[go: up one dir, main page]

EP2599039B1 - Method and system for flight data anlysis - Google Patents

Method and system for flight data anlysis Download PDF

Info

Publication number
EP2599039B1
EP2599039B1 EP11735427.4A EP11735427A EP2599039B1 EP 2599039 B1 EP2599039 B1 EP 2599039B1 EP 11735427 A EP11735427 A EP 11735427A EP 2599039 B1 EP2599039 B1 EP 2599039B1
Authority
EP
European Patent Office
Prior art keywords
flight data
flight
subset
value
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11735427.4A
Other languages
German (de)
French (fr)
Other versions
EP2599039A1 (en
Inventor
Fabrice Ferrand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Electronics and Defense SAS
Original Assignee
Safran Electronics and Defense SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Electronics and Defense SAS filed Critical Safran Electronics and Defense SAS
Publication of EP2599039A1 publication Critical patent/EP2599039A1/en
Application granted granted Critical
Publication of EP2599039B1 publication Critical patent/EP2599039B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/02Knowledge representation; Symbolic representation
    • G06N5/022Knowledge engineering; Knowledge acquisition
    • G06N5/025Extracting rules from data
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks

Definitions

  • the present invention relates to a method and a system for analyzing a set of flight data whose values have been recorded during a flight of an aircraft.
  • the Fig. 1 schematically represents a system known as FDM (Flight Data Monitoring in English) which makes it possible to analyze a set of flight data ⁇ p ( i ) ⁇ i ⁇ I with I ⁇ D and D the set of data indices of flight, whose values ⁇ v ( i ) ⁇ i ⁇ I are recorded during a flight of an aircraft.
  • FDM Fluor Data Monitoring in English
  • the principle of the system consists in equipping the aircraft with means for recording these values ⁇ v ( i ) ⁇ i ⁇ I.
  • These means are, for example, a black box or specific recorders such as ACMS (Aircraft Condition Monitoring System).
  • These flight data ⁇ p ( i ) ⁇ i ⁇ I (and therefore their values) are in multiple forms.
  • a value of a flight data item may be a possibly multidimensional measurement of flight parameter (fluid pressure, air speed, vibration frequency, etc.) or represent an occurrence of a flight parameter. action performed by the flight crew (activation of the autopilot etc.).
  • the values ⁇ p ( i ) ⁇ i ⁇ I are recovered by a processing unit T via wired or wireless communication means and analyzed by a data mining algorithm, better known as Data Mining.
  • an expert determines and records previously in a database BDD flight data sets ⁇ p ( j ) ⁇ j ⁇ J with J ⁇ D and a set of flight events E J, k relating to each flight set ⁇ p ( j ) ⁇ j ⁇ J.
  • Each flight event E J, k relative to a set of J flight data ⁇ p ( j ) ⁇ j ⁇ J corresponds to the values ⁇ v k ( j ) ⁇ j ⁇ J of this set which have been recorded during a previous flight (k designates, for example, an order of registration in the database of the values ⁇ v k ( i ) ⁇ j ⁇ J ) and under the constraint that the value v k ( m ) of at least one of these flight data ⁇ p ( m ) ⁇ m ⁇ J exceeds its nominal value L m which is also prerecorded and is established to comply with current aviation safety regulations and flight procedures specific to each airline.
  • E J, k ⁇ v k ( j ) j ⁇ J
  • This relationship may be different for each flight data and is not necessarily defined by the comparison operator of two integers.
  • the expert has determined and memorized these different sets of flight data and the flight events associated with them, he defines means, usually in the form of computer programs, so that these events E J, k are detected following the recording during a flight of an airplane of the values ⁇ v ( i ) ⁇ i ⁇ I of a set of flight data ⁇ p ( i ) ⁇ i ⁇ I.
  • the context in which a flight event has occurred can also be recorded.
  • the context may be the name of the sensor that has recorded flight data, or the location of the aircraft at the time of this recording, etc.
  • the processing unit T also usually calculates statistics on the values of the sets of flight data recorded during several flights of the same aircraft and / or on the various flight events that have been detected. The processing unit T then derives trends concerning the evolution over time of these flight data and / or flight events. These trends evaluate whether a risk increases or decreases. For example, a value of flight data recorded during a flight may also be recorded in future flights and at the end of a flight. number of flights, a diagram of the temporal evolution of this flight data can be established.
  • the system also includes graphical GUI means to present to an expert these different flight events and other trends.
  • These representations sometimes take the form of tables in which are given the data of a flight or several flights, the exceedances of the nominal values and other temporal diagrams representing the trends of flight data and other evolutions of flight events.
  • the expert then analyzes these representations to validate whether the flight events detected following the analysis of the values ⁇ v ( i ) ⁇ i ⁇ I correspond to a flight incident to accurately trace the flight and / or the evolution of trends.
  • the graphical means GUI allow the expert to manually modify or enter new sets of flight data to be recorded and / or new flight events and / or new nominal values.
  • the airlines have equipped their aircraft with a multitude of sensors in order to record a maximum of flight data, considering that the more the expert will have at his disposal a large number of flight data values and more harmless situations will be recorded. in the database, ie more flight events will be detected, the expert will be able to accurately assess the flight situations that led to these events and thus predict ahead of time a greater number of major incidents or future accidents.
  • the current analysis of a set of flight data recorded during a flight of an aircraft therefore allows an expert to relate flight events and / or trends for identical flight conditions (same aircraft , same flight plan) while it would be advantageous for the expert to also have access to all the detectable flight events from the recorded flight data values, that is to say, among other things to flight events that occurred under flight conditions similar to those in which a flight event recorded in the BDD database has already occurred.
  • Such a system would then be able to enrich the database BDD flight data recorded by the various aircraft of an airline, or even several airlines increasing the probability that a flight event has already occurred and therefore increase its detectability. Such a system would thus have the possibility of enriching and improving the detections of new flight events not foreseen by the expert.
  • Such a flight data analysis system would then allow a significant reduction in the workload of the expert who would no longer have to cross-check the flight conditions to determine if flight conditions are similar, and an airline would have then a vision of the risks incurred by all the aircraft in his fleet without the expert having a significant increase in his workload.
  • the problem solved by the present invention is to determine a flight data analysis system that overcomes the disadvantages raised.
  • the present invention relates to a method for analyzing a set of flight data, said first, whose values were recorded during a flight of an aircraft and in which an event is detected when the values of the flight data of the first set and the flight data values of another set of flight data, said second, which have been recorded during a previous flight are values relative to the same flight data and if the same values of the flight data of the first set and the second set exceed their respective nominal values.
  • At least one subset of flight data comprising at least one of the flight data of the first set and / or at least one flight data of a second set under the condition that at least one of its data exceeds its nominal value, is defined by correlating the value of at least one flight data item of the first set with the value of at least one of the flight data of the second set.
  • a flight event is then likely to be detected from the values of the flight data of a subset and the flight data values of one of the second sets of flight data, and if a flight event is not detected from a subset, a probability of matching between at least a second set and this subset is associated to this subset, the first set is then updated by adding at least one new flight data of at least a second set and / or by deleting at least one of its flight data and this, according to the match probability values.
  • the first set of flight data thus updated is then recorded again during a new flight, and the process is iterated as long as a maintenance or flight safety expert can not make a decision on this sub-flight. together.
  • This method enriches the initial knowledge of a database consisting of a predefined set of flight events that may occur.
  • each subset is presented to an expert. If the expert decides that a subset is preponderant, this subset is stored, and if he decides that a subset is a false alarm, this subset is no longer considered.
  • This subassembly presentation allows an expert to decide the relevance of the flight events related to these subsets so that only flight events that are relevant to the safety of future flights are added to the system. or relating to the evolution of an airline's flight procedure.
  • At least one new flight data item that is added to the first set comes from the second set which maximizes the probability of matching with a subset.
  • This mode is advantageous because it optimizes the chances that the expert can decide on the relevance of a subset from the next record of the new set of flight data thus modified.
  • the pairing probabilities are recorded and updated during each iteration of the method, and the second sets, from which is obtained said at least one new flight data for updating the first set. , are selected from the variation in time of their probabilities of pairing.
  • the analysis of the values of the flight data of the first set makes it possible to identify the variation of the sets of flight data recorded during several successive flights and this to take into account the evolutions of the flight conditions but also the possible modifications. flight procedures and / or aviation safety regulations that are introduced by an expert.
  • the flight event detection is also updated when the first set is updated so that this detection can detect a flight event relating to said subset.
  • This variant is advantageous because it allows flight events defined from subsets to be detected in the future, even if these events could not be hitherto.
  • simulated flight data are used to validate the modifications of the event detection thus modified.
  • the present invention also relates to an analysis system which comprises means for implementing one of the above methods.
  • the analysis system of the Fig. 2 comprises a processing unit T which groups means for detecting a flight event (E J, k ) when the values of the flight data of the set ⁇ p ( i ) ⁇ i ⁇ I and the values ⁇ v k ( j ⁇ j ⁇ J flight data of a set of flight data ⁇ p ( j ) ⁇ j ⁇ J , which have been recorded during a previous flight, are values relating to the same flight data and, if the same values v k ( m ) m ⁇ J flight data of the set ⁇ p ( i ) ⁇ i ⁇ I and the set ⁇ p ( j ) ⁇ j ⁇ J exceed their respective nominal values.
  • a flight event E J, k
  • the database BDD has several sets ⁇ p ( j ) ⁇ j ⁇ J.
  • the processing unit T also comprises means for defining at least one subset of flight data ⁇ p ( o ) ⁇ o ⁇ O which comprises at least one of the flight data of the set ⁇ p ( i ) ⁇ i ⁇ I and / or at least one flight data of a set ⁇ p ( j ) ⁇ j ⁇ J under the condition that at least one of its data exceeds its nominal value, by correlation of the value ⁇ v ( i ) ⁇ i ⁇ I of at least one flight data of the set ⁇ p ( i ) ⁇ i ⁇ I with the value ⁇ v k ( j ) ⁇ j ⁇ J of at least one of the flight data of the set ⁇ p ( j ) ⁇ j ⁇ J.
  • the processing unit T also comprises means for determining and associating with each subset ⁇ p ( o ) ⁇ o ⁇ O a probability of matching Pr ( p o
  • the means of the processing unit T are implemented, according to one embodiment, in the form of computer programs.
  • the analysis method makes it possible to analyze the values of the set of flight data ⁇ p ( i ) ⁇ i ⁇ I which is not necessarily known in advance from the database BDD. Thus, it makes it possible to minimize the task of an expert to relate new flight events from this set of flight data to be analyzed with the flight events E J, k previously recorded in the database BDD.
  • This process is iterative and implements a method that can be likened to an analysis that is multidimensional and parameterized by unsupervised learning.
  • At least one subset of flight data comprising at least one of the flight data of the set ⁇ p ( i ) ⁇ i ⁇ I and / or at least one flight data of a set ⁇ p ( j ) ⁇ i ⁇ I provided that at least one of its data exceeds its nominal value, is defined by correlation of the value ⁇ v ( i ) ⁇ i ⁇ I of at least one flight data of the set ⁇ p ( i ) ⁇ i ⁇ I with the value ⁇ v k ( j ) ⁇ j ⁇ J of at least one of the flight data of a set ⁇ p ( j ) ⁇ j ⁇ J.
  • the sets I and J are arbitrary sets of the set D of all the flight data and no hypothesis of relationship between them exists.
  • the set I and J can have an empty or non-empty intersection, I (respectively J) can be included in J (respectively I).
  • the definition of the correlation between values of the flight data of the set ⁇ p ( i ) ⁇ i ⁇ I and values of the flight data of the set ⁇ p ( i ) ⁇ j ⁇ J is within the range of the skilled person.
  • a set of rules can be preprogrammed so that some flight data systematically form a subset as soon as they are present in both sets, and others can be discarded as soon as they occur in either one or the other. other set. Rules can also be established to quantify the correlation between values and form subsets only with flight data that have high correlation values.
  • a flight event E J, k is then likely to be detected from the values of the flight data ⁇ v ( o ) ⁇ o ⁇ O of a sub-set. set ⁇ p ( o ) ⁇ o ⁇ O and the values ⁇ v k ( j ) ⁇ j ⁇ J of the flight data of one of the sets of flight data ⁇ p ( j ) ⁇ j ⁇ J.
  • This case corresponds to the detection of a flight event that has already occurred during a previous flight.
  • p j ) between at least one set ⁇ p ( j ) ⁇ j ⁇ I and this subset is associated with this subset.
  • p j ) can be seen as a direct problem of classification of each subset from the set ⁇ p ( i ) ⁇ i ⁇ I.
  • This method is iterative and allows to converge to a classification of subsets that is stable. At that time, each of the probabilities Pr ( p o
  • the set ⁇ p ( i ) ⁇ i ⁇ I to be analyzed is then updated by adding at least one new flight data ⁇ p ( n ) ⁇ n ⁇ N of at least one set ⁇ p ( j ) ⁇ j ⁇ J and / or by deleting at least one of its flight data ⁇ p ( i ) ⁇ i ⁇ I , and this according to the matching probability values Pr ( p j
  • the N flight data ⁇ p ( n ) ⁇ n ⁇ N of the set ⁇ p ( j ) ⁇ j ⁇ J chosen can be added to the set ⁇ p ( i ) ⁇ i ⁇ I which will allow in future recordings of these flight data values ⁇ p ( j ) ⁇ j ⁇ I ⁇ J of provide guidance that allows an expert to make a decision as to what to do with the subassembly.
  • the N flight data ⁇ p ( n ) ⁇ n ⁇ N added depend on the results of the set of probabilities.
  • the flight data set thus updated ⁇ p ( j ) ⁇ j ⁇ I ⁇ J is then recorded again during a new flight, and the process is iterated until an expert can make a decision. on this subset.
  • new flight data is a kind of dynamic flight recorder programming that maximizes the probability of detecting new events but also the probability of detecting an event long before a problem or failure occurs. occurs during the flight of an airplane.
  • each subset is presented to an expert via GUI graphical means.
  • the expert can then decide if this subset is a preponderant flying event. If this is the case, this subset is stored in the database BDD and then enriches the system of this new flight event. If it decides that a subset is a false alarm, that subset is no longer considered.
  • At least one new flight data ⁇ p ( n ) ⁇ n ⁇ N which is added to the set ⁇ p ( i ) ⁇ i ⁇ I is derived from the set ⁇ p ( j ) ⁇ j ⁇ J that maximizes the probability of matching with a subset.
  • p o ) are recorded and updated at each iteration of the method, and the sets ⁇ p ( j ) ⁇ j ⁇ J , from which is obtained said at least one new flight data ⁇ p ( n ) ⁇ n ⁇ N for updating the set ⁇ p ( i ) ⁇ i ⁇ I , are selected from the variation in time of their probabilities of pairing.
  • the detection of theft event is also updated when the set ⁇ p (i) ⁇ i ⁇ I is updated so that the detecting means can detect a relative flight event, a sub together.
  • simulated flight data are used to validate the modifications of the modified event detection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Mathematical Physics (AREA)
  • Computational Linguistics (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Algebra (AREA)
  • Probability & Statistics with Applications (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Traffic Control Systems (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Complex Calculations (AREA)

Description

La présente invention concerne un procédé et un système d'analyse d'un ensemble de données de vol dont les valeurs ont été enregistrées au cours d'un vol d'un avion.The present invention relates to a method and a system for analyzing a set of flight data whose values have been recorded during a flight of an aircraft.

L'une des causes principales des retards des avions est liée à des problèmes techniques survenants sur ces avions de manière impromptue. De plus, les phases de maintenance de ces avions demandant leur immobilisation prolongée sont très souvent restreintes au minimum pour des raisons de rentabilité.One of the main causes of aircraft delays is related to technical problems occurring on these aircraft in an impromptu manner. In addition, the maintenance phases of these aircraft requiring their prolonged immobilization are very often restricted to the minimum for reasons of profitability.

La réglementation en termes de maintenance et de circulation aérienne définit des normes que les compagnies aériennes sont tenues de respecter afin d'assurer à un usager un niveau de sécurité maximum.The regulation in terms of maintenance and air traffic defines standards that airlines must respect in order to ensure a user a maximum level of security.

Toutefois, il a été observé que ces dernières années, la sécurité des vols stagne. Afin de continuer à augmenter la sécurité des vols malgré l'augmentation continue du trafic aérien et d'optimiser les phases de maintenance, les compagnies aériennes se sont équipées de systèmes d'analyse de données de vol.However, it has been observed that in recent years, flight safety is stagnating. In order to continue to increase flight safety despite the continuous increase in air traffic and to optimize maintenance phases, airlines have been equipped with flight data analysis systems.

Ces systèmes permettent aux compagnies aériennes de comprendre en détail le déroulement d'un vol à partir d'enregistrements réguliers des valeurs de ces données de vol effectués au cours de chaque vol de chacun de leurs avions.These systems allow airlines to understand in detail the progress of a flight from regular recordings of the values of these flight data made during each flight of each of their aircraft.

Pour cela, ces systèmes détectent des évènements singuliers survenus au cours du vol. Un expert analyse alors ces évènements qui indiquent qu'un incident technique s'est produit au cours du vol, qu'une pratique ou une condition prévue par une procédure de vol n'a pas été respectée, prévenant ainsi à un stade très amont d'éventuels incidents ou accidents qui pourraient subvenir.For this, these systems detect singular events occurring during the flight. An expert then analyzes these events which indicate that a technical incident occurred during the flight, that a practice or a condition provided for by a flight procedure was not respected, thus preventing at a very early stage of possible incidents or accidents that could occur.

La Fig. 1 représente schématiquement un système connu sous le nom de FDM (Flight Data Monitoring en anglais) qui permet d'analyser un ensemble de données de vol {p(i)} iI avec ID et D l'ensemble des indices de données de vol, dont des valeurs {v(i)} iI sont enregistrées au cours d'un vol d'un avion.The Fig. 1 schematically represents a system known as FDM (Flight Data Monitoring in English) which makes it possible to analyze a set of flight data { p ( i )} iI with ID and D the set of data indices of flight, whose values { v ( i )} iI are recorded during a flight of an aircraft.

Le principe du système consiste à équiper l'avion de moyens d'enregistrement de ces valeurs {v(i)} iI . Ces moyens sont, par exemple, une boîte noire ou encore des enregistreurs spécifiques tels que des ACMS (Aircraft Condition Monitoring System en anglais). Ces données de vol {p(i)} iI (et donc leurs valeurs) se présentent sous des formes multiples. Par exemple, une valeur d'une donnée de vol peut être une mesure, éventuellement multidimensionnelle, de paramètre de vol (pression d'un fluide, vitesse de l'air, fréquence de vibration ...) ou représenter une occurrence d'une action réalisée par le personnel de bord (activation du pilote automatique etc.).The principle of the system consists in equipping the aircraft with means for recording these values { v ( i )} iI. These means are, for example, a black box or specific recorders such as ACMS (Aircraft Condition Monitoring System). These flight data { p ( i )} iI (and therefore their values) are in multiple forms. For example, a value of a flight data item may be a possibly multidimensional measurement of flight parameter (fluid pressure, air speed, vibration frequency, etc.) or represent an occurrence of a flight parameter. action performed by the flight crew (activation of the autopilot etc.).

Lorsque l'avion a terminé son vol ou lorsqu'il est en escale dans un aéroport, les valeurs {p(i)} iI sont récupérées par une unité de traitement T via des moyens de communication filaire ou sans fil et analysées par un algorithme de forage de données, plus connu sous la dénomination anglaise de Data Mining. When the aircraft has completed its flight or when it is in stopover at an airport, the values { p ( i )} iI are recovered by a processing unit T via wired or wireless communication means and analyzed by a data mining algorithm, better known as Data Mining.

Pour cela, un expert détermine et enregistre préalablement dans une base de données BDD, des ensembles de données de vol {p(j)} jJ avec JD et un ensemble d'évènements de vol EJ,k relatifs à chaque ensemble de vol {p(j)} jJ . Chaque événement de vol EJ,k relatif à un ensemble de J données de vol {p(j)} jJ correspond aux valeurs {vk (j)} jJ de cet ensemble qui ont été enregistrées au cours d'un précédent vol (k désigne par exemple un ordre d'enregistrement dans la base de données des valeurs {vk (i)} jJ ) et sous la contrainte que la valeur vk (m) d'au moins une de ces données de vol {p(m)} mJ dépasse sa valeur nominale Lm qui est également préenregistrée et qui est établie pour respecter la réglementation actuelle en matière de sécurité aérienne et les procédures de vol propres à chaque compagnie aérienne. En termes mathématiques, EJ,k={vk (j) jJ |vk (j)>Lj ≠∅} ou encore que EJ,k est l'ensemble non vide des {vk (j)} jJ tel que vk (j) est supérieure au seuil de valeur nominale Lj, c'est-à-dire qu'il existe au moins une valeur de données de vol qui n'est pas nominale. Cela sous-entend qu'il existe une relation d'ordre associée à la donnée j qui permette d'écrire vk (j) > Lj. Cette relation peut être différente pour chaque donnée de vol et n'est pas forcément définie par l'opérateur de comparaison de deux entiers.For this purpose, an expert determines and records previously in a database BDD flight data sets { p ( j )} jJ with JD and a set of flight events E J, k relating to each flight set { p ( j )} jJ. Each flight event E J, k relative to a set of J flight data { p ( j )} jJ corresponds to the values { v k ( j )} jJ of this set which have been recorded during a previous flight (k designates, for example, an order of registration in the database of the values { v k ( i )} jJ ) and under the constraint that the value v k ( m ) of at least one of these flight data { p ( m )} mJ exceeds its nominal value L m which is also prerecorded and is established to comply with current aviation safety regulations and flight procedures specific to each airline. In mathematical terms, E J, k = { v k ( j ) jJ | v k ( j )> L j ≠ ∅} or that E J, k is the non-empty set of { v k ( j )} jJ such that v k ( j ) is greater than the nominal value threshold L j , i.e. there is at least one flight data value that is not nominal. This implies that there exists a relation of order associated with the data j which makes it possible to write v k ( j )> L j . This relationship may be different for each flight data and is not necessarily defined by the comparison operator of two integers.

Une fois que l'expert a déterminé et mémorisé ces différents ensembles de données de vol et les évènements de vol qui leur sont associés, il définit des moyens, habituellement sous forme de programmes d'ordinateurs, pour que ces évènements EJ,k soient détectés suite à l'enregistrement au cours d'un vol d'un avion des valeurs {v(i)} iI d'un ensemble de données de vol {p(i)} iI . Le contexte dans lequel un événement de vol s'est produit peut également être enregistré. Par exemple, le contexte peut être la dénomination du capteur qui a enregistré une donnée de vol, ou encore la localisation de l'avion au moment de cet enregistrement etc.Once the expert has determined and memorized these different sets of flight data and the flight events associated with them, he defines means, usually in the form of computer programs, so that these events E J, k are detected following the recording during a flight of an airplane of the values { v ( i )} iI of a set of flight data { p ( i )} iI. The context in which a flight event has occurred can also be recorded. For example, the context may be the name of the sensor that has recorded flight data, or the location of the aircraft at the time of this recording, etc.

A l'aide de ces moyens, l'algorithme détecte alors un événement EJ,k si il existe au moins une valeur {v(i)} iI d'une donnée de vol de l'ensemble de données de vol {p(i)} iI qui dépasse une valeur nominale et que cette donnée de vol corresponde à une valeur {vk (j)} jJ d'une donnée de vol d'un ensemble de données de vol {p(j)} jJ préalablement enregistré dans la base de données BDD. Il s'agit donc de trouver J et k tel que I = J avec I associé à un événement de vol singulier connu et k une occurrence de EJ,k dans l'enregistrement des données effectuées jusqu'à présent.Using these means, the algorithm then detects an event E J, k if there is at least one value { v ( i )} iI of a flight data set of the flight data set { p ( i )} iI that exceeds a nominal value and that this flight data corresponds to a value { v k ( j )} jJ of a flight data item of a flight data set { p ( j )} jJ previously saved in the database BDD. It is thus necessary to find J and k such that I = J with I associated with a known singular flight event and k an occurrence of E J, k in the recording of the data carried out so far.

L'unité de traitement T calcule aussi habituellement des statistiques sur les valeurs des ensembles de données de vol enregistrées au cours de plusieurs vols d'un même avion et/ou sur les différents évènements de vol qui ont été détectés. L'unité de traitement T en déduit alors des tendances concernant l'évolution dans le temps de ces données de vol et/ou d'événements de vol. Ces tendances évaluent si un risque augmente ou diminue. Par exemple, une valeur d'une donnée de vol enregistrée au cours d'un vol peut être également enregistrée lors de vols futurs et à l'issue d'un certain nombre de vols, un diagramme de l'évolution temporelle de cette donnée de vol peut être établi.The processing unit T also usually calculates statistics on the values of the sets of flight data recorded during several flights of the same aircraft and / or on the various flight events that have been detected. The processing unit T then derives trends concerning the evolution over time of these flight data and / or flight events. These trends evaluate whether a risk increases or decreases. For example, a value of flight data recorded during a flight may also be recorded in future flights and at the end of a flight. number of flights, a diagram of the temporal evolution of this flight data can be established.

Le système comporte également des moyens graphiques GUI pour présenter à un expert ces différents évènements de vol et autres tendances. Ces représentations prennent parfois l'aspect de tableaux dans lesquels sont indiquées les données d'un vol ou de plusieurs vols, les dépassements des valeurs nominales et autres diagrammes temporels représentant les tendances de données de vol et autres évolutions d'évènements de vol.The system also includes graphical GUI means to present to an expert these different flight events and other trends. These representations sometimes take the form of tables in which are given the data of a flight or several flights, the exceedances of the nominal values and other temporal diagrams representing the trends of flight data and other evolutions of flight events.

L'expert analyse alors ces représentations pour valider si les évènements de vol détectés suite à l'analyse des valeurs {v(i)} iI correspondent bien à un incident de vol pour retracer précisément le déroulement du vol et/ou l'évolution des tendances.The expert then analyzes these representations to validate whether the flight events detected following the analysis of the values { v ( i )} iI correspond to a flight incident to accurately trace the flight and / or the evolution of trends.

Il en déduit alors des relations entre des évènements de vol qui se sont produits au cours d'un vol ou de plusieurs vols d'un avion et prévoit en conséquence une action à entreprendre pour éviter que ces évènements de vol ne se reproduisent ou qu'un incident majeur m'impose l'immobilisation de l'avion. Il peut par exemple prévoir une éventuelle phase de maintenance de l'avion et/ou une éventuelle modification dans une procédure de vol et/ou une formation spécifique du personnel de bord. A cet effet, les moyens graphiques GUI permettent à l'expert de modifier ou d'entrer manuellement de nouveaux ensembles de données de vol à enregistrer et/ou de nouveaux événements de vol et/ou de nouvelles valeurs nominales.He then deduces relationships between flight events that occurred during a flight or several flights of an aircraft and therefore provides an action to be taken to prevent these flight events from happening again or that a major incident forces me to stop the plane. It can for example provide for a possible maintenance phase of the aircraft and / or a possible modification in a flight procedure and / or specific training of the train crew. For this purpose, the graphical means GUI allow the expert to manually modify or enter new sets of flight data to be recorded and / or new flight events and / or new nominal values.

Les compagnies aériennes ont équipé leurs avions d'une multitude de capteurs de manière à enregistrer un maximum de données de vol, considérant que plus l'expert aura à sa disposition un nombre important de valeurs de données de vol et plus de situations anodines seront enregistrées dans la base de données, c'est-à-dire plus d'événements de vol seront détectés, plus l'expert pourra évaluer précisément les situations en vol qui ont amené à ces évènements et prédire ainsi en amont un plus grand nombre d'incidents majeurs ou d'accidents futurs.The airlines have equipped their aircraft with a multitude of sensors in order to record a maximum of flight data, considering that the more the expert will have at his disposal a large number of flight data values and more harmless situations will be recorded. in the database, ie more flight events will be detected, the expert will be able to accurately assess the flight situations that led to these events and thus predict ahead of time a greater number of major incidents or future accidents.

