[go: up one dir, main page]

DE3034275C2 - - Google Patents

Info

Publication number
DE3034275C2
DE3034275C2 DE3034275A DE3034275A DE3034275C2 DE 3034275 C2 DE3034275 C2 DE 3034275C2 DE 3034275 A DE3034275 A DE 3034275A DE 3034275 A DE3034275 A DE 3034275A DE 3034275 C2 DE3034275 C2 DE 3034275C2
Authority
DE
Germany
Prior art keywords
vector
stator
component
emf
parameter value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE3034275A
Other languages
English (en)
Other versions
DE3034275A1 (de
Inventor
Felix Dipl.-Ing. Dr. Blaschke
Leonhard Dipl.-Ing. 8520 Erlangen De Reng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to DE19803034275 priority Critical patent/DE3034275A1/de
Priority to US06/299,780 priority patent/US4423367A/en
Priority to JP14373281A priority patent/JPS5779469A/ja
Publication of DE3034275A1 publication Critical patent/DE3034275A1/de
Application granted granted Critical
Publication of DE3034275C2 publication Critical patent/DE3034275C2/de
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • H02P21/10Direct field-oriented control; Rotor flux feed-back control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Description

Die Erfindung betrifft eine Vorrichtung zum Ermitteln wenigstens eines Parameterwertes für den Ständerwiderstand und/oder die Hauptinduktivität und/oder die Streuinduktivität einer Asynchronmaschine gemäß Oberbegriff des Anspruchs 1.
Für die Steuerung von Asynchronmaschinen ist es vorteilhaft, getrennte Sollwerte für den Fluß und das Drehmoment der Maschine vorzugeben. Man erhält dann einerseits ein übersichtliches, leicht regelbares dynamisches Verhalten, andererseits eine gute Ausnutzung der Maschine. Zur Einstellung des gewünschten Flusses muß der magnetisierende Anteil des Ständerstromes, zur Regelung des Drehmomentes bzw. der Drehzahl der Wirkstromanteil des Ständerstromes eingestellt werden können, wobei diese beiden Anteile dann zum gewünschten Gesamt-Ständerstrom zusammengesetzt werden.
Für die Beschreibung der Asynchronmaschine ist es vorteilhaft, die in den Ständerwicklungen fließenden Ströme zu einem Gesamt-Ständerstromvektor i mit dem Betrag i, die Ständerspannungen zu einem Ständerspannungsvektor u mit dem Betrag u zusammenzusetzen. Das magnetische Feld der Maschine kann durch einen Flußvektor, die induzierte EMK durch einen EMK-Vektor beschrieben werden. In dieser Erörterung wird zur Beschreibung von Fluß und EMK der Maschine nur der Flußvektor ψ (Betrag ψ) in der Läuferwicklung und der EMK-Vektor e (Betrag e) in der Läuferwicklung betrachtet. Zum Aufbau des magnetischen Feldes trägt nur der zum Flußvektor ψ parallele Anteil i ϕ 1 des Ständerstromvektors i als Magnetisierungsstrom i μ bei, während der Wirkstrom durch die zum Flußvektor senkrechte Komponente i ϕ 2 des Ständerstromes gegeben ist. Ständerstromvektor i und Ständerspannungsvektor u können an den Maschinenklemmen abgegriffen werden und durch die Komponenten in einem ständerbezogenen (d. h. ortsfesten) Koordinatensystem, z. B. einem mit den Indizes α₁, α₂ bezeichneten kartesischen ortsfesten Koordinatensystem, beschrieben werden. Bezüglich der α ₁-Achse weist der Ständerstrom den Winkel ε auf, dessen zeitliche Ableitung durch die Ständerfrequenz ω gegeben ist. Für die Beschreibung der Asynchronmaschine ist es jedoch vorteilhaft, von einem feldorientierten Koordinatensystem auszugehen, das mit dem Flußvektor ψ umläuft und durch eine zum Flußvektor parallele Achse (Index ψ₁) und eine dazu senkrechte Achse ψ₂ gegeben ist. Das feldorientierte Koordinatensystem ist demnach gegenüber dem Ständerbezugssystem um den Wnkel ϕ gedreht, der vom Flußvektor ψ und der α₁-Achse eingeschlossen wird. Für den oben erwähnten feldorientierten Betrieb einer umrichtergespeisten Asynchronmaschine werden demnach die Sollwerte des Ständerstromes im feldorientierten Bezugssystem vorgegeben, woraus die entsprechenden Sollwerte für den im ortsfesten Ständerbezugssystem vorzugebenden Ständerstromvektor ermittelt werden müssen. Hierzu ist eine Information über die gegenseitige Lage zwischen feldorientierten Bezugssystem und Ständerbezugssystem (d. h. den Winkel ϕ ) erforderlich.
Der EMK-Vektor kann e aus den an der Maschine abgegriffenen ständerbezogenen Koordinaten des Ständerstromvektors i und des Ständerspannungsvektors u berechnet werden gemäß der Beziehung
Durch Integration dieses EMK-Vektors kann der Flußvektor
ψ =∫ e dt (1a)
gebildet werden. Da für die feldorientierte Regelung häufig nur die Information über die Richtung des Flußvektors benötigt wird, und im stationären Fall Flußvektor und EMK-Vektor senkrecht aufeinander stehen, kann anstelle der Integration auch eine Drehung des EMK-Vektors um 90° vorgenommen werden oder die Richtung des EMK-Vektors selbst herangezogen werden. Für die Regelung, wie sie z. B. in der DE-PS 19 41 312 beschrieben ist, ist demnach ein EMK-Bildner erforderlich, dem der Ständerspannungsvektor und der Ständerstromvektor sowie die Parameterwerte für den Ständerwiderstand r s und die Streuinduktivität x σ eingegeben ist. Die Güte dieser Regelung ist von der genauen Einstellung der Parameter r s , x σ abhängig.
Bei einer anderen Methode zur Flußbestimmung geht man nicht von der induzierten EMK aus, sondern von den zur Entstehung des Feldes in der Drehfeldmaschine führenden Vorgängen. Im Zusammenhang mit dieser Erfindung sind die folgenden Beziehungen wichtig:
Mit den in Fig. 1 dargestellten Beziehungen ergibt sich die zum Flußvektor ψ parallele Komponente des Ständerstromvektors i zu
i ϕ 1=i cos (ε -ϕ ).
Diese Komponente ist im stationären Fall geleich dem Magnetisierungsstrom i µ; bei dynamischen Zuständen baut sich der Magnetisierungsstrom in der Maschine mit einem Zeitverhalten auf, das unter Benutzung des Laplace-Operators S und der Zeitkonstante T geschrieben werden kann:
Das von diesem Magnetisierungsstrom im Läufer erzeugte Feld wird durch Flußvektor
ψ = i µ · x h (3)
beschrieben, der im Läufer eine EMK induziert, die durch
gegeben ist. Stationär kann die Differentiation durch eine Drehung um 90° und eine Multiplikation mit der Winkelgeschwindigkeit ω des Ständerstromvektors dargestellt werden, so daß für die Vektorbeträge gilt:
e =i µ · x h · ω
Da der Magnetisierungsstrom i µ nur im stationären Fall gleich der feldparallelen Ständerstromkomponente i ϕ 1 ist, wird diese zum Flußvektor ψ parallele Ständerstromkomponente als "Magnetisierungsstromkomponente" bezeichnet. Dabei geht der Parameterwert für die Hauptinduktivität x h der Maschine entscheidend ein.
Ein diesen Gleichungen entsprechendes "Spannungsmodell" ist in der dem Oberbegriff des Anspruchs 1 zugrundeliegenden "Regelungstechnik" 27 (1979), Seite 379-386 verwendet, um daraus ein synchron umlaufendes "feldorientiertes Koordinatensystem" zu berechnen. Durch Koordinatentransformation werden dabei die Stromistwerte umgerechnet in eine feldsenkrechte Komponente, die zur Aufrechterhaltung der Drehzahl auf einen von einem Drehzahlregler vorgegebenen Wirkstromsollwert geregelt wird, und eine feldparallele Komponente, die zur Aufrechterhaltung eines gewünschten Flusses auf einen Blindstromsollwert geregelt wird. Dadurch entstehen feldorientierte Stellgrößen, die zur Steuerung der umrichtergespeisten Synchronmaschine ins ständerorientierte Koordinatensystem rückgerechnet werden.
Die in diese Berechnung eingehenden Parameter ändern sich jedoch betriebsabhängig (z. B. r s infolge thermischer Erwärmung und x h infolge Sättigung beim Betrieb der Asynchronmaschine). Um trotzdem für eine genaue feldorientierte Regelung die zu den einzelnen Betriebszuständen gehörenden Parameterwerte zu ermitteln, ist vorgeschlagen, mittels eines sogenannten "Strommodells", das aus den Ständerströmen und der Drehzahl die zur Ausbildung des Flusses führenden Vorgänge nachbildet, den Einfluß der veränderlichen Parameter zu eliminieren. Für das dort verwendete Strommodell ist allerdings die Läuferzeitkonstante erforderlich, deren Temperaturabhängigkeit unter Umständen die Parameterkorrektur im Spannungsmodell ungünstig beeinflussen kann. Außerdem fehlen Angaben, wie diese Elimination konkret schaltungsmäßig verwirklicht werden kann.
In "IEEE Transactions on Industry Applications" Vol. 1A-16, No. 2, März/April 1980, Seite 173-178, ist eine feldorientierte Regelung vorgestellt, bei der aus Sollwerten für Fluß und Wirkstrom sowie Parametern für Hauptinduktivität und Läuferzeitkonstante eine Modell-Schlupffrequenz und daraus ein Modell-Feldwinkel errechnet wird, der für die Umrechnung der feldorientierten Stromsollwerte ins Ständerbezugssystem verwendet wird. Zur Korrektur der Modell-Läuferzeitkonstanten wird vorgeschlagen, aus Strom und Spannung einen EMK-Vektor zu berechnen. Dieser Vektor wird nach Drehung um 90° mit dem Vektor des Iststromes skalar multipliziert, um eine Fehlerfunktion zu erhalten, deren Ausregelung eine Korrektur für die Läuferzeitkonstante liefert. Aber auch hier gilt, daß in die Fehlerfunktion die Parameter störend eingehen, die der EMK-Bildung zugrunde liegen. Da außerdem der Feldvektor aus Sollwerten sozusagen in einem "Sollstrom-Modell" berechnet wird, wird nicht das Modell an die Maschine angeglichen, sondern nur an die dem erwähnten "Spannungsmodell" entsprechende EMK-Bildung. Diese ihrerseits erfordert aber eine Parameteridentifikation.
In der nicht vorveröffentlichten DE 30 34 252 A1 sind Vorschläge gemacht worden, zur Bestimmung eines Parameterwertes die beiden Gleichungen (1) und (3) heranzuziehen, indem der Vektor e oder der dazugehörige Flußvektor ψ auf zwei Wegen, die in unterschiedlicher Weise von den eingestellten Parameterwerten abhängen, berechnet werden. Betrachtet man eine Bestimmungsgröße der auf unterschiedlichen Wegen berechneten Vektoren, z. B. den Betrag oder eine zum Ständerstrom parallele oder senkrechte Komponente, so ergibt sich eine Differenz dieser Bestimmungsgrößen, die von der Genauigkeit der verwendeten Parameterwerte abhängt. Führt man daher diese Differenz der Bestimmungs­ größen einem integrierenden Regler zu und verstellt ent­ sprechend dem Reglerausgangssignal den Parameterwert für den zu ermittelenden Maschinenparameter, so kann man durch Abgleich der beiden auf unterschiedlichen Wegen berechneten Vektoren einen Abgleich des verwendeten Parameterwertes auf den zu ermittelnden Maschinen­ parameter erreichen.
