CN1314049A - Method and apparatus for inspection of printed circuit boards - Google Patents
Method and apparatus for inspection of printed circuit boards Download PDFInfo
- Publication number
- CN1314049A CN1314049A CN99809996.1A CN99809996A CN1314049A CN 1314049 A CN1314049 A CN 1314049A CN 99809996 A CN99809996 A CN 99809996A CN 1314049 A CN1314049 A CN 1314049A
- Authority
- CN
- China
- Prior art keywords
- mentioned
- image
- subsystem
- output
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/956—Inspecting patterns on the surface of objects
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
本发明的领域Field of the invention
本发明一般地涉及物品检验系统与方法,较具体地涉及诸如印刷电路板等一般二维物品的检验系统与方法。The present invention generally relates to inspection systems and methods for articles, and more particularly relates to inspection systems and methods for general two-dimensional articles such as printed circuit boards.
本发明的背景Background of the invention
在专利和专业文献中已知有各种物品检验系统与方法。已有检验系统的一个众所周知问题是当想把多个线型图像传感严格地布置成能联合地获取被检物品单个行的图像时遇到了很大的困难。其他的问题还包括:由于相机的角度所造成的像元拉长,多个相机重叠图像的组合困难,以及因诸如一个线型传感器中各二极管在物理上的分开、色差、和不同波长的光的强度不相同等因素所造成的图像各个颜色成份的偏移等。Various article inspection systems and methods are known in the patent and professional literature. A well-known problem with existing inspection systems is that great difficulty is encountered when trying to strictly arrange multiple line image sensors to jointly acquire an image of a single line of the inspected item. Other issues include: pixel elongation due to camera angles, difficulty combining overlapping images from multiple cameras, and factors such as physical separation of diodes in a line sensor, chromatic aberration, and different wavelengths of light. The shift of each color component of the image caused by factors such as the different intensity of the image.
相信下列专利文件代表了目前的技术水平:The following patent documents are believed to represent the current state of the art:
下述专利号的各个美国专利:RE33,956,3,814,520,3,956,698,4,100,570,4,152,723,4,167,728,4,185,298,4,223,346,4,269,515,4,277,175,4,277,802,4,326,792,4,347,001,4,389,655,4,421,410,4,448,532,4,449,818,4,459,619,4,465,939,4,506,275,4,532,650,4,538,909,4,556,317,4,585,351,4,589,140,4,590,607,4,595,599,4,597,455,4,618,938,4,633,504,4,635,289,4,653,109,4,675,745,4,692,812,4,701,859,4,712,134,4,751,377,4,758,782,4,758,888,4,762,985,4,771,468,4,772,125,4,821,110,4,821,110,4,870,505,4,870,505,4,877,326,4,878,736,4,893,346,4,894,790,4,897,737,4,897,795,4,929,845,4,930,889,4,938,654,4,958,307,4,969,038,4,969,198,4,978,974,4,978,974,4,979,029,4,984,073,4,989,082,4,989,082,5,023,714,5,023,917,5,067,012,5,067,162,5,085,517,5,091,974,5,103,105,5,103,257,5,114,875,5,119,190,5,119,439,5,125,040,5,127,726,5,128,753,5,129,014,5,131,755,5,136,149,5,144,132,5,144,132,5,144,448,5,150,422,5,150,423,5,161,202,5,162,866,5,162,867,5,163,128,5,170,062,5,175,504,5,181,068,5,198,778,5,204,918,5,220,617,5,245,421,5,253,307,5,458,706,5,285,295,5,303,064,5,305,080,5,331,397,5,373,233,5,379,350,5,414,534,5,414,534,5,44,478,5,450,204,5,483,359,5,483,603,5,494,535,5,500,746,5,539,444;下述专利号的各个美国专利:RE33,956,3,814,520,3,956,698,4,100,570,4,152,723,4,167,728,4,185,298,4,223,346,4,269,515,4,277,175,4,277,802,4,326,792,4,347,001,4,389,655,4,421,410,4,448,532,4,449,818,4,459,619,4,465,939,4,506,275 ,4,532,650,4,538,909,4,556,317,4,585,351,4,589,140,4,590,607,4,595,599,4,597,455,4,618,938,4,633,504,4,635,289,4,653,109,4,675,745,4,692,812,4,701,859,4,712,134,4,751,377,4,758,782,4,758,888,4,762,985,4,771,468,4,772,125,4,821,110,4,821,110,4,870,505 ,4,870,505,4,877,326,4,878,736,4,893,346,4,894,790,4,897,737,4,897,795,4,929,845,4,930,889,4,938,654,4,958,307,4,969,038,4,969,198,4,978,974,4,978,974,4,979,029,4,984,073,4,989,082,4,989,082,5,023,714,5,023,917,5,067,012,5,067,162,5,085,517,5,091,974 ,5,103,105,5,103,257,5,114,875,5,119,190,5,119,439,5,125,040,5,127,726,5,128,753,5,129,014,5,131,755,5,136,149,5,144,132,5,144,132,5,144,448,5,150,422,5,150,423,5,161,202,5,162,866,5,162,867,5,163,128,5,170,062,5,175,504,5,181,068,5,198,778,5,204,918 ,5,220,617,5,245,421,5,253,307,5,458,706,5,285,295,5,303,064,5,305,080,5,331,397,5,373,233,5,379,350,5,414,534,5,414,534,5,44,478,5,450,204,5,483,359,5,483,603,5,494,535,5,500,746,5,539,444;
下述各个欧洲专利文件:EP094,501A2,EP598,582A2,EP426,182A2,EP426,166A2,EP247,308A2,EP243,939A2,EP206,713A2,EP128,107A1,EP126,492A2,EP426,166A2,EP533,348A2,EP209,422A2,EP536,918A2,EP92306649.2;以及The following European patent documents: EP094,501A2, EP598,582A2, EP426,182A2, EP426,166A2, EP247,308A2, EP243,939A2, EP206,713A2, EP128,107A1, EP126,492A2, EP426,166A2, EP533,348A2 ,EP209,422A2,EP536,918A2,EP92306649.2; and
英国专利文件:GB2,201,804A和GB2,124,362A。British patent documents: GB2,201,804A and GB2,124,362A.
相信下列专利文件与本申请有最大的相关性:The following patent documents are believed to be most relevant to this application:
下述专利号的美国专利:4,459,619,4,465,939,4,675,745,4,692,812,4,821,110,4,870,505,5,144,132,5,144,448,5,438,359和5,500,746。U.S. Patent Nos.: 4,459,619, 4,465,939, 4,675,745, 4,692,812, 4,821,110, 4,870,505, 5,144,132, 5,144,448, 5,438,359, and 5,500,746.
本发明的概述Summary of the invention
本发明的目的是提供一种以明显增大精度为特征的改进的物品检验系统与方法。It is an object of the present invention to provide an improved article inspection system and method characterized by significantly increased accuracy.
于是,根据本发明的一个优选实施例提供了一种图像获取系统,该系统包含多个传感器、一个预扫描定标子系统、和一个失真校正子系统,其中多个传感器中的每个传感器都含有多个传感器单元;预扫描定标子系统通过利用由多个传感器探测到的一个预定测试图案来提供一个关于多个传感器输出中的两维方向失真的输出指示,该输出指示被用来产生一个能映射至少二维方向上的由各传感器单元所“看到”的位置的函数;失真校正子系统能在多个传感器扫描物品时利用输出指示来校正失真。Accordingly, a preferred embodiment of the present invention provides an image acquisition system comprising a plurality of sensors, a pre-scan calibration subsystem, and a distortion correction subsystem, wherein each of the plurality of sensors is Contains a plurality of sensor units; the pre-scan calibration subsystem provides an output indication of two-dimensional directional distortion in the output of the plurality of sensors by utilizing a predetermined test pattern detected by the plurality of sensors, the output indication being used to generate A function that maps the location "seen" by each sensor unit in at least two dimensions; the distortion correction subsystem can use the output indications to correct for distortion as the multiple sensors scan the item.
根据本发明的另一个优选实施例,多个传感器包含多个具有不同光谱灵敏度的传感器。According to another preferred embodiment of the invention, the plurality of sensors comprises a plurality of sensors with different spectral sensitivities.
根据本发明的又一个优选实施例,多个传感器至少包含两个具有大体相同的光谱灵敏度的传感器。According to yet another preferred embodiment of the present invention, the plurality of sensors comprises at least two sensors having substantially the same spectral sensitivity.
根据本发明再一个优选实施例,多个传感器至少包含两个至少在一个方向上至少是部分重叠的传感器。According to yet another preferred embodiment of the present invention, the plurality of sensors includes at least two sensors that are at least partially overlapped in at least one direction.
根据本发明的再一个优选实施例,预扫描定标子系统能以亚像元(sub-pixel)精度工作。According to yet another preferred embodiment of the present invention, the pre-scan calibration subsystem is capable of operating with sub-pixel precision.
根据本发明的再一个优选实施例,失真校正子系统对多个传感器的输出中的像元进行非零级的插值。According to yet another preferred embodiment of the present invention, the distortion correction subsystem performs non-zero order interpolation on the pixels in the outputs of the plurality of sensors.
根据本发明的再一个优选实施例,失真校正子系统能补偿多个传感器中像元尺寸的变化。In accordance with yet another preferred embodiment of the present invention, the distortion correction subsystem is capable of compensating for variations in pixel size across multiple sensors.
根据本发明的再一个优选实施例,失真校正子系统能补偿多个传感器中放大率的变化。According to yet another preferred embodiment of the present invention, the distortion correction subsystem is capable of compensating for variations in magnification among multiple sensors.
根据本发明的再一个优选实施例,失真校正子系统能补偿多个传感器中的色差。According to yet another preferred embodiment of the present invention, the distortion correction subsystem is capable of compensating for chromatic aberration among multiple sensors.
根据本发明的再一个优选实施例,多个传感器包含多个具有不同光谱灵敏度的传感器,并且上述函数取决于对具有不同光谱灵敏度的传感器所采用的不同累积时间。According to yet another preferred embodiment of the present invention, the plurality of sensors comprises a plurality of sensors with different spectral sensitivities, and the above function depends on different integration times applied to the sensors with different spectral sensitivities.
根据本发明的再一个优选实施例,失真校正子系统能补偿多个传感器中像元形状的变化。According to yet another preferred embodiment of the present invention, the distortion correction subsystem is capable of compensating for variations in the shape of the pixels in the plurality of sensors.
根据本发明的再一个优选实施例,失真校正子系统能以优于多个传感器单元像元尺寸的5%的精度工作。According to yet another preferred embodiment of the present invention, the distortion correction subsystem is capable of operating with an accuracy better than 5% of the pixel size of the plurality of sensor units.
根据本发明的一个优选实施例还提供了一种图像获取系统,该系统包含:多个传感器,一个预扫描定标子系统和一个失真校正系统,其中多个传感器中的每个传感器都含有多个传感器单元;预扫描定标子系统通过利用一个由多个传感器探测的预定测试图案来提供一个关于多个传感器输出中的失真的输出指标,该输出指示被用来产生一个校正函数;失真校正系统能在多个传感器扫描物品时利用输出指示来校正失真,并且以优于多个传感器单元的像元尺寸的5%的精度工作。According to a preferred embodiment of the present invention, there is also provided an image acquisition system, the system includes: a plurality of sensors, a pre-scan calibration subsystem and a distortion correction system, wherein each sensor in the plurality of sensors contains multiple sensor units; the pre-scan calibration subsystem provides an output indicator of distortion in the output of multiple sensors by utilizing a predetermined test pattern detected by multiple sensors, and the output indication is used to generate a correction function; distortion correction The system can use the output indications to correct for distortion as multiple sensors scan an item, and works with an accuracy better than 5% of the pixel size of the multiple sensor units.
