多且其角展度越大,则无线链路上可实现的空间分集及容量越高。群集信道模型已通过实际测量[1-2]验证,且那些模型的变型形式已由不同室内(即,针对WLAN的IEEE802.11ln技术组[3])及室外(针对3G蜂窝式系统的3GPP技术规范组[4])无线标准采用。A popular model for MAS channels is the so-called clustered channel model, which defines groups of scatterers as clusters located around a transmitter and a receiver. In general, the more clusters there are and the larger their angular spread, the higher the spatial diversity and capacity that can be achieved on the wireless link. Clustered channel models have been validated by real-world measurements [1-2], and variations of those models have been adopted by different indoor (i.e., the IEEE 802.111n technical group for WLANs [3]) and outdoor (3GPP technical specification group for 3G cellular systems [4]) wireless standards.

确定无线信道中的空间分集的其他因素为天线阵列的特性,包括:天线元件间距[5-7]、天线的数量[8-9]、阵列孔[10-11]、阵列几何形状[5,12,13]、极化及天线方向图[14-28]。Other factors that determine spatial diversity in wireless channels are the characteristics of the antenna array, including: antenna element spacing [5-7], number of antennas [8-9], array aperture [10-11], array geometry [5,12,13], polarization, and antenna pattern [14-28].

[29]中提出描述天线阵列设计以及传播信道的特性对无线链路的空间分集(或自由度)的影响的统一模型。[29]中的所接收信号模型由下式给出A unified model describing the effects of antenna array design and propagation channel characteristics on the spatial diversity (or degrees of freedom) of a wireless link is proposed in [29]. The received signal model in [29] is given by

y(q)=∫C(q,p)x(p)dp+z(q)y(q)=∫C(q,p)x(p)dp+z(q)

其中x(p)∈C3为描述发射信号的极化向量,p,q∈R3为分别描述发射阵列和接收阵列的极化向量位置,C(·,·)∈C3×3为描述发射向量位置与接收向量位置之间的系统响应的矩阵,其由下式给出Where x(p)∈C 3 is the polarization vector describing the transmitted signal, p,q∈R 3 are the polarization vector positions describing the transmit array and receive array respectively, and C(·,·)∈C 3×3 is the matrix describing the system response between the transmit vector position and the receive vector position, which is given by

其中At(·,·),Ar(·,·)∈C3×3分别为发射阵列响应及接收阵列响应且为信道响应矩阵,其中项为发射方向与接收方向之间的复增益。在DIDO系统中,用户设备可具有单个或多个天线。为简单起见,我们假定具有理想各向同性方向图的单天线接收器且将系统响应矩阵重写为where At (·,·), Ar (·,·)∈C3 ×3 are the transmit array response and receive array response, respectively, and is the channel response matrix, where the terms are the complex gains between the transmit and receive directions. In a DIDO system, a user device can have a single or multiple antennas. For simplicity, we assume a single-antenna receiver with an ideal isotropic pattern and rewrite the system response matrix as

其中仅考虑发射天线方向图Only the transmitting antenna pattern is considered

根据麦克斯韦方程组及格林函数的远场项,可将阵列响应近似为[29]According to Maxwell's equations and the far-field term of Green's function, the array response can be approximated as [29]

其中p∈P,P为定义天线阵列的空间且其中where p∈P, P is the space defining the antenna array and where

其中对于未极化天线,研究阵列响应等效于研究上文的积分核。在下文中,我们显示对于不同类型阵列的积分核的表达式的闭合。where for an unpolarized antenna, studying the array response is equivalent to studying the integration kernel above. In the following, we show that the expressions for the integration kernel for different types of arrays are closed.

未极化的线性阵列Unpolarized linear array

对于长度为L(由波长归一化)的未极化线性阵列和沿着z轴取向且中心位于原点的天线元件而言,其积分核给出如下[29]For an unpolarized linear array of length L (normalized by wavelength) and antenna elements oriented along the z-axis and centered at the origin, the integral kernel is given by [29]

a(cosθ,pz)=exp(-j2πpzcosθ).a(cosθ, p z )=exp(-j2πp z cosθ).

将上述等式扩展成为一系列移位并矢,我们获得,正弦函数具有为1/L的分辨率,且阵列有限及大致波向量有限的子空间的维数(即,自由度)为Expanding the above equation into a series of shifted dyadic vectors, we obtain that the sine function has a resolution of 1/L and the dimension (i.e., degrees of freedom) of the array-finite and approximately wave-vector-finite subspace is

DF=L|Ωθ|D F =L|Ω θ |

其中Ωθ={cosθ:θ∈Θ}。我们观察到,对于垂射阵列|Ωθ|=|Θ|,而对于端射阵列|Ωθ|≈|Θ|2/2.where Ω θ = {cosθ:θ∈Θ}. We observe that for the broadside array |Ω θ |= |Θ|, while for the endfire array |Ω θ |≈ |Θ| 2 /2.

未极化的球形阵列Unpolarized spherical array

半径为R(由波长归一化)的球形阵列的积分核给出如下[29]The integral kernel of a spherical array of radius R (normalized by the wavelength) is given by [29]

用第一类球贝塞尔函数的总和分解上述函数,我们得到球形阵列的分辨率为1/(πR2),且自由度由下式给出:Decomposing the above function as a sum of spherical Bessel functions of the first kind, we obtain that the resolution of the spherical array is 1/(πR 2 ), and the degrees of freedom are given by:

DF=A|Ω|=πR2|Ω|D F =A|Ω|=πR 2 |Ω|

其中A为球形阵列的面积,并且where A is the area of the spherical array, and

无线信道中的同调性区域Coherence Regions in Wireless Channels

球形阵列的分辨率和它们的面积A之间的关系如图43所示。中间的球体是面积为A的球形阵列。信道群集在单位球上的投影定义了大小与群集的角展度成正比的不同散射区域。每个群集内大小为1/A的区域(我们将其称之为“同调性区域”)表示阵列的辐射场的基础函数的投影并定义在波向量域中阵列的分辨率。The relationship between the resolution of spherical arrays and their area, A, is shown in Figure 43. The center sphere is a spherical array of area A. The projection of the channel cluster onto the unit sphere defines distinct scattering regions whose sizes are proportional to the angular spread of the cluster. The region of size 1/A within each cluster (which we call the "coherence region") represents the projection of the basis functions of the array's radiation field and defines the array's resolution in the wavevector domain.

将图43与图44进行比较,我们观察到同调性区域的大小随阵列的大小的倒数而减少。实际上,较大的阵列可将能量聚集到较小的区域中,从而产生较大数目的自由度DF。需注意,自由度总数还取决于群集的角展度,如上文的定义中所示。Comparing Figure 43 with Figure 44, we observe that the size of the region of coherence decreases with the inverse of the array size. In effect, a larger array concentrates energy into a smaller region, resulting in a larger number of degrees of freedom, DF . Note that the total number of degrees of freedom also depends on the angular spread of the cluster, as shown in the definition above.

图45示出了与图44相比其中阵列大小覆盖甚至更大区域从而产生额外自由度的另一例子。在DIDO系统中,阵列孔可由所有DIDO发射器覆盖的总面积来近似(假定天线按波长的分数间隔开)。接下来,图45示出DIDO系统可通过在空间中分布天线来实现增加数目的自由度,从而减小同调性区域的大小。需注意,在假定理想球形阵列的情况下生成这些图。在实际情形中,DIDO天线随机散布在整个宽广的区域中,并且所得的同调性区域的形状可能不会像图中一样规则。Figure 45 shows another example where the array size covers an even larger area compared to Figure 44, resulting in additional degrees of freedom. In a DIDO system, the array aperture can be approximated by the total area covered by all DIDO transmitters (assuming the antennas are spaced a fraction of the wavelength). Next, Figure 45 shows that a DIDO system can achieve an increased number of degrees of freedom by distributing the antennas in space, thereby reducing the size of the coherence region. Note that these figures are generated assuming an ideal spherical array. In reality, DIDO antennas are randomly scattered throughout a wide area, and the resulting coherence region may not be as regular in shape as shown.

图46显示,随着阵列大小增加,当无线电波由在DIDO发射器之间增多数目的物体散射时更多的群集包含于无线信道中。因此,可激励增加数目的基础函数(跨越辐射场),从而按照上文定义产生额外自由度。Figure 46 shows that as the array size increases, more clusters are included in the wireless channel as radio waves are scattered by an increasing number of objects between the DIDO transmitters. Therefore, an increasing number of basis functions (spanning the radiation field) can be excited, resulting in additional degrees of freedom as defined above.

本专利申请中所述的多用户(MU)多天线系统(MAS)利用无线信道的同调性区域来创建到不同用户的多个同时独立非干扰数据流。对于给定信道条件及用户分布,选择辐射场的基础函数以创建到不同用户的独立且同时的无线链路以使得每一用户体验无干扰的链路。当MU-MAS知晓每一发射器与每一用户之间的信道时,基于所述信息来调整预编码发射以创建到不同用户的个别同调性区域。The multi-user (MU) multi-antenna system (MAS) described in this patent application exploits the coherence region of the wireless channel to create multiple, simultaneous, independent, non-interfering data streams to different users. Given channel conditions and user distribution, the basis functions of the radiation field are selected to create independent and simultaneous wireless links to different users, allowing each user to experience an interference-free link. Since the MU-MAS knows the channel between each transmitter and each user, it adjusts the precoded transmission based on this information to create individual coherence regions for different users.

在本发明的一个实施例中,MU-MAS采用非线性预编码,诸如脏纸编码(DPC)[30-31]或汤姆林森-哈拉希玛(Tomlinson-Harashima,TH)[32-33]预编码。在本发明的另一个实施例中,MU-MAS采用非线性预编码,诸如记载在本说明书“相关专利申请”部分中我们先前的专利申请中所述的块对角化(BD)或迫零波束成形(ZF-BF)[34]。In one embodiment of the present invention, MU-MAS employs nonlinear precoding, such as dirty paper coding (DPC) [30-31] or Tomlinson-Harashima (TH) [32-33] precoding. In another embodiment of the present invention, MU-MAS employs nonlinear precoding, such as block diagonalization (BD) or zero-forcing beamforming (ZF-BF) [34] as described in our previous patent applications described in the "Related Patent Applications" section of this specification.

为了允许实现预编码,MU-MAS需要了解信道状态信息(CSI)。经由反馈信道,CSI可用于MU-MAS,或在上行链路信道上估计CSI(假定在时分双工(TDD)系统中上行链路/下行链路信道互易性是可能的)。减少CSI所需的反馈量的一种方法是使用有限反馈技术[35-37]。在一个实施例中,MU-MAS使用有限反馈技术来减少控制信道的CSI开销。在有限反馈技术中,码本设计是关键。一个实施例从跨越发射阵列辐射场的基础函数定义码本。To allow precoding to be implemented, MU-MAS requires knowledge of channel state information (CSI). CSI is available to MU-MAS via a feedback channel, or estimated on the uplink channel (assuming uplink/downlink channel reciprocity is possible in time division duplex (TDD) systems). One way to reduce the amount of feedback required for CSI is to use limited feedback techniques [35-37]. In one embodiment, MU-MAS uses limited feedback techniques to reduce the CSI overhead of the control channel. In limited feedback techniques, codebook design is key. One embodiment defines the codebook from a basis function across the transmit array radiation field.

当用户在空间中移动或传播环境由于移动物体(诸如人或车)而随时间变化时,同调性区域改变其位置和形状。其归因于无线通信中人们熟知的多普勒效应。当环境由于多普勒效应而改变时,本专利申请中所述的MU-MAS调整预编码以针对每一用户不断地适应同调性区域。同调性区域的此自适应是为了创建到不同用户的同时非干扰信道。As users move through space or the propagation environment changes over time due to moving objects (such as people or vehicles), the coherence region changes its position and shape. This is due to the Doppler effect, which is well known in wireless communications. As the environment changes due to the Doppler effect, the MU-MAS described in this patent application adjusts the precoding to continuously adapt the coherence region for each user. This adaptation of the coherence region is intended to create simultaneous non-interfering channels to different users.

本发明的另一个实施例自适应地选择了MU-MAS系统的天线的子集来创建不同大小的同调性区域。例如,如果用户稀疏地分布于空间(即,具有无线资源的低使用率的乡村区域或时刻)中,则仅选择小的天线子集,并且同调性区域的大小相对于图43中的阵列的大小来说是大的。或者,在人口稠密的区域(即,具有无线服务的峰值使用率的市区或时刻)中,选择更多的天线以为彼此直接邻近的用户创建小的同调性区域。Another embodiment of the present invention adaptively selects subsets of the MU-MAS system's antennas to create coherence zones of varying sizes. For example, if users are sparsely distributed across space (i.e., in rural areas or at times with low wireless resource usage), only a small subset of antennas is selected, and the size of the coherence zone is large relative to the size of the array in FIG43 . Alternatively, in densely populated areas (i.e., in urban areas or at times with peak wireless service usage), more antennas are selected to create smaller coherence zones for users that are directly adjacent to each other.

在本发明的一个实施例中,MU-MAS为如在本说明书“相关专利申请”部分中记载的先前专利申请中所述的DIDO系统。DIDO系统使用线性或非线性预编码和/或有限反馈技术来创建到不同用户的同调性区域。In one embodiment of the present invention, the MU-MAS is a DIDO system as described in the previous patent applications described in the "Related Patent Applications" section of this specification. The DIDO system uses linear or nonlinear precoding and/or limited feedback techniques to create coherence zones to different users.

数值结果Numerical results

我们通过根据阵列大小计算常规的多输入多输出(MMO)系统中的自由度的数目而开始。我们考虑未极化线性阵列和两种类型的信道模型:如用于WiFi系统的IEEE 802.11n标准中的室内模型和如用于蜂窝式系统的3GPP-LTE标准中的室外模型。[3]中的室内信道模型定义在范围[2,6]中的群集数目和范围[15°,40°]内的角展度。用于市区微型小区的室外信道模型定义约6个群集和基站处的约20°的角展度。We begin by calculating the number of degrees of freedom in a conventional multiple-input multiple-output (MIMO) system as a function of the array size. We consider unpolarized linear arrays and two types of channel models: an indoor model as in the IEEE 802.11n standard for WiFi systems and an outdoor model as in the 3GPP-LTE standard for cellular systems. The indoor channel model in [3] defines the number of clusters in the range [2, 6] and the angular spread in the range [15°, 40°]. The outdoor channel model for urban microcells defines approximately 6 clusters and an angular spread of approximately 20° at the base station.

图47示出了实际室内和室外传播情形中的MIMO系统的自由度。例如,考虑具有间隔一个波长的10个天线的线性阵列,无线链路上可用的最大自由度(或空间信道的数目)对于室外情形限定为约3,对于室内情形限定为7。当然,室内信道由于更大的角展度而提供更多的自由度。Figure 47 illustrates the degrees of freedom of a MIMO system in practical indoor and outdoor propagation scenarios. For example, considering a linear array with 10 antennas spaced one wavelength apart, the maximum degrees of freedom (or number of spatial channels) available on the wireless link is limited to approximately 3 for the outdoor scenario and 7 for the indoor scenario. Of course, indoor channels offer more degrees of freedom due to their greater angular spread.

接下来,我们计算DIDO系统中的自由度。我们考虑天线在3D空间中分布的情况,诸如DIDO接入点可分布于相邻建筑物的不同楼层上的城市中心的情形。因此,我们将DIDO发射天线(均经由光纤或DSL骨干彼此连接)模型化为球形阵列。另外,我们假定群集在立体角度上均匀分布。Next, we calculate the degrees of freedom in a DIDO system. We consider the case where antennas are distributed in 3D space, such as in a city center where DIDO access points may be located on different floors of adjacent buildings. Therefore, we model the DIDO transmit antennas (all connected to each other via fiber or a DSL backbone) as a spherical array. Furthermore, we assume that the clusters are uniformly distributed across the solid angle.

图48示出了DIDO系统中自由度随阵列直径的变化关系。我们观察到,对于等于10个波长的直径而言,约1000个自由度可用于DIDO系统中。理论上,可创建最多至1000个到用户的非干扰信道。归因于空间中分布的天线的增加的空间分集是DIDO相对于常规的MMO系统而提供的多路复用增益的关键。Figure 48 shows the degree of freedom in a DIDO system as a function of array diameter. We observe that for a diameter equal to 10 wavelengths, approximately 1,000 degrees of freedom are available in a DIDO system. Theoretically, up to 1,000 non-interfering channels to users can be created. The increased spatial diversity due to the spatially distributed antennas is key to the multiplexing gain DIDO offers over conventional MIMO systems.

作为比较,我们示出了可通过DIDO系统在郊区环境中实现的自由度。我们假定群集分布在仰角[α,π-α]内,并将群集的立体角度定义为|Ω|=4πcosα。例如,在具有两层建筑物的郊区情形中,散射体的仰角可为α=60°。在这种情况下,自由度的数目随波长而变化如图48所示。For comparison, we show the degrees of freedom achievable with a DIDO system in a suburban environment. We assume that clusters are distributed within the elevation angle [α, π-α] and define the cluster solid angle as |Ω| = 4π cosα. For example, in a suburban scenario with a two-story building, the elevation angle of the scatterer can be α = 60°. In this case, the number of degrees of freedom varies with wavelength as shown in Figure 48.

参考文献References

[1]A.A.M.Saleh and R.A.Valenzuela,“A statistical model for indoormultipath propagation,”IEEE Jour.Select.Areas in Comm.,vol.195SAC-5,no.2,pp.128–137,Feb.1987(A.A.M.Saleh和R.A.Valenzuela,“室内多路径传播的统计模型”,《IEEE通信选域期刊》,第195SAC-5卷,第2期,第128–137页,1987年2月)。[1]A.A.M.Saleh and R.A.Valenzuela, “A statistical model for indoor multipath propagation,” IEEE Jour.Select.Areas in Comm., vol.195SAC-5, no.2, pp.128–137, Feb.1987.

[2]J.W.Wallace and M.A.Jensen,“Statistical characteristics ofmeasured MIMO wireless channel data and comparison to conventional models,”Proc.IEEE Veh.Technol.Conf.,vol.2,no.7-11,pp.1078–1082,Oct.2001(J.W.Wallace和M.A.Jensen,“测量的MIMO无线信道数据的统计特征和与常规模型的比较”,《IEEE车载技术会议论文集》,第2卷,第7-11期,第1078–1082页,2001年10月)。[2] J.W.Wallace and M.A.Jensen, “Statistical characteristics of measured MIMO wireless channel data and comparison to conventional models,” Proc.IEEE Veh.Technol.Conf., vol.2, no.7-11, pp.1078–1082, Oct.2001.

[3]V.Erceg et al.,“TGn channel models,”IEEE 802.11-03/940r4,May 2004(V.Erceg等人,“TGn信道模型”,IEEE 802.11-03/940r4,2004年5月)。[3] V. Erceg et al., “TGn channel models,” IEEE 802.11-03/940r4, May 2004.