Bei diesen nichtvorveröffentlichten Vorschlägen wird der Vektor e bzw. ψ einmal nach Gleichung (1) über einen EMK-Bildner ermittelt. Der andere Weg zur Berechnung von ψ bzw. e besteht nach einem Vorschlag darin, in einer Rechenmodellschaltung, die von den tatsächlichen Maschinen­ strömen und der Läuferstellung sowie einem veränderbaren Parameterwert für den Läuferwiderstand ausgehend einen Modell-Flußvektor bzw. Modell-EMK-Vektor berechnet. Da der Rechenmodellschaltung der tatsächliche Ständer­ stromvektor eingeprägt ist, gelten gleiche Kreisdiagramme für ψ bzw. e , wobei jedoch die Schlupfskalierung unter­ schiedlich ist, wenn der Parameterwert des Läuferwider­ standes vom Maschinen-Läuferwiderstand abweicht. Obwohl die Rechenmodellschaltung mit der tatsächlichen Läufer­ stellung arbeitet, weicht der Modell-Vektor bei ungenauer Einstellung des Parameterwertes für den Läuferwiderstand von dem im EMK-Bildner ermittelten Vektor ab. Diese Ab­ weichung kann nun dazu benutzt werden, um den im Modell verwendeten Parameterwert dem Maschinenparameter nachzu­ führen. Bei einem anderen Vorschlag wird der Modellvektor in einer Rechenmodellschaltung aus dem Spannungsvektor und dem Läuferdrehwinkel berechnet. In diesem Fall ist dem Rechenmodell der tatsächliche Spannungsvektor ein­ geprägt, wobei auch hier deckungsgleiche Kreisdiagramme für e bzw. c gelten, die nur in der Schlupfskalierung entsprechend der Fehleinstellung des Läuferwiderstand- Parameterwertes abweichen. Zur Ermittlung des Ständer­ widerstandes kann in beiden Fällen ausgenutzt werden, daß die zum Ständerstromvektor parallele Komponente (Wirkkomponente) des EMK-Vektors sich von der ent­ sprechenden Komponente eines Vektors, der aus dem Ständer­ spannungsvektor lediglich durch Abzug der induktiven Streuspannung gebidet ist, nur um den ohmschen Ständer­ spannungsabfall unterscheidet. Wird daher zum Nachführen des Läuferwiderstandsparameters als bestimmende Größe für den EMK-Vektor und den Modell-EMK-Vektor die zum Ständerstromvektor senkrechte Komponente verwendet, so unterscheiden sich bei vollzogenem Abgleich die Blind­ komponenten des im EMK-Bildner ermittelten Vektors und des Modell-Vektors nur um das Produkt aus Ständerstrom und Ständerwiderstand.
Bei beiden Vorschlägen ist der Läuferwinkel als Istwert erforderlich, was meßtechnisch häufig schwer oder gar nicht realisierbar ist.
Der Erfindung liegt die Aufgabe zugrunde, eine andere Vorrichtung zur Ermittlung der Parameterwerte für den Ständerwiderstand und/oder die Streuinduktivität und/ oder die Hauptinduktivität einer Asynchronmaschine anzu­ geben, die ohne eine Information über die Läuferstellung auskommt.
Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.
Das hierbei zugrundeliegende Prinzip gestattet es, im wesentlichen unter Verwendung der gleichen Bauelemente wahlweise einen dieser Parameterwerte zu bestimmen. Ins­ besondere kann durch geringfügige Erweiterung erreicht werden, daß mit der gleichen Vorrichtung von der Ermittlung eines Parameterwertes auf die Ermittlung eines an­ deren Parameterwertes übergegangen werden kann. Dies ist insbesondere dann vorteilhaft, wenn alle drei Maschinen­ parameter nicht bekannt sind. Da für eine exakte Bestimmung eines Parameterwertes die beiden anderen Maschinenparameter bekannt sein müssen, erhält man ein konvergierendes Verfahren, wenn man zunächst von Schätzwerten für alle drei Parameterwerte ausgeht und nacheinander zur Ermittlung eines anderen Parameterwertes übergeht, wobei jeweils die zuletzt ermittelten Werte der beiden anderen Parameter als verbesserte Schätzwerte verwendet werden.
Kurz gefaßt besteht die Vorrichtung gemäß der Erfindung aus
  • a) einem EMK-Bildner zur Bildung eines zugeordneten, ersten (EMK- oder Fluß-)Vektors,
  • b) einer Recheneinrichtung zur Bildung einer beiden Modellen gemeinsam zugeordneten Magnetisierungsstromkomponente und einer Bestimmungsgröße für den ersten Vektor (Betrag oder eine Komponente)
  • c) einer Rechenmodellschaltung zur Berechnung eines zur zugeordneten Magnetisierungsstromkomponente gehörenden Flusses, und
  • d) einer Reglerstufe, die eine Bestimmungsgröße eines diesem Fluß zugeordneten zweiten Vektors errechnet und die Regelabweichung der Bestimmungsgrößen der beiden Vektoren bildet.
Der EMK-Bildner ermittelt aus den an den Maschineneingängen abgegriffenen Werten für die Komponenten i α 1, i a 2 des Ständerstromvektors i α und die Komponenten u α 1, u α 2 des Ständerspannungsvektors u α sowie eingestellten Parameterwerten r s′, x σ für den Ständerwiderstand r s und die Streuinduktivität x σ ("wahre" Maschinenparameter r s , x σ ) einen dieser Parametereinstellung zugeordneten ersten Vektor e′ (Komponenten e α 1′, e α 2′), bzw. ψ ′ (Komponenten ψ α 1′, ψ α 2′) für die EMK bzw. den entsprechenden Fluß.
Die Recheneinrichtung enthält mindestens einen Vektoranalysator und eine Transformationsschaltung, z. B. einen Vektordreher. Der Vektoranalysator berechnet aus dem ersten Vektor eine die Richtung dieses Vektors bestimmende Winkelgröße. Die Transformationsschaltung errechnet aus den abgegriffenen Komponenten i α 1, i α 2 des Ständerstromvektors und der Winkelgröße als der Parametereinstellung zugeordnete Magnetisierungsstromkomponente diejenige Ständerstromkomponente, die senkrecht ist zu dem dem EMK-Bildner (bzw. dessen Parametereinstellung) zugeordneten EMK-Vektor e′ oder - was wegen der Orthogonalität von e′ und ψ gleichbedeutend ist - parallel ist zu dem entsprechenden Fluß ψ′ . Ferner wird in der Recheneinrichtung eine weitere Bestimmungsgröße des ersten Vektors errechnet. Bezeichnet man mit ε und ϕ′ die Winkel zwischen der α₁-Achse und dem bekannten Ständerstromvektor i bzw. dem errechneten Flußvektor ψ′ , so ist die Lage des Flußvektors ψ′ , z. B. durch den Winkel ϕ′ oder den Winkel ϕ′-ε bestimmt; als Winkelgröße kann daher eine entsprechende Winkelfunktion im Vektoranalysator berechnet werden. Der Vektor ψ′ ist dann noch durch eine weitere Bestimmungsgröße bestimmt, z. B. den Vektorbetrag c′, der ebenfalls vom Vektoranalysator berechnet werden kann, oder durch eine der Größen
ψ j1′ = ψ′ cos (ϕ′ - e ) und ψ j 2′ = ψ′ sin (ϕ′ - ε ),
die die Komponenten des Vektors ψ′ in einem mit dem Ständerstromvektor umlaufenden Koordinatensystem (stromorientiertes System) darstellen und aus den Ausgangsgrößen des Vektoranalysators abgeleitet werden können. Genauso kann vorgegangen werden, wenn als zugeordneter erster Vektor anstelle des Flußvektors ψ′ der EMK-Vektor e′ verwendet wird.
Die zugeordnete Magnetisierungsstromkomponente kann dadurch ermittelt werden, daß in der Transformationsschaltung die ortsfesten Komponenten des Ständerstromvektors in die entsprechenden Komponenten in einem mit dem Vektor ψ ′ bzw. e umlaufenden Koordinatensystem (flußorientiertes Koordinatensystem) umgerechnet werden. Während die wahre Magnetisierungsstromkomponente durch die zum wahren Flußvektor ψ parallele Ständerstromkomponente gegeben ist, ist die hier berechnete Magnetisierungsstromkomponente i ϕ 1′ wegen der Orientierung auf den zur Parametereinstellung des EMK-Bildners gehörenden Flußvektor ψ ′ ebenfalls der Parametereinstellung des EMK-Bildners zugeordnet.
Die Rechenmodellschaltung errechnet aus der in der Recheneinrichtung berechneten Magnetisierungsstromkomponente i ϕ 1′ und einem eingestellten Parameterwert x h ′ für die Hauptfeldinduktivität der Maschine durch rechnerische Nachbildung der zur Entstehung des Feldes führenden Vorgänge einen dem eingestellten Hauptfeldinduktivitäts-Parameterwert x h ′ zugeordneten Fluß (Betrag ψ″ eines Flußvektors ψ ″). Im Gegensatz zu den bekannten Vorschlägen ist für die Rechenmodellschaltung die Eingabe der Läuferstellung nicht erforderlich, so daß z. B. ein Winkelschrittgeber für die Läuferstellungseingabe entfällt. Lediglich die Eingabe der Ständerstrom-Umlauffrequenz (Ständerfrequenz) ist an anderen Stellen der erfindungsgemäßen Vorrichtung vorgesehen, wenn eine praktisch mit der Ständerfrequenz umlaufende Größe differenziert oder integriert wird, z. B. um vom Fluß auf die EMK überzugehen oder umgekehrt. Im stationären Fall kann eine solche Differentiation oder Integration dann einfach durch Multiplikation oder Division mit der Ständerfrequenz vorgenommen werden.
Die Reglerstufe ermittelt erstens eine der Bestimmungsgröße des ersten Vektors entsprechende Bestimmungsgröße eines der Rechenmodellschaltung zugeordneten, zweiten Vektors, der aus dem in der Rechenmodellschaltung ermittelten Fluß ψ″ ableitbar ist. Als Bestimmungsgröße dieses zweiten Vektors kann insbesondere der Fluß ψ″ direkt verwendet werden, wenn als Bestimmungsgröße des ersten Vektors der Flußbetrag c′ verwendet wurde. Der zweite Vektor ψ ″ selbst braucht dann gar nicht berechnet zu werden. Ist als Bestimmungsgröße des ersten Vektors der Betrag e′ des EMK-Vektors verwendet, so kann als Bestimmungsgröße des zweiten Vektors im stationären Fall das Produkt aus Fluß ψ″ und Ständerfrequenz verwendet werden, das den Betrag eines zum Fluß ψ gehörenden EMK-Vektors e ″ angibt, ohne daß dieser zweite Vektor e″ selbst berechnet zu werden braucht. Ist aber als Bestimmungsgröße des ersten Vektors eine ständerstromorientierte Koordinate von ψ bzw. e ′ in der Recheneinrichtung berechnet, so wird als entsprechende Bestimmungsgröße des zweiten Vektors die gleiche ständerstromorientierte Komponente des Vektors ψ bzw. e ″ verwendet. Dabei kann ausgenutzt werden, daß zur der Rechenmodellschaltung eingegebenen Magnetisierungsstromkomponente ein Vektor ψ bzw. e ″ gehört, dessen Richtung durch die gleiche Winkelgröße wie der Vektor ψ bzw. e ′ gegeben ist. Die Differenz der beiden Bestimmungsgrößen wird in der Reglerstufe einem integrierenden Regler aufgeschaltet. Dessen Ausgangssignal ist einem Eingang zum Einstellen des ermittelten Parameters zugeführt, also einem Eingang für den Ständerwiederstand-Parameterwertes r s bzw. den Streuinduktivitäts-Parameterwert am EMK-Bildner oder den Hauptfeldinduktivitäts-Parameter x h an der Rechenmodellschaltung. Im abgeglichenen Zustand stellt das Ausgangssignal des Reglers den zu ermittelnden Parameterwert dar.
Die weitere Erläuterung der Erfindung geschieht anhand von 13 Figuren.
Fig. 1 zeigt ein Vektordiagramm zur Beschreibung einer Asynchronmaschine. In den Fig. 2 bis 4 sind die Vektordiagramme der Asynchronmaschine und der Rechenmodellschaltung jeweils für den Fall dargestellt, daß nur der Parameterwert für den Ständerwiderstand, die Streuinduktivität oder Die Hauptfeldinduktivität von dem entsprechenden Maschinenparameter abweicht. Fig. 5 gibt vorteilhafte Betriebszustands-Bereiche an, bei denen bei laufender Maschine der jeweilige Parameterwert ermittelt wird. In Fig. 6 ist eine Vorrichtung zur wahlweisen Bestimmung einer der drei Parameterwerte schematisch dargestellt, wobei als Bestimmungsgrößen der Betrag der EMK-Vektoren e ′ und e ″ verwendet wird. Fig. 7 betrifft verschiedene Möglichkeiten für eine Recheneinrichtung, wenn die Bestimmungsgrößen aus den Flußvektoren ψ , ψ gebildet werden. In Fig. 8 ist eine Recheneinrichtung und eine Rechenmodellschaltung für den Fall angegeben, daß als Bestimmungsgrößen wahlweise die Beträge der Flußvektoren ψ und ψ oder deren stromorientierten Komponenten verwendet sind. Fig. 9 entspricht Fig. 7, wenn die bestimmenden Größen aus den EMK-Vektoren e ′, e ″ gebildet werden. Fig. 10 zeigt eine Rechenstufe, Rechenmodellschaltung und eine Reglerschaltung für den Fall, daß als erster und zweiter Vektoren die EMK-Vektoren e ′, e ″ und als Bestimmungsgrößen wahlweise die Beträge e′, e″, die zum Ständerstromvektor parallele Komponente e j 1′, e j 1″ bzw. die dazu senkrechte Komponente e j 2′, e j 2″ dieser Vektoren verwendet werden. Fig. 11 stellt eine digitalisierte Einrichtung für die Reglerstufe dar.
Werden die Ständerströme und Ständerspannungen einer Asynchronmaschine zu einem Ständerstromvektor i und Ständerspannungsvektor u zusammengesetzt, so können diese Vektoren beschrieben werden durch ihren Betrag und den Winkel, den sie z. B. mit einer Ständerachse einschließen, die als Bezugsachse α₁ eines ständerorientierten (ortsfesten) Bezugssystem in Fig. 1 dargestellt ist. Bevorzugt werden aus den Meßwerten für Ständerstrom und Ständerspannung an den drei Ständerwicklungen einer dreiphasigen Asynchronmaschine mittels eines Koordinatenwandlers die Projektionen auf die zwei Achsen eines kartesischen ortsfesten Bezugssystems gebildet. Beschreibt also der umlaufende Vektor i des Ständerstromes den Winkel ε mit der α₁-Achse, so sind dessen ständerbezogene kartesische Komponenten durch
i α ₁=i · cos ε, i α ₂=i · sin ε
gegeben. Bei dem in Fig. 1 gezeigten stationären Zustand ist der Streuspannungsabfall i · x σ gegeben durch einen auf dem Vektor i senkrecht stehenden Vektor der Länge i · x σ · l, wobei ω = ε die Umlauffrequenz des Ständerstromes bedeutet. Der Ohmsche Spannungsabfall ist ein reiner Wirkstromabfall und somit entgegengesetzt zum Vektor i gerichtet und weist den Betrag i · r s auf.
Folglich ergibt sich nach Gleichung (1) die EMK des Läufers als ein Vektor e , der in Betrag und Länge gemäß Fig. 1 bestimmt ist. Für den Aufbau des Feldes ist der in ψ -Richtung weisende Magnetisierungsstrom i μ verantwortlich, der im stationären Fall gleich der zu ψ parallelen Ständerstromkomponente i ϕ 1 ist. Im stationären Zustand ist die Länge des in Richtung des Magnetisierungsstromes weisenden Flußvektors ψ proportional zu i ϕ 1, dessen Endpunkt auf einem Halbkreis K₁ über dem Ständerstromvektor i liegt und auf diesem Halbkreis je nach Belastung der Maschine wandert. Dies folgt daraus, daß der für das Drehmoment entscheidende Wirkstrom senkrecht zum Magnetisierungsstrom steht.
Für die weitere Betrachtung ist es vorteilhaft, den Ständerstrom in einem kartesischen Koordinatensystem, das gegenüber der Ständerachse um den Flußwinkel ϕ gedreht ist, durch die beiden Komponenten i ϕ 1 (die stationär in den Magnetisierungsstrom i m übergeht) und i ϕ 2 (Wirkstrom) zu beschreiben. Der EMK-Vektor e ist im betrachteten stationären Fall gegenüber dem Flußvektor ψ um 90° gedreht; wegen der Proportionalität zwischen e und ψ liegt daher der Endpunkt des Vektors e ebenfalls auf einem Halbkreis (K₂). Diese Konstruktion der Vektoren e bzw. ψ geht demnach entsprechend Gleichung (1) vom Vektor u und den Parametern r s und x σ aus.
Es müssen jedoch auch die Gleichungen (2) und (3) bzw. (3a) erfüllt sein. Man kann daher auch vom Vektor i und dem Parameter x h ausgehend die Vektoren e bzw. ψ ermitteln. Beide Wege müssen zum selben Vektor e bzw. ψ führen. Da es sich hierbei um ebene Vektoren handelt, die zwei Bestimmungsgrößen (z. B. Betrag e und Winkel ε ϕ für den Vektor e ) besitzen, müssen beide Wege zum selben Wert für eine Bestimmungsgröße dieses Vektors führen.
Ferner ist in Fig. 1 mit e j 1 die zum Ständerstrom parallele Komponente und mit e j 2 die hierzu senkrechte Komponente dargestellt. Dabei gilt
e j 1=e sin ε ϕ , e j 2=e cos ε ϕ
(stromorientierte Komponente). Ist der Winkel ε ϕ demnach bekannt, so hat der Vektor e noch eine weitere Bestimmungsgröße, wofür e, e j 1 oder e j 2 verwendet werden kann. Das gleiche filt für den Flußvektor ψ .
Der Erfindung liegt nun folgende Überlegung zugrunde:
Benutzt man Schätzwerte r s ′, x σ ′ für die Konstruktion des EMK-Vektors aus dem Ständerspannungsvektor, so wird man einen Vektor e ′ ermitteln, der erheblich von dem wirklichen EMK-Vektor e abweicht. Bildet man nun anstelle der Projektion des Ständerstromes i auf den wirklichen Flußvektor c die Projektion auf einen zum geschätzten Vektor e ′ senkrechten Vektor, so erhält man einen ebenfalls auf dem Kreis K₁ liegende geschätzte Magnetisierungsstromkomponente i ϕ 1′. Benutzt man diese geschätzte Magnetiserungsstromkomponente als Eingangsgröße für eine die Asynchronmaschine (z. B. entsprechend Gleichung (2) und (3)) nachbildende Rechenmodellschaltung, so erhält man einen zweiten geschätzten EMK-Vektor e ″, der von dem ersten geschätzten EMK-Vektor e ′ abweicht. Analog kann man anstelle der EMK-Vektoren e ′, e ″ auch die entsprechenden Flußvektoren ψ′, ψ″ verwenden.
Sind nun zwei der drei betrachteten Parameter hinreichend genau bekannt, so kann die Einstellung des dritten Parameters verändert werden, bis die beiden geschätzten Vektoren zusammenfallen.
Ermittlung von r s
In Fig. 2 sind die Verhältnisse gezeigt für den Fall, daß die Parameterwerte für x σ und x h hinreichend bekannt sind, jedoch für die EMK-Bildung nach Gleichung (1) ein geschätzter Parameterwert r s ′ verwendet wird, der kleiner ist als der tatsächliche Ständerwiderstand r s . Somit weist der zugeordnete EMK-Vektor e ′ auf einen Punkt außerhalb des Kreises K₂. Mit δ ist der Winkel zwischen e ′ und e bezeichnet. Zu diesem geschätzten EMK-Vektor e ′ gehört ein Flußvektor ψ , der gegenüber dem wahren Flußvektor ψ ebenfalls um den Winkel δ abweicht. Als geschätzte Magnetisierungsstromkomponente i ϕ 1′ wird nun die Projektion i ϕ 1′ des wahren Ständerstromvektors i auf einen in Richtung von ψ weisenden Einheitsvektor gebildet, zu dem die Rechenmodellschaltung entsprechend der Beziehung (3) einen zweiten geschätzten EMK-Vektor e ″ bildet. Dabei gilt für die Beträge dieser EMK-Vektoren e′-e″<0, wenn r s ′-r s <0. Folglich kann jeweils die Differenz e′-e″ einem integrierenden Regler zugeführt werden, der automatisch den Schätzwert r s ′ solange nachstellt, bis bei Deckungsgleichheit der Vektoren e ′ und e ″ die Differenz der Beträge verschwindet.
Für die (in Fig. 2 nicht bezeichneten) Projektionen der Vektoren auf einen zu dem Ständerstromvektor i parallelen oder senkrechten Einheitsvektor (stromorientierte Koordinaten e j 1′, e j 2′) gilt stets die gleiche Abhängigkeit von r s ′-r s . Für die Regelung können daher auch je eine ständerstromorientierte Komponente der Vektoren e ′, e ″ als Bestimmungsgrößen verwendet werden.
In Fig. 2 ist der motorische Betrieb betrachtet, der Durch die Bedingung i ϕ 2<0 bzw. m =i d 2/ i ϕ 1<0 gekennzeichnet ist. Für generatorischen Betrieb kehrt sich das Vorzeichen der Differenz e′-e″ um. Folglich muß der Regelsinn der Regelschaltung im Generatorbetrieb umgeschaltet werden. Als Umschaltkriterium kann das Vorzeichen des Quotienten m =i ϕ 2′/i ϕ 1′ bzw. das Vorzeichen von i ϕ 2′ benutzt werden.
Lediglich im Leerlauf selbst (m≈0) ergeben sich Schwierigkeiten, so daß vorteilhaft in diesen Bereichen keine r s -Ermittlung vorgenommen wird.
Sind die Parameterwerte x σ und x h , die bisher hinreichend genau bekannt angenommen waren, selbst nur ungenaue Schätzwerte, so zeigt sich, daß mit wachsender Ständerfrequenz ω der Ständerwiderstand auf diese Weise zunehmend ungenau ermittelt wird. Daher wird vorteilhaft die Ermittlung des Ständerwiderstandes nur im unteren Frequenzbereich vorgenommen. Wird der in diesem unteren Frequenzbereich ermittelte Läuferwiderstand für eine feldorientierte Regelung einer Asynchronmaschine benutzt, so bedingt dies keine wesentliche Verfälschung der Regelung, da der Ständerwiderstand ohnehin für die feldorientierte Regelung nur bei Frequenzen, die gegenüber der Nennfrequenz ω nenn klein sind (z. B. ω/ω nenn <0,1), genau eingestellt sein muß.
Ermittlung von x σ
In Fig. 3 ist angenommen, daß die Werte für r s und x h hinreichend genau bekannt, jedoch für die Streuinduktivität x σ ein ungenauer Schätzwert x σ ′ verwendet wird. Für x s ′<x σ ergibt sich dann nach Gleichung (1) ein geschätzter EMK-Vektor e ′, dessen Endpunkt für den Fall, daß der Winkel zwischen EMK-Vektor und Ständerstromvektor kleiner als 45° ist, innerhalb des Kreises K₂ liegt und gegenüber dem wahren EMK-Vektor e um den Winkel δ verschoben ist. Entsprechend ist auch die zugehörige geschätzte Flußrichtung um den Winkel δ gegenüber der Richtung des Flußvektors ψ verändert, so daß sich die von der wahren Magnetisierungsstromkomponente abweichende geschätzte Magnetisierungsstromkomponente i ϕ 1′ ergibt. Nach Gleichung (3) gehört hierzu der zweite geschätzte EMK-Vektor e ″, der vom Vektor e ′ abweicht. Auch hier ergibt sich eine Monotonie zwischen der Abweichung r s ′-r s und der Differenz der Vektorbeträge e′-e″ bzw. der Differenz einer ständerstromorientierten Komponente dieser Vektoren Folglich kann diese Differenz auch in diesem Fall dazu verwendet werden, um mittels eines integrierenden Reglers den geschätzten Parameterwert x σ ′ so zu verstellen, bis für den Fall e ′ = e ″ der Schätzwert x σ ′ gleich der wahren Streuinduktivität x σ ist.
Für den Fall, daß der Winkel zwischen EMK und Ständerstromvektor 45° übersteigt, ist e′-e″<0, falls x σ ′-x σ <0. In diesem Bereich, der ebenfalls durch eine Bedingung für den Quotienten m =i ϕ 2′/i ϕ 1′, nämlich m<1 oder die Bedingung i ϕ 2′<i ϕ 1′, gegeben ist, muß daher der Regelsinn der Regeleinrichtung umgeschaltet werden. Für den Bereich m≈1 ergeben sich Schwierigkeiten, so daß in diesem Bereich die Vorrichtung vorteilhaft abgeschaltet bleibt.