根据本发明的一个优选实施例还提供了一种图像获取系统,该系统包含:多个传感器、一个预扫描定标子系统和一个失真校正子系统,其中预扫描定标子系统通过利用一个由多个传感器探测的、沿一个相对运动方向相对于多个传感器运动的预定测试图案来提供一个关于多个传感器输出中的失真的输出指示,并且该预扫描定标子系统能通过对多个传感器所“看到”的测试图案上的至少一个目标的图像进行相关来确定多个传感器的相对方位;失真校正子系统能利用该输出指示来校正失真。According to a preferred embodiment of the present invention, there is also provided an image acquisition system, the system includes: a plurality of sensors, a pre-scan calibration subsystem and a distortion correction subsystem, wherein the pre-scan calibration subsystem utilizes a A predetermined test pattern detected by the plurality of sensors moving relative to the plurality of sensors in a direction of relative motion to provide an output indication of distortion in the output of the plurality of sensors, and the pre-scan calibration subsystem is capable of The "seen" image of at least one target on the test pattern is correlated to determine the relative orientation of the plurality of sensors; the distortion correction subsystem can use this output indication to correct for distortion.
根据本发明的另一个优选实施例,预扫描定标子系统还能提供一个关于多个传感器相对于扫描方向的方位的输出指示。According to another preferred embodiment of the present invention, the pre-scan calibration subsystem is also capable of providing an output indicative of the orientation of the plurality of sensors relative to the scan direction.
根据本发明的又一个优选实施例,多个传感器中的每个传感器都含有多个传感器单元,并且预扫描定标子系统还能确定每个传感器的每个传感器单元的像元尺寸特性。According to yet another preferred embodiment of the present invention, each sensor of the plurality of sensors contains a plurality of sensor units, and the pre-scan calibration subsystem is also capable of determining pixel size characteristics of each sensor unit of each sensor.
根据本发明的再一个优选实施例,预扫描定标子系统能通过使多个传感器去“观看”形成在测试图案上的由多条平行等间距线条组成的一个光栅来确定每个传感器的每个传感器单元的像元尺寸特性。In accordance with yet another preferred embodiment of the present invention, the pre-scan calibration subsystem is capable of determining each sensor's value by causing the sensors to "look" at a grating of parallel, equally spaced lines formed on the test pattern. The pixel size characteristics of a sensor unit.
根据本发明的一个优选实施例还提供了一种图像获取系统,该系统包含:多个传感器、一个预扫描定标子系统和一个失真校正子系统,其中多个传感器中的每个传感器都含有多个传感器单元;预扫描定标子系统通过利用一个由多个传感器探测的预定测试图案来提供一个关于多个传感器输出中的两维失真的输出指示,该输出指示被用来产生一个能映射至少两个方向上的传感器单元所“看到”的位置;失真校正子系统能在多个传感器扫描一个物品时利用该输出指示来校正失真。According to a preferred embodiment of the present invention, there is also provided an image acquisition system, the system includes: a plurality of sensors, a pre-scan calibration subsystem and a distortion correction subsystem, wherein each sensor in the plurality of sensors contains multiple sensor units; the pre-scan calibration subsystem provides an output indication of two-dimensional distortions in the multiple sensor outputs by utilizing a predetermined test pattern detected by the multiple sensors, which is used to generate an energy map The position "seen" by the sensor unit in at least two directions; the distortion correction subsystem can use this output indication to correct for distortion when multiple sensors scan an item.
根据本发明的另一个实施例,失真校正子系统能采用一个用户可选的像元尺寸。According to another embodiment of the present invention, the distortion correction subsystem can employ a user-selectable pixel size.
根据本发明的一个优选实施例还提供了一种物品检验系统,它包含一个图像获取子系统、一个图像分析子系统和一个输出指示子系统,其中图像获取子系统用于获取一个被检物品的图像;图像分析子系统用于从图像中识别出物品的至少一个预定特性;输出指示子系统用于提供一个关于存在物品的至少一个预定特性的输出指示,其特征在于,相机组件包含:多个传感器组件、自定标设备和传感器输出修正设备,其中自定标设备用于确定各个传感器组件之间的几何关系;传感器输出修正设备用于根据各个传感器组件之间的几何关系来修正多个传感器组件的输出,并且该传感器输出修正设备含有能对多个传感器组件输出中的像元进行非零级插值的电子插值设备。According to a preferred embodiment of the present invention, an article inspection system is also provided, which includes an image acquisition subsystem, an image analysis subsystem and an output indication subsystem, wherein the image acquisition subsystem is used to obtain an image of an inspected article image; an image analysis subsystem for identifying at least one predetermined characteristic of the item from the image; an output indication subsystem for providing an output indication of the presence of at least one predetermined characteristic of the article, characterized in that the camera assembly comprises: a plurality of A sensor assembly, a self-calibration device, and a sensor output correction device, wherein the self-calibration device is used to determine the geometric relationship between the various sensor components; the sensor output correction device is used to correct multiple sensors according to the geometric relationship between the various sensor components The output of the sensor assembly, and the sensor output correction device includes an electronic interpolation device capable of performing non-zero order interpolation on pixels in the output of the plurality of sensor assemblies.
根据本发明的一个优选实施例还提供了一种物品检验系统,该系统包含:一个图像获取子系统,一个图像分析子系统、和一个输出指示子系统,其中图像获取子系统用于获取一个被检物品的图像;图像分析子系统用于从图像中识别出物品的至少一个预定特性;输出指示子系统用于提供一个关于存在物品的至少一个预定特性的输出指示,其特征在于,相机组件包含:多个传感器组件、自定标设备和传感器输出修正设备,其中自定标设备用于确定各个传感器组件之间的几何关系;传感器输出修正设备用于根据各个传感器组件之间的几何关系来修正多个传感器组件的输出,并且该传感器输出修正设备能以亚像元的精度来修正多个传感器组件的输出。According to a preferred embodiment of the present invention, there is also provided an item inspection system, the system includes: an image acquisition subsystem, an image analysis subsystem, and an output indication subsystem, wherein the image acquisition subsystem is used to acquire a An image of the inspected item; the image analysis subsystem is used to identify at least one predetermined characteristic of the article from the image; the output indication subsystem is used to provide an output indication of the presence of at least one predetermined characteristic of the article, wherein the camera assembly includes : a plurality of sensor components, self-calibration equipment and sensor output correction equipment, wherein the self-calibration equipment is used to determine the geometric relationship between the various sensor components; the sensor output correction equipment is used to correct the geometric relationship between the various sensor components Outputs of multiple sensor components, and the sensor output correction device can correct the outputs of multiple sensor components with sub-pixel precision.
根据本发明的一个优选实施例还提供了一种物体检验系统,该系统包含:一个图像获取子系统、一个图像分析子系统和一个输出指示子系统,其中图像获取子系统用于获取一个被检物品的图像;图像分析子系统用于从图像中识别出物品的至少一个预定特性;输出指示系统用于提供一个关于存在物品的至少一个预定特性的输出指示,其特征在于,相机组件包含至少一个传感器组件和传感器输出修正设备,其中传感器输出修正设备用于至少部分地根据与至少一个传感器组件相关的一个光学失真来修正至少一个传感器组件的至少一个输出。A preferred embodiment of the present invention also provides an object inspection system, which includes: an image acquisition subsystem, an image analysis subsystem, and an output indication subsystem, wherein the image acquisition subsystem is used to acquire an inspected an image of the item; an image analysis subsystem for identifying at least one predetermined characteristic of the item from the image; an output indication system for providing an output indication of the presence of the at least one predetermined characteristic of the item, characterized in that the camera assembly comprises at least one A sensor assembly and a sensor output correction device, wherein the sensor output correction device is for modifying at least one output of the at least one sensor assembly based at least in part on an optical distortion associated with the at least one sensor assembly.
根据本发明另一个优选实施例,该光学失真包含像元尺寸失真。According to another preferred embodiment of the present invention, the optical distortion includes pixel size distortion.
根据本发明的又一个优选实施例,该光学失真包含放大率失真。According to yet another preferred embodiment of the present invention, the optical distortion comprises magnification distortion.
根据本发明的再一个优选实施例,该光学失真包含色差。According to yet another preferred embodiment of the present invention, the optical distortion comprises chromatic aberration.
根据本发明的再一个优选实施例,该光学失真包含重叠失配。According to yet another preferred embodiment of the present invention, the optical distortion comprises an overlay mismatch.
根据本发明的再一个优选实施例,该光学失真包含因传感器分离所造成的像元偏移。According to yet another preferred embodiment of the present invention, the optical distortion includes pixel shift caused by sensor separation.
根据本发明的再一个优选实施例,该光学失真包含对各种颜色成份的对焦不一致。According to yet another preferred embodiment of the present invention, the optical distortion includes focus inconsistency for various color components.
根据本发明的再一个优选实施例,该光学失真包含对各种颜色累积偏移。According to yet another preferred embodiment of the present invention, the optical distortion comprises cumulative shifts for the various colors.
根据本发明的一个优选实施例还提供了一种物品检验系统,该系统包含:一个图像获取子系统,一个图像分析子系统和一个输出指示子系统,其中图像获取子系统用于获取一个被检物品的图像;图像分析子系统用于从图像中识别出该物品的至少一个预定特性;输出指示系统用于提供一个关于存在物品的至少一个预定特性的输出指示,其特征在于,相机组件至少包含一个传感器组件和传感器输出修正设备,其中传感器输出修正设备用于修正至少一个传感器的至少一个输出,并且该传感器输出修正设备含有一个用于产生一个能把传感器组件上的位置映射到一组扫描位置的函数的函数发生器。According to a preferred embodiment of the present invention, there is also provided an article inspection system, the system includes: an image acquisition subsystem, an image analysis subsystem and an output indication subsystem, wherein the image acquisition subsystem is used to acquire an inspected an image of an item; an image analysis subsystem for identifying at least one predetermined characteristic of the item from the image; an output indication system for providing an output indication of the presence of at least one predetermined characteristic of the item, characterized in that the camera assembly comprises at least A sensor assembly and sensor output correction device, wherein the sensor output correction device is adapted to correct at least one output of at least one sensor, and the sensor output correction device includes a sensor for generating a map capable of mapping a position on the sensor assembly to a set of scan positions A function generator for functions of .
根据本发明的一个优选实施例还提供了一个物品检验系统,该系统包含:一个相机组件、一个图像分析子系统和一个输出指示子系统,其中相机组件用于获取一个被检物品的图像;图像分析子系统用于从图像中识别出物品的至少一个预定特性;输出指示子系统用于提供一个关于存在物品的至少一个预定特性的输出指示,其特征在于,相机组件包含:一个使用户能够选择相机组件所获取图像的分辨率的用户界面、一个电光传感器组件和一个工作于电光传感器组件的下游一侧的电子分辨率修改器。According to a preferred embodiment of the present invention, an article inspection system is also provided, which includes: a camera assembly, an image analysis subsystem and an output indication subsystem, wherein the camera assembly is used to obtain an image of an inspected article; the image an analysis subsystem for identifying at least one predetermined characteristic of the item from the image; an output indication subsystem for providing an output indication of the presence of the at least one predetermined characteristic of the article, characterized in that the camera assembly comprises: a A user interface for the resolution of images acquired by the camera assembly, an electro-optic sensor assembly, and an electronic resolution modifier operating on the downstream side of the electro-optic sensor assembly.