[4]3GPP Technical Specification Group,“Spatial channel model,SCM-134text V6.0,”Spatial channel Model AHG(Combined ad-hoc from 3GPP and 3GPP2),Apr.2003(3GPP技术规范组,“空间信道模型,SCM-134文本V6.0”,空间信道模型AHG(来自3GPP和3GPP2的组合自组织),2003年4月)。[4]3GPP Technical Specification Group, “Spatial channel model, SCM-134 text V6.0,” Spatial channel Model AHG (Combined ad-hoc from 3GPP and 3GPP2), Apr. 2003.

[5]D.-S.Shiu,G.J.Foschini,M.J.Gans,and J.M.Kahn,“Fading correlationand its effect on the capacity of multielement antenna systems,”IEEETrans.Comm.,vol.48,no.3,pp.502–513,Mar.2000(D.-S.Shiu、G.J.Foschini、M.J.Gans和J.M.Kahn,“衰落相关性以及它对多元件天线系统容量的影响”,《IEEE通信学报》,第48卷,第3期,第502–513页,2000年3月)。[5] D.-S.Shiu, G.J.Foschini, M.J.Gans, and J.M.Kahn, “Fading correlation and its effect on the capacity of multielement antenna systems,” IEEE Trans.Comm., vol.48, no.3, pp.502–513, Mar.2000.

[6]V.Pohl,V.Jungnickel,T.Haustein,and C.von Helmolt,“Antenna spacingin MIMO indoor channels,”Proc.IEEE Veh.Technol.Conf.,vol.2,pp.749–753,May2002(V.Pohl、V.Jungnickel、T.Haustein和C.von Helmolt,“MIMO室内信道中的天线间距”,《IEEE车载技术会议论文集》,第2卷,第749-753页,2002年5月)。[6] V.Pohl, V.Jungnickel, T.Haustein, and C.von Helmolt, “Antenna spacing in MIMO indoor channels,” Proc.IEEE Veh.Technol.Conf., vol.2, pp.749–753, May 2002.

[7]M.Stoytchev,H.Safar,A.L.Moustakas,and S.Simon,“Compact antennaarrays for MIMO applications,”Proc.IEEE Antennas and Prop.Symp.,vol.3,pp.708–711,July 2001(M.Stoytchev、H.Safar、A.L.Moustakas和S.Simon,“用于MIMO应用的紧凑天线阵列”,IEEE天线与传播学会研讨会论文集,第3卷,第708-711页,2001年7月)。[7] M. Stoytchev, H. Safar, A. L. Moustakas, and S. Simon, “Compact antenna arrays for MIMO applications,” Proc. IEEE Antennas and Prop. Symp., vol. 3, pp. 708–711, July 2001.

[8]K.Sulonen,P.Suvikunnas,L.Vuokko,J.Kivinen,and P.Vainikainen,“Comparison of MIMO antenna configurations in picocell and microcellenvironments,”IEEE Jour.Select.Areas in Comm.,vol.21,pp.703–712,June 2003(K.Sulonen、P.Suvikunnas、L.Vuokko、J.Kivinen和P.Vainikainen,“微微小区和微小区环境中的MIMO天线配置的比较”,《IEEE通信选域期刊》,第21卷,第703–712页,2003年6月)。[8] K.Sulonen, P.Suvikunnas, L.Vuokko, J.Kivinen, and P.Vainikainen, “Comparison of MIMO antenna configurations in picocell and microcell environments,” IEEE Jour.Select.Areas in Comm., vol.21, pp.703–712, June 2003.

[9]Shuangqing Wei,D.L.Goeckel,and R.Janaswamy,“On the asymptoticcapacity of MIMO systems with fixed length linear antenna arrays,”Proc.IEEEInt.Conf.on Comm.,vol.4,pp.2633–2637,2003(Shuangqing Wei、D.L.Goeckel和R.Janaswamy,“关于具有固定长度线性天线阵列的MIMO系统的渐近容量”,IEEE国际通信大会论文集,第4卷,第2633–2637页,2003年)。[9] Shuangqing Wei, D.L.Goeckel, and R.Janaswamy, “On the asymptotic capacity of MIMO systems with fixed length linear antenna arrays,” Proc.IEEE Int.Conf.on Comm., vol.4, pp.2633–2637, 2003.

[10]T.S.Pollock,T.D.Abhayapala,and R.A.Kennedy,“Antenna saturationeffects on MIMO capacity,”Proc.IEEE Int.Conf.on Comm.,192vol.4,pp.2301–2305,May 2003(T.S.Pollock、T.D.Abhayapala和R.A.Kennedy,“天线饱和度对MIMO容量的影响”,IEEE国际通信大会论文集,第4卷,第2301–2305页,2003年5月)。[10] T.S.Pollock, T.D.Abhayapala, and R.A.Kennedy, “Antenna saturation effects on MIMO capacity,” Proc.IEEE Int.Conf.on Comm., 192 vol.4, pp.2301–2305, May 2003.

[11]M.L.Morris and M.A.Jensen,“The impact of array configuration onMIMO wireless channel capacity,”Proc.IEEE Antennas and Prop.Symp.,vol.3,pp.214–217,June 2002(M.L.Morris和M.A.Jensen,“天线构形对MIMO无线信道容量的影响”,IEEE天线与传播学会研讨会论文集,第3卷,第214-217页,2002年6月)。[11] M.L.Morris and M.A.Jensen, “The impact of array configuration on MIMO wireless channel capacity,” Proc.IEEE Antennas and Prop.Symp., vol.3, pp.214–217, June 2002.

[12]Liang Xiao,Lin Dal,Hairuo Zhuang,Shidong Zhou,and Yan Yao,“Acomparative study of MIMO capacity with different antenna topologies,”IEEEICCS’02,vol.1,pp.431–435,Nov.2002(Liang Xiao、Lin Dal、Hairuo Zhuang、ShidongZhou和Yan Yao,“具有不同天线拓扑结构的MIMO容量的比较研究”,2002年IEEE通信系统国际会议,第1卷,第431–435页,2002年11月)。[12] Liang Xiao, Lin Dal, Hairuo Zhuang, Shidong Zhou, and Yan Yao, “A comparative study of MIMO capacity with different antenna topologies,” IEEE ICCS’02, vol. 1, pp. 431–435, Nov. 2002.

[13]A.Forenza and R.W.Heath Jr.,“Impact of antenna geometry on MIMOcommunication in indoor clustered channels,”Proc.IEEE Antennas andProp.Symp.,vol.2,pp.1700–1703,June 2004(A.Forenza和R.W.Heath Jr.,“天线几何形状对室内群集信道中的MIMO通信的影响”,IEEE天线与传播学会研讨会论文集,第2卷,第1700–1703页,2004年6月)。[13] A. Forenza and R. W. Heath Jr., “Impact of antenna geometry on MIMO communication in indoor clustered channels,” Proc. IEEE Antennas and Prop. Symp., vol. 2, pp. 1700–1703, June 2004.

[14]M.R.Andrews,P.P.Mitra,and R.deCarvalho,“Tripling the capacity ofwireless communications using electromagnetic polarization,”Nature,vol.409,pp.316–318,Jan.2001(M.R.Andrews、P.P.Mitra和R.deCarvalho,“使用电磁极化使无线通信容量增至3倍”,《自然》,第409卷,第316-318页,2001年1月)。[14]M.R.Andrews,P.P.Mitra,and R.deCarvalho,“Tripling the capacity of wireless communications using electromagnetic polarization,”Nature,vol.409,pp.316–318,Jan.2001.

[15]D.D.Stancil,A.Berson,J.P.Van’t Hof,R.Negi,S.Sheth,and P.Patel,“Doubling wireless channel capacity using co-polarised,co-located electricand magnetic dipoles,”Electronics Letters,vol.38,pp.746–747,July 2002(D.D.Stancil、A.Berson、J.P.Van’t Hof、R.Negi、S.Sheth和P.Patel,“使用同极化、协同定位的电和磁偶极子使无线信道容量加倍”,《电子快报》,第38卷,第746-747页,2002年7月)。[15] D.D.Stancil,A.Berson,J.P.Van’t Hof,R.Negi,S.Sheth,and P.Patel,“Doubling wireless channel capacity using co-polarised,co-located electricand magnetic dipoles,” Electronics Letters,vol.38,pp.746–747,July 2002.

[16]T.Svantesson,“On capacity and correlation of multi-antennasystems employing multiple polarizations,”Proc.IEEE Antennas and Prop.Symp.,vol.3,pp.202–205,June 2002(T.Svantesson,“关于采用多极化的多天线系统的容量和相关性”,IEEE天线与传播学会研讨会论文集,第3卷,第202-205页,2002年6月)。[16] T. Svantesson, “On capacity and correlation of multi-antennasystems employing multiple polarizations,” Proc. IEEE Antennas and Prop. Symp., vol. 3, pp. 202–205, June 2002.

[17]C.Degen and W.Keusgen,“Performance evaluation of MIMO systemsusing dual-polarized Antennas,”Proc.IEEE Int.Conf.on Telecommun.,vol.2,pp.1520–1525,Feb.2003(C.Degen和W.Keusgen,“使用双极化天线的MIMO系统的性能评估”,IEEE国际通信大会论文集,第2卷,第1520–1525页,2003年2月)。[17] C. Degen and W. Keusgen, “Performance evaluation of MIMO systems using dual-polarized Antennas,” Proc. IEEE Int. Conf. on Telecommun., vol. 2, pp. 1520–1525, Feb. 2003.

[18]R.Vaughan,“Switched parasitic elements for antenna diversity,”IEEE Trans.Antennas Propagat.,vol.47,pp.399–405,Feb.1999(R.Vaughan,“天线分集的切换寄生元件”,《IEEE天线与传播学报》,第47卷,第399-405页,1999年2月)。[18] R. Vaughan, “Switched parasitic elements for antenna diversity,” IEEE Trans. Antennas Propagat., vol. 47, pp. 399–405, Feb. 1999.

[19]P.Mattheijssen,M.H.A.J.Herben,G.Dolmans,and L.Leyten,“Antenna-pattern diversity versus space diversity for use at handhelds,”IEEE Trans.onVeh.Technol.,vol.53,pp.1035–1042,July 2004(P.Mattheijssen、M.H.A.J.Herben、G.Dolmans和L.Leyten,“手持设备上使用的天线方向图分集与空间分集”,《IEEE车辆技术学报》,第53卷,第1035–1042页,2004年7月)。[19] P.Mattheijssen, M.H.A.J.Herben, G.Dolmans, and L.Leyten, “Antenna-pattern diversity versus space diversity for use at handhelds,” IEEE Trans.onVeh.Technol., vol.53, pp.1035–1042, July 2004.

[20]L.Dong,H.Ling,and R.W.Heath Jr.,“Multiple-input multiple-outputwireless communication systems using antenna pattern diversity,”Proc.IEEEGlob.Telecom.Conf.,vol.1,pp.997–1001,Nov.2002(L.Dong、H.Ling和R.W.Heath Jr.,“使用天线方向图分集的多输入多输出无线通信系统”,IEEE全球电信会议论文集,第1卷,第997-1001页,2002年11月)。[20] L. Dong, H. Ling, and R. W. Heath Jr., “Multiple-input multiple-output wireless communication systems using antenna pattern diversity,” Proc. IEEE Glob. Telecom. Conf., vol. 1, pp. 997–1001, Nov. 2002.

[21]J.B.Andersen and B.N.Getu,“The MIMO cube-a compact MIMO antenna,”IEEE Proc.of Wireless Personal Multimedia Communications Int.Symp.,vol.1,pp.112–114,Oct.2002(J.B.Andersen和B.N.Getu,“MIMO立方体-紧凑MIMO天线”,IEEE无线个人多媒体通信国际研讨会,第1卷,第112-114页,2002年10月)。[21] J.B.Andersen and B.N.Getu, “The MIMO cube-a compact MIMO antenna,” IEEE Proc.of Wireless Personal Multimedia Communications Int.Symp., vol.1, pp.112–114, Oct.2002.

[22]C.Waldschmidt,C.Kuhnert,S.Schulteis,and W.Wiesbeck,“Compact MIMO-arrays based on polarisation-diversity,”Proc.IEEE Antennas and Prop.Symp.,vol.2,pp.499–502,June 2003(C.Waldschmidt、C.Kuhnert、S.Schulteis和W.Wiesbeck,“基于极化分集的紧凑MIMO阵列”,IEEE天线与传播学会研讨会论文集,第2卷,第499-502页,2003年6月)。[22] C.Waldschmidt, C.Kuhnert, S.Schulteis, and W.Wiesbeck, “Compact MIMO-arrays based on polarisation-diversity,” Proc.IEEE Antennas and Prop.Symp., vol.2, pp.499–502, June 2003.

[23]C.B.Dietrich Jr,K.Dietze,J.R.Nealy,and W.L.Stutzman,“Spatial,polarization,and pattern diversity for wireless handheld terminals,”Proc.IEEEAntennas and Prop.Symp.,vol.49,pp.1271–1281,Sep.2001(C.B.Dietrich Jr、K.Dietze、J.R.Nealy和W.L.Stutzman,“无线手持终端的空间、极化和方向图分集”,IEEE天线与传播学会研讨会论文集,第49卷,第1271–1281页,2001年9月)。[23] C.B.Dietrich Jr, K.Dietze, J.R.Nealy, and W.L.Stutzman, “Spatial, polarization, and pattern diversity for wireless handheld terminals,” Proc.IEEE Antennas and Prop. Symp., vol.49, pp.1271–1281, Sep.2001.

[24]S.Visuri and D.T.Slock,“Colocated antenna arrays:designdesiderata for wireless communications,”Proc.of Sensor Array and MultichannelSign.Proc.Workshop,pp.580–584,Aug.2002(S.Visuri和D.T.Slock,“并置天线阵列:无线通信的设计要求”,传感器阵列和多信道信号处理研讨会论文集,第580-584页,2002年8月)。[24] S.Visuri and D.T.Slock, “Colocated antenna arrays: design desiderata for wireless communications,” Proc. of Sensor Array and Multichannel Sign. Proc. Workshop, pp. 580–584, Aug. 2002.

[25]A.Forenza and R.W.Heath Jr.,“Benefit of pattern diversity via 2-element array of circular patch Antennas in indoor clustered MIMO channels,”IEEE Trans.on Communications,vol.54,no.5,pp.943-954,May 2006(A.Forenza和R.W.Heath Jr.,“在室内群集MIMO信道中经由圆形贴片天线二元阵列的方向图分集的优点”,《IEEE通信学报》,第54卷,第5期,第943-954页,2006年5月)。[25]A.Forenza and R.W.Heath Jr., “Benefit of pattern diversity via 2-element array of circular patch Antennas in indoor clustered MIMO channels,” IEEE Trans.on Communications, vol.54, no.5, pp.943-954, May 2006.

[26]A.Forenza and R.W.Heath,Jr.,“Optimization Methodology forDesigning 2-CPAs Exploiting Pattern Diversity in clustered MIMO channels”,IEEE Trans.on Communications,Vol.56,no.10,pp.1748-1759,Oct.2008(A.Forenza和R.W.Heath,Jr.,“利用群集MIMO信道中的方向图分集设计2-CPA的优化方法”,《IEEE通信学报》,第56卷,第10期,第1748-1759页,2008年10月)。[26]A.Forenza and R.W.Heath,Jr., “Optimization Methodology forDesigning 2-CPAs Exploiting Pattern Diversity in clustered MIMO channels”, IEEE Trans.on Communications, Vol.56, no.10, pp.1748-1759, Oct.2008.

[27]D.Piazza,N.J.Kirsch,A.Forenza,R.W.Heath,Jr.,and K.R.Dandekar,“Design and Evaluation of a Reconfigurable Antenna Array for MIMO Systems,”IEEE Transactions on Antennas and Propagation,vol.56,no.3,pp.869-881,March2008(D.Piazza、N.J.Kirsch、A.Forenza、R.W.Heath,Jr.和K.R.Dandekar,“用于MIMO系统的可重新配置的天线阵列的设计和评估”,《IEEE天线与传播学报》,第56卷,第3期,第869-881页,2008年3月)。[27] D.Piazza, N.J.Kirsch, A.Forenza, R.W.Heath, Jr., and K.R.Dandekar, “Design and Evaluation of a Reconfigurable Antenna Array for MIMO Systems,” IEEE Transactions on Antennas and Propagation, vol.56, no.3, pp.869-881, March 2008.

[28]R.Bhagavatula,R.W.Heath,Jr.,A.Forenza,and S.Vishwanath,“Sizing upMIMO Arrays,”IEEE Vehicular Technology Magazine,vol.3,no.4,pp.31-38,Dec.2008(R.Bhagavatula、R.W.Heath、Jr.,A.Forenza和S.Vishwanath,“评估MIMO阵列”,《IEEE车辆技术杂志》,第3卷,第4期,第31-38页,2008年12月)。[28] R. Bhagavatula, R. W. Heath, Jr., A. Forenza, and S. Vishwanath, “Sizing up MIMO Arrays,” IEEE Vehicular Technology Magazine, vol. 3, no. 4, pp. 31-38, Dec. 2008.

[29]Ada Poon,R.Brodersen and D.Tse,“Degrees of Freedom in MultipleAntenna channels:A Signal Space Approach”,IEEE Transactions on InformationTheory,vol.51(2),Feb.2005,pp.523-536(Ada Poon、R.Brodersen和D.Tse,“多天线信道中的自由度:信号空间法”,《IEEE信息理论学报》,第51卷,第2期,第523-536页,2005年2月)。[29]Ada Poon, R.Brodersen and D.Tse, “Degrees of Freedom in Multiple Antenna channels: A Signal Space Approach”, IEEE Transactions on Information Theory, vol. 51(2), Feb. 2005, pp. 523-536.

[30]M.Costa,“Writing on dirty paper,”IEEE Transactions on InformationTheory,Vol.29,No.3,Page(s):439-441,May 1983(M.Costa,“在脏纸上书写”,《IEEE信息理论学报》,第29卷,第3期,第439-441页,1983年5月)。[30]M.Costa, “Writing on dirty paper,” IEEE Transactions on Information Theory, Vol. 29, No. 3, Page(s): 439-441, May 1983.

[31]U.Erez,S.Shamai(Shitz),and R.Zamir,“Capacity and lattice-strategies for cancelling known interference,”Proceedings of InternationalSymposium on Information Theory,Honolulu,Hawaii,Nov.2000(U.Erez、S.Shamai(Shitz)和R.Zamir,“用于消除已知干扰的容量和格子策略”,信息理论国际研讨会论文集,夏威夷檀香山,2000年11月)。[31] U.Erez, S.Shamai(Shitz), and R.Zamir, “Capacity and lattice-strategies for cancelling known interference,” Proceedings of International Symposium on Information Theory, Honolulu, Hawaii, Nov. 2000.

[32]M.Tomlinson,“New automatic equalizer employing moduloarithmetic,”Electronics Letters,Page(s):138-139,March 1971(M.Tomlinson,“采用模运算的新型自动均衡器”,《电子快报》,第138-139页,1971年3月)。[32]M.Tomlinson, “New automatic equalizer employing moduloarithmetic,” Electronics Letters, Page(s): 138-139, March 1971.