Par ailleurs, la réglementation en matière de sécurité aérienne évolue (conséquences des accidents, efficacité énergétique ou économique, prise en compte de l'augmentation du trafic....) et impose régulièrement de prendre en compte de nouveaux évènements de vol. Ceci se traduit par une évolution à la fois des moyens d'enregistrement en vol et des moyens pour détecter ces nouveaux évènements de vol. De même, une compagnie aérienne peut ajouter ou modifier ses propres évènements de vol dans le but d'améliorer encore la sécurité des vols et d'optimiser ses procédures.In addition, aviation safety regulations are changing (consequences of accidents, energy or economic efficiency, taking into account the increase in traffic, etc.) and regularly requires the consideration of new flight events. This results in an evolution of both the recording means in flight and means for detecting these new flight events. Likewise, an airline can add or modify its own events to further improve flight safety and optimize its procedures.

Bien qu'en théorie, la multiplication des enregistrements de données de vol et des ensembles de données de vol à enregistrer permet d'augmenter la précision et la pertinence d'une expertise des situations de vol, en pratique, l'analyse systématique par l'expert de l'ensemble des évènements de vol détectés mobilise des ressources importantes, tant en terme de puissance de calcul nécessaire à l'analyse des valeurs de données de vol par l'unité de traitement T qu'en terme de charge de travail pour l'expert. Généralement, seuls les ensembles de données de vol et autres évènements de vol imposés par la réglementation en matière de sécurité aérienne et les procédures de la compagnie aérienne sont analysés.Although, in theory, the multiplication of flight data recordings and flight data sets to be recorded makes it possible to increase the accuracy and relevance of an expertise of flight situations, in practice the systematic analysis of flight situations expert in all detected flight events mobilizes significant resources, both in terms of computing power necessary for the analysis of the flight data values by the processing unit T and in terms of workload for the expert. Generally, only flight data sets and other flight events imposed by aviation safety regulations and airline procedures are analyzed.

Ces experts ne forgent donc leurs évaluations des situations de vol qu'à partir d'un nombre très restreint d'événements de vol qu'ils ont préenregistré dans la base de données BDD et qui ne représente qu'une petite partie des évènements de vol qui pourraient être détectés à partir des valeurs des données de vol enregistrées au cours d'un vol d'un avion. Toutefois, certains de ces évènements de vol « non enregistrés », à l'apparence mineurs aux yeux de l'expert, pourraient permettre la détection de problèmes futurs sous-jacents qui n'apparaissent pas dans leurs rapports d'expertise du fait de leur analyse non systématique de toutes les valeurs de données de vol enregistrées.These experts therefore only make their assessments of flight situations from a very limited number of flight events that they pre-recorded in the BDD database and which represent only a small part of the flight events. which could be detected from the values of the flight data recorded during a flight of an airplane. However, some of these "unregistered" flight events, which appear to be minor in the eyes of the expert, could allow the detection of underlying future problems that do not appear in their expertise reports because of their non-systematic analysis of all recorded flight data values.

L'analyse actuelle d'un ensemble de données de vol enregistrées au cours d'un vol d'un avion permet donc à un expert de mettre en relation des évènements de vol et/ou des tendances pour des conditions de vol identiques (même avion, même plan de vol) alors qu'il serait avantageux que l'expert puisse aussi avoir accès également à l'ensemble des évènements de vol détectables à partir des valeurs de données de vol enregistrées c'est-à-dire, entre autres à des évènements de vol qui se sont produits dans des conditions de vol similaires à celles dans lesquelles un événement de vol enregistré dans la base de données BDD s'est déjà produit.The current analysis of a set of flight data recorded during a flight of an aircraft therefore allows an expert to relate flight events and / or trends for identical flight conditions (same aircraft , same flight plan) while it would be advantageous for the expert to also have access to all the detectable flight events from the recorded flight data values, that is to say, among other things to flight events that occurred under flight conditions similar to those in which a flight event recorded in the BDD database has already occurred.

Un tel système permettrait alors de pouvoir enrichir la base de données BDD de données de vol enregistrées par les différents avions d'une compagnie aérienne, voire de plusieurs compagnies aériennes augmentant ainsi la probabilité qu'un événement de vol se soit déjà produit et donc augmenter sa détectabilité. Un tel système aurait ainsi la possibilité d'enrichir et d'améliorer les détections de nouveaux évènements de vol non prévus par l'expert.Such a system would then be able to enrich the database BDD flight data recorded by the various aircraft of an airline, or even several airlines increasing the probability that a flight event has already occurred and therefore increase its detectability. Such a system would thus have the possibility of enriching and improving the detections of new flight events not foreseen by the expert.

Un tel système d'analyse de données de vol permettrait alors un allègement significatif de la charge de travail de l'expert qui n'aurait plus à recouper les conditions de vol pour déterminer si des conditions de vol sont similaires, et une compagnie aérienne aurait alors une vision des risques encourus par l'ensemble des avions de sa flotte sans que l'expert n'ait une augmentation significative de sa charge de travail.Such a flight data analysis system would then allow a significant reduction in the workload of the expert who would no longer have to cross-check the flight conditions to determine if flight conditions are similar, and an airline would have then a vision of the risks incurred by all the aircraft in his fleet without the expert having a significant increase in his workload.

Un autre inconvénient de l'utilisation des algorithmes de forage de données actuels est que les événements de vol, nouvellement déterminés par un expert, sont enregistrés manuellement par cet expert et ce à l'aide des moyens graphiques GUI. Il serait très avantageux que le système puisse générer automatiquement de nouveaux événements de vol voire de nouveaux ensembles de données de vol suite à sa propre analyse des valeurs de données de vol enregistrées. L'intervention d'un expert ne serait alors requise que pour valider d'éventuels conflits entre les évènements et/ou ensembles de données de vol.Another disadvantage of using current data mining algorithms is that flight events, newly determined by an expert, are recorded manually by this expert using GUI graphical means. It would be very advantageous for the system to automatically generate new flight events or even new sets of flight data as a result of its own analysis of the recorded flight data values. The intervention of an expert would then be required only to validate any conflicts between the events and / or sets of flight data.

Le problème résolu par la présente invention est de déterminer un système d'analyse de données de vol qui remédie aux inconvénients suscités.The problem solved by the present invention is to determine a flight data analysis system that overcomes the disadvantages raised.

A cet effet, de manière générale, la présente invention concerne un procédé d'analyse d'un ensemble de données de vol, dit premier, dont les valeurs ont été enregistrées au cours d'un vol d'un avion et dans lequel un événement de vol est détecté lorsque les valeurs des données de vol du premier ensemble et les valeurs des données de vol d'un autre ensemble de données de vol, dit deuxième, qui ont été enregistrées au cours d'un précédent vol sont des valeurs relatives aux mêmes données de vol et si les mêmes valeurs des données de vol du premier ensemble et du deuxième ensemble dépassent leurs valeurs nominales respectives.For this purpose, in general, the present invention relates to a method for analyzing a set of flight data, said first, whose values were recorded during a flight of an aircraft and in which an event is detected when the values of the flight data of the first set and the flight data values of another set of flight data, said second, which have been recorded during a previous flight are values relative to the same flight data and if the same values of the flight data of the first set and the second set exceed their respective nominal values.

Selon une caractéristique, au moins un sous-ensemble de données de vol, comportant au moins une des données de vol du premier ensemble et/ou au moins une donnée de vol d'un deuxième ensemble sous la condition qu'au moins une de ses données dépasse sa valeur nominale, est défini par corrélation de la valeur d'au moins une donnée de vol du premier ensemble avec la valeur d'au moins une des données de vol du deuxième ensemble. De plus, un événement de vol est alors susceptible d'être détecté à partir des valeurs des données de vol d'un sous-ensemble et les valeurs des données de vol de l'un des deuxièmes ensembles de données de vol, et si un événement de vol n'est pas détecté à partir d'un sous-ensemble, une probabilité d'appariement entre au moins un deuxième ensemble et ce sous-ensemble est associée à ce sous-ensemble, le premier ensemble est alors mis à jour par adjonction d'au moins une nouvelle donnée de vol d'au moins un deuxième ensemble et/ou par suppression d'au moins une de ses données de vol et ce, selon les valeurs de probabilité d'appariement. Le premier ensemble de données de vol ainsi mis à jour est alors à nouveau enregistré au cours d'un nouveau vol, et le procédé est itéré tant qu'un expert de maintenance ou de sécurité des vols ne peut prendre une décision sur ce sous-ensemble.According to one characteristic, at least one subset of flight data, comprising at least one of the flight data of the first set and / or at least one flight data of a second set under the condition that at least one of its data exceeds its nominal value, is defined by correlating the value of at least one flight data item of the first set with the value of at least one of the flight data of the second set. In addition, a flight event is then likely to be detected from the values of the flight data of a subset and the flight data values of one of the second sets of flight data, and if a flight event is not detected from a subset, a probability of matching between at least a second set and this subset is associated to this subset, the first set is then updated by adding at least one new flight data of at least a second set and / or by deleting at least one of its flight data and this, according to the match probability values. The first set of flight data thus updated is then recorded again during a new flight, and the process is iterated as long as a maintenance or flight safety expert can not make a decision on this sub-flight. together.