根据本发明的另一个优选实施例,相机组件能根据用户界面上的分辨率选择来确定图像的像元尺寸。According to another preferred embodiment of the present invention, the camera component can determine the pixel size of the image according to the resolution selection on the user interface.
附图的简单说明A brief description of the drawings
通过下面组合附图的详细说明,可以更充分地理解和认同本发明,在附图中:Through the following detailed description combined with accompanying drawings, the present invention can be more fully understood and recognized, in the accompanying drawings:
图1是说明根据本发明的一个优选实施例构建和工作的一个物品检验系统的简化方框图;Figure 1 is a simplified block diagram illustrating an article inspection system constructed and operative in accordance with a preferred embodiment of the present invention;
图2是一个优选测试图案的各个部分的简化说明,其中有一些部分没有按比例画出,该图还示出了各个“观看”该测试图案的线型传感器的视场的简化表示;Fig. 2 is a simplified illustration of various parts of a preferred test pattern, some of which are not drawn to scale, which also shows a simplified representation of the field of view of each line sensor "viewing" the test pattern;
图3是说明图1系统一个构成部分映射函数发生器电路的简化方框图;Figure 3 is a simplified block diagram illustrating a mapping function generator circuit which is a constituent part of the system of Figure 1;
图4A是说明图3映射函数发生器电路的像元尺寸和形状确定功能的操作的简化流程图;Figure 4A is a simplified flowchart illustrating the operation of the pixel size and shape determination function of the mapping function generator circuit of Figure 3;
图4B是说明图4A功能所处理的几何失真的简图;Figure 4B is a diagram illustrating the geometric distortion handled by the function of Figure 4A;
图4C是图4A流程图中所说明功能的半图形半曲线图简化说明;FIG. 4C is a simplified semi-graphical, semi-curvilinear illustration of the functionality illustrated in the flowchart of FIG. 4A;
图5A是说明图3映射函数发生器电路的测试图案角度确定功能的操作的简化流程图;5A is a simplified flowchart illustrating the operation of the test pattern angle determination function of the mapping function generator circuit of FIG. 3;
图5B是说明图5A功能所处理的几何失真的简图;Figure 5B is a diagram illustrating the geometric distortion handled by the function of Figure 5A;
图5C是图5A流程图中所说明功能的半图形半曲线图简化说明;FIG. 5C is a simplified semi-graphical, semi-curvilinear illustration of the functionality illustrated in the flowchart of FIG. 5A;
图6A是说明由图3映射函数发生器电路的“传感器视场边缘测试图案目标图像相关”功能所执行的“传感器相对方位确定”操作的简化流程图;6A is a simplified flowchart illustrating the "sensor relative orientation determination" operation performed by the "sensor field edge test pattern target image correlation" function of the mapping function generator circuit of FIG. 3;
图6B是说明图6A功能所处理的几何失真的简图;Figure 6B is a diagram illustrating the geometric distortion handled by the function of Figure 6A;
图6C是图6A流程图中所说明功能的半图形半曲线简化说明;Figure 6C is a semi-graphical, semi-curvilinear simplified illustration of the functionality illustrated in the flowchart of Figure 6A;
图7A是说明由图3映射函数发生器电路的“相邻图像相关”功能所执行的“传感器X重叠和Y偏移确定”操作的简化流程图;7A is a simplified flow diagram illustrating the "Sensor X Overlap and Y Offset Determination" operation performed by the "Adjacent Image Correlation" function of the mapping function generator circuit of FIG. 3;
图7B是说明图7A功能所处理的几何失真的简图;Figure 7B is a diagram illustrating the geometric distortion handled by the function of Figure 7A;
图7C是说明图7A流程图中所说明功能的简图;Figure 7C is a diagram illustrating the functionality illustrated in the flowchart of Figure 7A;
图8A是说明图3映射函数发生器电路的“多色X和Y偏移确定”功能的操作的简化流程图;Figure 8A is a simplified flowchart illustrating the operation of the "Multicolor X and Y Offset Determination" function of the mapping function generator circuit of Figure 3;
图8B是说明图8A功能所处理的几何失真的简图;Figure 8B is a diagram illustrating the geometric distortion handled by the function of Figure 8A;
图8C是说明图8A流程图中所说明功能的简图;Figure 8C is a diagram illustrating the functionality illustrated in the flowchart of Figure 8A;
图9A和9B的组合是说明实现图1系统构成部分的映射函数发生器电路的一个优选方法的简化流程图;The combination of Figures 9A and 9B is a simplified flow diagram illustrating a preferred method of implementing the mapping function generator circuit of the system components of Figure 1;
图10A是说明在理想条件下由多个相机获取一个目标图像的简图;FIG. 10A is a diagram illustrating acquisition of an object image by multiple cameras under ideal conditions;
图10B是说明用于存储图10A中获取的图像的图像缓存器的简图;Figure 10B is a diagram illustrating an image buffer for storing the image acquired in Figure 10A;
图11A是说明获取一个目标图像的多个相机的视场是互相偏扭和重叠的简图;FIG. 11A is a diagram illustrating that fields of view of multiple cameras capturing an image of an object are mutually skewed and overlapped;
图11B是说明用于存储图11A中获取的图像的图像缓存器的简图;FIG. 11B is a diagram illustrating an image buffer for storing the image acquired in FIG. 11A;
图12是一个帮助理解图1中图像校正电路110的Y重采样功能的简图;FIG. 12 is a diagram to help understand the Y resampling function of the image correction circuit 110 in FIG. 1;
图13和14的组合是帮助理解图1中图像校正电路110的重叠校正功能的简图;The combination of Figures 13 and 14 is a simplified diagram to help understand the overlap correction function of the image correction circuit 110 in Figure 1;
图15和16的组合是帮助理解图1中图像校正电路110的X重采样功能的简图;以及The combination of Figures 15 and 16 is a simplified diagram to help understand the X resampling function of the image correction circuit 110 in Figure 1; and
图17是帮助理解图1中图像校正电路110的累积偏移校正功能的特性的简图。FIG. 17 is a diagram to help understand the characteristics of the cumulative offset correction function of the image correction circuit 110 in FIG. 1 .
优选实施例的详细说明Detailed Description of the Preferred Embodiment
现在参见图1,这是说明一个根据本发明的一个优选实施例构建和工作的检验系统的简化方框图。图1的检验系统包括一个传感器阵列100,该阵列典型地包含多个多像元线型传感器,这些线型传感器的方位使得它们的视场部分地重叠并且互相偏扭地排列,从而是需要校正的。典型地,这些多像元线型传感器被安装在一个带有电子快门的相机例如一个CCD相机内。Referring now to FIG. 1, there is shown a simplified block diagram illustrating a test system constructed and operative in accordance with a preferred embodiment of the present invention. The inspection system of FIG. 1 includes a sensor array 100, which typically includes a plurality of multi-pixel line sensors oriented such that their fields of view partially overlap and are arranged offset from each other, thereby requiring calibration. of. Typically, these multi-pixel line sensors are mounted in a camera with an electronic shutter such as a CCD camera.
一个传送带102让一个被检物品沿箭头104所示的传送方向通过传感器阵列100。或者,也可以通过使传感器阵列100移动来提供对整个被检物品的扫描。用一个映射函数发生器106来在传感器阵列100探测一个测试图案108的同时接收传感器阵列100的输出。映射函数发生器106向校正电路110提供一个校正输出,后者将利用映射函数发生器106所产生的映射函数。电路110在一个例如印刷电路板111这样的被检物品正被传感器阵列100检验时将接收该阵列100的输出。A conveyor belt 102 passes an inspected item through the sensor array 100 in a conveying direction indicated by
应该指出,在正常情况下,当开始进行一系列检验操作时,为了让映射函数发生器106能产生为校正电路110的输出所需的信息。需要先用传感器阵列100来检验测试图案108。然后就可以检验多个待检物品,不过,其后在检验这些物品的过程中间,还可以再次用传感器阵列100对测试图案108进行检验,以提供更新的定标。在检验系统连续操作的情况下,最好每个月对测试图案108检验一次。It should be noted that, under normal circumstances, when a series of verification operations is started, in order for the
图像校正电路110能利用从映射函数发生器106接收到的校正输出来校正从传感器阵列100接收到的输出,并向分割电路112提供一个校正的传感器阵列输出。分割电路112提供一个分割输出指示,典型地,该指示把由校正的传感器阵列输出所代表的物品图像上的全部区域区分成两类中的一类。例如,对于检验印刷电路板的情况,由校正的传感器阵列输出所代表的图像上的每个位置都将被分割输出指示区分成底板或铜。Image correction circuit 110 can use the correction output received from
分割电路112产生的分割输出指示被提供给图像处理电路114。图像处理电路114最好是一个基于形态学的系统,但也可以是一个基于比特图、网表、或任何其他适当输入的系统。电路114将提供一个图像处理输出,该输出指明了由校正的传感器阵列输出所代表的图像的各种特征以及这些特征的位置。对于印刷的电路板情形,这些特征典型地是衬垫、导体连接点、开路端和其他印刷的电路板元件。Segmentation output indications generated by segmentation circuitry 112 are provided to image processing circuitry 114 . Image processing circuit 114 is preferably a morphology based system, but could also be a bitmap, netlist, or any other suitable input based system. Circuitry 114 will provide an image processing output that specifies the various features of the image represented by the corrected sensor array output and the locations of those features. In the case of a printed circuit board, these features are typically pads, conductor connections, opens and other printed circuit board elements.
电路141的图像处理输出被提供给特征登记电路116,后者将根据一个参考输入源118所提供的信息把电路114的图像处理输出的坐标系统映射到一个特征参考坐标系统上。The image processed output of circuit 141 is provided to feature registration circuit 116 which will map the coordinate system of the image processed output of circuit 114 onto a feature reference coordinate system based on information provided by a reference input source 118 .
登记电路116的输出和参考输入源118的输出都被提供给特征比较电路120,后者将把映射的电路114图像处理输出与一个存储在源118中的参考相比较,并提供一个缺陷指示,该缺陷指示又被提供给一个缺陷指示输出发生器122。Both the output of registration circuit 116 and the output of reference input source 118 are provided to feature comparison circuit 120, which will compare the mapped circuit 114 image processing output with a reference stored in source 118 and provide a defect indication, The defect indication is in turn provided to a defect indication output generator 122 .