[33]H.Miyakawa and H.Harashima,“A method of code conversion fordigital communication channels with intersymbol interference,”Transactions ofthe Institute of Electronic(H.Miyakawa和H.Harashima,“具有码间干扰的数字通信信道的代码转换方法”,《电子研究所学报》)。[33]H.Miyakawa and H.Harashima, “A method of code conversion for digital communication channels with intersymbol interference,” Transactions of the Institute of Electronic

[34]R.A.Monziano and T.W.Miller,Introduction to Adaptive Arrays,NewYork:Wiley,1980(R.A.Monziano和T.W.Miller,《自适应阵列导论》,纽约威立出版社,1980年)。[34] R.A.Monziano and T.W.Miller, Introduction to Adaptive Arrays, New York: Wiley, 1980.

[35]T.Yoo,N.Jindal,and A.Goldsmith,“Multi-antenna broadcast channelswith limited feedback and user selection,”IEEE Journal on Sel.Areas inCommunications,vol.25,pp.1478-91,July 2007(T.Yoo、N.Jindal和A.Goldsmith,“具有有限反馈和用户选择的多天线广播信道”,《IEEE通信选域期刊》,第25卷,第1478-1491页,2007年7月)。[35]T.Yoo,N.Jindal,and A.Goldsmith,“Multi-antenna broadcast channelswith limited feedback and user selection,”IEEE Journal on Sel.Areas inCommunications,vol.25,pp.1478-91,July 2007.

[36]P.Ding,D.J.Love,and M.D.Zoltowski,“On the sum rate of channelsubspace feedback for multi-antenna broadcast channels,”in Proc.,IEEEGlobecom,vol.5,pp.2699-2703,November 2005(P.Ding、D.J.Love和M.D.Zoltowski,“关于用于多天线广播信道的信道子空间反馈的总速率”,IEEE全球通信大会论文集,第5卷,第2699-2703页,2005年11月)。[36] P. Ding, D. J. Love, and M. D. Zoltowski, “On the sum rate of channelsubspace feedback for multi-antenna broadcast channels,” in Proc., IEEE Globecom, vol. 5, pp. 2699-2703, November 2005.

[37]N.Jindal,“MIMO broadcast channels with finite-rate feedback,”IEEETrans.on Info.Theory,vol.52,pp.5045-60,November 2006(N.Jindal,“具有有限速率反馈的MIMO广播信道”,《IEEE信息理论学报》,第52卷,第5046-5060页,2006年11月)。[37] N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE Trans. on Info. Theory, vol. 52, pp. 5045-60, November 2006.

IV.用于多用户频谱的计划演进和过时的系统和方法IV. Systems and Methods for Planned Evolution and Obsolescence of Multi-User Spectrum

对高速无线服务不断增长的要求和不断增加的蜂窝式电话用户数量在过去的三十年中使无线产业发生了根本性的技术革命,从最初的模拟语音服务(AMPS[1-2])发展到支持数字语音(GSM[3-4]、IS-95CDMA[5])、数据流量(EDGE[6]、EV-DO[7])和互联网浏览(WiFi[8-9]、WiMAX[10-11]、3G[12-13]、4G[14-15])的标准。无线技术这些年来的发展由于以下两项主要工作而得以实现:The growing demand for high-speed wireless services and the increasing number of cellular phone users have led to a fundamental technological revolution in the wireless industry over the past three decades, evolving from the initial analog voice services (AMPS[1-2]) to standards that support digital voice (GSM[3-4], IS-95CDMA[5]), data traffic (EDGE[6], EV-DO[7]), and Internet browsing (WiFi[8-9], WiMAX[10-11], 3G[12-13], 4G[14-15]). The advancement of wireless technology over the years has been made possible by two major efforts:

i)美国联邦通信委员会(FCC)[16]一直在分配新的频谱以支持新出现的标准。例如,在第一代AMPS系统中,由FCC分配的信道数目从1983年最初的333个增至二十世纪八十年代后期的416个,以支持数目不断增长的蜂窝式客户端。最近,通过使用由FCC早在1985年分配的未授权ISM频带[17],类似Wi-Fi、蓝牙及ZigBee的技术的商业化才得以实现。i) The Federal Communications Commission (FCC)[16] has been allocating new spectrum to support emerging standards. For example, in the first generation AMPS system, the number of channels allocated by the FCC increased from an initial 333 in 1983 to 416 in the late 1980s to support the growing number of cellular clients. More recently, the commercialization of technologies such as Wi-Fi, Bluetooth, and ZigBee has been made possible by the use of the unlicensed ISM bands[17] allocated by the FCC as early as 1985.

ii)无线产业一直在产生更有效地利用有限可用频谱以支持更高的数据速率链路和数目不断增加的用户的新技术。无线领域中的一次重大革命是二十世纪九十年代从模拟AMPS系统到数字D-AMPS和GSM的迁移,由于频谱效率提高,数字D-AMPS和GSM允许实现针对给定频带的更高的通话数。另一个根本性的转变在二十一世纪早期由空间处理技术(诸如多输入多输出(MIMO))产生,从而相对于先前无线网络在数据速率方面产生了4倍的提升,并且被不同的标准(即,针对Wi-Fi的IEEE 802.11n、针对WiMAX的IEEE 802.16、针对4G-LTE的3GPP)采用。ii) The wireless industry has been generating new technologies that more efficiently utilize the limited available spectrum to support higher data rate links and an ever-increasing number of users. A major revolution in the wireless field was the migration from analog AMPS systems to digital D-AMPS and GSM in the 1990s, which allowed for a higher number of calls per given frequency band due to improved spectral efficiency. Another fundamental shift occurred in the early 21st century with spatial processing techniques such as Multiple Input Multiple Output (MIMO), which produced a 4x increase in data rates relative to previous wireless networks and were adopted by different standards (i.e., IEEE 802.11n for Wi-Fi, IEEE 802.16 for WiMAX, 3GPP for 4G-LTE).

尽管为提供高速无线连接解决方案作出了极大努力,无线行业正面临着新的挑战:提供高清晰度(HD)视频流以满足对于类似游戏的服务增长的需求,以及在任何地方(包括乡村区域,在那里构建有线骨干成本高且不切实际)提供无线覆盖。当前,尤其是当网络由于大量并发链路而过载时,最先进的无线标准系统(即4G-LTE)无法提供支持HD流服务的数据速率要求和延迟约束条件。再一次,主要缺点是有限的频谱可用性和缺乏可真正提高数据速率并提供完全覆盖的高频谱效率的技术。Despite significant efforts to provide high-speed wireless connectivity solutions, the wireless industry is facing new challenges: delivering high-definition (HD) video streaming to meet the growing demand for gaming-like services, while also providing wireless coverage everywhere, including in rural areas where building a wired backbone is costly and impractical. Currently, the most advanced wireless standard systems (i.e., 4G-LTE) are unable to deliver the data rate requirements and latency constraints required to support HD streaming services, especially when the network is overloaded with a large number of concurrent links. Once again, the main drawbacks are limited spectrum availability and the lack of spectrally efficient technologies that can truly increase data rates and provide complete coverage.

近年来出现了称为分布式输入分布式输出(DIDO)[18-21]的新技术,该技术在本说明书“相关专利申请”部分中记载的我们先前的专利申请中有所描述。DIDO技术承诺在频谱效率方面的数量级增加,从而使得HD无线流服务在过载网络中成为可能。In recent years, a new technology called Distributed Input Distributed Output (DIDO) [18-21] has emerged, which is described in our previous patent applications listed in the "Related Patent Applications" section of this specification. DIDO technology promises orders of magnitude increases in spectral efficiency, making HD wireless streaming services possible in overloaded networks.

同时,美国政府一直在通过实施在未来10年内释放500MHz频谱的计划来解决频谱缺乏的问题。该计划发布于2010年6月28日,其目标是允许新兴的无线技术在新频带中操作,并在市区和乡村区域提供高速无线覆盖[22]。作为该计划的一部分,2010年9月23日,FCC开放了约200MHz的VHF和UHF频谱用于未授权使用,其称为“白空间”[23]。在那些频带中操作的一个限制是不得产生对于在相同频带中操作的现有无线麦克风装置的有害干扰。因此,2011年7月22日,IEEE 802.22工作组敲定了用于采用认知无线电技术(或频谱感测)的新型无线系统的标准,该系统具有动态地监测频谱和在可用频带中操作的关键特征,从而避免对共存的无线设备的有害干扰[24]。直到最近才出现了将白空间的一部分分配给授权使用以及将其开放用于频谱拍卖的争论[25]。Meanwhile, the US government has been addressing the spectrum shortage problem by implementing a plan to release 500 MHz of spectrum over the next 10 years. The plan was announced on June 28, 2010, with the goal of allowing emerging wireless technologies to operate in new frequency bands and provide high-speed wireless coverage in urban and rural areas [22]. As part of this plan, on September 23, 2010, the FCC opened up approximately 200 MHz of VHF and UHF spectrum for unlicensed use, which is called "white space" [23]. One of the restrictions on operating in those frequency bands is that harmful interference must not be caused to existing wireless microphone devices operating in the same frequency bands. Therefore, on July 22, 2011, the IEEE 802.22 working group finalized the standard for a new wireless system that uses cognitive radio technology (or spectrum sensing) with the key feature of dynamically monitoring the spectrum and operating in available frequency bands, thereby avoiding harmful interference to coexisting wireless devices [24]. Only recently has there been a debate about allocating part of the white space for licensed use and opening it up for spectrum auctions [25].

相同频带内未授权设备的共存,以及未授权使用与授权使用的频谱争夺已经成为了这些年来FCC频谱分配计划的两个主要问题。例如,在白空间内,已通过认知无线电技术实现了无线麦克风与无线通信设备的共存。然而,认知无线电仅可提供使用类似DIDO的空间处理的其他技术的频谱效率的一部分。类似地,过去十年内,由于接入点数目增多以及在相同的未授权ISM频带中操作并生成不受控干扰的蓝牙/ZigBee设备的使用,Wi-Fi系统的性能显著降低。未授权频谱的一个缺点是对RF设备的不受管制的使用,在未来几年内这将继续污染频谱。RF污染还阻碍未授权频谱用于未来的授权操作,从而限制无线宽带商用服务和频谱拍卖的重要市场机会。The coexistence of unlicensed devices in the same frequency band and the competition between unlicensed and licensed spectrum have been two major issues in the FCC's spectrum allocation plan over the years. For example, cognitive radio technology has enabled the coexistence of wireless microphones and wireless communication devices in white spaces. However, cognitive radio can only provide a fraction of the spectral efficiency of other technologies using spatial processing like DIDO. Similarly, the performance of Wi-Fi systems has been significantly degraded over the past decade due to the increase in the number of access points and the use of Bluetooth/ZigBee devices operating in the same unlicensed ISM bands and generating uncontrolled interference. A disadvantage of unlicensed spectrum is the unregulated use of RF devices, which will continue to pollute the spectrum for years to come. RF pollution also hinders the use of unlicensed spectrum for future licensed operations, thereby limiting the important market opportunities for commercial wireless broadband services and spectrum auctions.

我们提议允许动态分配无线频谱以允许不同服务和标准共存和演进的一种新的系统和方法。我们的方法的一个实施例动态地将权限分配给RF收发器,以在频谱的某些部分中操作,并允许相同RF装置的过时,以提供:We propose a new system and method that allows for dynamic allocation of wireless spectrum to allow different services and standards to coexist and evolve. One embodiment of our method dynamically allocates rights to RF transceivers to operate in certain portions of the spectrum and allows for the obsolescence of identical RF devices to provide:

i)频谱的可重新配置性,以允许新型无线操作(即,授权与未授权)并且/或者符合新的RF功率发射限制。该特征允许在任何必要的时候进行频谱拍卖,无需针对相对于未授权频谱的授权频谱的使用提前计划。其还允许调整发射功率电平,以满足FCC强制实施的新功率发射电平。i) Spectrum reconfigurability to allow new types of wireless operation (i.e., licensed vs. unlicensed) and/or to comply with new RF power emission limits. This feature allows spectrum auctions to be conducted whenever necessary, without requiring advance planning for the use of licensed spectrum versus unlicensed spectrum. It also allows transmit power levels to be adjusted to meet new power emission levels mandated by the FCC.

ii)在同一频带中操作的不同技术(即,白空间和无线麦克风、WiFi和蓝牙/ZigBee)的共存,使得在创建新技术时可以动态地对该频带进行重新分配,同时避免对现有技术的干扰。ii) Coexistence of different technologies (i.e., white spaces and wireless microphones, WiFi and Bluetooth/ZigBee) operating in the same frequency band, allowing the band to be dynamically reallocated as new technologies are created while avoiding interference with existing technologies.

iii)当系统迁移至可提供更高频谱效率、更佳覆盖率和改进的性能以支持要求更高QoS的新型服务(即,HD视频流)的更先进技术时,可实现无线基础结构的无缝演进。iii) Enables seamless evolution of wireless infrastructure as systems migrate to more advanced technologies that offer higher spectral efficiency, better coverage, and improved performance to support new services requiring higher QoS (ie, HD video streaming).

在下文中,我们描述了用于多用户频谱的计划演进和过时的系统和方法。该系统的一个实施例包括一个或多个集中式处理器(CP)4901-4904和一个或多个分布式节点(DN)4911-4913,所述集中式处理器和分布式节点经由如图49所示的有线或无线连接进行通信。例如,在4G-LTE网络[26]的语境中,集中式处理器为连接到若干节点B收发器上的接入核心网关(ACGW)。在Wi-Fi的语境中,集中式处理器为互联网服务供应商(ISP),分布式节点为通过调制解调器连接到ISP上或直接连接到电缆或DSL上的Wi-Fi接入点。在本发明的另一个实施例中,系统为具有一个集中式处理器(或BTS)和为DIDO接入点(或经由BSN连接到BTS的DIDO分布式天线)的分布式节点的分布式输入分布式输出(DIDO)系统,如在本说明书“相关专利申请”部分中记载的DIDO系统。In the following, we describe a system and method for planned evolution and obsolescence of multi-user spectrum. One embodiment of the system includes one or more centralized processors (CPs) 4901-4904 and one or more distributed nodes (DNs) 4911-4913, which communicate via wired or wireless connections as shown in Figure 49. For example, in the context of a 4G-LTE network [26], the centralized processor is an access core gateway (ACGW) connected to several Node B transceivers. In the context of Wi-Fi, the centralized processor is an Internet Service Provider (ISP) and the distributed nodes are Wi-Fi access points connected to the ISP via a modem or directly to cable or DSL. In another embodiment of the present invention, the system is a distributed input distributed output (DIDO) system having a centralized processor (or BTS) and distributed nodes that are DIDO access points (or DIDO distributed antennas connected to the BTS via a BSN), such as the DIDO system described in the "Related Patent Applications" section of this specification.

DN 4911-4913与CP 4901-4904通信。从DN交换到CP的信息用于将节点的配置动态地调整到网络架构的演进设计。在一个实施例中,DN4911-4913与CP共享其识别号。CP将经由网络连接的所有DN的识别号存储于查找表或共享数据库中。那些查找表或数据库可与其他CP共享且所述信息经同步,使得所有CP总是能够接入关于网络上所有DN的最新信息。DNs 4911-4913 communicate with CPs 4901-4904. Information exchanged between DNs and CPs is used to dynamically adapt node configurations to the evolving design of the network architecture. In one embodiment, DNs 4911-4913 share their identification numbers with the CPs. The CPs store the identification numbers of all DNs connected via the network in a lookup table or shared database. These lookup tables or databases can be shared with other CPs, and the information synchronized so that all CPs always have access to the latest information about all DNs on the network.

例如,FCC可决定分配频谱的某一部分给未授权使用并且所提议系统可经设计以在所述频谱中操作。由于频谱的缺乏,FCC可能随后需要分配所述频谱的一部分给授权使用以用于商业运营商(即,美国电报和电话公司(AT&T)、韦里孙通讯(Verizon)或斯普林特公司(Sprint))、国防或公共安全。在常规的无线系统中,此共存将是不可能的,因为在未授权频带中操作的现有无线设备将对授权的RF收发器产生有害干扰。在我们所提议的系统中,分布式节点与CP 4901-4903交换控制信息以使其RF发射适应演进的频带计划。在一个实施例中,DN 4911-4913最初被设计为在可用频谱内的不同频带上操作。当FCC将该频谱的一个或多个部分分配给授权操作时,CP与未授权DN交换控制信息并将DN重新配置以关闭用于授权使用的频带,使得未授权DN不干扰授权DN。该情形示于图50中,其中未授权节点(例如,5002)用实心圆表示,并且授权节点用空心圆表示(例如,5001)。在另一个实施例中,可将整个频谱分配给新的授权服务,并且控制信息由CP使用以关闭所有未授权DN,从而避免干扰授权DN。该情形示于图51中,其中过时的未授权节点用十字覆盖。For example, the FCC may decide to allocate a portion of the spectrum for unlicensed use, and the proposed system may be designed to operate in that spectrum. Due to a lack of spectrum, the FCC may subsequently need to allocate a portion of the spectrum for authorized use for commercial operators (i.e., AT&T, Verizon, or Sprint), national defense, or public safety. In conventional wireless systems, this coexistence would be impossible because existing wireless devices operating in unlicensed bands would cause harmful interference to licensed RF transceivers. In our proposed system, distributed nodes exchange control information with CPs 4901-4903 to adapt their RF transmissions to the evolving band plan. In one embodiment, DNs 4911-4913 are initially designed to operate on different bands within the available spectrum. When the FCC allocates one or more portions of the spectrum for authorized operation, the CPs exchange control information with the unlicensed DNs and reconfigure the DNs to shut down the bands used for authorized use so that the unlicensed DNs do not interfere with the licensed DNs. This scenario is shown in Figure 50, where unlicensed nodes (e.g., 5002) are represented by solid circles and licensed nodes are represented by hollow circles (e.g., 5001). In another embodiment, the entire spectrum can be allocated to the new licensed service, and control information is used by the CP to shut down all unlicensed DNs to avoid interfering with the licensed DNs. This scenario is shown in Figure 51, where the obsolete unlicensed nodes are covered with crosses.

以另一个例子的方式,可能有必要限制在给定频带下操作的某些设备的功率发射以满足FCC暴露限制[27]。例如,无线系统最初可被设计用于固定无线链路,其中DN 4911-4913连接到室外屋顶收发器天线。随后,相同系统可经更新以支持具有室内便携式天线的DN以提供较好的室内覆盖。因为可能更靠近人体,便携式设备的FCC暴露限制比屋顶发射器受到更严格限制。在这种情况下,只要调整发射功率设定,经设计用于室外应用的旧的DN便可重新用于室内应用。在本发明的一个实施例中,DN被设计为具有预定义的发射功率电平集合,并且当系统升级时CP 4901-4903发送控制信息到DN 4911-4913以选择新功率电平,从而满足FCC暴露限制。在另一个实施例中,DN被制造为仅具有一个功率发射设定,并且超过新功率发射电平的那些DN会被CP远程关闭。By way of another example, it may be necessary to limit the power transmission of certain devices operating in a given frequency band to meet FCC exposure limits [27]. For example, a wireless system may initially be designed for fixed wireless links, with DNs 4911-4913 connected to outdoor rooftop transceiver antennas. Later, the same system may be updated to support DNs with indoor portable antennas to provide better indoor coverage. Portable devices are subject to more stringent FCC exposure limits than rooftop transmitters because they may be closer to the human body. In this case, the old DNs designed for outdoor applications can be reused for indoor applications simply by adjusting the transmit power setting. In one embodiment of the present invention, the DNs are designed with a predefined set of transmit power levels, and when the system is upgraded the CPs 4901-4903 send control information to the DNs 4911-4913 to select the new power level to meet the FCC exposure limits. In another embodiment, the DNs are manufactured with only one power transmission setting, and those DNs that exceed the new power transmission level are remotely shut down by the CP.