Ce procédé permet d'enrichir la connaissance initiale d'une base de données constituée d'un ensemble prédéfini d'événements de vol susceptibles de se produire.This method enriches the initial knowledge of a database consisting of a predefined set of flight events that may occur.

En effet, grâce à la détermination automatique de corrélations entre les valeurs de données de vol préalablement enregistrées et les valeurs de données de vol à analyser, de nouveaux ensembles de données de vol (ou sous-ensembles) sont générés par le procédé ce qui aboutit à la détection éventuelle de nouveaux événements de vol qu'un expert n'avait pas prévu initialement.Indeed, thanks to the automatic determination of correlations between the previously recorded flight data values and the flight data values to be analyzed, new sets of flight data (or subsets) are generated by the process which leads to the possible detection of new flight events that an expert had not initially planned.

Selon une variante, chaque sous-ensemble est présenté à un expert. Si l'expert décide qu'un sous-ensemble est prépondérant, ce sous-ensemble est mémorisé, et s'il décide qu'un sous-ensemble est une fausse alarme, ce sous-ensemble n'est plus considéré.According to one variant, each subset is presented to an expert. If the expert decides that a subset is preponderant, this subset is stored, and if he decides that a subset is a false alarm, this subset is no longer considered.

Cette présentation des sous-ensembles permet à un expert de décider de la pertinence des événements de vol relatifs à ces sous-ensembles et ce afin que ne soient ajoutés dans le système que des événements de vol qui sont pertinents quant à la sécurité des futurs vols ou qui sont relatifs à l'évolution d'une procédure de vol d'une compagnie aérienne.This subassembly presentation allows an expert to decide the relevance of the flight events related to these subsets so that only flight events that are relevant to the safety of future flights are added to the system. or relating to the evolution of an airline's flight procedure.

Selon un mode de réalisation, au moins une nouvelle donnée de vol qui est ajoutée au premier ensemble est issue du deuxième ensemble qui maximise la probabilité d'appariement avec un sous-ensemble.According to one embodiment, at least one new flight data item that is added to the first set comes from the second set which maximizes the probability of matching with a subset.

Ce mode est avantageux car il optimise les chances que l'expert puisse se prononcer sur la pertinence d'un sous-ensemble dès le prochain enregistrement du nouvel ensemble de données de vol ainsi modifié.This mode is advantageous because it optimizes the chances that the expert can decide on the relevance of a subset from the next record of the new set of flight data thus modified.

Selon un mode de réalisation, les probabilités d'appariement sont enregistrées et mises à jour lors de chaque itération du procédé, et les deuxièmes ensembles, à partir desquels est obtenue ladite au moins une nouvelle donnée de vol pour la mise à jour du premier ensemble, sont sélectionnés à partir de la variation dans le temps de leurs probabilités d'appariement.According to one embodiment, the pairing probabilities are recorded and updated during each iteration of the method, and the second sets, from which is obtained said at least one new flight data for updating the first set. , are selected from the variation in time of their probabilities of pairing.

Ainsi, l'analyse des valeurs des données de vol du premier ensemble permet d'identifier la variation des ensembles de données de vol enregistrés au cours de plusieurs vols successifs et ce pour prendre en compte les évolutions des conditions de vol mais également les éventuelles modifications des procédures de vol et/ou de la réglementation en matière de sécurité aérienne qui sont introduites par un expert.Thus, the analysis of the values of the flight data of the first set makes it possible to identify the variation of the sets of flight data recorded during several successive flights and this to take into account the evolutions of the flight conditions but also the possible modifications. flight procedures and / or aviation safety regulations that are introduced by an expert.

Selon une variante, la détection d'événement de vol est également mise à jour lorsque le premier ensemble est mis à jour pour que cette détection puisse détecter un événement de vol relatif audit sous-ensemble.According to one variant, the flight event detection is also updated when the first set is updated so that this detection can detect a flight event relating to said subset.

Cette variante est avantageuse car elle permet que des évènements de vol définis à partir de sous-ensembles soient détectés dans le futur et ce même si ces évènements ne pouvaient l'être jusque-là.This variant is advantageous because it allows flight events defined from subsets to be detected in the future, even if these events could not be hitherto.

Selon une variante de cette variante, des données de vol simulées sont utilisées pour valider les modifications de la détection d'événement ainsi modifiée.According to a variant of this variant, simulated flight data are used to validate the modifications of the event detection thus modified.

Ces données de vol permettent de valider le fonctionnement du système une fois la détection d'événements mise à jour, c'est-à-dire, entre autres, de valider que les évènements jusque là détectés le soient encore, que des faux résultats ne se produisent pas par rapport aux valeurs nominales, ou que les valeurs aux limites soient atteintes, etc.These flight data make it possible to validate the operation of the system once the detection of events has been updated, that is to say, among other things, to validate that the events previously detected are still so, that false results do not occur. do not occur in relation to the nominal values, or that the limit values are reached, etc.

La présente invention concerne également un système d'analyse qui comporte des moyens pour mettre en oeuvre l'un des procédés ci-dessus.The present invention also relates to an analysis system which comprises means for implementing one of the above methods.

Les caractéristiques de l'invention mentionnées ci-dessus, ainsi que d'autres, apparaîtront plus clairement à la lecture de la description suivante d'un exemple de réalisation, ladite description étant faite en relation avec les dessins joints, parmi lesquels:

  • La Fig. 1 représente schématiquement un système d'analyse d'un ensemble de données de vol dont les valeurs ont été enregistrées au cours d'un vol d'un avion, et
  • La Fig. 2 représente schématiquement un système d'analyse d'un ensemble de données de vol {p(i)} iI dont les valeurs ont été enregistrées au cours d'un vol d'un avion selon la présente invention.
The characteristics of the invention mentioned above, as well as others, will appear more clearly on reading the following description of an exemplary embodiment, said description being given in relation to the attached drawings, among which:
  • The Fig. 1 schematically represents a system for analyzing a set of flight data whose values have been recorded during a flight of an airplane, and
  • The Fig. 2 schematically represents a system for analyzing a set of flight data { p ( i )} iI whose values have been recorded during a flight of an aircraft according to the present invention.

Les références de la Fig. 2 qui sont identiques à celles de la Fig. 1 représentent les mêmes éléments.The references of the Fig. 2 which are identical to those of the Fig. 1 represent the same elements.

Le système d'analyse de la Fig. 2 comporte une unité de traitement T qui regroupe des moyens pour détecter un événement de vol (EJ,k) lorsque les valeurs des données de vol de l'ensemble {p(i)} iI et les valeurs {vk (j)} jJ des données de vol d'un ensemble de données de vol {p(j)} jJ , qui ont été enregistrées au cours d'un précédent vol, sont des valeurs relatives aux mêmes données de vol et, si les mêmes valeurs vk (m) mJ des données de vol de l'ensemble {p(i)} iI et de l'ensemble {p(j)} jJ dépassent leurs valeurs nominales respectives.The analysis system of the Fig. 2 comprises a processing unit T which groups means for detecting a flight event (E J, k ) when the values of the flight data of the set { p ( i )} iI and the values { v k ( j }} jJ flight data of a set of flight data { p ( j )} jJ , which have been recorded during a previous flight, are values relating to the same flight data and, if the same values v k ( m ) mJ flight data of the set { p ( i )} iI and the set { p ( j )} jJ exceed their respective nominal values.

En pratique, la base de données BDD comporte plusieurs ensembles {p(j)} jJ .In practice, the database BDD has several sets { p ( j )} jJ.

L'unité de traitement T comporte également des moyens pour définir au moins un sous-ensemble de données de vol {p(o)} oO qui comporte au moins une des données de vol de l'ensemble {p(i)} iI et/ou au moins une donnée de vol d'un ensemble {p(j)} jJ sous la condition qu'au moins une de ses données dépasse sa valeur nominale, par corrélation de la valeur {v(i)} iI d'au moins une donnée de vol de l'ensemble {p(i)} iI avec la valeur {vk (j)} jJ d'au moins une des données de vol de l'ensemble {p(j)} j J. The processing unit T also comprises means for defining at least one subset of flight data { p ( o )} oO which comprises at least one of the flight data of the set { p ( i )} iI and / or at least one flight data of a set { p ( j )} jJ under the condition that at least one of its data exceeds its nominal value, by correlation of the value { v ( i )} iI of at least one flight data of the set { p ( i )} iI with the value { v k ( j )} jJ of at least one of the flight data of the set { p ( j )} j J.

L'unité de traitement T comporte aussi des moyens pour déterminer et associer à chaque sous-ensemble {p(o)} oO une probabilité d'appariement Pr(po |pj ) entre au moins un ensemble {p(j)} jJ et ce sous-ensemble {p(o)} oO , et des moyens pour mettre à jour l'ensemble {p(i)} iI par adjonction d'au moins une nouvelle donnée de vol {p(n)} nN (ND) d'au moins un ensemble {p(j)} jJ et/ou par suppression d'au moins une de ses données de vol {p(i)} iI et ce, selon les valeurs de probabilité d'appariement Pr(pj |po ).The processing unit T also comprises means for determining and associating with each subset { p ( o )} oO a probability of matching Pr ( p o | p j ) between at least one set { p ( j )} jJ and this subset { p ( o )} oO , and means for updating the set { p ( i )} iI by adding at least one new flight data { p ( n )} nN ( ND ) of at least one set { p ( j )} jJ and / or by deleting at least one of its flight data { p ( i )} iI and this, according to the probability values of matching Pr ( p j | p o ).

Les moyens de l'unité de traitement T sont mis en oeuvre, selon un mode de réalisation, sous forme de programmes d'ordinateurs.The means of the processing unit T are implemented, according to one embodiment, in the form of computer programs.

Le procédé d'analyse, mis en oeuvre par une telle unité de traitement T, permet d'analyser les valeurs de l'ensemble de données de vol {p(i)} iI qui n'est pas obligatoirement connu au préalable de la base de données BDD. Ainsi, il permet de minimiser la tâche d'un expert pour mettre en relation de nouveaux évènements de vol issus de cet ensemble de données de vol à analyser avec les évènements de vol EJ,k préalablement enregistrés dans la base de données BDD.The analysis method, implemented by such a processing unit T, makes it possible to analyze the values of the set of flight data { p ( i )} iI which is not necessarily known in advance from the database BDD. Thus, it makes it possible to minimize the task of an expert to relate new flight events from this set of flight data to be analyzed with the flight events E J, k previously recorded in the database BDD.

Ce procédé est itératif et met en oeuvre une méthode qui peut s'apparenter à une analyse qui est multidimensionnelle et paramétrée par un apprentissage non supervisé.This process is iterative and implements a method that can be likened to an analysis that is multidimensional and parameterized by unsupervised learning.

Tout d'abord, au moins un sous-ensemble de données de vol, comportant au moins une des données de vol de l'ensemble {p(i)} iI et/ou au moins une donnée de vol d'un ensemble {p(j)} iI sous la condition qu'au moins une de ses données dépasse sa valeur nominale, est défini par corrélation de la valeur {v(i)} iI d'au moins une donnée de vol de l'ensemble {p(i)} iI avec la valeur {vk (j)} jJ d'au moins une des données de vol d'un ensemble {p(j)} jJ .First, at least one subset of flight data, comprising at least one of the flight data of the set { p ( i )} iI and / or at least one flight data of a set { p ( j )} iI provided that at least one of its data exceeds its nominal value, is defined by correlation of the value { v ( i )} iI of at least one flight data of the set { p ( i )} iI with the value { v k ( j )} jJ of at least one of the flight data of a set { p ( j )} jJ.

Les ensembles I et J sont des ensembles quelconques de l'ensemble D de toutes les données de vol et aucune hypothèse de relation entre eux n'existe. Ainsi, l'ensemble I et J peuvent avoir une intersection vide ou non vide, I (respectivement J) peut être inclus dans J (respectivement I).The sets I and J are arbitrary sets of the set D of all the flight data and no hypothesis of relationship between them exists. Thus, the set I and J can have an empty or non-empty intersection, I (respectively J) can be included in J (respectively I).

La définition de la corrélation entre valeurs des données de vol de l'ensemble {p(i)} iI et valeurs des données de vol de l'ensemble {p(i)} jJ est à la portée de l'homme du métier. Par exemple, un jeu de règles peut être préprogrammé pour que certaines données de vol forment systématiquement un sous-ensemble dès quelles sont présentes dans les deux ensembles et d'autres peuvent être écartées dès qu'elles se présentent soit dans un soit dans l'autre ensemble. On peut également établir des règles pour quantifier la corrélation entre les valeurs et former des sous-ensembles uniquement avec les données de vol qui ont des valeurs de corrélation élevées.The definition of the correlation between values of the flight data of the set { p ( i )} iI and values of the flight data of the set { p ( i )} jJ is within the range of the skilled person. For example, a set of rules can be preprogrammed so that some flight data systematically form a subset as soon as they are present in both sets, and others can be discarded as soon as they occur in either one or the other. other set. Rules can also be established to quantify the correlation between values and form subsets only with flight data that have high correlation values.

Une fois que un voire plusieurs sous-ensembles ont ainsi été formés, un événement de vol EJ,k est alors susceptible d'être détecté à partir des valeurs des données de vol {v(o)} oO d'un sous-ensemble {p(o)} oO et les valeurs {vk (j)} jJ des données de vol de l'un des ensembles de données de vol {p(j)} jJ . On rappelle qu'un événement EJ,k est détecté si {v(o)} oO et {vk (j)} jJ d'un ensemble {p(j)} jJ sont des valeurs relatives aux mêmes données de vol (I=J notamment) et si {v(o) oO et {vk (j)} jJ dépassent leurs valeurs nominales respectives.Once one or more subsets have thus been formed, a flight event E J, k is then likely to be detected from the values of the flight data { v ( o )} oO of a sub-set. set { p ( o )} oO and the values { v k ( j )} jJ of the flight data of one of the sets of flight data { p ( j )} jJ. We recall that an event E J, k is detected if { v ( o )} oO and { v k ( j )} jJ of a set { p ( j )} jJ are relative values the same flight data (I = J in particular) and if { v ( o ) oO and { v k ( j )} jJ exceed their respective nominal values.

Ce cas correspond à la détection d'un événement de vol qui est déjà survenu au cours d'un vol antérieur.This case corresponds to the detection of a flight event that has already occurred during a previous flight.

Si, par contre, un événement de vol survenu préalablement n'est pas détecté à partir d'un sous-ensemble, alors une probabilité d'appariement Pr(po |pj ) entre au moins un ensemble {p(j)} jI et ce sous-ensemble est associée à ce sous-ensemble.If, on the other hand, a previous flight event is not detected from a subset, then a probability of matching Pr ( p o | p j ) between at least one set { p ( j )} jI and this subset is associated with this subset.

Selon un mode de réalisation, l'estimation de ces probabilités Pr(po |pj ) peut être vue comme un problème direct de classification de chaque sous-ensemble issu de l'ensemble {p(i)} iI . En considérant alors chaque ensemble {p(j)} jJ comme des classes d'événements qui regroupent les évènements de vol qui sont détectés par ces ensembles de données de vol, et que l'ensemble {p(i)} iI est constitué d'une pluralité de sous-ensembles indépendants les uns des autres, le problème direct pour classifier les sous-ensembles s'exprime par y = arg max o = 1 O P p o | p j

Figure imgb0001
avec y une estimation de la classification de tous les sous-ensembles po dans les classes pj.According to one embodiment, the estimation of these probabilities Pr ( p o | p j ) can be seen as a direct problem of classification of each subset from the set { p ( i )} iI. Considering each set { p ( j )} jJ as event classes that group together the flight events that are detected by these sets of flight data, and that the set { p ( i )} iI consists of a plurality of independent subsets, the direct problem for classifying the subsets is expressed by there = arg max Π o = 1 O P p o | p j
Figure imgb0001
with y an estimate of the classification of all subsets p o in classes pj.

Il est connu pour résoudre ce problème d'utiliser une méthode de classification dite de Cauchy/Naive/Bayes qui a été largement utilisée dans le domaine de la classification de primitives d'images ( Emotion Récognition using a Cauchy Naive Bayes Classifier, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(6): 636-642, 1996 ). It is known to solve this problem to use a so-called Cauchy / Naive / Bayes classification method which has been widely used in the field of classification of image primitives ( Emotion Recognition Using a Cauchy Naive Bayes Classifier, IEEE Transactions on Pattern Analysis and Machine Intelligence, 18 (6): 636-642, 1996 ).

Cette méthode est itérative et permet de converger vers une classification des sous-ensembles qui est stable. A ce moment-là, chacune des probabilités Pr(po |pj ) est fixée à une valeur qui est élevée lorsque le sous-ensemble et l'ensemble po ont un grand nombre de données de vol en commun.This method is iterative and allows to converge to a classification of subsets that is stable. At that time, each of the probabilities Pr ( p o | p j ) is set to a value which is high when the subset and the set p o have a large number of flight data in common.

L'ensemble {p(i)} iI à analyser est alors mis à jour par adjonction d'au moins une nouvelle donnée de vol {p(n)} nN d'au moins un ensemble {p(j)} jJ et/ou par suppression d'au moins une de ses données de vol {p(i)} iI , et ce selon les valeurs de probabilité d'appariement Pr(pj |po ).The set { p ( i )} iI to be analyzed is then updated by adding at least one new flight data { p ( n )} nN of at least one set { p ( j ) } jJ and / or by deleting at least one of its flight data { p ( i )} iI , and this according to the matching probability values Pr ( p j | p o ).

Ainsi, comme la probabilité d'appariement quantifie la ressemblance entre l'ensemble {p(j)} jJ et chaque sous-ensemble, les N données de vol {p(n)} nN de l'ensemble {p(j)} jJ choisies peuvent être ajoutées à l'ensemble {p(i)} iI ce qui permettra lors de prochains enregistrements de ces valeurs de données de vol {p(j)} jI∪J de fournir des indications qui permettent à un expert de prendre sa décision quant à la suite à donner au sous-ensemble.Thus, since the probability of matching quantifies the resemblance between the set { p ( j )} jJ and each subset, the N flight data { p ( n )} nN of the set { p ( j )} jJ chosen can be added to the set { p ( i )} iI which will allow in future recordings of these flight data values { p ( j )} jI∪J of provide guidance that allows an expert to make a decision as to what to do with the subassembly.

Dans le cas où plusieurs sous-ensembles seraient formés, à l'issue du calcul des probabilités, les N données de vol {p(n)} nN ajoutées sont fonction des résultats de l'ensemble des probabilités.In the case where several subsets would be formed, at the end of the calculation of the probabilities, the N flight data { p ( n )} nN added depend on the results of the set of probabilities.

L'ensemble de données de vol ainsi mis à jour {p(j)} jIJ est alors à nouveau enregistré au cours d'un nouveau vol, et le procédé est itéré tant qu'un expert ne peut prendre une décision sur ce sous-ensemble.The flight data set thus updated { p ( j )} jIJ is then recorded again during a new flight, and the process is iterated until an expert can make a decision. on this subset.

L'ajout de nouvelles données de vol est en quelque sorte une programmation dynamique des enregistreurs de vol qui maximise la probabilité de détection de nouveaux évènements mais également la probabilité de détection d'un évènement bien avant qu'un problème ou qu'une défaillance ne survienne pendant le vol d'un avion.The addition of new flight data is a kind of dynamic flight recorder programming that maximizes the probability of detecting new events but also the probability of detecting an event long before a problem or failure occurs. occurs during the flight of an airplane.

Selon une variante, chaque sous-ensemble est présenté à un expert via les moyens graphiques GUI. L'expert peut alors décider si ce sous-ensemble est un événement de vol prépondérant. Si c'est le cas, ce sous-ensemble est mémorisé dans la base de données BDD et enrichit alors le système de ce nouvel événement de vol. S'il décide qu'un sous-ensemble est une fausse alarme, ce sous-ensemble n'est plus considéré.According to a variant, each subset is presented to an expert via GUI graphical means. The expert can then decide if this subset is a preponderant flying event. If this is the case, this subset is stored in the database BDD and then enriches the system of this new flight event. If it decides that a subset is a false alarm, that subset is no longer considered.

Selon un mode de réalisation, au moins une nouvelle donnée de vol {p(n)} nN qui est ajoutée à l'ensemble {p(i)} iI est issue de l'ensemble {p(j)} jJ qui maximise la probabilité d'appariement avec un sous-ensemble.According to one embodiment, at least one new flight data { p ( n )} nN which is added to the set { p ( i )} iI is derived from the set { p ( j )} jJ that maximizes the probability of matching with a subset.

Selon un mode de réalisation, les probabilités d'appariement Pr(pj |po ) sont enregistrées et mises à jour lors de chaque itération du procédé, et les ensembles {p(j)} jJ , à partir desquels est obtenue ladite au moins une nouvelle donnée de vol {p(n)} nN pour la mise à jour de l'ensemble {p(i)} iI , sont sélectionnés à partir de la variation dans le temps de leurs probabilités d'appariement.According to one embodiment, the probabilities of pairing Pr ( p j | p o ) are recorded and updated at each iteration of the method, and the sets { p ( j )} jJ , from which is obtained said at least one new flight data { p ( n )} nN for updating the set { p ( i )} iI , are selected from the variation in time of their probabilities of pairing.

Selon une variante, la détection d'événement de vol est également mise à jour lorsque l'ensemble {p(i)} iI est mis à jour pour que les moyens de détection puissent détecter un événement de vol relatif à un sous-ensemble.Alternatively, the detection of theft event is also updated when the set {p (i)} iI is updated so that the detecting means can detect a relative flight event, a sub together.

Avantageusement, des données de vol simulées sont utilisées pour valider les modifications de la détection d'événement modifiée.Advantageously, simulated flight data are used to validate the modifications of the modified event detection.

Claims (7)

  1. Method for the analysis, by a processing device, of a first set of flight data that are related to the functioning of an aircraft when it is on flight ({p(i)} iI ) the values ({v(i)} iI ) of which were recorded during a flight, second sets of flight data that were recorded during previous flights being stored in a database and one nominal value was recorded beforehand for each flight data flights , the method being such that a flight event (EJ,k) is detected if there is at least one value {v(i) iI of one flight data of the first set of flight data exceed its nominal value and that this flight data corresponds to a value {vk (j) jJ of one flight data of one of said second sets of flight data {p(j)} jJ beforehand stored,
    characterised in that said method comprises the following steps:
    - a step of defining a subset of flight data ({p(o)} oO ) that comprises at least one of the flight data of the first set ({p(i)} iI ) and at least one flight data item of one of said second sets ({p(j)} jJ ), at least one of which exceeds its nominal value, at least one value of which exceeds its nominal value a correlation of this or these flight data ({v(i) iI ) of this or these flight data of said first set ({p(i)} iI ) with the value ({vk (j)} jJ ) of this or these flight data of said second set ({p(j)} jJ ) existing,
    - step of detecting an event of flight (EJ,k) when at least one value of one flight data of said subset of flight data ({p(o)} oO ) exceeds a nominal value and when this flight data corresponds to one value {vk (j)} jJ of one flight data of one of said second sets of flight data {p(j)} jJ beforehand stored, and
    - if no flight event is not detected at previous step, the following steps are performed,
    - a step of associating to said subset of flight data {p(o)} oO a probability value of pairing (Pr(po |pj )) between at least one of said second sets of flight data ({p(j)} jJ ) and said subset of flight data ({p(o)} oO )
    - a step of updating of said first set of flight data ({p(i)} iI ) according to the probability value of pairing associated to said subset of flight data, said step of of updating comprising:
    - a step of adding at least one new flight data item ({p(n)} nN ) of at least one of said second sets of flight data ({p(j)} jJ ) to the first set of flight data and/or
    - a step of deleting at least one of the flight data ({p(i)} iI ) of the first set of flight data ({p(i)} iI );
    - a step of presenting said subset via a graphical interface.
  2. Method according to claim 1, in which said subset is presented to an expert via a graphical interface to enable the expert to decide whether said subset is preponderant and must be stored by the processing device or whether it corresponds to a false alarm and must not be considered further.
  3. Method according to claim 1 or 2, in which at least one new flight data item ({p(n)} nN ) that is added to the first set of flight data ({p(i)} iI ) comes from the set among said second sets of flight data ({p(j)} jJ ) that maximises the pairing probability with said subset ({p(o)} oO ).
  4. Method according to one of claims 1 to 3, in which the pairing probability value or values (Pr(pj |po )) are recorded and updated at each iteration of the method, and the second sets of flight data ({p(j)} jJ ), from which said at least one new flight data item ({p(n)} nN ) is obtained for updating the first set of flight data ({p(i)} iI ), are selected using the variation over time of their pairing probabilities.
  5. Method according to one of claims 1 to 4, in which the flight event detection is updated when the first set of flight data is updated so that this detection can detect a flight event relating to said subset of flight data.
  6. Method according to claim 5, in which the simulated flight data are used to validate the updating of the event detection.
  7. System for the analysis, by a processing device, of a first set of flight data that are related to the functioning of an aircraft when it is on flight ({p(i)} iI ) the values ({v(i)} iI ) of which were recorded during a flight, said system comprising a database (BDD) in which second sets of flight data ({p(j)} jJ ) recorded during the previous flights are stored, means for memorizing a nominal value for each flight data, and means for detecting a flight event (EJ,k) if there is at least one value {v(i)} iI of one flight data of the first set of flight data exceed its nominal value and that this flight data corresponds to a value {vk (j)} jJ of one flight data of one of said second sets of flight data {p(j)} jJ beforehand stored
    characterised in that it also comprises:
    - means for defining a subset of flight data ({p(o)} oO ), so that it comprises at least one of the flight data of the first set of flight data ({p(i)} iI ) and at least one flight data item of one of said second sets of flight data ({p(j)} jJ ), at least one of which exceeds its nominal value, and so that there exists a correlation of the value ({v(i)} iI ) of this or these flight data of said first set ({p(i)} iI ) with the value ({vk (j)} jJ ) of this or these flight data of said second set ({p(j)} jJ ), and
    - means for determining, and associating with said subset of flight data ({p(o)} oO ), a probability value of pairing (Pr(po |pj )) between at least one of said second sets of flight data ({p(j)} jJ ) and this subset of flight data ({p(o)} oO ), and
    - means for updating the first set of flight data ({p(i)} iI ) according to the probability value of pairing associated to said subset of flight data, said updating consisting of adding at least one new flight data item ({p(n)} nN ) of at least one of said second sets of flight data ({p(j)} jJ ) to the first set of flight data and/or deleting at least one of the flight data ({p(i)} iI ) of the first set of flight data ({p(i)} iI );
    - means for presenting said subset via a graphical interface.
EP11735427.4A 2010-07-29 2011-07-19 Method and system for flight data anlysis Active EP2599039B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1056273A FR2963448A1 (en) 2010-07-29 2010-07-29 METHOD AND SYSTEM FOR ANALYSIS OF FLIGHT DATA RECORDED DURING THE FLIGHT OF AN AIRCRAFT.
PCT/EP2011/062381 WO2012013548A1 (en) 2010-07-29 2011-07-19 Method and system for analyzing flight data recorded during the flight of an airplane

Publications (2)

Publication Number Publication Date
EP2599039A1 EP2599039A1 (en) 2013-06-05
EP2599039B1 true EP2599039B1 (en) 2018-05-16

Family

ID=43127375

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11735427.4A Active EP2599039B1 (en) 2010-07-29 2011-07-19 Method and system for flight data anlysis

Country Status (6)

Country Link
US (1) US20130218823A1 (en)
EP (1) EP2599039B1 (en)
CN (1) CN103080954B (en)
FR (1) FR2963448A1 (en)
RU (1) RU2573735C2 (en)
WO (1) WO2012013548A1 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2494569B (en) * 2012-04-16 2014-03-05 Flight Data Services Ltd Flight data validation apparatus and method
GB2494487B (en) * 2012-04-16 2013-11-27 Flight Data Services Ltd Flight data validation apparatus and method
AU2015201517B2 (en) * 2012-10-19 2016-09-15 L3Harris Flight Data Services Limited Flight data monitoring method and system
AU2013205845B2 (en) * 2012-10-19 2015-04-30 L3Harris Flight Data Services Limited Flight data monitoring method and system
FR3009396B1 (en) * 2013-07-31 2017-03-17 Airbus Operations Sas METHOD AND COMPUTER PROGRAM FOR AIDING THE MAINTENANCE OF AIRCRAFT EQUIPMENT
US9996445B2 (en) * 2014-01-17 2018-06-12 International Business Machines Corporation Computer flight recorder with active error detection
IL251669B2 (en) 2014-10-10 2023-02-01 Idera Pharmaceuticals Inc Treatment of cancer using tlr9 agonist with checkpoint inhibitors
US10062291B1 (en) * 2014-10-21 2018-08-28 The Boeing Company Systems and methods for providing improved flight guidance
EP3155492A4 (en) * 2015-03-31 2017-07-19 SZ DJI Technology Co., Ltd. Systems and methods for analyzing flight behavior
EP3164773B1 (en) 2015-03-31 2022-03-23 SZ DJI Technology Co., Ltd. System and method for recording operation data
US9840328B2 (en) 2015-11-23 2017-12-12 Northrop Grumman Systems Corporation UAS platforms flying capabilities by capturing top human pilot skills and tactics
US10679513B2 (en) 2016-02-17 2020-06-09 Cae Inc. Simulation server capable of creating events of a lesson plan based on simulation data statistics
CA2920914C (en) 2016-02-17 2017-07-18 Cae Inc Portable computing device and method for transmitting instructor operating station (ios) filtered information
AU2017234163B2 (en) 2016-03-15 2023-01-19 Mersana Therapeutics, Inc. NaPi2b-targeted antibody-drug conjugates and methods of use thereof
FR3050351B1 (en) * 2016-04-15 2018-05-11 Thales AIRCRAFT AVIONICS INTEGRITY MONITORING METHOD, APPARATUS AND COMPUTER PROGRAM PRODUCT THEREOF
US11135307B2 (en) 2016-11-23 2021-10-05 Mersana Therapeutics, Inc. Peptide-containing linkers for antibody-drug conjugates
TW201834697A (en) 2017-02-28 2018-10-01 美商梅爾莎納醫療公司 Combination therapies of her2-targeted antibody-drug conjugates
US10657736B2 (en) * 2017-09-25 2020-05-19 The Boeing Company System and method for aircraft fault detection
WO2019104289A1 (en) 2017-11-27 2019-05-31 Mersana Therapeutics, Inc. Pyrrolobenzodiazepine antibody conjugates
CN108780461B (en) * 2017-12-20 2021-11-23 深圳市大疆创新科技有限公司 Flight-limited data updating method, related equipment and flight-limited data management platform
EP3727463A1 (en) 2017-12-21 2020-10-28 Mersana Therapeutics, Inc. Pyrrolobenzodiazepine antibody conjugates
EA202191175A1 (en) 2018-10-29 2021-09-08 Мерсана Терапьютикс, Инк. CYSTEINE-DESIGNED ANTIBODY-DRUG CONJUGATES CONTAINING PEPTIDE-CONTAINING LINKERS
US11341780B2 (en) * 2018-11-14 2022-05-24 The Boeing Company Maintenance of an aircraft via similarity detection and modeling
US11299288B2 (en) 2019-03-20 2022-04-12 City University Of Hong Kong Method of presenting flight data of an aircraft and a graphical user interface for use with the same
CN112429252B (en) * 2020-11-24 2022-05-03 中国人民解放军空军预警学院 Flight emergency prediction method based on PCA algorithm
DE102022121418A1 (en) * 2022-08-24 2024-02-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Device for determining and displaying the consequences of a fault condition in aircraft systems
CN115562332B (en) * 2022-09-01 2023-05-16 北京普利永华科技发展有限公司 Efficient processing method and system for airborne record data of unmanned aerial vehicle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351713B1 (en) * 1999-12-15 2002-02-26 Swantech, L.L.C. Distributed stress wave analysis system
US7539875B1 (en) * 2000-06-27 2009-05-26 Microsoft Corporation Secure repository with layers of tamper resistance and system and method for providing same
US20030225492A1 (en) * 2002-05-29 2003-12-04 Cope Gary G. Flight data transmission via satellite link and ground storage of data
RU39960U1 (en) * 2004-04-27 2004-08-20 Федеральное государственное унитарное предприятие Научно-исследовательский институт авиационного оборудования INFORMATION TEAM LEADER SYSTEM
US7305304B2 (en) * 2004-10-05 2007-12-04 The Board Of Regents, University Of Oklahoma Forecast decision system and method
RU2290681C1 (en) * 2005-04-18 2006-12-27 Открытое акционерное общество "Концерн"Гранит-Электрон" Complex of onboard equipment of systems for controlling unmanned aircraft
US20070002140A1 (en) * 2005-05-03 2007-01-04 Greg Benson Trusted monitoring system and method
WO2007115140A2 (en) * 2006-03-31 2007-10-11 Alaka'i Technologies Aircraft-engine trend monitoring methods and systems
US7756678B2 (en) * 2008-05-29 2010-07-13 General Electric Company System and method for advanced condition monitoring of an asset system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2599039A1 (en) 2013-06-05
CN103080954B (en) 2017-08-04
RU2013104328A (en) 2014-09-10
RU2573735C2 (en) 2016-01-27
CN103080954A (en) 2013-05-01
FR2963448A1 (en) 2012-02-03
WO2012013548A1 (en) 2012-02-02
US20130218823A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
EP2599039B1 (en) Method and system for flight data anlysis
US10802942B2 (en) Methods and apparatus to detect anomalies of a monitored system
EP3059682B1 (en) Data-processing and modelling system for analysing the energy consumption of a site
EP2966526B1 (en) A method and a system for merging health indicators of a device
FR3052273A1 (en) PREDICTION OF TROUBLES IN AN AIRCRAFT
FR2938676A1 (en) METHOD FOR RECOGNIZING SEQUENTIAL PATTERNS FOR METHOD OF PROCESSING FAULT MESSAGES
EP3350660B1 (en) Decision aid system and method for the maintenance of a machine with learning of a decision model supervised by expert opinion
FR2949220A1 (en) METHOD AND SYSTEM FOR DETECTING THE INGESTION OF AN OBJECT BY AN AIRCRAFT TURBOJUSTER DURING A MISSION
FR2970358A1 (en) PROGNOSTIC OF DURATION BEFORE MAINTENANCE BY FUSION BETWEEN MODELING AND SIMULATION, FOR ELECTRONIC EQUIPMENTS ON BOARD IN AN AIRCRAFT
FR3037679A1 (en)
FR3009396A1 (en) METHOD AND COMPUTER PROGRAM FOR AIDING THE MAINTENANCE OF AIRCRAFT EQUIPMENT
FR2987483A1 (en) METHOD OF ANALYSIS OF FLIGHT DATA
FR3027417A1 (en) METHOD AND SYSTEM FOR GENERATING ALERT REPORTS IN AN AIRCRAFT
FR3028331A1 (en) METHOD FOR MONITORING AN AIRCRAFT ENGINE IN OPERATION IN A GIVEN ENVIRONMENT
EP4027269A1 (en) Method for construction and for driving a detector of the presence of anomalies in a time signal, associated devices and method
WO2024218118A1 (en) Method and electronic device for assisting in the piloting of an aircraft via the monitoring of at least one operational criterion, and associated computer program and aircraft
FR2905778A1 (en) METHOD FOR VERIFYING RELEVANCE OF A MASS VALUE OF AN AIRCRAFT
FR3026882A1 (en) METHOD FOR DETERMINING AT LEAST ONE FAILURE OF AN AIRCRAFT EQUIPMENT AND CORRESPONDING SYSTEM
WO2021122397A1 (en) Method and device for supervising a traffic control system
EP4165519A1 (en) Method and system for merging information
FR3155486A1 (en) METHOD FOR MONITORING THE TEMPERATURE OF BRAKES ON AN AIRCRAFT LANDING GEAR.
WO2018229391A1 (en) Platform for controlling and tracking inspections of surfaces of objects by inspection robots and inspection system implementing such a platform
FR3076634A1 (en) METHOD FOR ANALYZING PLATFORM FAILURE SYMPTOMS, AND SYSTEM THEREOF
EP4550295A1 (en) Method for controlling observation by a system for tracking a space and associated device
EP4322061A1 (en) Electronic device and method for processing data comprising at least one self-adaptive artificial intelligence model with local learning, associated electronic system and computer program

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAGEM DEFENSE SECURITE

17Q First examination report despatched

Effective date: 20140630

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAFRAN ELECTRONICS & DEFENSE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171206

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FERRAND, FABRICE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011048378

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1000224

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180615

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180516

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180816

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180816

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180817

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1000224

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011048378

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180719

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20190219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180719

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110719

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180516

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180916

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20250722

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20250731

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20250724

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20250722

Year of fee payment: 15