现在参见图2,这是一个说明一个优选测试图案108的各个部分的简图,其中有些部分没有按比例画出,该图还简单地示出了“观看”测试图案108的传感器阵列100(图1)中的各个线型传感器124的视场。典型地,测试图案108包括:由一些平行等间距的倾斜线132组成的一行光栅130、一个带有一个倾斜边182的角方位确定器134、和一个LOR 136的阵列,该阵列最好位于每个相机124的视场边缘。其中“LOR”代表“许多矩形”,用来表示多个不同尺寸的矩形,如图中代号为138的放大图所示。各个LOR 136用来实现对传感器阵列100(图1)所“看到”的一个物体图像的相对定位。Referring now to FIG. 2, this is a simplified diagram illustrating various portions of a preferred test pattern 108, some of which are not drawn to scale, and simply shows the sensor array 100 "viewing" the test pattern 108 (Fig. 1) The field of view of each
等间距平行倾斜线132相对于传送方向104最好有一个正切值约为0.05的小夹角φ。角方位确定器134的形状最好接近于一个矩形,但其一条边线最好与传送方向104之间有一个正切值约为0.0156的小夹角β。The equally spaced parallel inclined lines 132 preferably have a small included angle φ with a tangent value of about 0.05 with respect to the conveying
现在参见图3,这是一个说明图1中映射函数发生器106的简化方框图。代表正在被传感器阵列100(图1)检验的测试图案108(图1和2)上目标图像的输出200被提供给映射函数发生器106,后者将执行以下功能:Referring now to FIG. 3, there is a simplified block diagram illustrating
对于单种颜色执行“像元尺寸和形状函数确定”202;Perform "cell size and shape function determination" 202 for a single color;
“测试图案角度确定”204;"Test Pattern Angle Determination" 204;
通过对“传感器视场边缘”处的“测试图案目标(最好是各个LOR 136(图2))的图像相关”进行“传感器相对方位确定”206;"Sensor relative orientation determination" 206 by "image correlation of test pattern targets (preferably individual LORs 136 (FIG. 2))" at the "edge of sensor field of view";
通过“相邻图像相关”进行“传感器X重叠和Y偏移确定”208;以及"Sensor X Overlap and Y Offset Determination" 208 by "Neighboring Image Correlation"; and
对于多种颜色执行“X和Y偏移确定”210。"X and Y Offset Determination" 210 is performed for multiple colors.
这样确定出来的各个参数被提供给一个几何多项式发生器在212,后者最好能提供一个可以映射至少两个方向上的传感器阵列100(图1)的各个单元所“看到”的位置的函数。The parameters thus determined are provided to a geometric polynomial generator at 212, which preferably provides a polynomial that maps the positions "seen" by elements of the sensor array 100 (FIG. 1) in at least two directions. function.
几何多项式发生器212的输出被提供给图像校正电路110。The output of geometric
现在参见图4A和4B,其中图4A是一个说明图3中“像元尺寸和形状函数确定”电路202的操作的简化流程图,图4B是一个说明要求由电路202的功能来校正的失真的简图。Referring now to FIGS. 4A and 4B, wherein FIG. 4A is a simplified flowchart illustrating the operation of the "pixel size and shape function determination"
从图4B可以看到,在具有给定视场角φ的相机124的视场中,相机24所“看到”的同样图形的表观尺寸将会因图形位置的不同而不同。这样,如图所示,一个位于相机正前方并且对相机的张角等于相机视场角的“轴上”图形140“看起来”具有d个像元的宽度,而位于视场边缘处的一个同样图形142则并不具有等于相机视场角的张角,“看到”的宽度为d-Δ个像元。It can be seen from FIG. 4B that in the field of view of the
现在再参考图4C来考虑图4A,可以看出,测试图案108(图2)中由等间距平行倾斜线条132组成的光栅行130可以被多个相机124所“看到”,图4C只示出了其中的一个相机。每个相机124都将获取关于行130的一部分的一个图像,图中代号150示出了其局部放大图。为了计算尺寸和像元形状函数,最好用一种单一颜色,例如红色,来获取图像。或者,也可以用几种颜色来获取图像,而用其中一种颜色来计算尺寸和像元形状。对于每个图像,测量出线条132的图像相对于传送方向104的夹角ψ。这些线条图像用代号152标注。行130中每对相邻线条132之间的间距是固定且预先确定的;并且相对于任意选定的一条线条132来说,行130中每条线条132沿着一个垂直于传送方向104的轴105的位置是已知的。一条典型线条的位置由代号154标注。Considering FIG. 4A now with reference to FIG. 4C, it can be seen that the grating rows 130 consisting of equally spaced parallel sloped lines 132 in the test pattern 108 (FIG. 2) can be “seen” by
曲线图160代表当各个相机124沿着一个与轴105成ψ角的方向扫描行130时(也即当图像以ψ投影在X轴上时),这些相机的输出的总和。可以看出每条线条152在曲线160上都产生一个局部极小点。相机输出中相邻线条152的间距可以通过测量相邻的每个局部极小值前面的拐点154’之间的距离来确定,其中154’代表对应于线条位置154的拐点。曲线图160的X轴代表相机124的一个线型二极管阵列中每个起始二极管的号码,Y轴代表沿着与方向105有夹角ψ的方向扫描的图像的强度L的和值。Graph 160 represents the sum of the outputs of
利用测试图案中各线条132之间是等距离的已知知识,可以把线条152的位置变化映射成二极管号码的一个函数,以此来指明相机124输出图像中存在的失真和所需的校正。这一映射由曲线图170给出,该曲线是一个代表尺寸和形状函数的三次函数的最小二乘拟合曲线,其中的Y轴标注以“POS”,其上的“154”代表了线条位置154距任意选定线条132的距离,X轴代表了相机124中的二极管号码。这个函数可以表示为Using the knowledge that the lines 132 in the test pattern are equidistant from each other, the change in position of the lines 152 can be mapped as a function of the number of diodes to indicate the presence of distortion in the
sn(d)=s1d+s2d2+s3d3 s n (d)=s 1 d+s 2 d 2 +s 3 d 3
其中n代表相机号码,s1至s3是三个待定系数,d是对应于每个相机n的二极管计数的二极管号码。where n represents the camera number, s 1 to s 3 are three undetermined coefficients, and d is the diode number corresponding to the diode count of each camera n.
现在参见图5A和5B,其中图5A是一个说明图3中“测试图案角度确定”电路204的操作的简化流程图,图5B是一个说明要求用电路204的功能去校正的失真的简图。Referring now to FIGS. 5A and 5B, wherein FIG. 5A is a simplified flowchart illustrating the operation of the "test pattern angle determination"
如图5B所示,在实际中,通常整个测试图案目标108并不完全对准于传送方向104,而是偏移了一个角度α。As shown in FIG. 5B , in practice, usually the entire test pattern target 108 is not perfectly aligned with the conveying
现在再参考图5C来考虑图5A,测试图案108被相机724“观看”,该图案108中包括了一个角方位确定器134,其一条边线182相对于测试图案中的其他图形有一个特征角β。相机124获取角方位确定器134的一个图像,图5C中代号184示出了其放大的图形。Referring now to FIG. 5A again with reference to FIG. 5C, the test pattern 108 is "viewed" by the camera 724 and includes an
根据对图像每条扫描线的测量,用普通技术计算出角方位确定器的图像的倾斜边线186的特征角β*。计算得到的特征角β*相对于角β的偏离代表了角α的值,可表示为β*-β=α。这样确定出来的偏离将用于电路和110(图1)的校正。From the measurements for each scan line of the image, the characteristic angle β * of the slanted edge 186 of the image of the angular orientation determiner is calculated using conventional techniques. The calculated deviation of the characteristic angle β * relative to the angle β represents the value of the angle α, which can be expressed as β * -β=α. The offset thus determined is used in the calibration of circuit sum 110 (FIG. 1).
现在参考图6A和6B,其中图6A是说明由图3中“传感器视场边缘处测试图案目标图像相关”电路206所执行的“传感器相对方位确定”操作的简化流程图,图6B是一个说明要求用电路206的功能去校正的失真的简图。Referring now to FIGS. 6A and 6B , wherein FIG. 6A is a simplified flow diagram illustrating the operation of “relative sensor orientation determination” performed by the “test pattern target image correlation at edge of sensor field of view”
如图6B所示,各个相机124所“看到”的视场162不是对准在一条直线上或“共线”的,而是互相偏扭和部分重叠的(图中有所夸大)。这种偏扭可以用各个相机的视场轴与一个垂直于运动方向104的轴308之间的夹角θ1至θ3的计算。这里参考图6A-6C要说明的功能是校正各相机视场的相对偏扭失真,下面将参考图7A-7C和电路208(图3)要说明的功能是解决由运动方向104所确定的部分X重叠和Y偏移问题。As shown in FIG. 6B , the fields of
现在再参考图6C来考虑图6A,图6C示出有多个相机124“观看”着一个测试图案目标,该目标最好包括一个由一些LOR 136组成的行300,这个行300相对于角确定器134的边线182的角方位是已知的。行300中的各个LOR 136最好是共线的,并且行300最好平行于图案目标108的前边线。各个相机124获取行300的一部分的图像。“看到”的LOR最好位于各个相机124各自的视场边缘处。Considering FIG. 6A now with reference to FIG. 6C again, FIG. 6C shows a plurality of
图6C中用代号304和306示出其中一个相机124(例如相机1(CAM1))所“看到”的两个图像区域253的放大图,其中的两个图像区域253都用虚线框示出,并且各自包含一个不同的LOR 136。应该指出,由于CAM1视场的角度,造成了图像304与306之间的偏移关系,包括y偏移即图6C中所示的ΔyANG。这个偏移被确定出来,并用来计算CAM1的视场轴与LOR行300之间的夹角θ*。计算θ*的公式为θ*=arctan(ΔyANG/Lx),其中Lx为两个相邻LOR之间的纵向间距。可以用这种方法计算出每个相机124的θ*角,并把它们存储下来供后面使用。An enlarged view of two
现在参见图7A和7B,其中图7A是说明由图3中“相邻图像相关”208所执行的“传感器的X重叠和Y偏移确定”操作的简化流程图,图7B是一个说明要求由电路208的功能去校正的失真的简图。Referring now to FIGS. 7A and 7B , wherein FIG. 7A is a simplified flowchart illustrating the operation of "X overlap and Y offset determination of sensors" performed by "Neighboring Image Correlation" 208 in FIG. A schematic diagram of the function of
类似于图6B,从图7B可以看出,各个相机124所“看到”视场162不是对准成一直线或“共线的”,而是在Y方向(这里与方向104相同),上互相偏扭和偏移,在X方向(这里垂直于方向104)上有部分重叠(这里有所夸大)。这里参考图7A-7C所说明的功能是要解决各相机124的视场的偏移问题。Similar to FIG. 6B , it can be seen from FIG. 7B that the fields of
现在再参考图7C来考虑图7A,图7C示出有多个相机124在“观看”着测试图案目标108,与图6C一样,该图案108最好含有一个由一些LOR 136组成的行300。每个相邻相机124获取包含了相同LOR的行300的一部分的图像。Consider Fig. 7A again now with reference to Fig. 7C, Fig. 7C shows that a plurality of
可以利用一个由两个相信相机124获取的图像区253来确定X重叠和Y偏移。图7C中以代号354示出了两个相邻相机124所“看到”的含有一个LOR 136的图像区253的两个放大图像。可以看出,区253的两个放大像是互相偏移、互相重叠的关系,而这两个图像中的LOR是精确重叠对准的。应该指出,由于这两个图像的这种重叠关系,产生了y偏移Δyov和x偏移Δxov,这两个偏移量均以像元为单位表示。然后可以利用前面参考图4A-4C所说明的像元尺寸和形状函数把Δxov转换成公制单位,表示为mΔxov。x方向上的重叠量OVx可以表示为w-mΔxov,其中w为每个图像的公制宽度。通过把Δyov乘上一个Y方向104上的预定像元尺寸便可把Δyov转换成公制单位。The X overlay and Y offset can be determined using an
现在参考图8A和8B,其中图8A是一个说明图3中“多色X和Y偏移确定”电路210的操作的简化流程图,图8B是一个说明要由电路210的功能去校正的失真的简图。Referring now to FIGS. 8A and 8B, wherein FIG. 8A is a simplified flowchart illustrating the operation of the "multicolor X and Y offset determination"