在一个实施例中,CP 4901-4903周期性地监测网络中的所有DN 4911-4913,以定义其根据某一标准作为RF收发器操作的权限。并非最新的那些DN可被标记为过时并从网络移除。例如,在当前功率极限和频带内操作的DN在网络中保持活动,并且所有其他DN被关闭。需注意,由CP控制的DN参数并不限于功率发射和频带;它可以是定义DN与客户端设备之间的无线链路的任何参数。In one embodiment, CPs 4901-4903 periodically monitor all DNs 4911-4913 in the network to define their authority to operate as RF transceivers according to certain criteria. Those DNs that are no longer up-to-date can be marked as obsolete and removed from the network. For example, DNs operating within the current power limits and frequency bands remain active in the network, while all other DNs are shut down. It is important to note that the DN parameters controlled by the CP are not limited to power transmission and frequency bands; they can be any parameters that define the wireless link between the DN and the client device.

在本发明的另一个实施例中,可将DN 4911-4913重新配置以允许不同标准系统在同一频谱内共存。例如,可调整在WLAN的语境中操作的某些DN的功率发射、频带或其他配置参数以适应采用经设计用于WPAN应用的新DN,同时避免有害干扰。In another embodiment of the present invention, DNs 4911-4913 can be reconfigured to allow different standard systems to coexist within the same spectrum. For example, the power transmission, frequency band, or other configuration parameters of certain DNs operating in the context of WLAN can be adjusted to accommodate the use of new DNs designed for WPAN applications while avoiding harmful interference.

当开发新的无线标准以提高无线网络中的数据速率和覆盖率时,可更新DN 4911-4913以支持那些标准。在一个实施例中,DN为配备有可编程计算能力的软件定义的无线电(SDR),诸如执行用于基带信号处理的算法的FPGA、DSP、CPU、GPU和/或GPGPU。如果升级标准,则可将新的基带算法从CP远程上载到DN,以反映新标准。例如,在一个实施例中,第一标准为基于CDMA的标准并且随后其由OFDM技术替代以支持不同类型的系统。相似地,可将采样速率、功率和其他参数远程更新至DN。当开发了新技术以改进整体系统性能时,DN的此SDR特征允许对网络的连续升级。As new wireless standards are developed to increase data rates and coverage in wireless networks, DNs 4911-4913 can be updated to support those standards. In one embodiment, the DN is a software-defined radio (SDR) equipped with programmable computing power, such as an FPGA, DSP, CPU, GPU, and/or GPGPU that executes algorithms for baseband signal processing. If the standard is upgraded, the new baseband algorithm can be remotely uploaded from the CP to the DN to reflect the new standard. For example, in one embodiment, the first standard is a CDMA-based standard and is subsequently replaced by OFDM technology to support different types of systems. Similarly, the sampling rate, power, and other parameters can be remotely updated to the DN. This SDR feature of the DN allows for continuous upgrades to the network as new technologies are developed to improve overall system performance.

在另一个实施例中,本文中描述的系统为由多个CP、分布式节点和将CP与DN互连的网络组成的云无线系统。图52示出了云无线系统的一个例子,其中全部经由网络5201,用实心圆标识的节点(例如,5203)与CP 5206通信,用空心圆标识的节点与CP 5205通信,并且CP 5205-5206彼此之间通信。在本发明的一个实施例中,云无线系统为DIDO系统,并且DN连接到CP上并交换信息以周期性地或立即重新配置系统参数,并动态地调整以适应无线架构的变化条件。在DIDO系统中,CP为DIDO BTS,分布式节点为DIDO分布式天线,网络为BSN,并且多个BTS经由如在本说明书“相关专利申请”部分中记载的我们先前专利申请中描述的DIDO集中式处理器彼此互连。In another embodiment, the system described herein is a cloud wireless system consisting of multiple CPs, distributed nodes, and a network interconnecting the CPs with the DNs. Figure 52 shows an example of a cloud wireless system, where all nodes identified by solid circles (e.g., 5203) communicate with CP 5206, nodes identified by hollow circles communicate with CP 5205, and CPs 5205-5206 communicate with each other via network 5201. In one embodiment of the present invention, the cloud wireless system is a DIDO system, and the DNs are connected to the CPs and exchange information to periodically or immediately reconfigure system parameters and dynamically adjust to changing conditions of the wireless architecture. In the DIDO system, the CPs are DIDO BTSs, the distributed nodes are DIDO distributed antennas, the network is a BSN, and multiple BTSs are interconnected via a DIDO centralized processor as described in our previous patent application described in the "Related Patent Applications" section of this specification.

云无线系统内的所有DN 5202-5203可分组于不同组中。DN的这些组可同时创建到许多客户端设备的非干扰无线链路,同时每一组支持不同多址接入技术(例如,TDMA、FDMA、CDMA、OFDMA和/或SDMA)、不同调制(例如,QAM、OFDM)和/或编码方案(例如,卷积编码、LDPC、增强代码)。相似地,每一客户端可用不同多址接入技术和/或不同调制/编码方案来服务。基于系统中的活动客户端和其针对其无线链路采用的标准,CP 5205-5206动态地选择可支持那些标准并在客户端设备范围内的DN子集。All DNs 5202-5203 within the cloud wireless system can be grouped into different groups. These groups of DNs can simultaneously create non-interfering wireless links to many client devices, with each group supporting different multiple access technologies (e.g., TDMA, FDMA, CDMA, OFDMA, and/or SDMA), different modulations (e.g., QAM, OFDM), and/or coding schemes (e.g., convolutional coding, LDPC, enhanced codes). Similarly, each client can be served using a different multiple access technology and/or a different modulation/coding scheme. Based on the active clients in the system and the standards they employ for their wireless links, the CPs 5205-5206 dynamically select a subset of DNs that support those standards and are within range of the client devices.

参考文献References

[1]Wikipedia,“Advanced Mobile Phone System”[1]Wikipedia, "Advanced Mobile Phone System"

http://en.wikipedia.org/wiki/Advanced_Mobile_Phone_System(维基百科,“先进的移动电话系统”,http://en.wikipedia.org/wiki/Advanced_Mobile_Phone_System)http://en.wikipedia.org/wiki/Advanced_Mobile_Phone_System (Wikipedia, “Advanced Mobile Phone System”, http://en.wikipedia.org/wiki/Advanced_Mobile_Phone_System)

[2]AT&T,“1946:First Mobile Telephone Call”[2] AT&T, “1946: First Mobile Telephone Call”

http://www.corp.att.com/attlabs/reputation/timeline/46mobile.html(美国电报和电话公司,“1946年:第一次移动电话通话”,http://www.corp.att.com/attlabs/reputation/timeline/46mobile.html)AT&T, "1946: The First Mobile Phone Call," http://www.corp.att.com/attlabs/reputation/timeline/46mobile.html

[3]GSMA,“GSM technology”[3]GSMA, "GSM technology"

http://www.gsmworld.com/technology/index.htm(全球移动通信系统协会,“GSM技术”,http://www.gsmworld.com/technology/index.htm)http://www.gsmworld.com/technology/index.htm (Global System for Mobile Communications Association, "GSM Technology," http://www.gsmworld.com/technology/index.htm)

[4]ETSI,“Mobile technologies GSM”[4]ETSI, "Mobile technologies GSM"

http://www.etsi.org/WebSite/Technologies/gsm.aspx(欧洲电信标准化协会,“移动技术GSM”,http://www.etsi.org/WebSite/Technologies/gsm.aspx)http://www.etsi.org/WebSite/Technologies/gsm.aspx (European Telecommunications Standards Institute, "GSM Mobile Technology," http://www.etsi.org/WebSite/Technologies/gsm.aspx)

[5]Wikipedia,“IS-95”[5] Wikipedia, “IS-95”

http://en.wikipedia.org/wiki/IS-95(维基百科,“IS-95”,http://en.wikipedia.org/wiki/IS-95)http://en.wikipedia.org/wiki/IS-95 (Wikipedia, "IS-95", http://en.wikipedia.org/wiki/IS-95)

[6]Ericsson,“The evolution of EDGE”[6]Ericsson, "The evolution of EDGE"

http://www.ericsson.com/res/docs/whitepapers/evolution_to_edge.pdf(爱立信公司,“EDGE的演进”,http://www.ericsson.com/res/docs/whitepapers/evolution_to_edge.pdf)http://www.ericsson.com/res/docs/whitepapers/evolution_to_edge.pdf (Ericsson, "Evolution of EDGE," http://www.ericsson.com/res/docs/whitepapers/evolution_to_edge.pdf)

[7]Q.Bi(2004-03).“A Forward Link Performance Study of the 1xEV-DORel.0System Using Field Measurements and Simulations”(PDF).LucentTechnologies.[7]Q.Bi(2004-03). "A Forward Link Performance Study of the 1xEV-DORel.0System Using Field Measurements and Simulations" (PDF).LucentTechnologies.

http://www.cdg.org/resources/white_papers/files/Lucent%201xEV-DO%20Rev%20O%20Mar%2004.pdf(Q.Bi,2004年3月,“使用场测量和模拟的1xEV-DO Rel.0系统的前向链路性能研究”(PDF),朗讯科技公司,http://www.cdg.org/resources/white_papers/files/Lucent%201xEV-DO%20Rev%20O%20Mar%2004.pdf)http://www.cdg.org/resources/white_papers/files/Lucent%201xEV-DO%20Rev%20O%20Mar%2004.pdf (Q. Bi, March 2004, "Forward Link Performance Study of 1xEV-DO Rel.0 Systems Using Field Measurements and Simulations" (PDF), Lucent Technologies, http://www.cdg.org/resources/white_papers/files/Lucent%201xEV-DO%20Rev%20O%20Mar%2004.pdf)

[8]Wi-Fi alliance,http://www.wi-fi.org/(Wi-Fi联盟,http://www.wi-fi.org/)[8]Wi-Fi alliance, http://www.wi-fi.org/(Wi-Fi Alliance, http://www.wi-fi.org/)

[9]Wi-Fi alliance,“Wi-Fi certified makes it Wi-Fi”[9]Wi-Fi alliance, “Wi-Fi certified makes it Wi-Fi”

http://www.wi-fi.org/files/WFA_Certification_Overview_WP_en.pdf(Wi-Fi联盟,“Wi-Fi CERTIFIED将Wi-Fi技术性能提升到全新阶段”,http://www.wi-fi.org/files/WFA_Certification_Overview_WP_en.pdf)http://www.wi-fi.org/files/WFA_Certification_Overview_WP_en.pdf (Wi-Fi Alliance, "Wi-Fi CERTIFIED Takes Wi-Fi Technology to a New Level of Performance," http://www.wi-fi.org/files/WFA_Certification_Overview_WP_en.pdf)

[10]WiMAX forum,http://www.wimaxforum.org/(WiMAX论坛,http://www.wimaxforum.org/)[10]WiMAX forum, http://www.wimaxforum.org/(WiMAX Forum, http://www.wimaxforum.org/)

[11]C.Eklund,R.B.Marks,K.L.Stanwood and S.Wang,“IEEE Standard 802.16:A Technical Overview of the WirelessMANTMAir Interface for Broadband WirelessAccess”[11] C.Eklund, RBMarks, KLStanwood and S.Wang, "IEEE Standard 802.16: A Technical Overview of the WirelessMAN TM Air Interface for Broadband WirelessAccess"

http://ieee802.org/16/docs/02/C80216-02_05.pdf(C.Eklund、R.B.Marks、K.L.Stanwood和S.Wang,“IEEE标准802.16:用于宽带无线接入的WirelessMANTM空中接口的技术概述”,http://ieee802.org/16/docs/02/C80216-02_05.pdf)http://ieee802.org/16/docs/02/C80216-02_05.pdf (C. Eklund, R.B. Marks, K.L. Stanwood, and S. Wang, "IEEE Standard 802.16: Technical Overview of the WirelessMAN Air Interface for Broadband Wireless Access," http://ieee802.org/16/docs/02/C80216-02_05.pdf)

[12]3GPP,“UMTS”,http://www.3gpp.org/article/umts[12] 3GPP, "UMTS", http://www.3gpp.org/article/umts

[13]H.A.J.Karlsson,M.Meyer,S.Parkvall,J.Torsner,andM.Wahlqvist“Technical Solutions for the 3G Long-Term Evolution”,IEEECommunications Magazine,pp.38-45,Mar.2006(H.A.J.Karlsson、M.Meyer、S.Parkvall、J.Torsner和M.Wahlqvist,“用于3G长期演进的技术解决方案”,《IEEE通信杂志》,第38-45页,2006年3月)[13] H.A.J.Karlsson, M.Meyer, S.Parkvall, J.Torsner, and M.Wahlqvist “Technical Solutions for the 3G Long-Term Evolution”, IEEE Communications Magazine, pp.38-45, Mar. 2006

[14]3GPP,“LTE”,http://www.3gpp.org/LTE[14] 3GPP, "LTE", http://www.3gpp.org/LTE

[15]Motorola,“Long Term Evolution(LTE):A Technical Overview”,http://business.motorola.com/experiencelte/pdf/LTETechnicalOverview.pdf(摩托罗拉公司,“长期演进(LTE):技术概述”,http://business.motorola.com/experiencelte/pdf/LTETechnicalOverview.pdf)[15] Motorola, “Long Term Evolution (LTE): A Technical Overview”, http://business.motorola.com/experiencelte/pdf/LTETechnicalOverview.pdf

[16]Federal Communications Commission,“Authorization of SpreadSpectrum Systems Under Parts 15and 90of the FCC Rules and Regulations”,June1985(美国联邦通信委员会,“根据FCC规则和条例的第15部分和90部分的扩频系统的授权”,1985年6月)。[16] Federal Communications Commission, “Authorization of Spread Spectrum Systems Under Parts 15 and 90 of the FCC Rules and Regulations”, June 1985.

[17]ITU,“ISM band”http://www.itu.int/ITU-R/terrestrial/faq/index.html#g013(ITU,“ISM频带”,http://www.itu.int/ITU-R/terrestrial/faq/index.html#g013)[17]ITU, "ISM band" http://www.itu.int/ITU-R/terrestrial/faq/index.html#g013

[18]S.Perlman and A.Forenza“Distributed-input distributed-output(DIDO)wireless technology:a new approach to multiuser wireless”,Aug.2011[18] S.Perlman and A.Forenza "Distributed-input distributed-output (DIDO) wireless technology: a new approach to multiuser wireless", Aug. 2011

http://www.rearden.com/DIDO/DIDO_White_Paper_110727.pdf(S.Perlman和A.Forenza,“分布式输入分布式输出(DIDO)无线技术:用于多用户无线的新方法”,2011年8月,http://www.rearden.com/DIDO/DIDO_White_Paper_110727.pdf)http://www.rearden.com/DIDO/DIDO_White_Paper_110727.pdf (S. Perlman and A. Forenza, "Distributed Input Distributed Output (DIDO) Wireless Technology: A New Approach to Multi-User Wireless," August 2011, http://www.rearden.com/DIDO/DIDO_White_Paper_110727.pdf)

[19]Bloomberg Businessweek,“Steve Perlman’s Wireless Fix”,July 27,2011[19] Bloomberg Businessweek, “Steve Perlman’s Wireless Fix,” July 27, 2011

http://www.businessweek.com/magazine/the-edison-of-silicon-valley-07272011.html(《彭博商业周刊》,“Steve Perlman的无线定位法”,2011年7月27日,http://www.businessweek.com/magazine/the-edison-of-silicon-valley-07272011.html)http://www.businessweek.com/magazine/the-edison-of-silicon-valley-07272011.html (Bloomberg Businessweek, “Steve Perlman’s Wireless Location Method,” July 27, 2011, http://www.businessweek.com/magazine/the-edison-of-silicon-valley-07272011.html)

[20]Wired,“Has OnLive’s Steve Perlman Discovered Holy Grail ofWireless?”,June 30,2011[20]Wired, “Has OnLive’s Steve Perlman Discovered Holy Grail of Wireless?”, June 30, 2011

http://www.wired.com/epicenter/2011/06/perlman-holy-grail-wireless/(《连线》,“OnLive公司的Steve Perlman发现了无线技术的圣杯?”,2011年6月30日,http://www.wired.com/epicenter/2011/06/perlman-holy-grail-wireless/)http://www.wired.com/epicenter/2011/06/perlman-holy-grail-wireless/ (Wired, “Has OnLive’s Steve Perlman Found the Holy Grail of Wireless?”, June 30, 2011, http://www.wired.com/epicenter/2011/06/perlman-holy-grail-wireless/)

[21]The Wall Street Journal“Silicon Valley Inventor’s Radical Rewriteof Wireless”,July 28,2011[21]The Wall Street Journal “Silicon Valley Inventor’s Radical Rewrite of Wireless”, July 28,2011

http://blogs.wsj.com/digits/2011/07/28/silicon-valley-inventors-radical-rewrite-of-wireless/(《华尔街日报》,“硅谷的发明家彻底改写了无线网络”,2011年7月28日,http://blogs.wsj.com/digits/2011/07/28/silicon-valley-inventors-radical-rewrite-of-wireless/)http://blogs.wsj.com/digits/2011/07/28/silicon-valley-inventors-radical-rewrite-of-wireless/ (The Wall Street Journal, “Silicon Valley Inventors Radically Rewrite Wireless Networking,” July 28, 2011, http://blogs.wsj.com/digits/2011/07/28/silicon-valley-inventors-radical-rewrite-of-wireless/)

[22]The White House,“Presidential Memorandum:Unleashing the WirelessBroadband Revolution”,June 28,2010[22]The White House, "Presidential Memorandum: Unleashing the WirelessBroadband Revolution", June 28, 2010

http://www.whitehouse.gov/the-press-office/presidential-memorandum-unleashing-wireless-broadband-revolution(白宫,“总统备忘录:发动无线宽带革命”,2010年6月28日,http://www.whitehouse.gov/the-press-office/presidential-memorandum-unleashing-wireless-broadband-revolution)http://www.whitehouse.gov/the-press-office/presidential-memorandum-unleashing-wireless-broadband-revolution (The White House, “Presidential Memorandum: Unleashing the Wireless Broadband Revolution,” June 28, 2010, http://www.whitehouse.gov/the-press-office/presidential-memorandum-unleashing-wireless-broadband-revolution)