Es zeigt sich, daß eine ungenaue Vorgabe der Parameter r s ′ und x h ′ in der Nähe des Leerlaufes zu größeren Fehlbestimmungen für x σ führen können. Diese Fehlbestimmung wird jedoch umso kleiner, je größer die Belastung der Maschine ist, d. h. je mehr der Quotient m den Wert 1 übersteigt. Das Verfahren wird deshalb hauptsächlich bei hohen Frequenzen und großen Werten für den Quotienten m vorteilhaft anzuwenden sein.
Bestimmung von x h
In dem Sonderfall, daß die Parameterwerte x σ und r s exakt bekannt sind, und lediglich ein ungenauer Schätzwert für die Hauptinduktivität x h vorliegt, ermittelt der EMK-Bildner als EMK-Vektor e ′ den tatsächlichen ENK-Vektor e der Maschine (Fig. 4). Daher fallen auch die Richtungen der zugehörigen Flußvektoren ψ und c ′ und somit auch die Magnetisierungsstromkomponenten i ϕ 1 und i ϕ 1′ zusammen. Die Rechenmodellschaltung ermittelt jedoch einen Schätzwert e ″ für den EMK-Vektor, der zwar wegen der Orthogonalität zu ψ = ψ ′ die Richtung des Vektors e = e ′, jedoch einen abweichenden Betrag e″ hat und dessen Endpunkte daher entsprechend der Belastung auf einem Kreis K₂″ liegen. Der Durchmesser dieses Kreises ist vom Parameter x h ′ abhängig. Daher gilt zwischen der Betragsdifferenz e″ und e′ und der Schätzwert-Abweichung x h ′-x h des Parameters x h ein monotoner Zusammenhang und auch hier kann zum Abgleich des Parameters x h die Differenz einr Bestimmungsgröße des Vektors e ′ und einer entsprechenden Bestimmungsgröße des Vektors e ″ verwendet werden.
Sind die Werte x σ und r s nur ungenau bekannt, so ergibt sich eine Fehl-Ermittlung für den Parameterwert x h , die bei höheren Frequenzen, insbesondere
im Leerlauf (m =0) gering ist und erst für größere Belastung (m<1) stärker anwächst. Daher wird die Ermittlung von x h nach diesem Verfahren vorteilhaft bei größeren Ständerfrequenzen und geringen Maschinenbelastungen durchgeführt.
Da die Ermitlung jedes einzelnen Parameterwertes letztlich auf einen Vergleich der Vektoren e ′ und e ″ hinausläuft, kann zur Bildung der für den jeweiligen Abgleich eines Parameterwertes nötigen bestimmenden Größen der gleiche EMK-Bildner und die gleiche Rechenschaltung verwendet werden. Für die Ermittlung von x h ist an der Rechenmodellschaltung ein Eingang vorgesehen, an dem ein Schätzwert für diesen Parameter eingegeben werden kann. Entsprechend enthält der EMK-Bildner einen Einstelleingang für den Parameter x σ bzw. den Parameter r s ′. Jedem zu ermittelnden Parameterwert ist ein eigener integrierender Regler zugeordnet, dessen Ausgang mit dem Einstelleingang des zugehörigen Parameterwertes verbunden ist. Vorteilhaft sind jedem intergrierenden Regler die Anfangsbedingungen für den Regelbetrieb (Regelintegration) vorgebbar. Um zu vermeiden, daß sich die Abgleichsverfahren für unterschiedliche Parameterwerte gegenseitig stören, werden vorzugsweise die Regler nur zu unterschiedlichen Zeiten, insbesondere bei unterschiedlichen Betriebszuständen, freigegeben. Kennzeichnet man die Belastung der Asynchronmaschine durch den Tangens des Winkels zwischen dem Ständerstromvektor und dem Flußvektor oder näherungsweise durch den Quotienten m =i ϕ 2′/i ϕ 1′, wobei mit i ϕ 1′, i ϕ 2′ die zum im EMK-Bildner ermittelten Vektor e ′ senkrechte bzw. parallele Ständerstromkomponente bezeichnet ist, so kann man die Betriebszustände, bei denen jeweils einer der Parameterwerte ermittelt wird, so gegeneinander abgrenzen, daß bei niedrigen Ständerfrequenzen und höherer Belastung der Ständerwiderstand, bei höheren Frequenzen und in Nähe des Leerlaufs die Hauptinduktivität und bei höheren Frequenzen und höheren Belastungen die Streuinduktivität berechnet wird.
Fig. 6 zeigt schematisch eine vollständige Anordnung zur Ermittlung aller drei Parameterwerte. Die Anordnung besteht aus dem EMK-Bildner 1, der Recheneinrichtung 2, der Rechenmodellschaltung 3 und der Reglerstufe 4. An den Eingangsklemmen einer dreipoligen Asynchronmaschine 5 werden die Ständerspannungen und Ständerströme abgegriffen, die als in Achsrichtung der jeweiligen Ständerwicklung gerichtete Vektorbeträge in entsprechenden Koordinatenwandlern 6, 7 zu einem Vektor u α bzw. i α zusammengesetzt werden. In den Figuren ist zur vereinfachten Darstellung ein Vektor jeweils durch einen Doppelpfeil gekennzeichnet, wodurch angegeben werden soll, daß es sich hierbei um die Komponenten eines Vektors in einem kartesischen Koordinatensystem handeln soll, wobei die entsprechenden, an den jeweiligen Rechenelementen durch die Schaltsymbole gekennzeichneten Rechenoperationen jeweils komponentenweise durchgeführt werden sollen. Im EMK-Bildner 1 wird durch Multiplikation (Multiplizierglied 8) des eingestellten Parameterwertes r s ′ mit den am Koordinatenwandler 7 abgegriffenen ständerbezogenen Komponenten des Ständerstromvektors i α der Vektor r s ′ · i α des ohmschen Ständerspannungsabfalls gebildet. Ebenso kann durch komponentenweises Differenzieren (Differenzierglied 9) und Multiplizieren mit einem eingestellten Parameterwert x σ ′ für die Streuinduktivität (Multiplizierglied 10) der Vektor der induktiven Streuspannung gebildet werden. In einer Subtraktionsstufe 12 wird aus den am Koordinatenwandler 6 abgegriffenen Komponenten des ständerbezogenen Ständerspannungsvektors u α der Vektor e ′ ("erster Vektor") der den eingestellten Werten x σ , r s ′ zugeordneten EMK gebildet.
Für die feldorientierte Regelung einer Asynchronmaschine ist eine ähnliche Einrichtung als Flußdetektor zur Ermittlung der Richtung des magnetischen Feldes der Asynchronmaschine ohnehin erforderlich. Derartige Detektoren enthalten in der Regel noch einen Integrator, um durch komponentenweises Integrieren den zum EMK-Vektor gehörenden Flußvektor zu ermitteln. Dabei kann der Abzug der induktiven Streuspannung dadurch erfolgen, daß zunächst nur die Differenz u α-r s · i α integriert und anschließend der Streuspannungsabfall durch Subtraktion des Vektors x σ · i α gebildet wird. Auch ein derartiger Flußdetektor kann als EMK-Bildner bei der Vorrichtung gemäß der Erfindung verwendet werden, wobei dann anstelle des Vektors e ′ der zugehörige Flußvektor ψ ′ als der den eingestellten Parameter x s ′, r s ′ zugeordneter erster Vektor gebildet wird.
Die Recheneinrichtung enthält wenigstens einen Vektoranalysator und eine Transformationsschaltung. Der Vektoranalysator 13 ermittelt aus dem vom EMK-Bildner eingegebenen Vektor e ′ einerseits eine diesen Vektor bestimmende, zugeordnete Größe, in diesem Fall den Betrag e′ des Vektors e ′, und eine Winkelgröße. Mit dieser Winkelgröße errechnet die Transformationsschaltung, die in diesem Fall als Vektordreher 14 ausgebildet ist, aus den ständerbezogenen Komponenten des Ständerstromvektors i α , die zum Vektor e ′ senkrechte (also zum Flußvektor ψ ′ parallele) Komponente i ϕ 1 und die dazu senkrechte Komponente i ϕ 2′. Der ständerorientierte vorgegebene Vektor i α wird also in eine mit dem ersten Vektor e ′ umlaufendes, um den Winkel (ϕ′ +π/2) gedrehtes Koordinatensystem transformiert.
In der Rechenmodellschaltung 3 wird aus der zu ψ ′ parallelen Ständerstromkomponente i ϕ 1′ (zugeordnete Magnetisierungsstromkomponente) und einem eingestellten Parameterwert x h ′ für die Hauptinduktivität der Asynchronmaschine durch rechnerische Nachbildung der zur Entstehung des magnetischen Feldes führenden Vorgänge ein Fluß ψ ″ ermittelt, der nunmehr dem eingestellten Hauptinduktivität- Parameter x h ′ zugeordnet ist. Vorteilhaft geschieht diese Berechnung des Flusses ψ″ dadurch, daß i ϕ 1′ einem Glättungsglied 15 zur Bildung des Magnetisierungsstromes i μ nach Gleichung (2) und anschließend einem Multiplizierglied 16 zugeführt ist, dessen Multiplikator durch einen eingestellten (z. B. geschätzten) Parameterwert x h ′ für die Hauptfeldinduktivität gegeben ist. Das Glättungsglied 15 bildet dabei die Dynamik nach, mit der sich in der Asynchronmaschine das Feld aufbaut. Im Idealfall entspricht die Zeitkonstante des Glättungsgliedes 15 der Hauptfeld-Zeitkonstanten der Asynchronmaschine, die durch den Quotienten aus Hauptinduktivität und Läuferwiderstand gegeben ist. Da jedoch die Ermittlung der Parameterwerte praktisch bei stationären Vorgängen erfolgen kann, ist eine genaue Einstellung der Zeitkonstanten des Glättungsgliedes 15 (Verzögerungsglied 1. Ordnung) nicht erforderlich, vielmehr genügt es, die Zeitkonstante zum Beispiel auf einen Bereich von 0,5 bis 1 sec einzustellen.
Das Wesentliche der feldorientierten Regelung besteht darin, daß der Fluß und das Drehmoment durch unabhängige Sollwerte für den feldparallelen und den feldsenkrechten Anteil des Ständerstromes gesteuert werden. Man kann daher die entsprechenden Istwerte des Ständerstromes dadurch erhalten, daß die Komponenten i ϕ 1′ und i ϕ 2′, die im abgeglichenen Zustand, bei dem die Parameterwerte x σ ′ und r s ′ gleich den wahren Maschinenparametern sind, an Ausgängen 26 und 27 aus der Recheneinrichtung 2 herausführt, um somit die benötigte Information über die Richtung des Flußvektors zu erhalten. Ebenso kann am Ausgang 28 der Betrag e′ als Istwert herausgeführt werden, um einen Istwert für den zugehörigen Fluß zu erhalten. Dadurch wird ein eigener EMK-Detektor für die Regelung eingespart. Die Ermittlung der wahren Maschinenparameter, die an einem Ausgang 29 abgegriffen werden können, ist für die eigentliche Feldorientierung nicht erforderlich.
Aus dem der Rechenmodellschaltung 3 zugeordneten Fluß ψ″ wird in der Reglerstufe 4 zunächst eine Größe e″ ermittelt, die in gleicher Weise als Bestimmungsgröße eines der Rechenmodellschaltung zugeordneten EMK-Vektors verwendet wird, wie die am Vektoranalysator abgegriffene Größe e′ als Bestimmungsgröße des Vektors e ′ dient. Hierzu kann ausgenützt werden, daß die zum Fluß ψ″ gehörende EMK durch Differentiation des Flußvektors gebildet werden kann. Im quasistationären Zustand läuft der zum Flußbetrag ψ″ gehörende Flußvektor praktisch mit der Ständerfrequenz um, so daß nicht die Vektoren c ″ und e ″ ermittelt, sondern der gesuchte EMK-Betrag durch Multiplikation (Multiplizierer 17) des Flußbetrages ψ″ mit der Ständerfrequenz l gebildet werden kann. Die auf diese Weise an der Subtraktionsstelle 18 erhaltene Differenz e′-e″ wird nun als Regelabweichung benutzt, um mittels eines integrierenden Reglers einen der eingestellten Parameterwerte x h ′, x σ ′, r s ′ solange nachzuführen, bis die Regelabweichung verschwindet. Der Vektor e ′ und der entsprechende Vektor e ″, von dem nur sein Betrag berechnet wurde, sind dann deckungsgleich. Stimmen die beiden anderen Parameterwerte hinreichend genau mit den entsprechenden Maschinenparametern überein, so stimmt der am Regelausgang anstehende Wert des nachzuführenden Parameters dann ebenfalls mit dem entsprechenden Maschinenparameter überein.
Bei der Schaltung nach Fig. 6 kann die Differenz e′-e″ wahlweise zum Nachführen eines der Parameter verwendet werden, wobei für jeden Parameterwert ein eigener integrierender Regler 20, 21, 22, vorgesehen ist. Die Regelabweichung e′-e″ wird dabei durch eine Umschalteinrichtung 23 jeweils auf den dem betreffenden, zu bestimmenden Parameterwert zugeordneten intefrierenden Regler aufgeschaltet. Da, wie bereits erläutert wurde, der Regelsinn für bestimmte Werte der Größe m =i ϕ 2′/i ϕ 1′ umgeschaltet wird, sind den Reglern 20 und 21 entsprechende Schalteinrichtungen 24, 24′ zur Vorzeichenumkehr des Reglereingangssignals vorgeschaltet. Mit 25 ist schließlich ein Ausgang bezeichnet, an dem nach einem Regelabgleich jeweils der gesuchte Parameterwert, z. B. r s =r s ′, abgegriffen werden kann.
Wie bereits erwähnt wurde, kann anstelle des EMK-Vektors e ′ vom EMK-Bildner auch der zugehörige Flußvektor c ′ ermittelt werden. In diesem Fall entfällt die Bildung des EMK-Betrages e″ in der Rechenmodellschaltung, vielmehr wird als der Rechenmodellschaltung zugeordnete Größe dann direkt der in der Rechenmodellschaltung ermittelte Fluß ψ″ verwendet. Fig. 7 zeigt eine der Recheneinrichtung 2 entsprechende Recheneinrichtung 30 für diesen Fall.
Der Recheneinrichtung sind die Komponenten i α 1, i α 2 des Ständerstromvektors eingegeben, die mit den Winkelbezeichnungen aus Fig. 1 durch
i α 1=i · cos ε, i α 2=i · sin ε
im Ständerbezugssystem gegeben sind. Durch die Integratoren 31, 32 ist angedeutet, daß als weitere Eingangsgrößen für die Recheneinrichtung 30 anstelle des EMK-Vektors e ′ die ständerbezogenen Koordinaten ψ′ · cos ϕ′, ψ′ · sin ϕ′ des Flußvektors c ′=∫ e ′ · dt eingegeben sind. Mit ϕ′ ist in Analogie zum Flußwinkel ϕ aus Fig. 1 der Winkel zwischen der Achse des zugehörigen Flußvektors ψ ′ und der α₁-Achse bezeichnet. Dem Vektoranalysator 13 aus Fig. 6 entspricht hier der Vektoranalysator 13 a, der einerseits den Betrag ψ′ Bestimmungsgröße ermittelt, andererseits die Winkelgrößen sin ϕ′, cos ϕ′ einem Vektordreher 14 a aufschaltet, der entsprechend dem Vektordreher 14 in Fig. 6 aus den Koordinaten t cos ε, i sin ε die entsprechenden auf den Vektor ψ ′ bezogenen feldorientierten Koordinaten
i ϕ 1′=cos (ε-ϕ′), i ϕ 2′=i · sin (ε-ϕ′)
bildet. Als der Rechenmodellschaltung zugeordnete Bestimmungsgröße wird, wie bereits erwähnt, direkt der Flußbetrag ψ″ verwendet, so daß in der Reglerstufe an der entsprechenden Subtraktionsstelle 23 a die Differenz ψ′-ψ″ gebildet werden kann.
In Fig. 7 ist eine weitere Möglichkeit zur Bildung einer den Vektor ψ ′ bestimmenden Größe dargestellt. Diese Möglichkeit besteht darin, daß in einem Vektoranalysator 33 zunächst aus den ständerbezogenen Komponenten des Ständerstromvektors der Ständerstrombetrag i und die Winkelgrößen cos ε, sin ε gebildet werden. Diese Winkelgrößen werden einem Vektordreher 34 aufgeschaltet, der aus den ständerbezogenen Komponenten ψ′ cos ϕ′, ψ′ sin ϕ′ durch eine Drehung des Koordinatensystems, bei der die α₁-Achse des Ständerbezugssystems um den Winkel ε in die Richtung des Ständerstromvektors gedreht wird, die ständerstrombezogenen Komponenten
c′ cos (ϕ′-ε ), ψ′ sin (ϕ′-ε )
bildet.
Bei dieser Variante kann nun wahlweise anstelle des Vektorbetrages ψ′ als Bestimmungsgröße auch eine der beiden ständerstrombezogenen Koordinaten verwendet werden. Dem entspricht als der Rechenmodellschaltung zugeordnete Bestimmungsgröße eine entsprechende ständerstrombezogene Koordinate des Flußvektors ψ ″. Dieser Vektor ψ ″ ist im Betrag durch den in der Rechenmodellschaltung berechneten Flußbetrag ψ″ und in der Richtung durch die Richtung des Magnetisierungsstromes i ϕ 1′ festgelegt. Zur Bildung der ständerstromorientierten Komponente des Vektors c ″ braucht daher nur mittels eines Vektoranalysators 35 die entsprechende Winkelgröße cos (ϕ′-ε ) bzw. sin (ϕ′-e ) gebildet und mit dem Betrag ψ″ multipliziert werden (Multiplizierer 36, 37). Der Abgleich eines Parameterwertes kann jetzt durch Abgleich des Betrages oder einer ständerbezogenen Komponente der beiden Vektoren ψ ′, ψ ″ vorgenommen werden. Hierzu dient die Subtraktionsstelle 38, falls die zum Ständerstrom senkrechte Komponente verwendet wird, bzw. die Subtraktionsstelle 39, falls die dazu parallele Komponente verwendet wird, bzw. die Subtraktionsstelle 23 a, falls der Betrag ψ′ am Vektoranalysator 35 abgegriffen und mit dem in der Rechenmodellschaltung ermittelten Fluß ψ″ direkt verglichen wird.
Auch bei dieser Schaltungsvariante muß die Recheneinrichtung 30 durch Koordinatentransformation die zum Flußvektor parallele Komponente des Ständerstromvektors als Magnetisierungsstrom berechnen. Da der Vektoranalysator 35 bereits Winkelfunktionen des Differenzwinkels e-ϕ′ liefert, kann der Magnetisierungsstrom durch Multiplikation (Multiplizierer 40) des am Vektoranalysator 35 ermittelten Strombetrages i mit der am Vektoranalysator 35 ermittelten Winkelgröße cos (ε-ϕ′) gebildet werden. Bei dieser Variante können also die Elemente 13 a, 14 a eingespart werden. Sofern für die Umschaltung des Regelsinns auch die Größe i ϕ 2′ verwendet wird, kann dies ebenfalls durch Multiplikation des Ständerstrombetrages i mit der Winkelfunktion
sin (ε-ϕ′)=-sin (ϕ′-ε )
geschehen.
Eine entsprechend der ersten Variante mit dem Vektoranalysator 13 a und dem Vektordreher 14 a aufgebaute Recheneinrichtung ist in Fig. 8 dargestellt. Durch die Integrationsstufe 31 a ist angedeutet, daß in der Recheneinrichtung 45 durch komponentenweises Integrieren der ständerbezogenen EMK-Komponenten (Index α ) des der Parametereinstellung des EMK-Bildners zugeordneten Vektors e ′ der Flußvektor ψ ′ im Ständerbezugssystem (Index α ) erzeugt wird. Im stationären Fall kann anstelle der Integration auch eine Drehung des Vektors e ′ um 90° entgegen dem Umlaufsinn und gegebenenfalls eine Division durch die Ständerfrequenz verwendet werden. Der Ständerstromvektor wird nun in ein mit dem Vektor c ′ umlaufendes Koordinatensystem transformiert, indem der Vektoranalysator neben dem Vektorbetrag ψ′ auch den Drehwinkel bestimmende Winkelgrößen ermittelt, mit denen im Vektordreher 14 a das Koordinatensystem für den Ständerstromvektor auf den Flußvektor ψ ′ ausgerichtet wird. An der Vergleichsstelle 23 a wird auf die bereits beschriebene Weise die Regelabweichung ψ′-ψ″ berechnet, falls jeweils der Flußbetrag als Bestimmungsgröße verwendet wird. Soll jedoch als Bestimmungsgröße die zum Flußvektor parallele Komponente (Index j 1) oder senkrechte Komponente (Index j 2) der Flußvektoren ψ ′ bzw. ψ ″ verwendet werden, so kann auch dies geschehen, indem unter Umkehrung der in Fig. 7 mittels der Elemente 32, 40 und 41 vorgenommenen Operation mittels eines Vektoranalysators 46 cosinus oder sinus des Winkels d′-ε berechnet und durch Multiplikation mit den Beträgen ψ′ und ψ″ die entsprechende Regelabweichung
ψ j 1′-ψ j 1″ = c′ cos (ϕ′-ε )-ψ″ cos (ϕ′-ε)
bzw.
ψ j 2′-ψ j 2″ =ψ′ sin (ϕ′-ε )-c″ sin (ϕ-ε )
gebildet wird.
In Fig. 9 ist eine der Fig. 7 entsprechende Schaltung angegeben, bei der jedoch als der dem EMK-Bildner zugeordnete Vektor anstelle des Flußvektors ψ ′ der EMK-Vektor e ′ eingegeben wird. Gleiche Bauteile sind dabei mit gleichen Bezugszeichen versehen. Bei der den Vektordreher 14 a verwendenden Variante wird in diesem Fall der Ständerstrom in ein mit dem EMK-Vektor umlaufendes Koordinatensystem transformiert. Da jedoch der EMK-Vektor e ′ und der dazugehörige Flußvektor ψ ′aufeinander senkrecht stehen, bedeutet dies im wesentlichen lediglich, daß an den Ausgängen des Vektordrehers 14 a die Zuordnung der Komponenten i ϕ 1′ und i ϕ 2′ vertauscht ist.
Auch bei der Schaltung nach Fig. 9 kann auf die Verwendung der Elemente 13 a und 14 a bei Verwendung der Bauteile 33, 34, 35, 40 und 41 verzichtet werden. Im Unterschied zur Fig. 7 sind lediglich den Komponenteneingängen des Vektoranalysators 35 Glättungsglieder 42 vorgeschaltet, um die Oberschwingungen zu verringern. Da die Ausgangsgrößen des Vektordrehers 34 im stationären Fall Gleichspannungen sind, beeinflussen diese Glättungsglieder die Phase und den Betrag der Grundschwingung, mit der die Eingangsgrößen behaftet sind, nicht.
Da in diesem Fall die Bestimmungsgrößen für die EMK-Vektoren verwendet werden, wird ferner aus dem in der Rechenmodellschaltung berechneten Fluß ψ″ der EMK-Betrag e″ abgeleitet, wozu der im Zusammenhang mit Fig. 6 bereits erläuterte Multiplizierer 17 vorgesehen ist.
In Fig. 10 sind Rechenmodellschaltung, Recheneinrichtung und Reglerstufe für den in Fig. 9 gezeigten Fall dargestellt, bei denen vom EMK-Vektor e ′ als dem EMK-Bildner zugeordneter erster Vektor ausgegangen ist. Hier ist diejenige Variante der Rechenmodellschaltung nach Fig. 9 verwendet, die ohne den Vektoranalysator 13 a und den Vektordreher 14 auskommt. Der EMK-Vektor wird von dem ständerbezogenen Koordinatensystem am Vektordreher 34 in ein mit dem Ständerstrom umlaufendes Koordinatensystem transformiert und die ständerstromorientierten Komponenten e j 1′, e j 2′ des transformierten Vektors werden jeweils einer eigenen Subtraktionsstelle 38 bzw. 39 zugeführt. Diesen Subtraktionsstellen sind die zugehörigen ständerstromorientierten Komponenten e j 1″ bzw. e j 2″ des zweiten Vektors zugeführt, nämlich des der Rechenmodellschaltung 3 zugeordneten EMK-Vektors e ″. Dessen Komponenten können an den Multipliziergliedern 36, 37 abgegriffen werden. Ferner ist der Subtraktionsstelle 23 a der am Vektoranalysator 35 gebildete Betrag des Vektors e ′ und der zum Fluß c″ gehörende EMK-Betrag e″ aufgeschaltet. Jede der drei an den Punkten 23 a, 38, 39 gebildeten Regelabweichungen ist einem eigenen integrierenden Regler 50, 51, 52 zugeleitet. Der Ausgang des Reglers 50 ist dabei mit einem Eingang 53 zur Einstellung des Hauptinduktivitä-Parameters x h ′ an der Rechenmodellschaltung 3 zugeführt. Bei minimaler Regelabweichung am Regler 50 kann der entsprechende Maschinenparameter am Eingang 53 abgegriffen werden. Entsprechend wird der Regler 51 einem Eingang 54, an dem der Parameterwert für den Ständerwiderstand r s ′ im EMK-Bildner einstellbar ist, zugeschaltet. Der Regler 52 dient zum Einstellen des Parameters x σ ′ am Einstelleingang 55 des EMK-Bildners.
Da die Bestimmung der verschiedenen Parameterwerte nicht zu gleicher Zeit erfolgen soll, sind Schalter 56, 57, 58 vorgesehen, durch die die Regler 50, 51 und 52 abgeschaltet werden können. Vorteilhaft werden aber durch die Schalter die Regler nicht vollkommen abgeschaltet, vielmehr werden nur die Reglereingänge gesperrt, während die Einstellung eines Reglers jeweils bis zur erneuten Freigabe dieses Reglers gespeichert bleiben.
Da, wie bereits erwähnt wurde, für die Ermittlung der Parameter x σ und r s der Regelsinn unter Umständen umgeschaltet werden muß, sind den Reglern 51 und 52 entsprechende Schalteinrichtungen 56 a und 57 a vorgeschaltet, durch die in Abhängigkeit von den Größen i ϕ 1′ und i d 2′ die Reglereingang-Polarität umgeschaltet werden kann.
Eine entsprechende Schaltung ist in Fig. 11 dargestellt. Als intergrierender Regler dient ein digitaler Vorwärts- Rückwärts-Zähler, dem durch einen Setzeingang 61 ein Anfangswert als Grundeinstellung für den Regelbetrieb eingegeben werden kann. Diese Grundeinstellung entspricht einem ersten Schätzwert, von dem aus jeweils der Abgleich des zu bestimmenden Parameters erfolgt. Dem Zähleingang des Zählers 60 ist über eine Taktleitung 62 und ein UND-Gatter 63 eine Impulsfolge, beispielsweise mit der Frequenz 10 Hz, zugeführt.
Ferner ist zur Frequenz-Begrenzung der für die Parameterermittlung vorgesehenen Betriebszustände die Ständerfrequenz ω zwei Grenzwertmeldern 64, 65 aufgeschaltet, an denen die maximale und die minimale Ständerfrequenz eingestellt werden kann. Das UND-Gatter 63 ist demnach nur im Bereich ω min <ω<ω max freigegeben. Entsprechend können die für die Parameterermittlung vorgesehenen Betriebszustände auch auf die zugelassenen Werte für den Quotienten i ϕ 2′/i ϕ 1′=m begrenzt werden. Soll z. B. die Ermittlung des Ständerwiderstand-Parameterwertes r s nur für m<m min bzw. m<-m min durchgeführt werden, so kann der an einem Quotientenbildner 66 ermittelte Wert für m entsprechenden Grenzwertmeldern 67 und 68 aufgeschaltet werden, deren Ausgangssignal über ein ODER-Glied 69 einem weiteren Eingang des UND-Gatters 63 zugeführt sind. Da ferner z. B. für die Ermittlung des in Fig. 2 betrachteten Ständerwiderstand-Parameterwertes eine positive Regelabweichung (z. B. e′-e″<0) für den Fall m<0 einen zu klein eingestellten Parameterwert (r s -r s ′<0) anzeigt und beim Vorzeichenwechsel von i ϕ 2′ bzw. m eine Umkehr des Regelsinns erforderlich ist, kann an einem Grenzwertmelder 70, dem die Regelabweichung e′-e″ aufgeschaltet ist, das Vorzeichen der Regelabweichung sowie das am Grenzwertmelder 67 abgegriffene Vorzeichen des Quotienten m über ein EXKLUSIV-ODER-Gatter 71 dem Umschalt-Eingang des Digitalzählers 60 aufgeschaltet werden, durch den die Zähleinrichtung festgelegt ist. Am Ausgang 72 des Digitalzählers 60 steht dann der jeweilige für den tatsächlichen Maschinenparameter ermittelte Parameterwert an.
Fig. 11 kann also damit zusammengefaßt werden, daß dem Regler 60 der Ausgangswert (Startwert) für die Regelintegration über die Leitung 61 eingebbar ist und daß der Regler durch ein entsprechendes Freigabesignal (z. B. durch Aufschalten des Taktsignals mittels des Schalters 73) freigebbar ist, wobei das Reglerausgangssignal bei nicht freigegebenem Eingang speicherbar ist. Ferner ist vorteilhaft eine Schalteinrichtung vorgesehen, um in Abhängigkeit von i ϕ 2′ oder i ϕ 1′ die Polarität am Reglereingang zu invertieren.
Die Schaltung nach Fig. 10, bei der zum Abgleich des Ständerwiderstandes eine stromorientierte Komponente des EMK-Vektors e ′ verwendet wird, zeichnet sich gegenüber der Schaltung nach Fig. 6 zwar durch einen größeren gerätetechnischen Aufwand aus. Diese Schaltung ist jedoch vorteilhaft, wenn bei unbekannten Werten für x h und x σ der Ständerwiderstand ermittelt werden soll. Wird nämlich der Antrieb im Leerlauf betrieben (m =0), so fällt der Stromvektor bei richtig eingestelltem Ständerwiderstand-Parameter zumindest im unteren Frequenzbereich mit der Richtung des Flußvektors zusammen, so daß die zum Ständerstrom parallele Komponente des Vektors e ′ verschwindet. Dies gilt unabhängig von den eingestellten Werten für x s ′ und x h ′, so daß für eine Voreinstellung des Ständerwiderstandes lediglich der Parameterwert r s ′ solange verändert werden muß, bis e j 1′=0 gilt. Hierzu ist ein Ausgang 29 b vorgesehen, an dem die Komponente e j 1′ aus dem EMK-Vektor bzw. der Recheneinstellung herausgeführt wird. Analog kann natürlich anstelle von e j 1′ auch ψ j 2′ verwendet werden.
Ferner ist es vorteilhaft, daß bei der Schaltung nach Fig. 10 der Abgleich der Streuinduktivität x σ durch Abgleich der zum Strom senkrechten Komponente der Vektoren e′ und e″ verwendet wird. Diese ermöglicht es, den Parameterwert x σ unabhängig von dem Wert für r s in einem Kurzschlußversuch vor Beginn des Normalbetriebes der Asynchronmaschine zu ermitteln.
Hierzu wird der Läufer blockiert, während der Ständerstrom mit hoher Frequenz (vorzugsweise mehr als 50% der Nennfrequenz) umläuft. Dadurch wird der Lastwinkel nahezu 90°, während die Magnetisierungsstromkomponente i ϕ 1′ nahezu Null ist. Der EMK-Vektor e liegt also praktisch parallel zum Ständerstromvektor i und der Parameterwert x σ ′ braucht nun lediglich so verstellt zu werden, daß die zum Strom senkrechte Komponente e j 2′, die in Fig. 10 am Ausgang 29 a herausgeführt ist, des geschätzten EMK-Vektors e ′ Null wird. Der Parameterwert r s ′ geht über den zum Strom parallelen ohmschen Ständerwiderstand lediglich in die Komponente e j 1′ ein und beeinflußt daher diese Bestimmung von x σ nicht.
Physikalisch gleichbedeutend hierzu kann auch bei der Anordnung nach Fig. 6 der Parameterwert x s ′ solange verändert werden, bis die beiden an den Ausgängen 29 a, 29 b abgreifbaren Komponenten e′ α 1, e α 2′ des vom EMK-Bildner 1 im Ständerbezugssystem ermittelten EMK-Vektors e ′ beide minimal sind, da eine bei ungenauem Abgleich von x σ ′ auftretende Blindstromkomponente von e ′ stets eine Vergrößerung des Vektors e ′ bedeutet gegenüber einem EMK-Vektor, der nur einen Wirkstromanteil besitzt. Ebenso kann natürlich auch die Tatsache, daß beim Kurzschlußversuch die Magnetisierungsstromkomponente minimal ist, zur x σ ′-Ermittlung ausgenutzt werden, indem x σ ′ verändert wird, bis am Ausgang 27 ein minimaler Wert von i ϕ 1′ ansteht.
Im allgemeinen Fall kann der Vorabgleich des Ständerwiderstandes r s dadurch erfolgen, daß mittels eines Meßgerätes der Ohmsche Widerstand an den Maschinenklemmen gemessen und als Grundeinstellung in den EMK-Bildner und dem zugeordneten Regler (z. B. in Fig. 6 oder 51 in Fig. 10) eingegeben wird. Man kann aber auch bei stillstehender Ständerfrequenz einen Ständerstrom einprägen und den Parameter r s so verstellen, daß e′ =0 gilt. Ebenso kann man von beliebigen Schätzwerten für x σ und x h bei niedriger Ständerfrequenz den Ständerwiderstand von der Vorrichtung selbst ermitteln lassen und in dem Regler speichern, wobei die Fehleinstellung der Parameter x σ und x h von geringem Einfluß ist.
Wird nicht nach dem oben erwähnten Kurzschlußversuch ein Ausgangswert für den Streuindiktivität-Parameterwert x σ ermittelt, so kann man als Ausgangswert für die Ermittlung dieses Parameters einen geschätzten Wert einspeichern und den wahren Parameterwert im Laufe des normalen Betriebes mit der Vorrichtung ermitteln, sofern ein Vorabgleich für die Parameterwerte r s und x h erfolgt ist. Der Vorabgleich von x h erfolgt vorteilhaft bei höheren Drehzahlen und im Leerlauf.
Werden, gegebenenfalls nach mehrfacher Wiederholung der Vorabgleiche, nunmehr beim normalen Betrieb der Asynchronmaschine jeweils in den in Fig. 5 angegebenen Arbeitsbereichen mit der Vorrichtung nach der Erfindung die einzelnen Parameterwerte ermittelt und der zuletzt ermittelte Wert gespeichert, so steht in den Speichern jeweils ein Satz von Parameterwerten zur Verfügung, durch den die Parameter der Asynchronmaschine mit guter Genauigkeit wiedergegeben sind.
Wird als erster Vektor im EMK-Bildner 1 der zugeordnete Flußvektor ψ′ des Läuferflusses ermittelt, so kann, wie bereits erwähnt wurde, durch komponentenweises der Ständer-EMK u -r s ′ · i der Ständer-Flußvektor gebildet und anschließend durch komponentenweise Subtraktion vor x -· i der zugeordnete Läufer-Flußvektor c ′ gebildet werden. Soll jedoch der zugeordnete EMK-Vektor e ′ gebildet werden, so ist eine Differentiation nötig, wobei der zu differenzierende Vektor keine allzu plötzlichen zeitlichen Änderungen aufweisen und daher in der Regel einer vorherigen geringen Glättung unterworfen werden muß. Eine Glättung ruft jedoch einen Fehler in Phase und Betrag hervor. Dieser Fehler ist dann praktisch bedeutungslos, wenn alle in die durch die Integration zu lösende Gleichung eingehenden Größen der gleichen Glättung unterworfen werden. Die Ausgangsgrößen sind dann Mittelwerte, die über das gleiche Glättungszeitverhalten mit den ungeglätteten Ausgangsgrößen einer mathematischen Integration zusammenhängen. Dies erfordert jedoch an sich für jede Eingangsgröße eigene, sorgfältig aufeinander abgestimmte Glättungsglieder.
Bei der Schaltung nach Fig. 12 und 13 kommt man jedoch mit einem geringen Glättungsaufwand aus. Die Schaltung nach Fig. 12 ist allgemein zur Lösung einer Gleichung
geeignet, wobei die Ausgangsgröße c als geglättete Größe mit einem Glättungszeitverhalten = c erhalten wird, wobei T die Glättungszeitkonstante und s der Operator der Laplace-Transformation ist. Die geglättete Gleichung läßt sich nämlich umformen zu
und schließlich
Entsprechend wird an einem Summenpunkt 80 der Eingangsgröße Σa i das invertierte Signal - des Ausganges 86 über eine Rückführungsleitung 85 aufgeschaltet. Das Summensignal wird mit dem Proportionalitätsfaktor (Proportionalglied 81) einem Integrator 82 zugeführt und zu dem - ebenfalls mit multipliziert - Eingangsgrößen b i an einem zweiten Summenpunkt 84 addiert. Das Ausgangssignal des Summenpunktes ist die gewünschte geglättete Ausgangsgröße .
Fig. 13 zeigt eine gerätetechnische Ausführung dieser Schaltung, die bei einem EMK-Detektor die EMK-Komponente
als geglättete Komponente
berechnet, wobei x σ ′ aus Dimensionsgründen auf die Nennfrequenz normiert ist. Eine identische Schaltung ist auch für e β ′ vorgesehen. Die Summenpunkte 80, 84 sowie der Integrator 82 sind dabei durch Operationsverstärker 90, 91, 92 realisiert, wobei die Proportionalitäten durch die Widerstands-Beschaltungen der Operationsverstärker gegeben sind.

Claims (14)

1. Vorrichtung zum Ermitteln wenigstens eines Parameterwertes für den Ständerwiderstand r s und/oder die Hauptinduktivität x h und/oder die Streuinduktivität x σ einer Asynchronmaschine durch Vergleich zweier in unterschiedlichen Maschinenmodellen berechneter Modellwerte für die gleiche Betriebsgröße der Maschine, gekennzeichnet durch
  • a) einen EMK-Bildner (1) bzw. einen EMK-Bildner mit anschließender Flußberechnung zur Bildung eines ersten Vektors ( e ′, ψ ′), der aus den an den Maschineneingängen abgegriffenen Werten für die Komponenten des Ständerstromvektors ( i α ) und des Ständerspannungsvektors ( u α ) sowie eingestellten Parameterwerten für Ständerwiderstand (r s ) und Streuinduktivität x σ ) den ersten Vektor ( e ′, ψ ′) für die dieser Parametereinstellung zugeordnete EMK oder den entsprechenden Fluß bildet,
  • b) eine Recheneinrichtung (2) zur Berechnung einer beiden Maschinenmodellen gemeinsam zugeordneten Magnetisierungsstromkomponente mit wenigstens einem Vektoranalysator, der aus dem ersten Vektor ( e ′, ψ ′) eine die Richtung dieses Vektors bestimmende Winkelgröße ermittelt, und einer Transformationsschaltung, die aus den abgegriffenen Komponenten des Ständerstromvektors ( i α ) und der Winkelgröße als gemeinsame Magnetisierungsstromkomponente (i ϕ 1) diejenige Ständerstromkomponente errechnet, die parallel zum (der EMK-Bildner-Parametereinstellung entsprechenden) Flußvektor ( ψ ′) ist, wobei die Recheneinrichtung gleichzeitig auch als ersten Modellwert wenigstens eine (e′, e j 1; ψ′, e j 1′) von zwei den ersten Vektor in Betrag und Richtung bestimmenden Bestimmungsgrößen ausgibt,
  • c) eine Rechenmodellschaltung (3) zur Bildung eines Flusses (ψ″), der aus der gemeinsamen Magnetisierungsstromkomponente (i ϕ 1′) und einem eingestellten Parameterwert (x h ′) für die Hauptinduktivität der Asynchronmaschine durch rechnerische Nachbildung der zur Entstehung des magnetischen Feldes führenden Vorgänge der Fluß (ψ″) ermittelt wird, und
  • d) eine Reglerstufe (4), die als zweiten Modellwert die entsprechende Bestimmungsgröße des in der Rechenmodellschaltung (3) ermittelten Flußvektors ( ψ ″) oder des daraus abgeleiteten EMK-Vektors ( e ″) mit dem ersten Modellwert vergleicht und die Differenz dem Eingang eines integralen Reglers zuführt, dessen Ausgangssignal einem Einstelleingang für den zu ermittelnden Parameterwert zugeführt ist und bei Regelabgleich als zu ermittelnder Parameterwert abgreifbar ist (Fig. 6).
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß in der Rechenmodellschaltung (3) die gemeinsame Magnetisierungsstromkomponente (i ϕ 1′)über ein Glättungsglied (15) einem Multiplizierglied (16) zugeführt ist, dessen Multiplikator durch einen eingestellten Parameterwert (x h ′) für die Hauptfeldinduktivität gegeben ist (Fig. 6).
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als dem EMK-Bildner zugeordneter erster Vektor aus dem Ständerspannungsvektor ( u α ) durch Subtraktion eines dem eingestellten Ständerwiderstand-Parameterwert entsprechenden ohmschen Spannungsabfalles (r s ′ · i ) und eines dem Streuinduktivität-Parameterwert zugeordneten Streuspannungsabfalles ein EMK-Vektor ( e ′) gebildet wird und daß die Recheneinrichtung (2) alternativ oder wahlweise dessen Betrag (e′) oder den zum Ständerstromvektor parallelen Anteil (e j 1′) oder den zum Ständerstromvektor senkrechten Anteil (e j 2′) als ersten Modellwert berechnet und daß die Reglerstufe (4) den zweiten Modellwert (e″, e″ j 1, e″ j 2) aus einem zweiten Vektor ermittelt, der die zeitliche Ableitung eines betragsgemäß durch den in der Rechenmodellschaltung (3) berechneten Flußbetrag und richtungsmäßig durch die gemeinsame Magnetisierungskomponente (i ϕ 1′) bestimmten Flußvektors ist (Fig. 10).
4. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als erster Modellwert der Betrag (ψ′) eines Vektors, der dem Integral des zur Parametereinstellung am EMK-Bildner gehörenden EMK-Vektors ( e ′) entspricht (Flußvektor) oder dessen zum Ständerstromvektor parallele Komponente (ψ j 1′) oder dessen zum Ständerstromvektor senkrechte Komponente (ψ j 2′) berechnet wird, und daß als zweiter Modellwert der in der Rechenmodellschaltung ermittelte Fluß (ψ″) oder die zum Ständerstromvektor parallele Komponente (ψ j 1′′) oder die zum Ständerstromvektor senkrechte Komponente (ψ j 2″) eines in Richtung des ersten Vektors weisenden zweiten Vektors ( ψ ″) verwendet wird, dessen Betrag durch den in der Rechenmodellschaltung ermittelten Fluß bestimmt ist (Fig. 8).
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zur Ermittlung des Parameterwertes (r s ′) für den Ständerwiderstand der intergrierende Regler (20) nur bei niedrigen Ständerfrequenzen und höherer Belastung der Asynchronmaschine eingeschaltet ist. (Fig. 5).
6. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zur Bestimmung des Parameterwertes (x s ′) für die Streuinduktivität der integrierende Regler (21) nur bei höheren Frequenzen und höherer Belastung der Asynchronmaschine eingeschaltet ist (Fig. 5).
7. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zur Bestimmung des Parameterwertes (x h ′) für die Hauptinduktivität der integrierende Regler (22) nur bei höheren Frequenzen und in der Nähe des Leerlaufes der Asynchronmaschine eingeschaltet ist (Fig. 5).
8. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zur Bestimmung des Ständerwiderstandes (r s ) in der Recheneinrichtung auch die zur gemeinsamen Magnetisierungsstromkomponente senkrechte Komponente (i ϕ 2′) des Ständerstromvektors ( i a ) berechnet und die Polarität am Eingang des integrierenden Reglers (20) bei Vorzeichenwechsel dieser senkrechten Komponente umgeschaltet wird (Fig. 6, 11).
9. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß bei der Ermittlung des Parameterwertes für die Streuindiktivität (x σ ) in der Recheneinrichtung auch die zur gemeinsamen Magnetisierungsstromkomponente (i ϕ 1′) senkrechte Ständerstromkomponente (i ϕ 2′) berechnet und der Quotient (m =i ϕ 2′/i ϕ 1′) aus dieser senkrechten Komponente und der gemeinsamen Magnetisierungsstromkomponente gebildet wird, und daß die Polarität am Eingang des integrierenden Reglers (21) jeweils umgeschaltet wird, wenn von einem Bereich m<1 auf einen Bereich m<1 übergegangen wird (Fig. 6, 11).
10. Vorrichtung nach Anspruch 4 bis 9, dadurch gekennzeichnet, daß für jeden Parameterwert ein eigener integrierender Regler (20, 21, 22), der dem Einstelleingang für den betreffenden Parameterwert vorgeschaltet ist, vorgesehen ist, wobei die Regler nur zu unterschiedlichen Zeiten, vorzugsweise bei unterschliedlichen Betriebszuständen, freigegeben sind (Fig. 6).
11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß dem integrierenden Regler (60) der Startwert für die Regelintegration eingebbar ist, daß der Regler durch ein Freigabesignal freigebbar ist und daß das Regelausgangssignal bei nicht freigegebenen Eingang speicherbar ist (Fig. 11).
12. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß dem Regler (51) des Parameterwertes (r s ′) für den Ständerwiderstand ausschließlich die zum Ständerstromvektor parallele Komponente (e j 1′) des als ersten Vektor dienenden EMK-Vektors ( e ′) bzw. die zum Ständerstromvektor senkrechte Komponente (ψ j 2′) des als ersten Vektor dienenden Flußvektors ( ψ ′) zugeführt wird, und der Regler den Parameterwert solange verändert, bis im Leerlauf und bei niedrigen Ständerfrequenzen diese Komponente ungefähr gleich Null ist.
13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß bei blockiertem Läufer der Asynchronmaschine und höheren Ständerstromfrequenzen dem Regler des Parameterwertes der Streuinduktivität (x σ ′) ausschließlich die zugeordnete Magnetisierungsstromkomponente (i ϕ 1′) oder die zum Ständerstromvektor senkrechte Komponente (e j 2) des als ersten Vektor dienenden EMK-Vektors ( e ′) oder die zum Ständerstromvektor parallele Komponente (ψ j 1′) des als ersten Vektor dienenden Flußvektors ( ψ ′) zugeführt wird, und der Regler den Parameterwert so lange verändert, bis diese Komponente minimal ist.
14. Vorrichtung zur Ermittlung einer geglätteten Komponente des dem EMK-Bildner zugeordneten EMK-Vektors nach einem der Ansprüche 1-13, dadurch gekennzeichnet, daß ein Quotient, enthaltend die Summe aus dem nicht zu differenzierenden Eingangsgrößen ( u ,-r s ′ · i ) und dem Negativen des geglätteten Ausgangssignals ( e) und die Glättungszeitkonstante T, einem Integrator (82) mit der Integrationszeitkonstanten T zugeführt und dessen Ausgangsgröße zusammen mit der durch die Glättungszeitkonstante dividierten Summe der zu differenzierenden Eingangsgrößen (x σ ′ · i ) zum geglätteten Ausgangssignal ( ′) zusammengesetzt werden.
DE19803034275 1980-09-11 1980-09-11 Vorrichtung zum ermitteln der parameterwerte fuer staenderwiderstand, hauptinduktivitaet und streuinduktivitaet einer asynchronmaschine Granted DE3034275A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE19803034275 DE3034275A1 (de) 1980-09-11 1980-09-11 Vorrichtung zum ermitteln der parameterwerte fuer staenderwiderstand, hauptinduktivitaet und streuinduktivitaet einer asynchronmaschine
US06/299,780 US4423367A (en) 1980-09-11 1981-09-08 Device for determining the parameter values for stator resistance, principal inductance and leakage inductance of an asynchronous machine
JP14373281A JPS5779469A (en) 1980-09-11 1981-09-11 Parameter value detector for stator resistance, main inductance and leak inductance of asynchronous machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19803034275 DE3034275A1 (de) 1980-09-11 1980-09-11 Vorrichtung zum ermitteln der parameterwerte fuer staenderwiderstand, hauptinduktivitaet und streuinduktivitaet einer asynchronmaschine

Publications (2)

Publication Number Publication Date
DE3034275A1 DE3034275A1 (de) 1982-04-22
DE3034275C2 true DE3034275C2 (de) 1990-06-07

Family

ID=6111709

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19803034275 Granted DE3034275A1 (de) 1980-09-11 1980-09-11 Vorrichtung zum ermitteln der parameterwerte fuer staenderwiderstand, hauptinduktivitaet und streuinduktivitaet einer asynchronmaschine

Country Status (3)

Country Link
US (1) US4423367A (de)
JP (1) JPS5779469A (de)
DE (1) DE3034275A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4041197A1 (de) * 1989-12-21 1991-08-01 Abb Stroemberg Drives Oy Verfahren zur bestimmung eines schaetzwertes des staenderflusses einer elektrischen maschine
DE4103270A1 (de) * 1990-11-02 1992-05-07 Abb Patent Gmbh Verfahren zur bestimmung der staenderflussverkettung bei einer drehstrommaschine
DE4235607A1 (de) * 1991-10-25 1993-04-29 Abb Stroemberg Drives Oy Verfahren zur bestimmung des staenderflusses einer asynchronmaschine
DE19615199C2 (de) * 1995-04-18 2000-10-12 Okuma Machinery Works Ltd Feldorientierte Steuerung für einen Induktionsmotor

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0127158B1 (de) * 1983-05-27 1986-08-20 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Bestimmung des Flussvektors einer Drehfeldmaschine aus Ständerstrom und Ständerspannung und deren Anwendung
JPS6016184A (ja) * 1983-07-06 1985-01-26 Mitsubishi Electric Corp エレベ−タの制御装置
NO851324L (no) * 1984-05-18 1985-11-19 Siemens Ag Fremgangsmaate og anordning til aa bestemme en dreiefelt-maskins fluksvektor.
DE3418573A1 (de) * 1984-05-18 1985-12-05 Siemens AG, 1000 Berlin und 8000 München Verfahren und vorrichtung zum stabilisieren der ortskurve eines durch integration gebildeten vektors
JPS60261382A (ja) * 1984-06-07 1985-12-24 Mitsubishi Electric Corp エレベ−タの制御装置
DE3427841A1 (de) * 1984-07-27 1986-02-06 Siemens AG, 1000 Berlin und 8000 München Verfahren und vorrichtung zum betrieb eines zwischenkreisumrichters mit stromanstiegsbegrenzung
JPS6162392A (ja) * 1984-08-31 1986-03-31 Hitachi Ltd 誘導電動機のベクトル制御装置
JPS6192185A (ja) * 1984-10-12 1986-05-10 Hitachi Ltd 自動調整を行うベクトル制御装置
DE3603051A1 (de) * 1986-01-30 1987-08-06 Licentia Gmbh Verfahren zur steuerung und regelung einer synchronmaschine
DE3612273A1 (de) * 1986-04-10 1987-10-15 Licentia Gmbh Verfahren zur steuerung und regelung einer synchronmaschine
JP2708408B2 (ja) * 1986-05-09 1998-02-04 株式会社日立製作所 電圧制御形ベクトル制御インバータの制御装置
EP0250799B1 (de) * 1986-05-23 1992-03-11 KSB Aktiengesellschaft Verfahren zur Überwachung einer Asynchronmaschine
DE3622096A1 (de) * 1986-06-28 1988-01-07 Licentia Gmbh Verfahren zur steuerung und regelung einer am wechselrichter betriebenen asynchronmaschine
US5296793A (en) * 1986-11-05 1994-03-22 Massachusetts Institute Of Technology State observer for synchronous motors
JP2687351B2 (ja) * 1987-05-29 1997-12-08 三菱電機株式会社 交流電動機の適応制御装置
JP2585376B2 (ja) * 1987-06-12 1997-02-26 株式会社日立製作所 誘導電動機の制御方法
FI885272A7 (fi) * 1988-01-29 1989-07-30 Siemens Ag Foerfarande foer bildande av lastvinkel-nuvaerdet foer en faeltorienterad reglerad vridfaeltmaskin och motsvarande regleringsanordning.
DE3900539A1 (de) * 1989-01-07 1990-07-12 Licentia Gmbh Verfahren und anordnung zur ermittlung des magnetischen flusses von asynchronmaschinen
DE3922479A1 (de) * 1989-07-06 1991-01-17 Licentia Gmbh Verfahren zur bestimmung von parametern bei der einstellung eines spannungsmodells fuer drehstromasynchronmaschinen
US5661386A (en) * 1993-11-22 1997-08-26 Lockheed Martin Energy Systems, Inc. Method for assessing in-service motor efficiency and in-service motor/load efficiency
US5708346A (en) * 1994-01-10 1998-01-13 Sulzer Electronics Ag Method and control apparatus for controlling an AC-machine
JPH0880100A (ja) * 1994-06-30 1996-03-22 Mitsubishi Electric Corp 誘導電動機の制御装置及びその制御方法
FR2743456B1 (fr) * 1996-01-04 1998-02-06 Thomson Csf Moteur electrique de type synchrone a aimants permanents et vehicule comportant un tel moteur
FR2746982B1 (fr) * 1996-03-28 1998-05-07 Schneider Electric Sa Convertisseur de frequence pour moteur alternatif
DE19842540C2 (de) * 1998-09-17 2001-01-11 Danfoss As Verfahren zur selbsttätigen Messung des ohmschen Rotorwiderstandes einer Asynchronmaschine
DE102009046583A1 (de) * 2009-11-10 2011-05-12 Robert Bosch Gmbh Verfahren zum Plausibilisieren des Drehmomentes einer elektrischen Maschine und Maschinenregler zur Regelung einer elektrischen Maschine und zur Durchführung des Verfahrens
EP2552014A3 (de) * 2011-07-28 2016-08-17 Vestas Wind Systems A/S Verfahren zur Positionierung einer sensorlosen Steuerung einer Elektromaschine
BR112015004285A2 (pt) * 2012-08-28 2017-07-04 Abb Technology Ag controle de um conversor modular em dois estágios
CN102914740B (zh) * 2012-08-31 2015-12-16 常州联力自动化科技有限公司 快速辨识异步电机参数的方法
US9705438B2 (en) 2015-07-14 2017-07-11 Infineon Technologies Austria Ag Controller for a free-running motor
DE102017119743A1 (de) * 2017-08-29 2019-02-28 Wobben Properties Gmbh Verfahren zum Steuern eines mehrphasigen fremderregten Synchrongenerators einer Windenergieanlage
DE102019110879A1 (de) * 2019-04-26 2020-10-29 Schaeffler Technologies AG & Co. KG Verfahren zur Ermittlung eines Motorparameters eines Elektromotors
CN113030584B (zh) * 2021-03-10 2024-10-01 上海海事大学 一种测量电容器寄生电感参数的系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2353594C2 (de) * 1973-10-25 1975-10-09 Siemens Ag, 1000 Berlin Und 8000 Muenchen Verfahren und Anordnung zur Ermittlung des Läuferwinkels einer Synchronmaschine
US3909687A (en) * 1974-03-05 1975-09-30 Westinghouse Electric Corp Flux control system for controlled induction motors
DE2833542C2 (de) * 1978-07-31 1980-09-25 Siemens Ag, 1000 Berlin Und 8000 Muenchen Drehfeldmaschinenantrieb, bestehend aus einer umrichtergespeisten Drehfeldmaschine, insbesondere Synchronmaschine und einer Stromrichtersteuerung für den eigengetakteten, insbesondere feldorientierten Betrieb dieser Maschine, mit zwei baugleichen Wechselspannungsintegratoren und Verfahren zum Betrieb des Drehfeldmajchinenantriebes

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4041197A1 (de) * 1989-12-21 1991-08-01 Abb Stroemberg Drives Oy Verfahren zur bestimmung eines schaetzwertes des staenderflusses einer elektrischen maschine
DE4103270A1 (de) * 1990-11-02 1992-05-07 Abb Patent Gmbh Verfahren zur bestimmung der staenderflussverkettung bei einer drehstrommaschine
DE4235607A1 (de) * 1991-10-25 1993-04-29 Abb Stroemberg Drives Oy Verfahren zur bestimmung des staenderflusses einer asynchronmaschine
DE19615199C2 (de) * 1995-04-18 2000-10-12 Okuma Machinery Works Ltd Feldorientierte Steuerung für einen Induktionsmotor

Also Published As

Publication number Publication date
US4423367A (en) 1983-12-27
DE3034275A1 (de) 1982-04-22
JPH0145876B2 (de) 1989-10-05
JPS5779469A (en) 1982-05-18

Similar Documents

Publication Publication Date Title
DE3034275C2 (de)
EP0047893B1 (de) Vorrichtung zum feldorientierten Betrieb einer umrichtergespeisten Asynchronmaschine
DE3600661C2 (de)
DE10012280B4 (de) Steuervorrichtung für einen Induktionsmotor
DE2341761C3 (de) Schaltungsanordnung zum Betrieb eines fahrweggebundenen Triebfahrzeuges mit einem synchronen Linearmotor
EP0127158B1 (de) Verfahren und Vorrichtung zur Bestimmung des Flussvektors einer Drehfeldmaschine aus Ständerstrom und Ständerspannung und deren Anwendung
EP0047900A1 (de) Verfahren und Vorrichtung zum Ermitteln des Läuferwiderstandes einer Asynchronmaschine
EP0161615B1 (de) Verfahren und Vorrichtung zum Bestimmen des Flussvektors einer Drehfeldmaschine
DE3715462A1 (de) Verfahren und vorrichtung zur steuerung eines stromrichters mit selbsteinstellung von steuerparametern
EP0043973A1 (de) Drehfeldmaschinenantrieb mit einer umrichtergespeisten Drehfeldmaschine und einer mit zwei Wechselspannungsintegratoren und einer Rechenmodellschaltung verbundenen Umrichtersteuerung
DE19612920A1 (de) Verfahren und Vorrichtung zur direkten Drehmomentregelung einer Drehfeldmaschine
DE2833542B1 (de) Drehfeldmaschinenantrieb,bestehend aus einer umrichtergespeisten Drehfeldmaschine,insbesondere Synchronmaschine und einer Stromrichtersteuerung fuer den eigengetakteten,insbesondere feldorientierten Betrieb dieser Maschine,mit zwei baugleichen Wechselspannungsintegratoren und Verfahren zum Betrieb des Dre
DE2819789A1 (de) Verfahren und vorrichtung variabler struktur zur steuerung von asynchronmaschinen
EP0161616B1 (de) Verfahren und Vorrichtung zum Stabilisieren der Ortskurve eines durch Integration gebildeten Vektors
EP0085871A1 (de) Verfahren zur Erhöhung der Maximaldrehzahl einer Synchronmaschine bei vorgegebener Erregerfeldstärke und Klemmenspannung und Schaltungsanordnung zur Durchführung des Verfahrens
EP0257396A1 (de) Verfahren und Vorrichtung zum Betrieb einer feldorientierten, von einem steuerbaren Umrichter gespeisten Drehfeldmaschine
EP0752170B1 (de) Stromregelverfahren und vorrichtung für eine dreiphasige stromrichtergespeiste, permanenterregte synchronmaschine
DE3144188A1 (de) Flussbestimmungseinrichtung fuer die feldorientierte steuerung einer drehfeldmaschine
DE3144174A1 (de) Vorrichtung zum feldorientierten betrieb einer drehfeldmaschine
EP0085338B1 (de) Vorrichtung zum Bestimmen der gemeinsamen Frequenz zweier unabhängig veränderlicher Wechselgrössen, insbesondere bei einer Drehfeldmaschine
EP0065722B1 (de) Vorrichtung zur Steuerung oder Regelung sowie Modellschaltung einer Schenkelpolmaschine
DE4433551C2 (de) Drehzahlschätzverfahren für den drehzahlgeberlosen Betrieb von wechselrichtergespeisten Asynchronmotoren
DE19962690B4 (de) Verfahren und Vorrichtung zur feldorientierten Regelung einer stromrichtergespeisten Drehfeldmaschine mit einem Tacho
DE3222271C2 (de) Anordnung zum Betrieb einer über steuerbare Stromrichter am Netz betriebenen Synchronmaschine
DE3222269C2 (de) Anordnung zum Betrieb einer über steuerbare Stromrichter am Netz betriebenen Synchronmaschine

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
D2 Grant after examination
8364 No opposition during term of opposition
8320 Willingness to grant licences declared (paragraph 23)
8339 Ceased/non-payment of the annual fee