图8B中示出了一个三色CCD相机380。典型地,相机380含有一个具有三个线型传感器阵列(例如384,386和388)的多行传感器382,其中各个线型传感器阵列互相平行地排列,每个阵列包括多个线型排列的单色传感二极管390。多行传感器382的各个二极管390可以合理地分成一些二极管组,每个组由三个二极管组成,这三个二极管分别属于线型传感器阵列384、386和388,各自探测一种不同的颜色。图中分别在相机380的中央和两端画出-三个这样的二极管组392,394和396。A three-
相机380“观看”着一个沿方向104运动的目标400上的一些单元398。典型地,多行传感器382所获取的图像被分别存储在三个缓存器402、404和406中,每个缓存器对应于一种特定的颜色。例如分别为红、绿和蓝色。代号408代表的是缓存器402、404和406的组合图。组合缓存器408示出了所获取的单元398的图像399、401和403。组合缓存器408的图像399、401和403表明了因色差所造成的X方向像元尺寸和形状失真410以及因R、G、B、(红、绿、蓝)线型传感器阵列的空间分离所造成的Y方向上的偏移412。
现在再参考图8C来参考图8A,图8C示出多个相机124正在“观看”着如图6C和7C所示那样的最好含有一个由一些LOR 136组成的行300的测试图案目标108。每个相机124最好获取其视场任一边缘处的一个LOR 136的多色图像,而在其视场的另一边缘处则获取一个相邻LOR 136的图像。Referring now to FIG. 8A again with reference to FIG. 8C, FIG. 8C shows a plurality of
最好分别地把各个相机在其视场边缘获取的每个多色图像的每种颜色关联起来。可以把某一颜色(例如红色)选作为参考颜色,而多色图像的另两种颜色成份则将与该参考颜色比较。在所示的例子中,用代号360示出了相机CAM1视场一个边缘处的图像区253的红色和绿色成分的放大图。其中示出区253的两个放大图像是互相偏移、互相重叠的关系,而其中的两个LOR则是精确重叠对准的。应该指出,由于两个图像之间的这种重叠关系,因不同颜色的线型传感器阵列的空间位置不同而将造成y偏移ΔyCOL,因色差将造成x偏移ΔxCOL,这两个偏移均以像元为单位。然后可以利用与前面参考图7C所说明的相同的方法,把ΔcCOL和ΔyCOL转换成公制单位。对于CAM1视场这一边缘处的图像区253的红色和蓝色成份,以及对于CAM1在其视场另一边缘处获取的相邻LOR的多色图像的红、绿成份和红、蓝成份,也可以用类似的方法进行比较(未示出)。Preferably, each color of each multicolor image acquired by each camera at the edge of its field of view is correlated separately. A certain color (such as red) can be selected as a reference color, and the other two color components of the multicolor image will be compared with this reference color. In the example shown, a magnification of the red and green components of the
现在参见图9A和9B,它们的组合构成了说明图3中几何多项发生器212的操作的简化流程图。利用前面组合图4A-8C所说明的202-210的输出,可以通过构建一个三次函数来确定各相机124的二极管的位置。对于每个相机124可构建出两组多项式:一组用于确定一个二极管在X方向上的位置的X多项式和一组用于确定Y方向上的位置的Y多项式。X多项式可表示为:Referring now to FIGS. 9A and 9B , which in combination form a simplified flowchart illustrating the operation of the geometric
Px(d)=a0+a1d+a2d2+a3d3 P x (d)=a 0 +a 1 d+a 2 d 2 +a 3 d 3
其中a0-a3是X多项式的各个系数。Y多项式可表示为:Where a 0 -a 3 are the respective coefficients of the X polynomial. The Y polynomial can be expressed as:
Py(d)=b0+b1dP y (d)=b 0 +b 1 d
其中b0和b1是Y多项式的系数。where b 0 and b 1 are the coefficients of the Y polynomial.
通过实验已经发现,把Y多项式表示为线性的就可以为二极管的Y位置提供足够的近似精度。It has been found through experimentation that expressing the Y polynomial as linear provides sufficient approximation accuracy for the Y position of the diode.
现在将较详细地说明确定X多项式的方法。The method of determining the X polynomial will now be described in more detail.
在图9A中,首先利用208(图3)中所确定的X重叠OVx来找出一行相机(例如图7C中的相机CAM1、CAM2、CAM3)中每个相机n的一种颜色(例如红色)的a0[n]。然后按照下述步骤根据第一种颜色的X多项式来导出其他颜色(如蓝色和绿色)的X多项式:In FIG. 9A , first use the X overlap OV x determined in 208 ( FIG. 3 ) to find a color (such as red ) of a 0 [n]. The X polynomials for other colors (such as blue and green) are then derived from the X polynomials for the first color as follows:
1)令a0[1]=0对于CAM11) Let a 0 [1]=0 for CAM1
2)沿着相机行依次对其后的每个相机n按下式确定a0:2) Determine a 0 for each subsequent camera n along the camera line according to the following formula:
a0[n]=a0[n-1]+(Sn-1(ND)-W)+OVx[n,n-1]a 0 [n]=a 0 [n-1]+(S n-1 (ND)-W)+OV x [n,n-1]
其中in
-ND是前一个相机n-1中的二极管数目;- ND is the number of diodes in the previous camera n-1;
-Sn-1(ND)是202中对相机n-1的最后一个像元估测的像元尺寸和形状函数输出的值;-S n-1 (ND) is the value output by the pixel size and shape function estimated for the last pixel of camera n-1 in 202;
-W是含有LOR的图像以公制单位表示的宽度;-W is the width in metric units of the image containing the LOR;
-OVx是206中确定的X方向重叠量。- OV x is the amount of overlap in the X direction determined in 206 .
3)把电路202(图3)确定的尺寸和形状函数输出所表示的系数S1、S2、S3分别指定为X多项式的a1、a2、a3。3) Designate the coefficients S1, S2, S3 represented by the size and shape function outputs determined by the circuit 202 (FIG. 3) as a 1 , a 2 , a 3 of the X polynomial, respectively.
按照下列公式,通过组合电路210(图3)所确定的红-绿、红-蓝X偏移量和对红色成份确定的X多项式(a0,a1,a2,a3)红来产生绿色X多项式的a0-a3值: Red is generated by combining the red-green and red-blue X offsets determined by circuit 210 (FIG. 3) and the X polynomial (a 0 , a 1 , a 2 , a 3 ) determined for the red component according to the following formula: a 0 -a 3 values of the green X polynomial:
a0[绿]=a0[红]+(dr*rg_xl-dl*rg_xr)/(dr-dl)a0[green]=a0[red]+(dr*rg_xl-dl*rg_xr)/(dr-dl)
a1[绿]=a1[红]+(rg_xr-rg_xl)/(dr-dl)a1[green]=a1[red]+(rg_xr-rg_xl)/(dr-dl)
a2[绿]=a2[红]a2[green]=a2[red]
a3[绿]=a3[红]a3[green]=a3[red]
其中:in:
dr是用于相机右边缘重叠的LOR的二极管位置;d r is the diode location for the LOR that overlaps the right edge of the camera;
dl是用于相机左边缘的LOR的公制位置;d l is the metric location of the LOR for the left edge of the camera;
rg_xl是相机左边缘测得的红、绿成份之间的ΔxCOL差;rg_xl is the Δx COL difference between the red and green components measured at the left edge of the camera;
以及,rg_xr是相机右边缘测得的ΔxCOL差。And, rg_xr is the Δx COL difference measured at the right edge of the camera.
除了第一个相机1和最后一个相机n的视场边缘仅分别对相机n+1和n-1定义之外,对于其他一个相机的视场的“左”边缘和“右”边缘分别是指最靠近于相机n-1的相机边缘和最靠近于相机n+1的边缘。可以用同样的步骤来计算a0(蓝)至a3(蓝)。Except that the field edges of the
现在将特别参考图9B来较详细地说明Y多项式的确定方法。The method of determining the Y polynomial will now be described in more detail with particular reference to FIG. 9B.
再次参见图6B,可以对每个相机124确定其视场轴162与垂直于运动方向104的轴308之间的夹角θ1-3。然后可以通过关系式θ=θ*-α来确定θ1-3,其中α是电路204(图3)所确定的校正角。Referring again to FIG. 6B , for each
在图9B中,起初先对相机行(例如相机CAM1、CAM2、CAM3)中的每个相机n的一种颜色(例如红色)确定Y多项式。然后根据第一种颜色的Y多项式来导出其他颜色(如蓝和绿)的Y多项式。In FIG. 9B, the Y polynomial is initially determined for one color (eg red) for each camera n in a camera row (eg cameras CAM1, CAM2, CAM3). The Y polynomials for other colors (such as blue and green) are then derived from the Y polynomials for the first color.
Y多项式的系数b1可以按b1=tan(θ)导出。Y多项式的系数b0可以分两步计算。第一步是把第一个相机CAM1的b0设为零:b0[1]=0。各个后继相机的b0可按下式计算:The coefficient b 1 of the Y polynomial can be derived as b 1 =tan(θ). The coefficient b 0 of the Y polynomial can be calculated in two steps. The first step is to set b0 of the first camera CAM1 to zero: b0 [1]=0. The b 0 of each subsequent camera can be calculated as follows:
b0[n]=b0[n-1]+b1[n-1]*(Sn-1(ND)-OVx)+Δyov[n,n-1]b0[n]=b0[n-1]+b1[n-1]*(S n-1 (ND)-OV x )+Δy ov [n,n-1]
在第二步中,确定三个相机的三个Y多项式的最小值。由于是线性近似,只需按下式找出各个相机视场边缘处的最小值即可:In the second step, the minimum of the three Y polynomials for the three cameras is determined. Since it is a linear approximation, it is only necessary to find the minimum value at the edge of the field of view of each camera according to the following formula:
min(Py1(0),Py1ND),Py2(0),Py2(ND),Py3(0),Py3(ND),)min(P y1 (0),P y1 ND),P y2 (0),P y2 (ND),P y3 (0),P y3 (ND),)
其中各个Py的下标代表各个相机的序号。从每个相机的b0中减去这个最小值,就能保证对于所有的二极管都有Py≥0。The subscript of each P y represents the serial number of each camera. Subtracting this minimum value from b 0 for each camera guarantees P y ≥ 0 for all diodes.
通过组合电路210(图3)所确定的红-绿、红-蓝y偏移Δycol和对红色成份确定的Y多项式,便可产生绿色和蓝色Y多项式的b0和b1值。具体公式如下:By combining the red-green and red-blue y offsets Δy col determined by circuit 210 (FIG. 3) and the Y polynomial determined for the red component, b 0 and b 1 values for the green and blue Y polynomials are generated. The specific formula is as follows:
b0[绿]=b0[红]+0.5*(rg_ly+rg_ry)b0[green]=b0[red]+0.5*(rg_ly+rg_ry)
b1[绿]=b1[红]b1[green]=b1[red]
其中rg_ly是相机左边缘处测得的红、绿成份之间的ΔyCOL偏移,rg_ly是相机视场右边缘处测得的ΔyCOL偏移。如后面将参考图17更详细地说明的,最好把b0[绿]和b0[蓝]修正得能适配于每个颜色成份的不同曙光时间。where rg_ly is the Δy COL offset between the red and green components measured at the left edge of the camera, and rg_ly is the Δy COL offset measured at the right edge of the camera's field of view. As will be explained in more detail later with reference to Figure 17, b0 [green] and b0 [blue] are preferably modified to accommodate the different dawn times of each color component.