[23]FCC,“Open commission meeting”,Sept.23rd,2010[23]FCC, "Open commission meeting", Sept.23 rd , 2010

http://reboot.fcc.gov/open-meetings/2010/september(FCC,“公开的委员会会议”,2010年9月23日,http://reboot.fcc.gov/open-meetings/2010/september)http://reboot.fcc.gov/open-meetings/2010/september (FCC, “Open Commission Meetings,” September 23, 2010, http://reboot.fcc.gov/open-meetings/2010/september)

[24]IEEE 802.22,“IEEE 802.22Working Group on Wireless Regional AreaNetworks”,http://www.ieee802.org/22/(IEEE 802.22,“针对无线区域网的IEEE 802.22工作组”,http://www.ieee802.org/22/)[24] IEEE 802.22, “IEEE 802.22 Working Group on Wireless Regional Area Networks”, http://www.ieee802.org/22/

[25]“A bill”,112th congress,1st session,July 12,2011[25] "A bill", 112th congress, 1 st session, July 12, 2011

http://republicans.energycommerce.house.gov/Media/file/Hearings/Telecom/071511/DiscussionDraft.pdf(第112届国会第一次会议“议案”,2011年7月12日)http://republicans.energycommerce.house.gov/Media/file/Hearings/Telecom/071511/DiscussionDraft.pdf (112th Congress, First Session, “Bill,” July 12, 2011)

[26]H.A.J.Karlsson,M.Meyer,S.Parkvall,J.Torsner,andM.Wahlqvist“Technical Solutions for the 3G Long-Term Evolution”,IEEECommunications Magazine,pp.38-45,Mar.2006(H.A.J.Karlsson、M.Meyer、S.Parkvall、J.Torsner和M.Wahlqvist,“用于3G长期演进的技术解决方案”,《IEEE通信杂志》,第38-45页,2006年3月)[26] H.A.J.Karlsson, M.Meyer, S.Parkvall, J.Torsner, and M.Wahlqvist “Technical Solutions for the 3G Long-Term Evolution”, IEEE Communications Magazine, pp.38-45, Mar. 2006

[27]FCC,“Evaluating compliance with FCC guidelines for human exposureto radiofrequency electromagnetic fields,”OET Bulletin 65,Edition 97-01,Aug.1997(FCC,“针对人体暴露于射频电磁场的FCC指南的兼容性评估”,OET第65号公告,97-01版,1997年8月)[27]FCC, “Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields,” OET Bulletin 65, Edition 97-01, August 1997

V.对分布式输入-分布式输出无线系统中的多普勒效应进行补偿的系统和方法V. System and Method for Compensating for Doppler Effect in a Distributed-Input-Distributed-Output Wireless System

在具体实施方式的该部分中,我们描述了用于多用户无线传输的多用户(MU)多天线系统(MAS),其自适应地重新配置参数,以补偿由于用户移动性或传播环境的改变而造成的多普勒效应。在一个实施例中,MAS为分布式输入-分布式输出(DIDO)系统,如在本说明书“相关专利申请”部分中记载的共同待审的专利申请中所述以及图53中所示。一个实施例的DIDO系统包括以下部件:In this section of the detailed description, we describe a multi-user (MU) multi-antenna system (MAS) for multi-user wireless transmission that adaptively reconfigures parameters to compensate for the Doppler effect due to changes in user mobility or the propagation environment. In one embodiment, the MAS is a distributed input-distributed output (DIDO) system, as described in the co-pending patent application described in the "Related Patent Applications" section of this specification and shown in Figure 53. The DIDO system of one embodiment includes the following components:

·用户装置(UE):一个实施例的UE 5301包括用于固定或移动客户端的RF收发器,其接收来自DIDO回程的下行链路(DL)信道上的数据流并通过上行链路(UL)信道将数据发射至DIDO回程。• User Equipment (UE): The UE 5301 of one embodiment includes an RF transceiver for a fixed or mobile client that receives data streams on downlink (DL) channels from the DIDO backhaul and transmits data to the DIDO backhaul via uplink (UL) channels.

·收发器基站(BTS):一个实施例的BTS 5310-5314将DIDO回程与无线信道对接。BTS 5310-5314为包括DAC/ADC和射频(RF)链的接入点,以便将基带信号转换成RF信号。在一些情况下,BTS为配备有功率放大器/天线的简单RF收发器,RF信号通过射频光纤传输技术被传输至BTS,如我们的专利申请中所述。Base Transceiver Station (BTS): The BTSs 5310-5314 of one embodiment interface the DIDO backhaul with the wireless channel. The BTSs 5310-5314 are access points that include a DAC/ADC and a radio frequency (RF) chain to convert baseband signals into RF signals. In some cases, the BTS is a simple RF transceiver equipped with a power amplifier/antenna. The RF signal is transmitted to the BTS via radio frequency fiber transmission technology, as described in our patent application.

·控制器(CTR):一个实施例中的CTR 5320为一种特定类型的BTS,其被设计用于某些特定用途,如传输用于BTS和/或UE的时间/频率同步的训练信号,接受来自UE的控制信息或传输控制信息至UE,接收来自UE的信道状态信息(CSI)或信道质量信息。Controller (CTR): In one embodiment, the CTR 5320 is a specific type of BTS designed for certain specific purposes, such as transmitting training signals for time/frequency synchronization of the BTS and/or UE, receiving control information from the UE or transmitting control information to the UE, and receiving channel state information (CSI) or channel quality information from the UE.

·集中式处理器(CP):一个实施例的CP 5340为将互联网或其他类型的外部网络5350与DIDO回程对接的DIDO服务器。CP计算DIDO基带处理并将波形发送至用于DL传输的分布式BTS。Centralized Processor (CP): The CP 5340 of one embodiment is a DIDO server that interfaces the Internet or other type of external network 5350 with the DIDO backhaul. The CP computes the DIDO baseband processing and sends the waveform to the distributed BTSs for DL transmission.

·基站网络(BSN):一个实施例的BSN 5330为将CP连接到分布式BTS上的网络,所述BTS携带用于DL信道或UL信道的信息。BSN为有线或无线网络或两者的组合。例如,BSN为DSL、电缆、光纤网络或视线或非视线无线链路。此外,BSN为专有网络或局域网或互联网。Base Station Network (BSN): The BSN 5330 of one embodiment is a network that connects CPs to distributed BTSs, which carry information for downlink or uplink channels. The BSN is a wired or wireless network, or a combination of both. For example, the BSN can be a DSL, cable, or fiber optic network, or a line-of-sight or non-line-of-sight wireless link. Alternatively, the BSN can be a private network, a local area network, or the internet.

如共同待审的专利申请中所述,DIDO系统为多个用户创建独立的信道,使得每个用户接收无干扰信道。在DIDO系统中,这是通过采用分布式天线或BTS以利用空间分集来实现的。在一个实施例中,DIDO系统采用空间、极化和/或方向图分集,以提高每个信道内的自由度。无线链路的提高的自由度用于向数量更多的UE传输独立数据流(即多路复用增益)并且/或者提高覆盖率(即分集增益)。As described in the co-pending patent application, a DIDO system creates independent channels for multiple users, allowing each user to receive an interference-free channel. In a DIDO system, this is achieved by using distributed antennas or BTSs to exploit spatial diversity. In one embodiment, a DIDO system employs spatial, polarization, and/or pattern diversity to increase the degrees of freedom within each channel. The increased degrees of freedom of the wireless link are used to transmit independent data streams to a greater number of UEs (i.e., multiplexing gain) and/or improve coverage (i.e., diversity gain).

BTS 5310-5314布置在方便接入互联网或BSN的任何地方。在本发明的一个实施例中,UE 5301-5305任意布置在BTS或分布式天线之间、周围和/或被它们包围,如图54所示。BTSs 5310-5314 are deployed anywhere that is convenient for accessing the Internet or BSN. In one embodiment of the present invention, UEs 5301-5305 are arbitrarily deployed between, around, and/or surrounded by BTSs or distributed antennas, as shown in FIG54.

在一个实施例中,BTS 5310-5314通过DL信道将训练信号和/或独立数据流发送至UE 5301,如图55所示。训练信号被UE用于不同的目的,如时间/频率同步、信道估计和/或信道状态信息(CSI)的估计。在本发明的一个实施例中,MU-MAS DL采用非线性预编码,诸如脏纸编码(DPC)[1-2]或汤姆林森-哈拉希玛(Tomlinson-Harashima,TH)[3-4]预编码。在本发明的另一个实施例中,MU-MAS DL采用非线性预编码,如在本说明书“相关专利申请”部分中记载的共同待审的专利申请中所述的块对角化(BD)或迫零波束成形(ZF-BF)[5]。如果BTS的数量大于UE,则额外的BTS用于通过分集方案来提高到每个UE的链路质量,如在本说明书“相关专利申请”部分中记载的所述的天线选择或本征模式选择。如果BTS的数量小于UE,则额外的UE通过常规的多路复用技术(如,TDMA、FDMA、CDMA、OFDMA)与其他UE共享无线链路。In one embodiment, BTSs 5310-5314 transmit training signals and/or independent data streams to UE 5301 via a DL channel, as shown in FIG55 . The training signals are used by the UE for various purposes, such as time/frequency synchronization, channel estimation, and/or estimation of channel state information (CSI). In one embodiment of the present invention, MU-MAS DL employs nonlinear precoding, such as dirty paper coding (DPC) [1-2] or Tomlinson-Harashima (TH) [3-4] precoding. In another embodiment of the present invention, MU-MAS DL employs nonlinear precoding, such as block diagonalization (BD) or zero-forcing beamforming (ZF-BF) [5] as described in the co-pending patent applications described in the “Related Patent Applications” section of this specification. If the number of BTSs is greater than the number of UEs, the additional BTSs are used to improve the link quality to each UE through a diversity scheme, such as antenna selection or eigenmode selection as described in the “Related Patent Applications” section of this specification. If the number of BTSs is less than the number of UEs, the additional UEs share the radio link with other UEs through conventional multiplexing techniques (eg, TDMA, FDMA, CDMA, OFDMA).

UL信道用于从UE 5301向CP 5340和/或DIDO预编码器使用的CSI(或信道质量信息)发送数据。在一个实施例中,将来自UE的UL信道通过常规的多路复用技术(如,TDMA、FDMA、CDMA、OFDMA)多路复用至如图56所示的CTR或复用至最近的BTS。在本发明的另一个实施例中,使用空间处理技术分离从UE 5301至分布式BTS 5310-5314的UL信道,如图57所示。例如,通过多输入多输出(MIMO)多路复用方案将UL流从客户端传输至DIDO天线。MIMO多路复用方案包括传输来自客户端的独立数据流和使用DIDO天线处的线性或非线性接收器移除共信道干扰。在另一个实施例中,在上行链路上使用下行链路权重以解调上行链路流,假定保持UL/DL信道互易性并且信道不会由于多普勒效应而在DL和UL传输之间有显著差异。在另一个实施例中,在UL信道上使用最大比合并(MRC)接收器,以提高来自每个客户端的DIDO天线的信号质量。The UL channel is used to send data from the UE 5301 to the CSI (or channel quality information) used by the CP 5340 and/or the DIDO precoder. In one embodiment, the UL channel from the UE is multiplexed to the CTR as shown in Figure 56 or to the nearest BTS using conventional multiplexing techniques (e.g., TDMA, FDMA, CDMA, OFDMA). In another embodiment of the present invention, spatial processing techniques are used to separate the UL channels from the UE 5301 to the distributed BTSs 5310-5314, as shown in Figure 57. For example, the UL stream is transmitted from the client to the DIDO antenna via a multiple-input multiple-output (MIMO) multiplexing scheme. The MIMO multiplexing scheme includes transmitting independent data streams from the client and removing co-channel interference using linear or nonlinear receivers at the DIDO antennas. In another embodiment, downlink weights are used on the uplink to demodulate the uplink stream, assuming that UL/DL channel reciprocity is maintained and that the channel does not differ significantly between DL and UL transmissions due to the Doppler effect. In another embodiment, a maximum ratio combining (MRC) receiver is used on the UL channel to improve the signal quality from each client's DIDO antenna.

通过DL/UL信道发送的数据、控制信息和CSI通过BSN 5330在CP 5340和BTS 5310-5314之间共享。可将用于DL信道的已知训练信号存储在BTS 5310-5314处的存储器中,以降低通过BSN 5330的开销。根据网络类型(即,无线/有线,DSL/电缆或光纤),BSN 5330上可用的数据速率可能不足以在CP 5340与BTS 5310-5314之间交换信息,尤其是在将基带信号递送至BTS时。例如,我们假定BTS通过5MHz带宽向每个UE传输10Mbps的独立数据流(取决于无线链路上使用的数字调制和FEC编码方案)。如果量化16比特用于实部,并且量化16比特用于虚部,则基带信号需要通过BSN从CP至BTS的160Mbps的数据吞吐量。在一个实施例中,CP和BTS配备有编码器和解码器,以压缩和解压缩通过BSN发送的信息。在前向链路中,压缩从CP发送至BTS的预编码基带数据,以减小比特数量和通过BSN发送的开销。相似地,在反向链路中,(通过上行链路信道从UE发送至BTS的)CSI以及数据经压缩后再通过BSN从BTS向CP传输。采用不同的压缩算法来减小比特的数量和通过BSN发送的开销,包括但不限于无损和/或有损技术[6]。Data, control information, and CSI sent via the DL/UL channels are shared between the CP 5340 and the BTSs 5310-5314 via the BSN 5330. Known training signals for the DL channels can be stored in memory at the BTSs 5310-5314 to reduce overhead through the BSN 5330. Depending on the network type (i.e., wireless/wired, DSL/cable, or fiber), the data rate available on the BSN 5330 may not be sufficient to exchange information between the CP 5340 and the BTSs 5310-5314, especially when delivering baseband signals to the BTS. For example, we assume that the BTS transmits an independent data stream of 10 Mbps to each UE over a 5 MHz bandwidth (depending on the digital modulation and FEC coding scheme used on the wireless link). If 16 bits are quantized for the real part and 16 bits are quantized for the imaginary part, the baseband signal requires a data throughput of 160 Mbps from the CP to the BTS via the BSN. In one embodiment, the CP and BTS are equipped with encoders and decoders to compress and decompress the information sent via the BSN. In the forward link, the precoded baseband data sent from the CP to the BTS is compressed to reduce the number of bits and the overhead sent through the BSN. Similarly, in the reverse link, the CSI (sent from the UE to the BTS via the uplink channel) and the data are compressed before being transmitted from the BTS to the CP via the BSN. Different compression algorithms are used to reduce the number of bits and the overhead sent through the BSN, including but not limited to lossless and/or lossy techniques [6].

一个实施例中使用的DIDO系统的一个特征是使CP 5340知晓所有BTS 5310-5314与UE 5301之间的CSI或信道质量信息,以允许预编码。如上文所述,DIDO的性能取决于相对于无线链路的变化速率向CP递送CSI的速率。熟知的是,信道复用增益的变化是由引起多普勒效应的UE移动性和/或传播环境的改变而导致的。根据与最大多普勒频移成反比的信道相干时间(Tc)测量信道的变化速率。为了使DIDO传输可靠地进行,由于CSI反馈而导致的延迟必须为信道相干时间的分数(例如,1/10或更小)。在一个实施例中,测量CSI反馈回路上的延迟,即发送CSI培训时的时间与在UE侧解调预编码数据时的时间之间的时间,如图58所示。One feature of the DIDO system used in one embodiment is that the CSI or channel quality information between all BTSs 5310-5314 and the UE 5301 is made known to the CP 5340 to allow precoding. As described above, the performance of DIDO depends on the rate at which CSI is delivered to the CP relative to the rate of change of the wireless link. It is well known that changes in channel reuse gain are caused by changes in UE mobility and/or propagation environment, which cause the Doppler effect. The rate of change of the channel is measured based on the channel coherence time ( Tc ), which is inversely proportional to the maximum Doppler shift. In order for DIDO transmission to proceed reliably, the delay caused by CSI feedback must be a fraction of the channel coherence time (e.g., 1/10 or less). In one embodiment, the delay on the CSI feedback loop is measured, that is, the time between the time when the CSI training is sent and the time when the precoded data is demodulated on the UE side, as shown in Figure 58.

在频分双工(FDD)DIDO系统中,BTS 5310-5314将CSI训练发送至UE 5301,其估计CSI以及对BTS的反馈。然后BTS通过BSN将CSI发送至CP 5340,其计算DIDO预编码数据流并通过BSN 5330将它们发送回BTS。最后BTS将预编码流发送至解调数据的UE。参考图58,DIDO反馈回路的总延迟由下式给出In a frequency division duplex (FDD) DIDO system, BTSs 5310-5314 send CSI training to UE 5301, which estimates CSI and provides feedback to the BTS. The BTS then sends the CSI to CP 5340 via the BSN, which calculates the DIDO precoded data streams and sends them back to the BTS via BSN 5330. Finally, the BTS sends the precoded streams to the UE, which demodulates the data. Referring to Figure 58, the total delay of the DIDO feedback loop is given by

2*TDL+TUL+TBSN+TCP 2*T DL +T UL +T BSN +T CP

其中TDL和TUL分别包括构建、发送和处理下行链路和上行链路帧的时间,TBSN为BSN上的往返延迟,TCP为CP处理CSI、生成用于UE的预编码数据流和调度用于当前传输的不同UE所花费的时间。在这种情况下,考虑到训练信号时间(从BTS至UE)和反馈信号时间(从UE至BTS),将TDL乘以2。在时分双工(TDD)中,如果可以采用信道互易性,在UE向计算CSI并将其发送至CP的BTS发送CSI训练时,则跳过第一步(即,从BTS至UE传输CSI训练信号)。因此,在该实施例中,DIDO反馈回路的总延迟为TDL+TUL+TBSN+TCP Where T DL and T UL include the time to construct, send, and process the downlink and uplink frames, respectively, T BSN is the round-trip delay on the BSN, and T CP is the time it takes the CP to process the CSI, generate the precoded data stream for the UE, and schedule the different UEs for the current transmission. In this case, T DL is multiplied by 2 to account for the training signal time (from the BTS to the UE) and the feedback signal time (from the UE to the BTS). In time division duplexing (TDD), if channel reciprocity can be exploited, the first step (i.e., transmitting the CSI training signal from the BTS to the UE) is skipped when the UE sends CSI training to the BTS, which calculates the CSI and sends it to the CP. Therefore, in this embodiment, the total delay of the DIDO feedback loop is T DL + T UL + T BSN + T CP

延迟TBSN取决于BSN的类型是专用电缆、DSL、光纤连接还是一般互联网。典型的值可以在1毫秒至50毫秒的范围之间变化。如果在专用处理器(如ASIC、FPGA、DSP、CPU、GPU和/或GPGPU)上的CP处实施DIDO处理,则CP处的计算时间可以缩短。此外,如果BTS 5310-5314的数量超过UE 5301的数量,则可以同时为所有UE提供服务,从而清除由于多用户调度而导致的延迟。因此,与TBSN相比,延迟TCP可忽略不计。最后,用于DL和UL的发射和接收处理通常在计算时间可忽略的ASIC、FPGA或DSP上实施,并且如果信号带宽相对较大(如,大于1MHz),则帧持续时间可以变得非常短(即,小于1毫秒)。因此,与TBSN相比,TDL和TUL也可忽略不计。The latency, T BSN , depends on whether the BSN is a dedicated cable, DSL, fiber-optic connection, or general internet. Typical values can range from 1 millisecond to 50 milliseconds. If DIDO processing is implemented at the CP on a dedicated processor (such as an ASIC, FPGA, DSP, CPU, GPU, and/or GPGPU), the computation time at the CP can be reduced. Furthermore, if the number of BTSs 5310-5314 exceeds the number of UEs 5301, all UEs can be served simultaneously, eliminating the latency caused by multi-user scheduling. Therefore, the latency, T CP , is negligible compared to T BSN . Finally, the transmit and receive processing for both the DL and UL are typically implemented on an ASIC, FPGA, or DSP, where the computation time is negligible. Furthermore, if the signal bandwidth is relatively large (e.g., greater than 1 MHz), the frame duration can be very short (i.e., less than 1 millisecond). Therefore, T DL and T UL are also negligible compared to T BSN .