现在参见图10A和10B,其中图10A是说明理想条件下获取目标504的图像的多个相机500的简图,图10B是说明用于存储所获取到的目标504的图像的图像缓存器的简图。典型地,相机500和502的位置是固定的,各自具有一个静止的视场,目标504沿运动方向104通过相机500和502的视场。相机500和502各自利用前述的多像元线型传感器每次一个图像行地获取目标504的图像。Referring now to FIGS. 10A and 10B , wherein FIG. 10A is a diagram illustrating a plurality of
多像元线型传感器的每个二极管获取目标504上一个特定位置处的单像元的图像,每个二极管所获取的像元的集合构成了一个图像行。图中示出一个包含了多个像元514的图像行部分512。随着目标504沿着运动方向104的运动,相机500和502的视场沿着箭头508所示的方向“运动”,所以是沿着508方向获取各个图像行。Each diode of the multi-pixel line sensor captures an image of a single pixel at a specific position on the
注意从t0到t1的时间标注510,相机500在t0开始获取图像,产生由虚线表示的一个图像行516。在时刻tx,获取到图像行部分512,它与一个图像单元518的一部分相交。随着目标504继续沿箭头506的方向运动,在接近t1时刻获取到的图像行是虚线所示的图像行部分520。Note the
所谓相机500和502获取目标504的图像的条件是理想的是指,两个相机的视场对准在一条直线上并且不互相重叠。如图10A所示,在时刻tx,相机500所获取的图像行部分512与相机502所获取的图像行部分522对准在一条直线上,并且图像行部分512和522在边界线524处相接。The so-called ideal condition for the
典型地,相机500和502所扫描得到的各个图像行被存储在缓存器中,例如存储在图10B的缓存器530和532中。由于两个缓存器中的扫描行是对准成为对应于相应时刻的一条直线的,所以可以通过组合缓存器530和532来形成目标单元518的一个无失真的组合图像,这个图像的一部分由代号534表示。Typically, the respective image lines scanned by
现在再参见图11A和11B,它们说明当相机500和502在获取目标504的图像时不是处于图10A和10B所示的理想条件下时,特别是当两个相机的视场处于互相偏扭和重叠的条件下时,所得到的效果。给出图11A和11B的目的是作为实际遇到的一些困难的极度简化的示例说明,仅仅为了复习前面曾详细说明的内容,而不是为了取代图1-9B的说明。Referring now to FIGS. 11A and 11B, they illustrate that when the
从图11A和图11B中的缓存器560和562以及图像行部分564和566可以看出,在一个给定时刻tx两个相机所获取的图像行并不对准成一条直线。如图11B所示,如果组合缓存器560和562则将产生目标单元518的一个失真组合图像568。此外,简单地把两个缓存器图像组合起来既没有校正前面参考图7A-7C所讨论的图像重叠,又没有校正前面参考图4A-4C所讨论的视角失真。As can be seen from
现在将另外再参考图12-16来说明从缓存器560和562导出一个校正的组合图像的技术。The technique for deriving a corrected combined image from
可以通过定义一个从获取得的第一个像元行开始的具有一定高度(用图像缓存器的固定行数表示,例如40)的窗口,来定义一个FIFO(先进先出)缓存器,例如图12中的FIFO缓存器600。然后,每当获取一个新的像元行,就使该窗口前进一个行,达到一个新的位置。或者,也可以使图像缓存器在开始充满了像元行,这时可以把FIFO缓存器窗口定义为图像缓存器行的一个子组,并且该子组按上述方式在图像缓存器内逐行前进。A FIFO (first-in-first-out) buffer can be defined by defining a window with a certain height (expressed by the fixed number of rows of the image buffer, such as 40) starting from the first obtained pixel row, such as in Fig.
在前面参考图9A和9B所确定的X和Y多项式能被用来校正图像之前,可以把它们转换成另一种类型的多项式,这里将把后者称作“二极管补偿多项式”。这个多项式将在一个二极管与一个采用了由用户所选像元尺寸所构建的校正图像的一个像元位置之间建立起映射关系。可以利用下述变换从X和Y多项式导出二采管补偿多项式Qx(d)和Qy(d):Before the X and Y polynomials previously determined with reference to Figures 9A and 9B can be used to correct the image, they can be converted into another type of polynomial, which will be referred to herein as a "diode compensating polynomial". This polynomial will map a diode to a cell location in a rectified image constructed with a user-selected cell size. The two pipe compensation polynomials Q x (d) and Q y (d) can be derived from the X and Y polynomials using the following transformation:
Qx(d)=px(d)/pQ x (d)=px(d)/p
Qy(d)=py(d)/pQ y (d)=py(d)/p
其中p是由用户所选的像元尺寸,与Px(d)有同样的公制单位。用户所选像元尺寸p必需是扫描方向104的行程上的最小可测距离的整数倍,该最小可测距离典型地是一个鼓型编码器的一个脉冲单位。二极管补偿多项式Qx还可以为由不同颜色成份的不同累积时间所导致的偏移进行额外的调整,对此后面将参考图17作出较详细的说明。where p is the pixel size selected by the user, in the same metric units as P x (d). The pixel size p selected by the user must be an integer multiple of the minimum measurable distance along the travel in the
FIFO缓存器中的每个像元或格栅点代表了一个二极管所获取的相应目标的样本。进行一个“重采样”处理,由此就可以计算在缓存栅格的栅格点之间的任一位置处的灰度值g,可以用如下的四点卷积来插值出g的值:Each pixel or grid point in the FIFO buffer represents a sample of the corresponding target acquired by a diode. Perform a "resampling" process, so that the gray value g at any position between the grid points of the cache grid can be calculated, and the value of g can be interpolated by the following four-point convolution:
g=c1g1+c2g2+c3g3+c4g4 g=c 1 g 1 +c 2 g 2 +c 3 g 3 +c 4 g 4
其中c1至c4是卷积系数,g1至g4是4个相邻格栅点的灰度值。Among them c 1 to c 4 are the convolution coefficients, g 1 to g 4 are the gray values of 4 adjacent grid points.
现在将说明确定4个插值系数c1至c4(总的写作ci)和4个灰度值g1至g4(总的写作gi)的方法。A method of determining the 4 interpolation coefficients c 1 to c 4 (total written as ci ) and the 4 grayscale values g 1 to g 4 (total to be written as gi ) will now be described.
4个灰度值gi可以从FIFO缓存器的4个相连格栅中选出。这里把这4个点称作一个“4点组“。后面将说明确定从缓存器格栅中选择哪4个格栅点的方法。The 4 gray values g i can be selected from the 4 connected grids of the FIFO buffer. These 4 points are referred to as a "4-point group" here. The method of determining which 4 grid points to select from the buffer grid will be described later.
重采样可以分成对应于上述X和Y方向的两个阶段来进行。这里把这两个阶段称作X重采样和Y重采样。现在将参考图12来较详细地说明Y重采样。对应于两个相机示出了两个FIFO缓存器600和602。FIFO缓存器中被一个二极管d扫描的像元604的整个组可以称作二极管d的“灰度列”,例如列606。图中示出的虚扫描行608和610指明了对每个缓存器补偿相应相机的失准角所需的校正角。图中示出了一个4点组612,它包含了灰度值列606中最靠近扫描行608的4个像元。Resampling can be performed in two stages corresponding to the aforementioned X and Y directions. These two stages are referred to here as X-resampling and Y-resampling. Y resampling will now be explained in more detail with reference to FIG. 12 . Two
执行以下步骤:Perform the following steps:
1、对于每个二极管d计算重采样多项式Qy(d)的值。1. Compute the value of the resampling polynomial Q y (d) for each diode d.
2、用4点组指示q(d)表示该二极管的灰度列内的4点组中的第一个格栅点。该4点组中的其他三个格栅点是二极管灰度列中的前面三个格栅点,也就是二极管d在获取指示q(d)的格栅点之前是最晚获取的那三个格栅点。q(d)由下式确定:2. Use the 4-dot group indicator q(d) to indicate the first grid point in the 4-dot group in the gray-scale column of the diode. The other three grid points in this 4-point group are the first three grid points in the diode grayscale column, that is, the three latest acquired by diode d before acquiring the grid point indicating q(d) grid point. q(d) is determined by:
q(d)=floor(Qy(d)-1/2)-1q(d)=floor(Qy(d)-1/2)-1
每个4点组的指示q(d)最好存储在一个4点组查找表中对应于二极管d的位置上。The indication q(d) for each 4-point group is preferably stored in a 4-point group look-up table at the location corresponding to diode d.
3、根据多项多Qy距最近4点组指标的距离计算4个卷积系数c1至c4。上述距离称作ξ(d),可表示为:3. Calculate the four convolution coefficients c 1 to c 4 according to the distances between multiple multi-Q y and the nearest 4-point group index. The above distance is called ξ(d) and can be expressed as:
ξ(d)=Qy(d)(q(d)+1)ξ(d)=Qy(d)(q(d)+1)
最好有-1/2=<ξ<1/2It is best to have -1/2=<ξ<1/2
4、对于一个给定的ξ,可以计算4个卷积系数C1至C4如下:4. For a given ξ, four convolution coefficients C 1 to C 4 can be calculated as follows:
c1=-14+10ξ-3ξ2+0.5ξ3 c 1 =-14+10ξ-3ξ 2 +0.5ξ 3
c2=-1+0.5ξ+2ξ2-1.5ξ3 c 2 =-1+0.5ξ+2ξ 2 -1.5ξ 3
c3=1-2.5ξ2+1.5ξ3 c 3 =1-2.5ξ 2 +1.5ξ 3
c4=-5/2-5.5ξ-1.5ξ2-0.5ξ3 c 4 =-5/2-5.5ξ-1.5ξ 2 -0.5ξ 3
如前所述,ξ与d有关。As mentioned earlier, ξ is related to d.
在Stephen K.Park和Robert A.Schowengerdt的论文“ImageReconstruction by Parametric Cubic Covolution(利用参数三次卷积的图像重建)”(Computer Vision Graphics and ImageProcessing,23,258-272)中较详细地说明了卷积系数C1至C4的利用,该论文公开的内容在此引作参考。The convolution coefficient C is explained in more detail in Stephen K.Park and Robert A.Schowengerdt's paper "Image Reconstruction by Parametric Cubic Covolution" (Computer Vision Graphics and Image Processing, 23, 258-272). 1 to C 4 , the disclosure of this paper is hereby incorporated by reference.
对于每个二极管d,这4个系数C1至C4最好被编码得能使当它们被解码和求和时所得的和值将等于1,虽然这样编码后任一单个系数的精度将丢失。编码的值最好存储在一个系数查找表中对应于d的位置上。For each diode d, the four coefficients C1 to C4 are preferably encoded such that when they are decoded and summed the resulting sum will equal 1, although the precision of any individual coefficient will be lost after encoding. The coded value is preferably stored in a coefficient look-up table at a location corresponding to d.
现在将参考图13更详细地说明重叠校正功能,该图示出了两个相邻相机1和2在Y重采样之后、被组合之前的输出620和622。为了把两个相机的输出组合成单个图像,必需校正这两个相机之间的图像重叠区624。在一个优选实施例中,不是简单地通过使用相机1的输出直到在该重叠区域内的任一选择的像元位置以及随后切换到从一个相应的像元位置开始的相机2的输出来组合两个图像输出的。该实施例所采用的方法是,先在相机1和2之间的重叠区624内定义一个含有预定像元数B〔典型地为100个像元〕的“混合区”626,然后对混合区内两个相机的对应像元进行混合以得到单个像元值,其后再利用这样的像元值来构成组合图像630。为了适应在二极管阵列两端经常遇到的低质量输出,重叠区中混合区的两侧最好留有含有预定像元数M(典型地为20个像元)的边缘区628。The overlay correction function will now be explained in more detail with reference to Figure 13, which shows the outputs 620 and 622 of two
可以看出,两个相邻相机的两个二极管重采样多项式Qx (1)(d)和Qx (2)(d)。It can be seen that the two diode resampling polynomials Q x (1) (d) and Q x (2) (d) of two adjacent cameras.
可以用来确定两个相机之间的重叠量。Can be used to determine the amount of overlap between two cameras.
为了校正重叠,可以执行以下步骤:In order to correct for overlap, the following steps can be performed:
1、定义用Qx (2)(1)代表相机2的X和Y重采样输出的第一个像元的像元位置r(后面将参考图15较详细地说明X采样)。混合区的前缘可以通过加上前述边缘区的预定像元数来确定。1. Define Q x (2) (1) to represent the pixel position r of the first pixel of the X and Y resampled output of camera 2 (X sampling will be explained in more detail with reference to FIG. 15 later). The leading edge of the mixing zone can be determined by adding the predetermined number of pixels of the aforementioned edge zone.
2、如图14所示,对混合区中的每个位置i确定一个权重w(i),其中w(i)=i/B。利用这个权重可以在组合相机1和2的输出时使这两个相邻相机的输出实现线性混合,其中相机1的贡献将为1-w(i),而相机2的贡献将为w(i)。例如,当混合区包括100个像元时,则其中第一个像元将含有相机1像元的99%的信息和相机2相应像元的1%的信息,而对于混合区中的最后一个像元则有相反的比例。这一方案能实现两个相机之间的平滑过渡。2. As shown in FIG. 14 , determine a weight w(i) for each position i in the mixed area, where w(i)=i/B. Using this weight allows for a linear blending of the outputs of
3、写出混合区内相机1和2对应像元的灰度输出为:3. Write the grayscale output of the pixels corresponding to
g(i)=(1-W(i))*g1(i)+w(i)*g2(i)g(i)=(1-W(i))*g1(i)+w(i)*g2(i)
其中B是混合区的像元数,i是该区中的位置指标,g1(i)和g2(i)分别是相机1和2混合区内对应像元的灰度值。where B is the number of pixels in the mixed area, i is the location index in the area, g 1 (i) and g 2 (i) are the gray values of the corresponding pixels in the mixed area of
现在将参考图15较详细地说明X采样。由于光学失真以及为了适配于用户所定义的像元尺寸,必需在X方向向Y采样的输出640进行重采样,并由此产生具有希望尺寸的像元的X校正图像行642。X校正图像行上每个像元的位置r对应于二极管阵列上的一个位置d(r)。X-sampling will now be described in more detail with reference to FIG. 15 . Due to optical distortions and to fit the user-defined pixel size, it is necessary to resample the Y sampled output 640 in the X direction and thereby generate an X corrected image row 642 with a pixel of the desired size. The position r of each pixel on the X-corrected image line corresponds to a position d(r) on the diode array.
可以用二极管重采样多项式Qx(d)来计算d(r)。这将涉及到求取Qx(d)的逆函数Q-1(r)。这个逆函数将把X校正图像行上的像元位置映射成二极管阵列上的一个对应位置d(r)。可以看出,这个位置可能并不对应于某个特定二极管的整数值位置,而可能需要表达为沿着二极管阵列计数的一个非整数值。一旦找到了二极管位置dp,就可以用类似于前面对Y重采样说明的方法来确定一个对应于4个二极管的“X像元4点组”。然后通过用4个相关系数对这4个像元的灰度值进行卷积来插值出X校正图像行上位置r处的灰度值。d(r) can be calculated using the diode resampling polynomial Q x (d). This will involve finding the inverse function Q -1 (r) of Q x (d). This inverse function will map the pixel location on the X-corrected image line to a corresponding location d(r) on the diode array. It can be seen that this position may not correspond to the integer-valued position of a particular diode, but may need to be expressed as a non-integer value counting along the diode array. Once the diode position dp is found, a "X-pixel 4-point group" corresponding to 4 diodes can be determined in a manner similar to that described above for Y resampling. Then the gray value at position r on the X-corrected image line is interpolated by convolving the gray value of these 4 pixels with 4 correlation coefficients.
下面用指示q(r)来表示当前处理的一个4点组的位置。In the following, the indication q(r) is used to indicate the position of a 4-point group currently being processed.
现在再参见图16,该图说明需要对X校正图像行中每个像元执行的一些步骤:Referring now again to Figure 16, this figure illustrates some of the steps that need to be performed for each pixel in the X-corrected image row:
1、指定指标rp对应于一个X校正图像行652中的第一个像元650。1. The specified index r p corresponds to the first pixel 650 in an X-corrected image row 652 .
2、对于X校正图像行652中对应于重叠区654的每个像元位置逐步增大指示rp的值,直到当前相机CAM1视场的最后一个视场656,并找出满足下式的二极管位置dp (1)以便rp (1)=Qx(dp (1))由于Qx是一个单调的增函数,所以dp将随rp的增大而增大。当dp到达CAM1的视场末端656时,rp将返回到对应于下一个相机CAM2的重叠区658的开始端的像元位置处,并指定rpp的值等于对应相机CAM2的第一个二极管估测出的二极管补偿多项式,即令rp←Qx (2)(1)。2. For each pixel position corresponding to the overlapping area 654 in the X-corrected image row 652, gradually increase the value of the indicator rp until the last field of view 656 of the current camera CAM1 field of view, and find out the diode that satisfies the following formula Position d p (1) so that r p (1) =Qx(d p (1) ) Since Q x is a monotonous increasing function, d p will increase with the increase of r p . When d p reaches the end of the field of view 656 of CAM1, r p will return to the pixel position corresponding to the beginning of the overlap region 658 of the next camera CAM2, and assign the value of r p p equal to the first corresponding camera CAM2 The diode compensation polynomial estimated by the diode, ie, r p ←Q x (2) (1).
3、对于CAM2的X校正图像行652中的每个像元位置逐步增大指标rp,并找出满足下式的二极管位置dp (2)以便rp (2)=Qx(dp (2)),然后执行步骤2。3. For each pixel position in the X correction image row 652 of CAM2, gradually increase the index r p , and find out the diode position d p (2) satisfying the following formula so that r p (2) =Qx(d p ( 2) ), and then go to
对于每一对后继的相机,都执行步骤2和3。For each subsequent pair of cameras, steps 2 and 3 are performed.
在求取二极管位置dp时,既可以通过一次性地求出函数Qx(dp)的逆函数来完成,也可以用数字求解法完成。一旦求得了二极管位置dp之后,就可以把X-4点组中第一个像元的指标和ζ表示如下:When obtaining the diode position d p , it can be completed by obtaining the inverse function of the function Q x (d p ) at one time, or it can be completed by numerical solution. Once the diode position d p is obtained, the index and ζ of the first pixel in the X-4 point group can be expressed as follows:
q(r)=FLLOR(Q-1 x(r)-1/2)-1q(r)=FLLOR(Q -1 x (r)-1/2)-1
ξ(r)=Q-1 x(r)-(q(r)+1)ξ(r)=Q -1 x (r)-(q(r)+1)
这与Y采样的情况是类似的。This is similar to the case of Y sampling.
这样,q(r)定义了X-4点组,并且可以利用前面对Y重采样给出的公式根据ζ计算出卷积系数C1至C4。Thus, q(r) defines the X-4 point group, and the convolution coefficients C 1 to C 4 can be calculated from ζ using the formula given above for Y resampling.
4、把q(r)存储在一个X-4点组查找表中对应于像元位置r的位置处。或者,通过从当前4点组位置q(r)中减去前一个4点组位置q(r-1)来计算出相对于q(r-1)位置的偏移量,然后再存储该偏移量。4. Store q(r) in an X-4 point group lookup table at the location corresponding to pixel location r. Alternatively, calculate the offset from the q(r-1) position by subtracting the previous 4-point group position q(r-1) from the current 4-point group position q(r), then store the offset displacement.
5、用前面对Y采样说明的方法对卷积系数c1至c4进行编码,并把编码结果存储在一个X系数查找表中对应于像元位置rp的位置处。5. Encode the convolution coefficients c 1 to c 4 using the method described above for Y sampling, and store the encoding results in an X coefficient lookup table corresponding to the pixel position r p .
包含Y重采样、X重采样和重叠校正的图像校正处理最好由图1中的电路110来执行,下面对此作一小结。Image correction processing including Y resampling, X resampling and overlay correction is preferably performed by circuit 110 of FIG. 1, as summarized below.
在Y重采样阶段,可以如下地进行关于相机视场没有对准于一直线的图像校正。对于一个给定的FIFO窗口位置,从Y-4点组查找表中找出每个二极管的4点组。然后可以从FIFO缓存器中提取出对应于该4点组的4个灰度值g1至g4,并从Y系数查找表中提取出4个相关系数c1至c4。其后可以如前所述那样按下述计算出每个二极管的最终插值灰度值:In the Y resampling stage, image correction for misalignment of the camera field of view can be done as follows. For a given FIFO window position, the 4-point group for each diode is found from the Y-4-point group lookup table. Then four gray values g 1 to g 4 corresponding to the 4-point group can be extracted from the FIFO buffer, and four correlation coefficients c 1 to c 4 can be extracted from the Y coefficient lookup table. The final interpolated gray value for each diode can then be calculated as described above as follows:
g=c1 *g1+c2 *g2+c3 *g3+c4 *g4 g=c 1 * g 1 +c 2 * g 2 +c 3 * g 3 + c 4 * g 4
并把其存储在一个Y校正灰度缓存器中。And store it in a Y-corrected grayscale buffer.
在X重采样阶段,通过进一步处理Y采样的输出来校正像元形状和尺寸。每次处理一个像元行的灰度值。对于X校正图像行中的每个像元,从X-4点组查找表中提取出X-4点组指标,从X系数查找表中提取出4个卷积系数C1至C4。然后可以从Y校正灰度缓存器中提取出对应于该X-4点组的4个灰度值g1’至g4’。其后可以如前述那样按下式计算出对于每个像元位置rp的最终插值灰度值:In the X resampling stage, the cell shape and size are corrected by further processing the output of the Y samples. The grayscale values of one pixel row are processed at a time. For each pixel in the X-corrected image row, the X-4 point group index is extracted from the X-4 point group lookup table, and four convolution coefficients C 1 to C 4 are extracted from the X coefficient lookup table. Then the 4 grayscale values g 1 ′ to g 4 ′ corresponding to the X-4 point group can be extracted from the Y correction grayscale buffer. Thereafter, the final interpolated gray value for each pixel position r p can be calculated as described above:
g’=c’1 *g1+c’2 *g2+c’3,*g3+c’4 *g4 g'=c' 1 * g 1 +c' 2 * g 2 +c' 3 , * g 3 +c' 4 * g 4
在重叠校正阶段,如前面参考图16所说明的那样,通过组合各个相机的X重采样图像行输出来形成单个图像行。In the overlay correction stage, a single image line is formed by combining the X-resampled image line outputs of the individual cameras as explained above with reference to FIG. 16 .