在本发明的一个实施例中,CP 5340跟踪所有UE 5301的多普勒速度,并将具有最低BSN的BTS 5310-5314动态地分配给具有较高多普勒的UE。该自适应基于不同的标准:In one embodiment of the present invention, CP 5340 tracks the Doppler speed of all UEs 5301 and dynamically assigns the BTS 5310-5314 with the lowest BSN to the UE with higher Doppler. This adaptation is based on different criteria:

·BSN的类型:例如,专用光纤链路经历的延迟通常比电缆调制解调器或DSL更低。延迟较低的BSN用于高移动性UE(如,高速公路上的汽车、火车),而延迟较高的BSN用于固定无线或低移动性UE(如,住宅区内的家庭设备、行人和车)。 Type of BSN : For example, dedicated fiber links typically experience lower latency than cable modems or DSL. Lower-latency BSNs are used for high-mobility UEs (e.g., cars on highways, trains), while higher-latency BSNs are used for fixed wireless or low-mobility UEs (e.g., home devices, pedestrians, and cars in residential areas).

·QoS的类型:例如,BSN可支持不同类型的DIDO或非DIDO通信。可以为不同的通信类型定义不同优先级的服务质量(QoS)。例如,BSN将高优先级分配给DIDO通信,将低优先级分配给非DIDO通信。或者,将高优先级QoS分配给用于高移动性UE的通信,将低优先级QoS分配给具有低移动性的UE。 Type of QoS : For example, a BSN can support different types of DIDO or non-DIDO communications. Different priorities of Quality of Service (QoS) can be defined for different communication types. For example, the BSN can assign high priority to DIDO communications and low priority to non-DIDO communications. Alternatively, high-priority QoS can be assigned to communications for high-mobility UEs and low-priority QoS can be assigned to UEs with low mobility.

·长期统计值:例如,BSN上的通信可以根据一天中的时间而显著变化(例如,晚上家庭使用,白天办公室使用)。较高的通信负载会导致较高的延迟。然后,在一天中的不同时间,如果具有较高通信的BSN导致较高的延迟,则用于低移动性UE,而如果具有较低通信的BSN导致较低的延迟,则用于高移动性UE。 Long-term statistics : For example, traffic on a BSN can vary significantly depending on the time of day (e.g., home use at night, office use during the day). Higher traffic loads result in higher latency. Consequently, at different times of the day, a BSN with higher traffic loads results in higher latency for low-mobility UEs, while a BSN with lower traffic loads results in lower latency for high-mobility UEs.

·短期统计值:例如,任何BSN都会受到临时网络拥塞的影响而导致较高的延迟。然而,CP可自适应地从拥塞的BSN中选择BTS(如果拥塞导致较高的延迟)用于低移动性UE,并将剩余的BSN(如果它们的延迟较低)用于高移动性UE。 Short-term statistics : For example, any BSN may be affected by temporary network congestion, resulting in higher latency. However, the CP can adaptively select BTSs from the congested BSNs (if the congestion results in higher latency) for low-mobility UEs and use the remaining BSNs (if their latency is lower) for high-mobility UEs.

在本发明的另一个实施例中,基于每个单独的BTS-UE链路上经受的多普勒来选择BTS 5310-5314。例如,在图59中的视线(LOS)链路B中,根据熟知的等式,最大多普勒频移为BTS-UE链路与车辆速度(v)之间的角度(φ)的函数In another embodiment of the present invention, the BTSs 5310-5314 are selected based on the Doppler experienced on each individual BTS-UE link. For example, in the line-of-sight (LOS) link B in FIG59 , the maximum Doppler shift is a function of the angle (φ) between the BTS-UE link and the vehicle speed (v) according to the well-known equation

其中λ为对应于载波频率的波长。因此,在LOS信道中,图59中的链路A的多普勒频移最大,链路C的多普勒频移接近于零。在非LOS(NLOS)中,最大多普勒频移取决于UE周围的多路径的方向,但一般来讲,因为BTS在DIDO系统中的分布性质,一些BTS中将对于给定的UE经受较高的多普勒(例如BTS 5312),而其他BTS将对于给定的UE经受较低的多普勒(例如BTS 5314)。Where λ is the wavelength corresponding to the carrier frequency. Therefore, in an LOS channel, the Doppler shift of link A in Figure 59 is maximum, and the Doppler shift of link C is close to zero. In non-LOS (NLOS), the maximum Doppler shift depends on the direction of the multipath around the UE, but generally speaking, due to the distributed nature of BTSs in a DIDO system, some BTSs will experience a higher Doppler for a given UE (e.g., BTS 5312), while other BTSs will experience a lower Doppler for a given UE (e.g., BTS 5314).

在一个实施例中,CP跟踪每个BTS-UE链路上的多普勒速度并且只选择对每个UE具有最低多普勒效应的链路。与所述技术相似,CP 5340定义每个UE 5301的“用户群集”。用户群集为具有用于UE的良好链路质量(基于一定的信噪比、SNR、阈值定义)和低多普勒(例如,基于预定义的多普勒阈值定义)的BTS组,如图60所示。在图60中,BTS 5至10均具有用于UE1的良好SNR,但只有BTS 6至9经受低多普勒效应(例如,低于指定的阈值)。In one embodiment, the CP tracks the Doppler velocity on each BTS-UE link and selects only the link with the lowest Doppler effect for each UE. Similar to the above technique, the CP 5340 defines a "user cluster" for each UE 5301. A user cluster is a group of BTSs with good link quality for the UE (defined based on a certain signal-to-noise ratio, SNR, threshold) and low Doppler (e.g., defined based on a predefined Doppler threshold), as shown in Figure 60. In Figure 60, BTSs 5 to 10 all have good SNRs for UE 1, but only BTSs 6 to 9 experience low Doppler effect (e.g., below a specified threshold).

该实施例的CP将每个BTS-UE链路的所有SNR和多普勒值记录到矩阵中并且针对每个UE选择符合SNR和多普勒阈值的子矩阵。在图61所示的例子中,子矩阵用包围C2,6、C2,7、C3,9、C4,7、C4,8、C4,9和C5,6的绿色虚线标识。基于该子矩阵计算所述UE的DIDO预编码权重。需注意,BTS 5和10是UE 2、3、4、5和7可达到的,如图61的表中所示。然后,为了避免在向那些其他UE传输时对UE1的干扰,BTS 5和10必须基于常规的多路复用技术(诸如TDMA、FDMA、CDMA或OFDMA)关闭或分配至不同的正交信道。The CP of this embodiment records all SNR and Doppler values for each BTS-UE link into a matrix and selects a submatrix that meets the SNR and Doppler thresholds for each UE. In the example shown in Figure 61, the submatrix is marked with a green dashed line surrounding C2,6 , C2,7 , C3,9 , C4,7 , C4,8 , C4,9 , and C5,6 . The DIDO precoding weights for the UE are calculated based on this submatrix. Note that BTS5 and 10 are reachable by UE2, 3, 4, 5, and 7, as shown in the table of Figure 61. However, to avoid interference with UE1 when transmitting to those other UEs, BTS5 and 10 must be turned off or assigned to different orthogonal channels based on conventional multiplexing techniques (such as TDMA, FDMA, CDMA, or OFDMA).

在另一个实施例中,通过线性预测减小多普勒效应对DIDO预编码系统性能的不利影响,所述线性预测是一种基于过去的信道估计来估计未来的复信道系数的技术。以举例且非限制性的方式,[7-11]中提议了用于单输入单输出(SISO)和OFDM无线系统的不同预测算法。已知未来的信道复系数可以减少由于过时的CSI而导致的错误。例如,图62示出了不同时间处的信道增益(或CSI):i)tCTR为图58中的CTR接收来自FDD系统中的UE的CSI(或等效地,BTS利用TDD系统中的DL/UL互易性估计来自UL信道的CSI)的时间;ii)tCP为通过BSN将CSI递送至CP的时间;iii)tBTS为将CSI用于无线链路上的预编码的时间。在图62中,我们观察到,由于延迟TBSN(也示于图58中),在时间tCTR处估计的CSI在用于在时间tBTS处在DL信道上无线传输时将会过时(即,复信道增益已经改变)。避免由于多普勒而造成的这种效应的一种方法是在CP处运行预测方法。在时间tCTR和CP处可用的CSI估计由于CTR-CP延迟而延迟TBSN/2并且对应于图62中时间t0处的信道增益。然后,CP使用在时间t0之前估计并存储在存储器中的CSI的全部或部分以预测时间t0+TBSN=tCP处的未来信道系数。如果预测算法具有最小的误差传播,则在时间tCP处预测的CSI在未来可靠地再现信道增益。预测的CSI与当前CSI之间的时间差值称为预测时域,并且在SISO系统中,通常用信道相干时间来标定。In another embodiment, the adverse effects of the Doppler effect on the performance of the DIDO precoding system are reduced by linear prediction, which is a technique for estimating future complex channel coefficients based on past channel estimates. By way of example and not limitation, different prediction algorithms for single-input single-output (SISO) and OFDM wireless systems are proposed in [7-11]. Knowing the future channel complex coefficients can reduce errors caused by outdated CSI. For example, Figure 62 shows the channel gain (or CSI) at different times: i) t CTR is the time at which the CTR in Figure 58 receives the CSI from the UE in the FDD system (or equivalently, the BTS estimates the CSI from the UL channel using DL/UL reciprocity in the TDD system); ii) t CP is the time at which the CSI is delivered to the CP by the BSN; iii) t BTS is the time at which the CSI is used for precoding on the wireless link. In Figure 62, we observe that due to the delay T BSN (also shown in Figure 58), the CSI estimated at time t CTR will be outdated (i.e., the complex channel gain has changed) when used for wireless transmission on the DL channel at time t BTS . One way to avoid this effect due to Doppler is to run the prediction method at the CP. The CSI estimate available at time t CTR and CP is delayed by T BSN /2 due to the CTR-CP delay and corresponds to the channel gain at time t 0 in Figure 62. The CP then uses all or part of the CSI estimated and stored in memory before time t 0 to predict the future channel coefficients at time t 0 + T BSN = t CP . If the prediction algorithm has minimal error propagation, the CSI predicted at time t CP reliably reproduces the channel gain in the future. The time difference between the predicted CSI and the current CSI is called the prediction time domain and, in SISO systems, is typically scaled by the channel coherence time.

在DIDO系统中,预测算法更复杂,因为它要估计时域和空间域两者中的未来信道系数。[12-13]中描述了采用MIMO无线信道的空间-时间特征的线性预测算法。在[13]中,其显示了MIMO系统中的预测算法(根据均方误差或MSE测量)的性能针对较高的信道相干时间(即,减小了多普勒效应)和较低的信道相干距离(由于较低的空间相关性)而有所改善。因此,空间-时间方法的预测时域(用秒表示)与信道相干时间成正比,并且与信道相干距离成反比。在DIDO系统中,相干距离低是由于分布式天线所产生的高空间选择性。In DIDO systems, the prediction algorithm is more complex because it estimates future channel coefficients in both the time and space domains. [12-13] describe linear prediction algorithms that exploit the space-time characteristics of MIMO wireless channels. In [13], it is shown that the performance of prediction algorithms in MIMO systems (measured in terms of mean squared error or MSE) improves for higher channel coherence times (i.e., reduced Doppler effects) and lower channel coherence distances (due to lower spatial correlation). Therefore, the prediction time domain (expressed in seconds) of the space-time approach is proportional to the channel coherence time and inversely proportional to the channel coherence distance. In DIDO systems, the low coherence distance is due to the high spatial selectivity provided by the distributed antennas.

本文描述了利用DIDO系统的时间和空间分集来预测未来的向量信道(即,从BTS至UE的CSI)的预测技术。这些实施例利用无线信道中可用的空间分集获得可忽略的CSI预测误差和任何现有SISO和MIMO预测算法的扩展预测时域。这些技术的一个重要特征是利用分布式天线,因为它们从分布式UE接收不相关的复信道系数。This paper describes prediction techniques that exploit the temporal and spatial diversity of DIDO systems to predict future vector channels (i.e., CSI from the base station to the UE). These embodiments exploit the spatial diversity available in the wireless channel to achieve negligible CSI prediction errors and extend the prediction time domain of any existing SISO and MIMO prediction algorithms. A key feature of these techniques is the utilization of distributed antennas, as they receive uncorrelated complex channel coefficients from distributed UEs.

在本发明的一个实施例中,将时间和空间预测器与频域中的估计器结合,以允许通过系统(诸如OFDM系统)中的所有可用子载波进行CSI预测。在本发明的另一个实施例中,基于DIDO权重的先前估计来预测DIDO预编码权重(而不是CSI)。In one embodiment of the invention, the temporal and spatial predictors are combined with an estimator in the frequency domain to allow CSI prediction over all available subcarriers in a system (such as an OFDM system). In another embodiment of the invention, the DIDO precoding weights (instead of CSI) are predicted based on previous estimates of the DIDO weights.

参考文献References

[1]M.Costa,“Writing on dirty paper,”IEEE Transactions on InformationTheory,Vol.29,No.3,Page(s):439-441,May 1983(M.Costa,“在脏纸上书写”,《IEEE信息理论学报》,第29卷,第3期,第439-441页,1983年5月)。[1]M.Costa, “Writing on dirty paper,” IEEE Transactions on Information Theory, Vol. 29, No. 3, Page(s): 439-441, May 1983.

[2]U.Erez,S.Shamai(Shitz),and R.Zamir,“Capacity and lattice-strategies for cancelling known interference,”Proceedings of InternationalSymposium on Information Theory,Honolulu,Hawaii,Nov.2000(U.Erez、S.Shamai(Shitz)和R.Zamir,“用于消除已知干扰的容量和格子策略”,信息理论国际研讨会论文集,夏威夷檀香山,2000年11月)。[2] U.Erez, S.Shamai (Shitz), and R.Zamir, “Capacity and lattice-strategies for cancelling known interference,” Proceedings of International Symposium on Information Theory, Honolulu, Hawaii, Nov. 2000.

[3]M.Tomlinson,“New automatic equalizer employing modulo arithmetic,”Electronics Letters,Page(s):138-139,March 1971(M.Tomlinson,“采用模运算的新型自动均衡器”,《电子快报》,第138-139页,1971年3月)。[3]M.Tomlinson, “New automatic equalizer employing modulo arithmetic,” Electronics Letters, Page(s): 138-139, March 1971.

[4]H.Miyakawa and H.Harashima,“A method of code conversion fordigital communication channels with intersymbol interference,”Transactions ofthe Institute of Electronic(H.Miyakawa和H.Harashima,“具有码间干扰的数字通信信道的代码转换方法”,《电子研究所学报》)。[4]H.Miyakawa and H.Harashima, “A method of code conversion for digital communication channels with intersymbol interference,” Transactions of the Institute of Electronic

[5]R.A.Monziano and T.W.Miller,Introduction to Adaptive Arrays,NewYork:Wiley,1980(R.A.Monziano和T.W.Miller,《自适应阵列导论》,纽约威立出版社,1980年)。[5] R.A.Monziano and T.W.Miller, Introduction to Adaptive Arrays, New York: Wiley, 1980.

[6]Guy E.Blelloch,“Introduction to Data Compression”,Carnegie MellonUniversity Tech.Report Sept.2010(Guy E.Blelloch,“数据压缩技术导论”,《卡耐基梅隆大学技术报告》,2010年9月)。[6]Guy E. Blelloch, “Introduction to Data Compression”, Carnegie Mellon University Tech. Report Sept. 2010.

[7]A.Duel-Hallen,S.Hu,and H.Hallen,“Long-Range Prediction of FadingSignals,”IEEE Signal Processing Mag.,vol.17,no.3,pp.62–75,May 2000(A.Duel-Hallen、S.Hu和H.Hallen,“衰落信号的长期预测”,《IEEE信号处理杂志》,第17卷,第3期,第62-57页,2000年5月)。[7]A.Duel-Hallen,S.Hu,and H.Hallen,“Long-Range Prediction of FadingSignals,”IEEE Signal Processing Mag.,vol.17,no.3,pp.62–75,May 2000.

[8]A.Forenza and R.W.Heath,Jr.,“Link Adaptation and channelPrediction in Wireless OFDM Systems,”in Proc.IEEE Midwest Symp.on Circuitsand Sys.,Aug 2002,pp.211–214(A.Forenza和R.W.Heath,Jr.,“无线OFDM系统中的链路自适应和信道预测”,IEEE中西部电路与系统研讨会论文集,2002年8月,第211-214页)。[8] A. Forenza and R. W. Heath, Jr., “Link Adaptation and channel Prediction in Wireless OFDM Systems,” in Proc. IEEE Midwest Symp. on Circuits and Sys., Aug 2002, pp. 211–214.

[9]M.Sternad and D.Aronsson,“channel estimation and prediction foradaptive OFDM downlinks[vehicular applications],”in Proc.IEEE VehicularTechnology Conference,vol.2,Oct 2003,pp.1283–1287(M.Sternad和D.Aronsson,“针对自适应OFDM下行链路的信道估计和预测[车辆应用]”,车辆技术会议论文集,第2卷,2003年10月,第1283–1287页)。[9] M. Sternad and D. Aronsson, “channel estimation and prediction for adaptive OFDM downlinks [vehicular applications],” in Proc. IEEE Vehicular Technology Conference, vol. 2, Oct 2003, pp. 1283–1287.

[10]D.Schafhuber and G.Matz,“MMSE and Adaptive Prediction of Time-Varying channels for OFDM Systems,”IEEE Trans.Wireless Commun.,vol.4,no.2,pp.593–602,Mar 2005(D.Schafhuber和G.Matz,“针对OFDM系统时变信道的MMSE和自适应预测”,《IEEE无线通信学报》,第4卷,第2期,第593-602页,2005年3月)。[10] D.Schafhuber and G.Matz, “MMSE and Adaptive Prediction of Time-Varying channels for OFDM Systems,” IEEE Trans.Wireless Commun., vol.4, no.2, pp.593–602, Mar 2005.

[11]I.C.Wong and B.L.Evans,“Joint channel Estimation and Predictionfor OFDM Systems,”in Proc.IEEE Global Telecommunications Conference,St.Louis,MO,Dec 2005(C.Wong和B.L.Evans,“针对OFDM系统的联合信道估计和预测”,IEEE全球电信会议论文集,美国密苏里州圣路易斯,2005年12月)。[11] I.C.Wong and B.L.Evans, “Joint channel Estimation and Prediction for OFDM Systems,” in Proc.IEEE Global Telecommunications Conference, St.Louis, MO, Dec 2005.

[12]M.Guillaud and D.Slock,“A specular approach to MIMOfrequencyselective channel tracking and prediction,”in Proc.IEEE SignalProcessing Advances in Wireless Communications,July 2004,pp.59–63(M.Guillaud和D.Slock,“用于MIMO频率选择性信道跟踪和预测的镜面方法”,IEEE无线通信中的信号处理进展论文集,2004年7月,第59-63页)。[12] M.Guillaud and D.Slock, “A specular approach to MIMO frequency selective channel tracking and prediction,” in Proc.IEEE SignalProcessing Advances in Wireless Communications, July 2004, pp.59–63.

[13]Wong,I.C.Evans,B.L.,“Exploiting Spatio-Temporal Correlations inMIMO Wireless channel Prediction”,IEEE Globecom Conf.,pp.1-5,Dec.2006(Wong,I.C.和Evans,B.L.,“在MIMO无线信道预测中利用时空相关性”,IEEE全球通信会议,第1-5页,2006年12月)。[13] Wong, I.C. Evans, B.L., “Exploiting Spatio-Temporal Correlations in MIMO Wireless channel Prediction”, IEEE Globecom Conf., pp. 1-5, Dec. 2006.

本发明的实施例可包括如上所示的各种步骤。所述步骤可体现为使通用或专用处理器执行某些步骤的机器可执行指令。例如,上述基站/AP和客户端设备内的各种部件可实现为在通用或专用处理器上执行的软件。为避免混淆本发明的相关方面,图中不列出各种熟知的个人计算机部件,诸如计算机存储器、硬盘驱动器、输入设备等。Embodiments of the present invention may include the various steps described above. These steps may be embodied as machine-executable instructions that cause a general-purpose or special-purpose processor to perform certain steps. For example, the various components within the aforementioned base station/AP and client device may be implemented as software executed on a general-purpose or special-purpose processor. To avoid obscuring relevant aspects of the present invention, various well-known personal computer components, such as computer memory, hard drives, input devices, etc., are not shown in the figure.

可替换地,在一个实施例中,本文示出的各种功能模块和相关步骤可通过包含用于执行步骤的硬连线逻辑的特定硬件部件,诸如专用集成电路(“ASIC”),或通过编程计算机部件和定制硬件部件的任何组合执行。Alternatively, in one embodiment, the various functional modules and associated steps shown herein may be performed by specific hardware components that contain hard-wired logic for performing the steps, such as an application specific integrated circuit ("ASIC"), or by any combination of programmed computer components and custom hardware components.

在一个实施例中,某些模块,例如上述编码、调制和信号处理逻辑单元903可在可编程的数字信号处理器(“DSP”)(或DSP组)例如使用美国德州仪器公司(TexasInstruments)的TMS320x架构的DSP(例如,TMS320C6000、TMS320C5000、…等)上实现。该实施例中的DSP可嵌入在个人计算机的附加卡(诸如PCI卡)内。当然,可使用多种不同的DSP架构,同时仍符合本发明的基本原理。In one embodiment, certain modules, such as the encoding, modulation, and signal processing logic unit 903 described above, may be implemented on a programmable digital signal processor ("DSP") (or DSP group), such as a DSP using the Texas Instruments TMS320x architecture (e.g., TMS320C6000, TMS320C5000, etc.). The DSP in this embodiment may be embedded in an add-in card (such as a PCI card) for a personal computer. Of course, a variety of different DSP architectures may be used while still complying with the basic principles of the present invention.

本发明的元件也可以作为用于存储机器可执行指令的机器可读介质提供。机器可读介质可包括但不限于闪存存储器、光盘、CD-ROM、DVD ROM、RAM、EPROM、EEPROM、磁卡或光卡、传播介质或适于存储电子指令的其他类型的机器可读介质。例如,本发明可下载为计算机程序,所述计算机程序可以数据信号的方式从远程计算机(例如,服务器)经由通信链路(例如,调制解调器或网络连接)转移至请求计算机(例如,客户端),所述数据信号体现为载波或其他传播介质。The elements of the present invention can also be provided as a machine-readable medium for storing machine-executable instructions. Machine-readable media may include, but are not limited to, flash memory, optical discs, CD-ROMs, DVD ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, propagation media, or other types of machine-readable media suitable for storing electronic instructions. For example, the present invention can be downloaded as a computer program that can be transferred from a remote computer (e.g., a server) to a requesting computer (e.g., a client) via a communication link (e.g., a modem or a network connection) in the form of a data signal, the data signal being embodied as a carrier wave or other propagation medium.

在整个前述说明书中,出于解释目的,示出了许多具体细节,以提供对本发明系统和方法的深入理解。然而,对于本领域技术人员显而易见的是,所述系统和方法可在没有这些具体细节中的一些的情况下实施。因此,本发明的范围和实质应以如下权利要求书判断。Throughout the foregoing description, for purposes of explanation, numerous specific details are set forth to provide a deeper understanding of the present systems and methods. However, it will be apparent to one skilled in the art that the systems and methods may be practiced without some of these specific details. Accordingly, the scope and spirit of the present invention should be determined by reference to the following claims.

此外,在整个前述说明书中,引用了许多出版物以提供对本发明的更透彻的理解。所有这些引用的参考文献均以引用方式并入本专利申请中。Furthermore, throughout the foregoing description, numerous publications are cited to provide a more thorough understanding of the present invention. All of these cited references are incorporated herein by reference.

Claims (78)

1.一种分布式天线系统,其包括:1. A distributed antenna system, comprising: 多个分布式天线,其经由网络通信地耦合至一个或多个集中式处理器,所述集中式处理器基于跨越所述网络的服务质量QoS选择所述分布式天线的多个子集,以与多个用户子集无线通信,或使用线性预测以估计所述分布式天线和所述用户之间的信道状态信息CSI,并且以补偿多普勒效应。Multiple distributed antennas are communicatively coupled to one or more centralized processors via a network. The centralized processors select multiple subsets of the distributed antennas based on the Quality of Service (QoS) across the network to communicate wirelessly with multiple subsets of users, or use linear prediction to estimate Channel State Information (CSI) between the distributed antennas and the users to compensate for the Doppler effect. 2.根据权利要求1所述的系统,其中所述多普勒效应是由于用户移动或传播环境改变而造成的。2. The system according to claim 1, wherein the Doppler effect is caused by user movement or changes in the propagation environment. 3.根据权利要求1所述的系统,所述多个用户子集等于一个用户。3. In the system according to claim 1, the plurality of user subsets equals one user. 4.根据权利要求1所述的系统,所述多个用户子集等于所有用户。4. In the system according to claim 1, the plurality of user subsets are equal to all users. 5.根据权利要求1所述的系统,其中所述分布式天线的一个或多个子集等于所有所述分布式天线。5. The system of claim 1, wherein one or more subsets of the distributed antennas are equal to all of the distributed antennas. 6.根据权利要求1所述的系统,其中服务第一多个用户的第一分布式天线子集包含服务第二多个用户的第二分布式天线子集。6. The system of claim 1, wherein the first distributed antenna subset serving a first plurality of users includes a second distributed antenna subset serving a second plurality of users. 7.根据权利要求1所述的系统,其中服务第一多个用户的第一分布式天线子集不包含服务第二多个用户的第二分布式天线子集。7. The system of claim 1, wherein the first distributed antenna subset serving the first plurality of users does not include the second distributed antenna subset serving the second plurality of users. 8.根据权利要求1所述的系统,其中所述分布式天线的多个子集与所述多个用户在不同的时间通信。8. The system of claim 1, wherein a plurality of subsets of the distributed antennas communicate with the plurality of users at different times. 9.根据权利要求1所述的系统,其中所述分布式天线的多个子集与所述多个用户以不同的频率通信。9. The system of claim 1, wherein a plurality of subsets of the distributed antennas communicate with the plurality of users at different frequencies. 10.根据权利要求1所述的系统,其中所述分布式天线的多个子集与所述多个用户在不同的空间位置通信。10. The system of claim 1, wherein a plurality of subsets of the distributed antennas communicate with the plurality of users at different spatial locations. 11.根据权利要求1所述的系统,其中分布式天线的不同子集被分配不同服务质量度量。11. The system of claim 1, wherein different subsets of the distributed antennas are assigned different quality of service metrics. 12.根据权利要求1所述的系统,其中分布式天线的不同子集被分配不同的数据率、可靠性或延迟。12. The system of claim 1, wherein different subsets of the distributed antennas are assigned different data rates, reliability, or delays. 13.根据权利要求1所述的系统,其中所述分布式天线系统重新配置在所述分布式天线和所述用户之间的通信以补偿归因于用户移动或传播环境改变的多普勒效应。13. The system of claim 1, wherein the distributed antenna system is reconfigured to compensate for the Doppler effect attributable to user movement or changes in the propagation environment. 14.根据权利要求1所述的系统,采用分布式天线,所述分布式天线利用空间、极化和/或方向图分集来提高无线系统中对一个或多个用户的数据速率和/或覆盖率。14. The system of claim 1, employing a distributed antenna that utilizes spatial, polarization, and/or pattern diversity to improve data rate and/or coverage for one or more users in the wireless system. 15.根据权利要求1所述的系统,其中所述用户位于所述分布式天线周围或之间或被所述分布式天线包围。15. The system of claim 1, wherein the user is located around, between, or surrounded by the distributed antennas. 16.根据权利要求1所述的系统,其中所述分布式天线系统在上行链路信道的接收器处采用多个复合权重来解调来自所述用户的多个独立数据流,其中所述数据流包括数据或信道状态信息CSI。16. The system of claim 1, wherein the distributed antenna system employs multiple composite weights at the receiver of the uplink channel to demodulate multiple independent data streams from the user, wherein the data streams include data or channel state information (CSI). 17.根据权利要求16所述的系统,其中所述上行链路接收器的复合权重从多个下行链路预编码权重得出或经由最大比合并接收器计算。17. The system of claim 16, wherein the composite weight of the uplink receiver is derived from a plurality of downlink precoded weights or calculated via a maximum ratio combining receiver. 18.一种多用户多天线系统MU-MAS,其包括:18. A multi-user multi-antenna system (MU-MAS), comprising: 多个用户;Multiple users; 多个分布式收发器站或天线,其经由多个无线链路通信地耦接到所述用户;Multiple distributed transceiver stations or antennas are communicatively coupled to the user via multiple wireless links; 一个或多个集中式单元,其经由网络通信地耦合到所述多个分布式收发器站或天线;One or more centralized units are communicatively coupled to the plurality of distributed transceiver stations or antennas via a network; 所述网络包括作为回程通信信道而采用的有线链路或无线链路或两者的组合;The network includes wired links or wireless links or a combination of both used as backhaul communication channels. 所述一个或多个集中式单元经由所述网络与所述分布式收发器站或天线通信以自适应地重新配置在所述分布式收发器站或天线和用户之间的通信以补偿归因于用户移动或传播环境改变的多普勒效应。The one or more centralized units communicate with the distributed transceiver station or antenna via the network to adaptively reconfigure communication between the distributed transceiver station or antenna and the user to compensate for the Doppler effect attributable to changes in the user's movement or propagation environment. 19.根据权利要求18所述的系统,其中所述集中式单元为集中式处理器CP,所述网络为基站网络BSN,并且所述分布式收发器站为分布式收发器基站BTS。19. The system of claim 18, wherein the centralized unit is a centralized processor (CP), the network is a base station network (BSN), and the distributed transceiver station is a distributed transceiver base station (BTS). 20.根据权利要求19所述的系统,其中所述集中式处理器CP和所述分布式收发器基站BTS配备有编码器/解码器,以压缩/解压缩通过所述基站网络BSN在它们之间交换的信息。20. The system of claim 19, wherein the centralized processor CP and the distributed transceiver base station BTS are equipped with encoders/decoders to compress/decompress information exchanged between them via the base station network BSN. 21.根据权利要求19所述的系统,其中所述集中式处理器CP基于所述基站网络BSN上的延迟自适应地选择用于低移动性UE或高移动性UE的所述分布式收发器基站BTS。21. The system of claim 19, wherein the centralized processor CP adaptively selects the distributed transceiver base station BTS for a low-mobility UE or a high-mobility UE based on latency on the base station network BSN. 22.根据权利要求21所述的系统,其中所述自适应基于高/低数据速率基站网络BSN的类型或服务质量QoS或所述基站网络BSN上的平均通信统计值或瞬时通信统计值。22. The system of claim 21, wherein the adaptation is based on the type of high/low data rate base station network (BSN) or quality of service (QoS) or average or instantaneous communication statistics on the base station network (BSN). 23.根据权利要求22所述的系统,其中所述平均通信统计值是从不同网络的白天或夜间使用得到的,且所述瞬时通信统计值是从临时网络拥塞得到的。23. The system of claim 22, wherein the average communication statistics are obtained from daytime or nighttime use of different networks, and the instantaneous communication statistics are obtained from temporary network congestion. 24.根据权利要求19所述的系统,其中所述集中式处理器CP基于所述分布式收发器基站BTS用户链路的多普勒速度自适应地选择用于低移动性用户或高移动性用户的所述分布式收发器基站BTS。24. The system of claim 19, wherein the centralized processor CP adaptively selects the distributed transceiver base station BTS for low-mobility users or high-mobility users based on the Doppler velocity of the user link of the distributed transceiver base station BTS. 25.根据权利要求18所述的系统,其中在所述分布式收发器站和所述用户之间的通信包含所述无线链路上发送的多个预编码数据流。25. The system of claim 18, wherein communication between the distributed transceiver station and the user comprises multiple precoded data streams transmitted over the wireless link. 26.根据权利要求25所述的系统,其中所述预编码数据流从根据信道状态信息CSI所计算的预编码权重中获得。26. The system of claim 25, wherein the precoded data stream is obtained from precoded weights calculated based on channel state information (CSI). 27.根据权利要求26所述的系统,其中采用线性预测估计未来的所述信道状态信息CSI或所述预编码权重,从而减小多普勒效应对所述MU-MAS性能的不利影响。27. The system of claim 26, wherein linear prediction is used to estimate the future channel state information (CSI) or the precoding weights, thereby reducing the adverse effects of the Doppler effect on the MU-MAS performance. 28.根据权利要求27所述的系统,其中在时域、频域或空间域中采用所述预测。28. The system of claim 27, wherein the prediction is employed in the time domain, frequency domain, or spatial domain. 29.一种用以补偿多普勒效应的多用户多天线系统MU-MAS,其包含经由网络通信地耦接到多个分布式收发器基站BTS的至少一个集中式单元,所述多用户多天线系统包括:29. A multi-user multiple antenna system (MU-MAS) for compensating for the Doppler effect, comprising at least one centralized unit communicatively coupled to multiple distributed transceiver base stations (BTSs) via a network, the multi-user multiple antenna system comprising: 测量第一移动用户相对于所述多个分布式收发器基站BTS的多普勒速度;以及Measuring the Doppler velocity of the first mobile user relative to the plurality of distributed transceiver base stations (BTS); and 所述集中式单元经由所述网络与所述分布式收发器基站BTS通信以自适应地重新配置在所述分布式收发器基站BTS和用户之间的通信,其中自适应地重新配置包含基于所测量的所述多个分布式收发器基站BTS中的第一分布式收发器基站BTS或第一组分布式收发器基站BTS相对于其他分布式收发器基站BTS的多普勒速度将所述第一移动用户动态地分配至所述第一分布式收发器基站BTS或所述第一组分布式收发器基站BTS。The centralized unit communicates with the distributed transceiver base station (BTS) via the network to adaptively reconfigure communication between the BTS and the user. The adaptive reconfiguration includes dynamically assigning the first mobile user to the first BTS or the first group of BTSs based on the measured Doppler velocity of the first BTS or the first group of BTSs relative to the other BTSs. 30.根据权利要求29所述的系统,其中如果与第二移动用户相比,所述第一移动用户具有相对较高的测量的多普勒速度,那么动态分配包括将所述第一移动用户分配至第一分布式收发器基站BTS并且将所述第二移动用户分配至第二分布式收发器基站BTS,与所述第二分布式收发器基站BTS相比,所述第一分布式收发器基站BTS具有相对较低的与之相关的延迟。30. The system of claim 29, wherein if the first mobile user has a relatively higher measured Doppler velocity compared to the second mobile user, then dynamic allocation includes allocating the first mobile user to a first distributed transceiver base station (BTS) and allocating the second mobile user to a second distributed transceiver base station (BTS), wherein the first distributed transceiver base station (BTS) has a relatively lower associated latency compared to the second distributed transceiver base station (BTS). 31.根据权利要求30所述的系统,其中所述延迟包括(a)将第一训练信号从所述第一移动用户传输至分布式收发器基站BTS所花费的时间,(b)将所述分布式收发器基站BTS连接到集中式处理器CP的基站网络BSN上的往返延迟,以及(c)所述集中式处理器CP处理所述分布式收发器基站BTS与所述第一移动用户之间的无线信道的多个信道状态信息CSI、基于所述信道状态信息CSI生成用于所述第一移动用户的预编码数据流以及调度传输至包括用于当前传输的所述第一移动用户在内的不同移动用户所花费的时间。31. The system of claim 30, wherein the delay includes (a) the time spent transmitting a first training signal from the first mobile user to a distributed transceiver base station (BTS), (b) the round-trip delay of connecting the BTS to the base station network (BSN) of a centralized processor (CP), and (c) the time spent by the centralized processor (CP) processing multiple channel state information (CSI) values of the radio channel between the BTS and the first mobile user, generating a precoded data stream for the first mobile user based on the CSI values, and scheduling transmissions to different mobile users, including the first mobile user for the current transmission. 32.根据权利要求31所述的系统,其中所述延迟还包括将第二训练信号从所述分布式收发器基站BTS传输至所述第一移动用户所花费的时间。32. The system of claim 31, wherein the delay further includes the time spent transmitting the second training signal from the distributed transceiver base station (BTS) to the first mobile user. 33.根据权利要求29所述的系统,其中动态分配还包括基于每个分布式收发器基站BTS与所述第一移动用户之间的通信信道的链路质量和与相对于所述第一移动用户的每个分布式收发器基站BTS相关联的所测量的多普勒速度的组合进行分配。33. The system of claim 29, wherein dynamic allocation further comprises allocating based on a combination of the link quality of the communication channel between each distributed transceiver base station BTS and the first mobile user and the measured Doppler velocity associated with each distributed transceiver base station BTS relative to the first mobile user. 34.根据权利要求33所述的系统,其中对于给定的多普勒速度,选择具有相对较高链路质量的分布式收发器基站BTS。34. The system of claim 33, wherein for a given Doppler velocity, a distributed transceiver base station (BTS) with relatively high link quality is selected. 35.根据权利要求33所述的系统,其中对于给定的链路质量,选择具有相对较低多普勒速度的分布式收发器基站BTS。35. The system of claim 33, wherein, for a given link quality, a distributed transceiver base station (BTS) with a relatively low Doppler speed is selected. 36.根据权利要求31所述的系统,其中所述集中式处理器CP基于多个过去的复信道系数估计多个未来的复信道系数,以补偿多普勒效应对所述分布式收发器基站BTS与所述第一移动用户之间的通信的不利影响。36. The system of claim 31, wherein the centralized processor CP estimates multiple future complex channel coefficients based on multiple past complex channel coefficients to compensate for the adverse effects of the Doppler effect on communication between the distributed transceiver base station BTS and the first mobile user. 37.根据权利要求36所述的系统,其中采用线性预测用于估计。37. The system of claim 36, wherein linear prediction is used for estimation. 38.根据权利要求31所述的系统,其中基于限定所述移动用户与所述多个分布式收发器基站BTS中的每个分布式收发器基站BTS之间的通信信道质量的所述多普勒速度和信道状态信息CSI两者将所述第一移动用户动态地分配至所述第一分布式收发器基站BTS。38. The system of claim 31, wherein the first mobile user is dynamically assigned to the first distributed transceiver base station BTS based on both the Doppler velocity and channel state information (CSI) that define the communication channel quality between the mobile user and each of the plurality of distributed transceiver base stations (BTSs). 39.根据权利要求38所述的系统,其中,所述集中式处理器CP执行以下额外操作:39. The system of claim 38, wherein the centralized processor CP performs the following additional operations: 构建相对于所述第一移动用户的所述多个分布式收发器基站BTS中的每个分布式收发器基站BTS的多普勒速度和链路质量的矩阵;以及Construct a matrix of Doppler velocity and link quality for each of the plurality of distributed transceiver base stations (BTSs) relative to the first mobile user; and 选择具有低于指定阈值的多普勒速度和高于指定阈值的链路质量的分布式收发器基站BTS。Select a distributed transceiver base station (BTS) with a Doppler speed below a specified threshold and a link quality above a specified threshold. 40.一种在分布式天线系统中执行的方法,所述系统包括多个经由网络通信地耦合至一个或多个集中式处理器的分布式天线,所述方法包含:40. A method performed in a distributed antenna system, the system comprising a plurality of distributed antennas communicatively coupled to one or more centralized processors via a network, the method comprising: 基于跨越所述网络的服务质量QoS而选择所述分布式天线的多个子集以与多个用户子集无线通信,或使用线性预测以估计所述分布式天线和所述用户之间的信道状态信息CSI,并且以补偿多普勒效应。Multiple subsets of the distributed antennas are selected based on the Quality of Service (QoS) across the network to communicate wirelessly with multiple subsets of users, or linear prediction is used to estimate the Channel State Information (CSI) between the distributed antennas and the users to compensate for the Doppler effect. 41.根据权利要求40所述的方法,其中多普勒速度是由于用户移动或传播环境改变而造成的。41. The method of claim 40, wherein the Doppler velocity is caused by user movement or changes in the propagation environment. 42.根据权利要求40所述的方法,所述多个用户子集等于一个用户。42. The method of claim 40, wherein the plurality of user subsets equals one user. 43.根据权利要求40所述的方法,所述多个用户子集等于所有用户。43. The method of claim 40, wherein the plurality of user subsets are equal to all users. 44.根据权利要求40所述的方法,其中所述分布式天线的一个或多个子集等于所有所述分布式天线。44. The method of claim 40, wherein one or more subsets of the distributed antennas are equal to all of the distributed antennas. 45.根据权利要求40所述的方法,其中服务第一多个用户的第一分布式天线子集包含服务第二多个用户的第二分布式天线子集。45. The method of claim 40, wherein the first distributed antenna subset serving the first plurality of users includes a second distributed antenna subset serving the second plurality of users. 46.根据权利要求40所述的方法,其中服务第一多个用户的第一分布式天线子集不包含服务第二多个用户的第二分布式天线子集。46. The method of claim 40, wherein the first distributed antenna subset serving the first plurality of users does not include the second distributed antenna subset serving the second plurality of users. 47.根据权利要求40所述的方法,其中所述分布式天线的多个子集与所述多个用户在不同的时间通信。47. The method of claim 40, wherein a plurality of subsets of the distributed antennas communicate with the plurality of users at different times. 48.根据权利要求40所述的方法,其中所述分布式天线的多个子集与所述多个用户以不同的频率通信。48. The method of claim 40, wherein a plurality of subsets of the distributed antennas communicate with the plurality of users at different frequencies. 49.根据权利要求40所述的方法,其中所述分布式天线的多个子集与所述多个用户在不同的空间位置通信。49. The method of claim 40, wherein a plurality of subsets of the distributed antennas communicate with the plurality of users at different spatial locations. 50.根据权利要求40所述的方法,其中分布式天线的不同子集被分配不同的服务质量度量。50. The method of claim 40, wherein different subsets of the distributed antennas are assigned different quality of service metrics. 51.根据权利要求40所述的方法,其中分布式天线的不同子集被分配不同的数据率、可靠性或延迟。51. The method of claim 40, wherein different subsets of the distributed antennas are assigned different data rates, reliability, or delays. 52.根据权利要求40所述的方法,其中所述分布式天线系统重新配置在所述分布式天线和所述用户之间的通信以补偿归因于用户移动或传播环境改变的多普勒效应。52. The method of claim 40, wherein the distributed antenna system is reconfigured to compensate for the Doppler effect attributable to user movement or changes in the propagation environment. 53.根据权利要求40所述的方法,采用分布式天线,所述分布式天线利用空间、极化和/或方向图分集来提高无线系统中对一个或多个用户的数据速率和/或覆盖率。53. The method of claim 40, employing a distributed antenna that utilizes spatial, polarization, and/or pattern diversity to improve data rates and/or coverage for one or more users in a wireless system. 54.根据权利要求40所述的方法,其中所述用户位于所述分布式天线周围或之间或被所述分布式天线包围。54. The method of claim 40, wherein the user is located around, between, or surrounded by the distributed antennas. 55.根据权利要求40所述的方法,其中所述分布式天线系统在上行链路信道的接收器处采用多个复合权重来解调来自所述用户的多个独立数据流,其中所述数据流包括数据或信道状态信息CSI。55. The method of claim 40, wherein the distributed antenna system employs multiple composite weights at the receiver of the uplink channel to demodulate multiple independent data streams from the user, wherein the data streams include data or channel state information (CSI). 56.根据权利要求55所述的方法,其中所述上行链路接收器的复合权重从多个下行链路预编码权重得出或经由最大比合并接收器计算。56. The method of claim 55, wherein the composite weight of the uplink receiver is derived from a plurality of downlink precoding weights or calculated via a maximum ratio combining receiver. 57.一种在多用户多天线系统MU-MAS中执行的方法,所述多用户多天线系统包括:57. A method performed in a multi-user multiple antenna system (MU-MAS), the MU-MAS comprising: 多个用户;Multiple users; 多个分布式收发器站或天线,其经由多个无线链路通信地耦合到所述用户;Multiple distributed transceiver stations or antennas are communicatively coupled to the user via multiple wireless links; 一个或多个集中式单元,其经由网络通信地耦合到所述多个分布式收发器站或天线;One or more centralized units are communicatively coupled to the plurality of distributed transceiver stations or antennas via a network; 所述网络包括作为回程通信信道而采用的有线链路或无线链路或两者的组合;The network includes wired links or wireless links or a combination of both used as backhaul communication channels. 所述方法包含:所述一个或多个集中式单元与所述分布式收发器站或天线通信以自适应地重新配置在所述分布式收发器站或天线和用户之间的通信以补偿归因于用户移动或传播环境改变的多普勒效应。The method includes: the one or more centralized units communicating with the distributed transceiver station or antenna to adaptively reconfigure communication between the distributed transceiver station or antenna and the user to compensate for the Doppler effect attributable to changes in the user's movement or propagation environment. 58.根据权利要求57所述的方法,其中所述集中式单元为集中式处理器CP,所述网络为基站网络BSN,并且所述分布式收发器站为分布式收发器基站BTS。58. The method according to claim 57, wherein the centralized unit is a centralized processor (CP), the network is a base station network (BSN), and the distributed transceiver station is a distributed transceiver base station (BTS). 59.根据权利要求58所述的方法,其中所述集中式处理器CP和所述分布式收发器基站BTS配备有编码器/解码器,以压缩/解压缩通过所述基站网络BSN在它们之间交换的信息。59. The method of claim 58, wherein the centralized processor CP and the distributed transceiver base station BTS are equipped with encoders/decoders to compress/decompress information exchanged between them via the base station network BSN. 60.根据权利要求58所述的方法,其中所述集中式处理器CP基于所述基站网络BSN上的延迟自适应地选择用于低移动性UE或高移动性UE的所述分布式收发器基站BTS。60. The method of claim 58, wherein the centralized processor CP adaptively selects the distributed transceiver base station BTS for a low-mobility UE or a high-mobility UE based on latency on the base station network BSN. 61.根据权利要求60所述的方法,其中所述自适应基于高/低数据速率基站网络BSN的类型或服务质量QoS或所述基站网络BSN上的平均通信统计值或瞬时通信统计值。61. The method of claim 60, wherein the adaptation is based on the type of high/low data rate base station network (BSN) or quality of service (QoS) or average or instantaneous communication statistics on the base station network (BSN). 62.根据权利要求61所述的方法,其中所述平均通信统计值是从不同网络的白天或夜间使用得到的,且所述瞬时通信统计值是从临时网络拥塞得到的。62. The method of claim 61, wherein the average communication statistics are obtained from daytime or nighttime use of different networks, and the instantaneous communication statistics are obtained from temporary network congestion. 63.根据权利要求58所述的方法,其中所述集中式处理器CP基于所述分布式收发器基站BTS用户链路的多普勒速度自适应地选择用于低移动性用户或高移动性用户的所述分布式收发器基站BTS。63. The method of claim 58, wherein the centralized processor CP adaptively selects the distributed transceiver base station BTS for low-mobility users or high-mobility users based on the Doppler velocity of the user link of the distributed transceiver base station BTS. 64.根据权利要求57所述的方法,其中在所述分布式收发器站和所述用户之间的通信包含所述无线链路上发送的多个预编码数据流。64. The method of claim 57, wherein the communication between the distributed transceiver station and the user comprises a plurality of precoded data streams transmitted over the wireless link. 65.根据权利要求64所述的方法,其中所述预编码数据流从根据信道状态信息CSI所计算的预编码权重中获得。65. The method of claim 64, wherein the precoded data stream is obtained from precoded weights calculated based on channel state information (CSI). 66.根据权利要求65所述的方法,其中采用线性预测估计未来的所述信道状态信息CSI或所述预编码权重,从而减小多普勒效应对所述MU-MAS性能的不利影响。66. The method of claim 65, wherein linear prediction is used to estimate the future channel state information (CSI) or the precoding weights, thereby reducing the adverse effects of the Doppler effect on the MU-MAS performance. 67.根据权利要求66所述的方法,其中在时域、频域或空间域中采用所述预测。67. The method of claim 66, wherein the prediction is employed in the time domain, frequency domain, or spatial domain. 68.一种在包含经由网络通信地耦接到多个分布式收发器基站BTS的至少一个集中式单元的多用户多天线系统Mu-MAS中执行的方法,所述方法包括:68. A method for execution in a multi-user multiple antenna system (Mu-MAS) comprising at least one centralized unit communicatively coupled to a plurality of distributed transceiver base stations (BTSs) via a network, the method comprising: 测量第一移动用户相对于所述多个分布式收发器基站BTS的多普勒速度;以及Measuring the Doppler velocity of the first mobile user relative to the plurality of distributed transceiver base stations (BTS); and 所述集中式单元经由网络与所述分布式收发器基站BTS通信以自适应地重新配置在所述分布式收发器基站BTS和用户之间的通信,其中自适应地重新配置包含基于所测量的所述多个分布式收发器基站BTS中的第一分布式收发器基站BTS或第一组分布式收发器基站BTS相对于其他分布式收发器基站BTS的多普勒速度动态地将所述第一移动用户分配至所述第一分布式收发器基站BTS或所述第一组分布式收发器基站BTS。The centralized unit communicates with the distributed transceiver base station (BTS) via a network to adaptively reconfigure communication between the BTS and the user. The adaptive reconfiguration includes dynamically assigning the first mobile user to the first BTS or the first group of BTSs based on the measured Doppler velocity of the first BTS or the first group of BTSs relative to the other BTSs. 69.根据权利要求68所述的方法,其中如果与第二移动用户相比,所述第一移动用户具有相对较高的测量的多普勒速度,那么动态分配包括将所述第一移动用户分配至第一分布式收发器基站BTS并且将所述第二移动用户分配至第二分布式收发器基站BTS,与所述第二分布式收发器基站BTS相比,所述第一分布式收发器基站BTS具有相对较低的与之相关的延迟。69. The method of claim 68, wherein if the first mobile user has a relatively higher measured Doppler velocity compared to the second mobile user, then dynamic allocation includes allocating the first mobile user to a first distributed transceiver base station (BTS) and allocating the second mobile user to a second distributed transceiver base station (BTS), wherein the first distributed transceiver base station (BTS) has a relatively lower associated latency compared to the second distributed transceiver base station (BTS). 70.根据权利要求69所述的方法,其中所述延迟包括(a)将第一训练信号从所述第一移动用户传输至分布式收发器基站BTS所花费的时间,70. The method of claim 69, wherein the delay includes (a) the time taken to transmit the first training signal from the first mobile user to the distributed transceiver base station BTS, (b)将所述分布式收发器基站BTS连接到集中式处理器CP的基站网络BSN上的往返延迟,以及(c)所述集中式处理器CP处理所述分布式收发器基站BTS与所述第一移动用户之间的无线信道的多个信道状态信息CSI、基于所述信道状态信息CSI生成用于所述第一移动用户的预编码数据流以及调度传输至包括用于当前传输的所述第一移动用户在内的不同移动用户所花费的时间。(b) the round-trip delay on the base station network (BSN) of the centralized processor (CP) connecting the distributed transceiver base station (BTS) to the base station network (BSN), and (c) the time spent by the centralized processor (CP) in processing multiple channel state information (CSI) information of the radio channel between the distributed transceiver base station (BTS) and the first mobile user, generating a precoded data stream for the first mobile user based on the channel state information (CSI), and scheduling transmissions to different mobile users, including the first mobile user for the current transmission. 71.根据权利要求70所述的方法,其中所述延迟还包括将第二训练信号从所述分布式收发器基站BTS传输至所述第一移动用户所花费的时间。71. The method of claim 70, wherein the delay further includes the time spent transmitting the second training signal from the distributed transceiver base station (BTS) to the first mobile user. 72.根据权利要求68所述的方法,其中动态分配还包括基于每个分布式收发器基站BTS与所述第一移动用户之间的通信信道的链路质量和与相对于所述第一移动用户的每个分布式收发器基站BTS相关联的所述测量的多普勒速度的组合进行分配。72. The method of claim 68, wherein dynamic allocation further comprises allocating based on a combination of the link quality of the communication channel between each distributed transceiver base station BTS and the first mobile user and the measured Doppler velocity associated with each distributed transceiver base station BTS relative to the first mobile user. 73.根据权利要求72所述的方法,其中对于给定的多普勒速度,选择具有相对较高链路质量的分布式收发器基站BTS。73. The method of claim 72, wherein for a given Doppler velocity, a distributed transceiver base station (BTS) with relatively high link quality is selected. 74.根据权利要求72所述的方法,其中对于给定的链路质量,选择具有相对较低多普勒速度的分布式收发器基站BTS。74. The method of claim 72, wherein, for a given link quality, a distributed transceiver base station (BTS) with a relatively low Doppler speed is selected. 75.根据权利要求70所述的方法,其中所述集中式处理器CP基于过去的复信道系数估计未来的复信道系数,以补偿多普勒效应对所述分布式收发器基站BTS与所述第一移动用户之间的通信的不利影响。75. The method of claim 70, wherein the centralized processor CP estimates future complex channel coefficients based on past complex channel coefficients to compensate for the adverse effects of the Doppler effect on communication between the distributed transceiver base station BTS and the first mobile user. 76.根据权利要求75所述的方法,其中采用线性预测用于估计。76. The method of claim 75, wherein linear prediction is used for estimation. 77.根据权利要求68所述的方法,其中基于限定所述移动用户与所述多个分布式收发器基站BTS中的每个分布式收发器基站BTS之间的通信信道质量的所述多普勒速度和信道状态信息CSI两者将所述第一移动用户动态地分配至所述第一分布式收发器基站BTS。77. The method of claim 68, wherein the first mobile user is dynamically assigned to the first distributed transceiver base station BTS based on both the Doppler velocity and channel state information (CSI) that define the communication channel quality between the mobile user and each of the plurality of distributed transceiver base stations BTS. 78.根据权利要求70所述的方法,其中所述集中式处理器CP执行以下另外的操作:78. The method of claim 70, wherein the centralized processor CP performs the following additional operations: 构建相对于所述第一移动用户的所述多个分布式收发器基站BTS中的每个分布式收发器基站BTS的多普勒速度和链路质量的矩阵;以及Construct a matrix of Doppler velocity and link quality for each of the plurality of distributed transceiver base stations (BTSs) relative to the first mobile user; and 选择具有低于指定阈值的多普勒速度和高于指定阈值的链路质量的分布式收发器基站BTS。Select a distributed transceiver base station (BTS) with a Doppler speed below a specified threshold and a link quality above a specified threshold.
HK15110250.7A 2012-05-04 2013-05-03 System and methods for coping with doppler effects in distributed-input distributed-output wireless systems HK1209521B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/464,648 2012-05-04
US13/464,648 US9312929B2 (en) 2004-04-02 2012-05-04 System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
PCT/US2013/039580 WO2013166464A1 (en) 2012-05-04 2013-05-03 System and methods for coping with doppler effects in distributed-input distributed-output wireless systems

Publications (2)

Publication Number Publication Date
HK1209521A1 HK1209521A1 (en) 2016-04-01
HK1209521B true HK1209521B (en) 2021-01-29

Family

ID=

Similar Documents

Publication Publication Date Title
US11070258B2 (en) System and methods for planned evolution and obsolescence of multiuser spectrum
AU2019204969B2 (en) System and methods for planned evolution and obsolescence of multiuser spectrum
AU2017210619B2 (en) System and methods for coping with doppler effects in distributed-input distributed-output wireless systems
US10349417B2 (en) System and methods to compensate for doppler effects in multi-user (MU) multiple antenna systems (MAS)
US20190335445A1 (en) System and methods to compensate for doppler effects in multi-user (mu) multiple antenna systems (mas)
US11309943B2 (en) System and methods for planned evolution and obsolescence of multiuser spectrum
HK1209521B (en) System and methods for coping with doppler effects in distributed-input distributed-output wireless systems
NZ757995B2 (en) Systems and methods to exploit areas of coherence in wireless systems
NZ754048B2 (en) Systems and methods to exploit areas of coherence in wireless systems
NZ738000B2 (en) Systems and methods to exploit areas of coherence in wireless systems