众所周知,在彩色图像获取系统中照相目标的光源的性质和目标的光谱反射性质都会造成所得图像中的不均匀颜色强度。所以,举例来说,对于目标上的一个白色区域,一个多行传感器阵列中的一个探测红色的二极管与一个探测蓝色的二极管可能会接收到不同的光量。通过按反比于多行传感器阵列中每个颜色行所接收到的光强度的关系来改变该颜色行的累积时间,可以校正不均匀的颜色强度。It is well known that in color image acquisition systems the nature of the light source of the photographic target and the spectral reflectance properties of the target both contribute to non-uniform color intensity in the resulting image. So, for example, a red-detecting diode in a multi-row sensor array might receive a different amount of light than a blue-detecting diode for a white area on a target. Non-uniform color intensities can be corrected for by varying the accumulation time for each color row in an inversely proportional relationship to the light intensity received by that color row in a multi-row sensor array.
在本发明中,当开始获取一个目标的一个图像行时,相机的所有电子快门都是打开的,于是多行传感器阵列的每个颜色行都开始累积对应于各自颜色的电荷。然后通过在不同的时刻关闭多行传感器阵列各个颜色行的电子快门来改变各个颜色行的累积时间。然而,每个颜色行所获了的像元的中心可能与该像元的几何中心不同。于是当如图8C所示那样测量Y方向104上的重叠量时,将造成“累积偏移”Δyacc,这个偏移可以通过按下述公式从每个颜色成份的像元几何中心中减去所获取像元的中心来加以校正:In the present invention, when starting to acquire an image line of an object, all electronic shutters of the camera are open, so each color line of the multi-line sensor array starts accumulating charge corresponding to its respective color. The accumulation time of each color row is then changed by closing the electronic shutters of each color row of the multi-row sensor array at different moments. However, the center of the cell obtained for each color row may not be the same as the geometric center of the cell. Thus when measuring the amount of overlap in the
Δacc[绿]=(AT[绿]-AT[红])/(2*IT)Δ acc [Green]=(AT[Green]-AT[Red])/(2*IT)
b0*[绿]=b0[绿]+Δacc[绿]b0 * [Green]=b0[Green]+Δ acc [Green]
其中AT代表累积时间,IT代表积分时间(即两个相继图像行开始时刻之间的时间),b0 *[绿]是Qy的修正的零次系数。蓝色的系数可以作类似修正。where AT represents the accumulation time, IT represents the integration time (i.e. the time between the start instants of two successive image lines), and b 0 * [green] is the modified zero-order coefficient of Q y . The blue coefficients can be similarly corrected.
这个累积偏移最好在获取测试目标的时候确定,并用来调整Y多项式Py的b0系数。图9B中说明的二极管补偿多项式Qy也可以用对不同颜色取不同累积时间的方法来调整累积偏移。This cumulative offset is preferably determined when the test target is acquired and used to adjust the b 0 coefficients of the Y polynomial Py. The diode compensation polynomial Q y illustrated in FIG. 9B can also be used to adjust the accumulation offset by taking different integration times for different colors.
图17较详细地说明了累积偏移问题。如前面参考图8C所说明的,图中示出一个获取三个像元702、704和706的多行传感器阵列700,其中这三个像元分别由不同的传感器708、710和712获取,传感器都包括多个单色的传感二极管。由于每个行传感器的不同累积时间,所获取的三个像元有不同的相对面积,如累积面积714、716和718所示。对于这三个像元可以分别定义其几何中心位于720、722和724。而它们的累积面积中心可以分别定义位于726、728和730。各个像元的累积面积中心与几何中心之间的距离732、734和736代表了每种颜色成份的累积偏移,可以如前所述那样用来校正Y方向104上的重叠量。Figure 17 illustrates the cumulative offset problem in more detail. As previously explained with reference to FIG. 8C , there is shown a multi-row sensor array 700 acquiring three pixels 702, 704, and 706, which are acquired by different sensors 708, 710, and 712, respectively. Both include multiple single-color sensing diodes. Due to the different accumulation times of each line sensor, the three pixels acquired have different relative areas, as shown by the accumulation areas 714 , 716 and 718 . For these three pixels, it can be defined that their geometric centers are located at 720, 722 and 724, respectively. And their cumulative area centers can be defined at 726, 728 and 730, respectively. The distances 732, 734, and 736 between the cumulative area center and the geometric center of each pixel represent the cumulative offset of each color component and can be used to correct for overlap in the
应该指出,虽然为了清楚起见本发明的一些不同特征是借助各个分开的实施例来说明的,但也可以把这些特征组合到单个实施例中。相反地,虽然为了简短起见本发明的一些不同特征是借助单个实施例来说明的,但也可以用一些分开的实施例来单个地或任意适当部分组合地给出这些特征。It should be noted that, although for clarity purposes various features of the invention have been described in terms of separate embodiments, these may also be combined in a single embodiment. Conversely, although several features of the invention have been described in terms of a single embodiment for brevity, these features may also be presented individually or in any suitable subcombination in separate embodiments.
应该指出,对于熟悉本技术领域的人们来说,本发明不局限于前面具体示出和说明的这些内容。反之,本发明的范畴应包括前述各种特征的组合和部分组合,还包括熟悉本技术领域的人们在阅读前面的说明之后可能作出以往技术中所没有的对这些特征的修改和改变。It should be pointed out that for those skilled in the art, the present invention is not limited to the contents specifically shown and described above. On the contrary, the scope of the present invention should include the combination and partial combination of the above-mentioned various features, and also include modifications and changes to these features that those skilled in the art may make after reading the foregoing description.
Claims (32)
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IL125929 | 1998-08-25 | ||
| IL12592998A IL125929A (en) | 1998-08-25 | 1998-08-25 | Method and apparatus for inspection of printed circuit boards |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN1314049A true CN1314049A (en) | 2001-09-19 |
Family
ID=11071888
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN99809996.1A Pending CN1314049A (en) | 1998-08-25 | 1999-08-19 | Method and apparatus for inspection of printed circuit boards |
Country Status (5)
| Country | Link |
|---|---|
| EP (1) | EP1108329A1 (en) |
| CN (1) | CN1314049A (en) |
| AU (1) | AU5384099A (en) |
| IL (2) | IL125929A (en) |
| WO (1) | WO2000011873A1 (en) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1306244C (en) * | 2005-06-16 | 2007-03-21 | 姚晓栋 | On-the-spot printing circuit board test based on digital image |
| CN100338935C (en) * | 2002-02-26 | 2007-09-19 | 柯尼格及包尔公开股份有限公司 | Electronic image sensor and evaluation method |
| CN102914543A (en) * | 2011-08-03 | 2013-02-06 | 浙江中茂科技有限公司 | Article detection device of three-dimensional stereo image |
| CN107860773A (en) * | 2017-11-06 | 2018-03-30 | 凌云光技术集团有限责任公司 | Automatic optical detecting system and its bearing calibration for PCB |
| CN115066606A (en) * | 2020-02-16 | 2022-09-16 | 奥宝科技有限公司 | System and method for inspecting multiple features of patterned article in preparation of electronic circuit |
| CN116420164A (en) * | 2020-11-19 | 2023-07-11 | 奥宝科技有限公司 | Resampling with TDI sensor |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0824232B2 (en) * | 1989-05-29 | 1996-03-06 | ローム株式会社 | Chip parts front / back judgment device |
| US5298989A (en) * | 1990-03-12 | 1994-03-29 | Fujitsu Limited | Method of and apparatus for multi-image inspection of bonding wire |
| JP3189500B2 (en) * | 1993-06-25 | 2001-07-16 | 松下電器産業株式会社 | Apparatus and method for inspecting appearance of electronic components |
-
1998
- 1998-08-25 IL IL12592998A patent/IL125929A/en not_active IP Right Cessation
-
1999
- 1999-08-19 CN CN99809996.1A patent/CN1314049A/en active Pending
- 1999-08-19 AU AU53840/99A patent/AU5384099A/en not_active Abandoned
- 1999-08-19 EP EP99939581A patent/EP1108329A1/en not_active Withdrawn
- 1999-08-19 WO PCT/IL1999/000450 patent/WO2000011873A1/en not_active Ceased
-
2002
- 2002-01-17 IL IL14772302A patent/IL147723A0/en unknown
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100338935C (en) * | 2002-02-26 | 2007-09-19 | 柯尼格及包尔公开股份有限公司 | Electronic image sensor and evaluation method |
| CN1306244C (en) * | 2005-06-16 | 2007-03-21 | 姚晓栋 | On-the-spot printing circuit board test based on digital image |
| CN102914543A (en) * | 2011-08-03 | 2013-02-06 | 浙江中茂科技有限公司 | Article detection device of three-dimensional stereo image |
| CN107860773A (en) * | 2017-11-06 | 2018-03-30 | 凌云光技术集团有限责任公司 | Automatic optical detecting system and its bearing calibration for PCB |
| CN107860773B (en) * | 2017-11-06 | 2021-08-03 | 凌云光技术股份有限公司 | Automatic optical detection system for PCB and correction method thereof |
| CN115066606A (en) * | 2020-02-16 | 2022-09-16 | 奥宝科技有限公司 | System and method for inspecting multiple features of patterned article in preparation of electronic circuit |
| CN116420164A (en) * | 2020-11-19 | 2023-07-11 | 奥宝科技有限公司 | Resampling with TDI sensor |
Also Published As
| Publication number | Publication date |
|---|---|
| IL147723A0 (en) | 2002-08-14 |
| AU5384099A (en) | 2000-03-14 |
| IL125929A (en) | 2002-03-10 |
| WO2000011873A1 (en) | 2000-03-02 |
| EP1108329A1 (en) | 2001-06-20 |
| IL125929A0 (en) | 1999-04-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN1261908C (en) | Method and system for detecting defects in printed circuit boards | |
| CN1264010C (en) | Apparatus for detecting defect | |
| CN1289901C (en) | Reduction of False Alarms in PCB Inspection | |
| CN1218159C (en) | Optical metering installation | |
| CN1181313C (en) | Method and system for measuring relief of an object | |
| CN1745385A (en) | Method and apparatus for optical inspection of a display | |
| CN1250013C (en) | Image processing for correcting read image defects | |
| CN1920539A (en) | Defect detecting method and defect detecting device | |
| CN1203292C (en) | Method and system for measruing object two-dimensiond surface outline | |
| CN101079254A (en) | High resolution enabling apparatus and method | |
| JP4951496B2 (en) | Image generation method and image generation apparatus | |
| JP2013011856A (en) | Imaging system and control method thereof | |
| CN1947000A (en) | Image inspection method and device | |
| CN1951105A (en) | Color image sensor having array of imaging elements forming images on corresponding areas of sensor elements | |
| CN1601369A (en) | Image processing system, projector and image processing method | |
| CN1378179A (en) | Pattern evaluation method, pattern evaluation device computer reading record medium | |
| JP5178781B2 (en) | Sensor output data correction device and sensor output data correction method | |
| TW202125582A (en) | Die-bonding apparatus and manufacturing method of semiconductor device | |
| CN1825100A (en) | Printed circuit board inspecting method and apparatus inspection logic setting method and apparatus | |
| CN1314049A (en) | Method and apparatus for inspection of printed circuit boards | |
| CN1473266A (en) | Measuring method and device using image sensor | |
| KR102853085B1 (en) | Method and apparatus for detecting defects on substrate | |
| CN1892756A (en) | Projection image position adjustment method | |
| CN101080921A (en) | camera device | |
| JP2012007952A (en) | Visual inspection device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication |