CN120321103B - Dumb resource lifecycle management method and system supporting RFID automatic identification - Google Patents
Dumb resource lifecycle management method and system supporting RFID automatic identificationInfo
- Publication number
- CN120321103B CN120321103B CN202510777411.XA CN202510777411A CN120321103B CN 120321103 B CN120321103 B CN 120321103B CN 202510777411 A CN202510777411 A CN 202510777411A CN 120321103 B CN120321103 B CN 120321103B
- Authority
- CN
- China
- Prior art keywords
- optical cable
- rfid
- fault
- identification
- dummy resource
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Optical Communication System (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及哑资源监测管理技术领域,具体涉及支持RFID自动识别的哑资源生命周期管理方法与系统。The present application relates to the technical field of dumb resource monitoring and management, and specifically to a dumb resource lifecycle management method and system supporting RFID automatic identification.
背景技术Background Art
在通信和网络领域中,哑资源是指那些无法主动提供运行状态和故障信息的资源,例如光网络中的管道、杆路、光缆等。这些资源的管理对于保障网络的稳定运行和高效维护至关重要。In the communications and networking fields, dumb resources are those that cannot proactively provide operational status and fault information, such as pipes, poles, and optical cables in optical networks. Managing these resources is crucial to ensuring stable network operation and efficient maintenance.
目前,哑资源的状态监测和管理主要采用周期性维护和被动故障修复两种方式。周期性维护依赖固定时间间隔进行检查和更换,但缺乏针对性,可能导致资源浪费或维护不足。而被动故障修复模式下,只有在发生故障后才进行排查和维修,容易引发突发性中断和较长的故障恢复时间。此外,一些先进的检测技术(如OTDR光纤测试)虽然能提供一定的状态监测能力,但仍主要依赖单点测试,缺乏全局数据融合分析,无法精准预测哑资源的寿命和潜在故障风险。Currently, the status monitoring and management of dumb resources primarily relies on periodic maintenance and passive fault repair. Periodic maintenance relies on inspection and replacement at fixed intervals, but lacks specificity and can lead to wasted resources or insufficient maintenance. Passive fault repair, on the other hand, only conducts troubleshooting and repairs after a fault occurs, which can easily lead to unexpected outages and long recovery times. Furthermore, while some advanced detection technologies (such as OTDR fiber testing) can provide certain status monitoring capabilities, they still rely primarily on single-point testing and lack global data fusion analysis, making it impossible to accurately predict the lifespan and potential failure risks of dumb resources.
发明内容Summary of the Invention
本申请提供了支持RFID自动识别的哑资源生命周期管理方法与系统,解决了现有技术由于仅考虑当前故障情况而忽略历史运维数据,导致无法准确预测哑资源寿命,维护优化能力不足的技术问题,达到了提高哑资源寿命预测精准度,进而实现哑资源精细化管理的技术效果。This application provides a dumb resource lifecycle management method and system that supports RFID automatic identification, which solves the technical problem that the existing technology only considers the current fault situation and ignores historical operation and maintenance data, resulting in the inability to accurately predict the dumb resource life and insufficient maintenance optimization capabilities. It achieves the technical effect of improving the accuracy of dumb resource life prediction and thus realizing refined management of dumb resources.
鉴于上述问题,一方面,本申请提供了支持RFID自动识别的哑资源生命周期管理方法,所述方法包括:在第一哑资源故障检测节点分析输出第一哑资源故障后,根据所述第一哑资源故障进行中继识别链路激活,以对所述第一哑资源故障对应的第一节点RFID进行自动识别,提取第一设备历史信息,其中,RFID自动识别通过固定式RFID读写器与中继设备协同工作实现;根据所述第一哑资源故障和第一设备历史信息进行寿命衰减预测,输出第一更新设备寿命,并将所述第一更新设备寿命存储至所述第一节点RFID;哑资源识别云端在接收所述第一哑资源故障后,根据所述第一哑资源故障的第一上传时间戳进行关联风险光缆筛选,定位第一风险光缆;根据所述第一风险光缆的第一光缆排查向量标识进行故障定位后,依据故障定位结果进行光缆寿命预测输出所述第一风险光缆的第一更新光缆寿命,并将所述第一更新光缆寿命存储在所述第一风险光缆的第一光缆RFID。In view of the above problems, on the one hand, the present application provides a dumb resource lifecycle management method that supports RFID automatic identification, the method comprising: after the first dumb resource fault detection node analyzes and outputs the first dumb resource fault, activating the relay identification link according to the first dumb resource fault to automatically identify the first node RFID corresponding to the first dumb resource fault and extract the first device history information, wherein the RFID automatic identification is achieved by the coordinated work of a fixed RFID reader and a relay device; performing a life attenuation prediction based on the first dumb resource fault and the first device history information, outputting the first updated device life, and storing the first updated device life to the first node RFID; after receiving the first dumb resource fault, the dumb resource identification cloud performs associated risk optical cable screening according to the first upload timestamp of the first dumb resource fault and locates the first risk optical cable; after locating the fault according to the first optical cable troubleshooting vector identifier of the first risk optical cable, performing an optical cable life prediction based on the fault location result to output the first updated optical cable life of the first risk optical cable, and storing the first updated optical cable life in the first optical cable RFID of the first risk optical cable.
另一方面,本申请还提供了支持RFID自动识别的哑资源生命周期管理系统,所述系统包括:中继识别链路激活模块,用于在第一哑资源故障检测节点分析输出第一哑资源故障后,根据所述第一哑资源故障进行中继识别链路激活,以对所述第一哑资源故障对应的第一节点RFID进行自动识别,提取第一设备历史信息,其中,RFID自动识别通过固定式RFID读写器与中继设备协同工作实现;设备寿命预测模块,用于根据所述第一哑资源故障和第一设备历史信息进行寿命衰减预测,输出第一更新设备寿命,并将所述第一更新设备寿命存储至所述第一节点RFID;关联风险光缆筛选模块,用于哑资源识别云端在接收所述第一哑资源故障后,根据所述第一哑资源故障的第一上传时间戳进行关联风险光缆筛选,定位第一风险光缆;光缆寿命预测模块,用于根据所述第一风险光缆的第一光缆排查向量标识进行故障定位后,依据故障定位结果进行光缆寿命预测输出所述第一风险光缆的第一更新光缆寿命,并将所述第一更新光缆寿命存储在所述第一风险光缆的第一光缆RFID。On the other hand, the present application also provides a dumb resource lifecycle management system that supports RFID automatic identification, the system including: a relay identification link activation module, which is used to activate the relay identification link according to the first dumb resource fault after the first dumb resource fault detection node analyzes and outputs the first dumb resource fault, so as to automatically identify the first node RFID corresponding to the first dumb resource fault and extract the first device history information, wherein the RFID automatic identification is achieved by the coordinated operation of a fixed RFID reader and a relay device; an equipment life prediction module, which is used to predict the life attenuation based on the first dumb resource fault and the first device history information, output the first updated equipment life, and store the first updated equipment life to the first node RFID; an associated risk optical cable screening module, which is used for the dumb resource identification cloud to screen associated risk optical cables according to the first upload timestamp of the first dumb resource fault after receiving the first dumb resource fault, and locate the first risk optical cable; an optical cable life prediction module, which is used to locate the fault based on the first optical cable troubleshooting vector identifier of the first risk optical cable, predict the optical cable life based on the fault location result, output the first updated optical cable life of the first risk optical cable, and store the first updated optical cable life in the first optical cable RFID of the first risk optical cable.
本申请中提供的一个或多个技术方案,至少具有如下有益效果:One or more technical solutions provided in this application have at least the following beneficial effects:
在第一哑资源故障检测节点分析输出故障后,激活中继识别链路,实现对哑资源故障的快速响应和精确定位,并获取故障设备的历史运维数据,为后续的寿命预测和维护策略调整提供了基础。根据故障和提取的历史信息,进行寿命衰减预测,输出更新后的设备寿命,并存储至对应节点的RFID。这一步骤通过综合分析历史和实时数据,进行寿命衰减预测,输出更新后的设备寿命,提高了寿命预测的准确性,以便于更科学地规划设备的维护和更新。将更新设备寿命存储至第一节点RFID,方便后续查询和管理,同时也实现了数据的本地化存储。哑资源识别云端在接收故障后,根据故障的上传时间戳进行关联风险光缆筛选,定位风险光缆,将管理范围从单个故障节点扩展到相关联的光缆等资源。依据故障定位结果进行光缆寿命预测,更新光缆寿命并存储至光缆RFID,便于对光缆的管理和监控。After the first dumb resource fault detection node analyzes and outputs the fault, it activates the relay identification link, enabling rapid response and precise location of the dumb resource fault. It also obtains historical O&M data for the faulty device, providing a foundation for subsequent lifespan prediction and maintenance strategy adjustments. Based on the fault and the extracted historical information, it performs a lifespan attenuation prediction, outputs an updated device lifespan, and stores it on the corresponding node's RFID. This step improves the accuracy of lifespan prediction by comprehensively analyzing historical and real-time data, outputting an updated device lifespan, and facilitating more efficient maintenance and upgrade planning. The updated device lifespan is stored on the first node's RFID, facilitating subsequent query and management while also enabling localized data storage. After receiving the fault, the dumb resource identification cloud identifies and locates associated risky optical cables based on the fault's upload timestamp, expanding its management scope from a single faulty node to encompass associated optical cables and other resources. Based on the fault location results, it predicts the optical cable lifespan, updates the cable lifespan, and stores it on the cable's RFID, facilitating management and monitoring.
综上所述,本申请通过引入RFID自动识别技术,实现了哑资源故障的快速检测与定位,结合了哑资源的历史运维数据和当前故障情况进行寿命预测,提高了寿命预测的准确性。其次,将哑资源故障与关联风险光缆进行关联分析,实现了从哑资源到光缆的全面管理,拓宽了管理的范围。这种综合的管理方式能够动态更新预测哑资源寿命,提高故障处理的效率和准确性,从而显著提升了哑资源的管理效率和资源利用率,实现了哑资源的精细化管理。In summary, this application has achieved rapid detection and location of dumb resource failures by introducing RFID automatic identification technology, combined with historical dumb resource operation and maintenance data and current fault conditions to predict lifespan, thereby improving the accuracy of lifespan prediction. Secondly, dumb resource failures are correlated with associated risk optical cables for analysis, achieving comprehensive management from dumb resources to optical cables and broadening the scope of management. This comprehensive management approach can dynamically update the predicted dumb resource lifespan, improve the efficiency and accuracy of fault handling, thereby significantly improving the management efficiency and resource utilization of dumb resources and achieving refined management of dumb resources.
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。The above description is only an overview of the technical solution of the present application. In order to more clearly understand the technical means of the present application, it can be implemented in accordance with the contents of the specification. In order to make the above and other purposes, features and advantages of the present application more obvious and easy to understand, the specific implementation methods of the present application are listed below.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本申请实施例提供的支持RFID自动识别的哑资源生命周期管理方法的流程示意图。FIG1 is a flow chart of a method for managing a lifecycle of a dumb resource supporting RFID automatic identification according to an embodiment of the present application.
图2为本申请实施例提供的支持RFID自动识别的哑资源生命周期管理方法中获得中继识别链路的流程示意图。FIG2 is a flow chart of obtaining a relay identification link in a dumb resource lifecycle management method supporting RFID automatic identification provided in an embodiment of the present application.
图3为本申请实施例提供的支持RFID自动识别的哑资源生命周期管理系统的结构示意图。FIG3 is a schematic diagram of the structure of a dumb resource lifecycle management system supporting RFID automatic identification provided in an embodiment of the present application.
附图标记说明:中继识别链路激活模块10,设备寿命预测模块20,关联风险光缆筛选模块30,光缆寿命预测模块40。Description of reference numerals: relay identification link activation module 10 , equipment life prediction module 20 , associated risk optical cable screening module 30 , optical cable life prediction module 40 .
具体实施方式DETAILED DESCRIPTION
本申请实施例通过提供支持RFID自动识别的哑资源生命周期管理方法与系统,解决了现有技术由于仅考虑当前故障情况而忽略历史运维数据,导致无法准确预测哑资源寿命,维护优化能力不足的技术问题,达到了提高哑资源寿命预测精准度,进而实现哑资源精细化管理的技术效果。The embodiments of the present application provide a dumb resource lifecycle management method and system that supports RFID automatic identification, thereby solving the technical problems of the prior art that only considers current fault conditions and ignores historical operation and maintenance data, resulting in the inability to accurately predict the life of dumb resources and insufficient maintenance optimization capabilities. This achieves the technical effect of improving the accuracy of dumb resource life prediction and further realizing refined management of dumb resources.
实施例一,如图1所示,本申请实施例提供了支持RFID自动识别的哑资源生命周期管理方法,所述方法包括:In the first embodiment, as shown in FIG1 , the present application provides a method for managing a lifecycle of a dumb resource supporting RFID automatic identification, the method comprising:
步骤S1:在第一哑资源故障检测节点分析输出第一哑资源故障后,根据所述第一哑资源故障进行中继识别链路激活,以对所述第一哑资源故障对应的第一节点RFID进行自动识别,提取第一设备历史信息,其中,RFID自动识别通过固定式RFID读写器与中继设备协同工作实现。Step S1: After the first dumb resource fault detection node analyzes and outputs the first dumb resource fault, the relay identification link is activated according to the first dumb resource fault to automatically identify the first node RFID corresponding to the first dumb resource fault and extract the first device history information, wherein the RFID automatic identification is achieved through the collaborative work of a fixed RFID reader and a relay device.
具体而言,哑资源是指那些无法主动提供运行状态和故障信息的资源,如光网络中的管道、杆路、光缆等。哑资源故障检测节点则是在哑资源监控系统中,负责检测并输出哑资源故障信息的节点,可以是一个监测终端或者是一个集成在系统中的故障检测模块。中继识别链路是指在检测到哑资源故障后,用于激活并建立与故障对应节点RFID连接的链路,由多个中继设备与RFID节点构成,以便进行自动识别。其中,中继设备用于扩展和增强RFID系统读取范围,实现节点RFID之间的有效信息传递。Specifically, dumb resources are those that cannot proactively provide operational status and fault information, such as pipes, poles, and optical cables in optical networks. A dumb resource fault detection node is a node in a dumb resource monitoring system responsible for detecting and outputting dumb resource fault information. It can be a monitoring terminal or a fault detection module integrated into the system. A relay identification link is a link used to activate and establish an RFID connection with the node corresponding to the fault after a dumb resource fault is detected. This link, composed of multiple relay devices and RFID nodes, facilitates automatic identification. Relay devices are used to extend and enhance the RFID system's read range, enabling efficient information transfer between RFID nodes.
第一哑资源故障检测节点,利用自身的检测功能(如通过传感器检测设备的运行参数是否异常等方法)分析是否有第一哑资源故障产生。当第一哑资源故障检测节点分析并输出第一哑资源故障后,根据这个故障信息触发中继识别链路的激活。激活的中继识别链路会连接到与第一哑资源故障对应的第一节点RFID,这个第一节点RFID用于存储该节点设备的相关信息,如设备的基本信息、历史运维数据等。利用固定式RFID读写器发出的无线电波来自动识别并读取节点RFID标签中的信息,从而提取出第一设备历史信息。例如,在一个光通信网络中,如果某一光缆段的故障检测节点检测到信号传输异常,判断为光缆故障,就会激活相应的中继识别链路,连接到该光缆段对应的RFID标签,读取其中存储的关于该光缆段以往的维护记录、故障处理情况等历史信息。The first dumb resource fault detection node uses its own detection capabilities (e.g., using sensors to detect abnormalities in equipment operating parameters) to analyze whether a first dumb resource fault has occurred. After analyzing and outputting the first dumb resource fault, the first dumb resource fault detection node triggers the activation of a relay identification link based on this fault information. The activated relay identification link connects to the first node RFID tag corresponding to the first dumb resource fault. This first node RFID tag stores relevant information about the device at that node, such as basic device information and historical operation and maintenance data. Radio waves emitted by a fixed RFID reader/writer are used to automatically identify and read the information stored in the node RFID tag, thereby extracting the first device's historical information. For example, in an optical communication network, if a fault detection node on a fiber optic cable segment detects a signal transmission anomaly and identifies it as a fiber optic cable fault, it activates the corresponding relay identification link, connects to the RFID tag corresponding to that fiber optic cable segment, and reads the stored historical information about the fiber optic cable segment, including past maintenance records and fault handling status.
通过发现哑资源的故障后,激活链路自动识别相关的节点RFID,从而获取设备的历史运维数据,这为后续的寿命衰减预测等操作提供了基础数据,使得整个管理过程能够基于更全面的信息进行决策,提高了对哑资源管理的精确性。After discovering a dumb resource failure, the link is activated to automatically identify the relevant node RFID, thereby obtaining the historical operation and maintenance data of the equipment. This provides basic data for subsequent operations such as life decay prediction, enabling the entire management process to make decisions based on more comprehensive information, thereby improving the accuracy of dumb resource management.
步骤S2:根据所述第一哑资源故障和第一设备历史信息进行寿命衰减预测,输出第一更新设备寿命,并将所述第一更新设备寿命存储至所述第一节点RFID。Step S2: Perform life attenuation prediction based on the first dummy resource failure and first device history information, output a first updated device life, and store the first updated device life to the first node RFID.
具体而言,在获取了第一哑资源故障和第一设备历史信息后,将这两者作为输入数据,使用寿命预测算法对设备的剩余使用寿命进行预测,获得设备更新后的预计剩余寿命,记为第一更新设备寿命。这个第一更新设备寿命反映了设备在当前状态下的预期可使用时间。具体实施过程中可以基于数据挖掘、机器学习算法进行寿命预测,如机器学习中的回归算法:以第一设备历史信息中的设备使用时长、设备的运行环境温度历史数据作为自变量,以设备性能指标(如设备的剩余使用寿命的某种量化值)作为因变量,对线性回归模型进行训练,训练过程可以使用Python的Scikit-learn库中的线性回归模块完成。将从第一哑资源故障信息中获取当前故障导致的性能下降幅度(如设备的某项关键性能指标下降了Y%)输入训练好的线性回归模型,可得到模型预测的设备剩余寿命。例如,对于一个有多次维修记录和当前故障信息的光缆接头盒,可以将这些数据输入到预先训练好的线性回归模型中,预测出其剩余寿命为6个月。此外,还可以使用基于物理模型的方法,考虑设备的材料特性、工作环境等因素建立多因素影响的物理模型,进行寿命预测。获得第一更新设备寿命后,将这个第一更新设备寿命信息通过RFID写入器存储回第一节点RFID中,以便后续管理和维护时能够及时获取最新的寿命预期。Specifically, after obtaining the first dumb resource fault and the first device's historical information, the service life prediction algorithm uses these two as input data to predict the remaining service life of the device, obtaining the estimated remaining service life after the device is updated, which is recorded as the first updated device life. This first updated device life reflects the expected service life of the device in its current state. In specific implementations, life prediction can be performed based on data mining and machine learning algorithms, such as regression algorithms in machine learning. This involves training a linear regression model using the device usage time and historical operating temperature data from the first device's historical information as independent variables and a device performance indicator (such as a quantitative value of the device's remaining service life) as the dependent variable. This training process can be performed using the linear regression module in the Python Scikit-learn library. The performance degradation caused by the current fault (e.g., a Y% decrease in a key performance indicator of the device) obtained from the first dumb resource fault information is input into the trained linear regression model to obtain the model's predicted remaining service life. For example, for an optical cable splice closure with multiple maintenance records and current fault information, this data can be input into a pre-trained linear regression model to predict a remaining service life of six months. Alternatively, a physics-based model can be used to establish a multi-factor model that considers factors such as the device's material properties and operating environment to predict lifespan. After obtaining the first updated device lifespan, this information is stored back to the first node's RFID reader via an RFID writer, ensuring timely access to the latest lifespan predictions during subsequent management and maintenance.
通过结合当前故障和历史信息进行寿命衰减预测,提高了设备寿命预测的准确性,以便于管理者或管理系统能够更科学地规划设备的维护和更新,从而优化哑资源管理,提高了资源利用效率。By combining current faults and historical information to predict life attenuation, the accuracy of equipment life prediction is improved, so that managers or management systems can plan equipment maintenance and updates more scientifically, thereby optimizing dumb resource management and improving resource utilization efficiency.
步骤S3:哑资源识别云端在接收所述第一哑资源故障后,根据所述第一哑资源故障的第一上传时间戳进行关联风险光缆筛选,定位第一风险光缆。Step S3: Dumb Resource Identification After receiving the first dumb resource fault, the cloud performs associated risk optical cable screening based on the first upload timestamp of the first dumb resource fault to locate the first risk optical cable.
具体而言,哑资源识别云端是一个基于云计算的平台,负责接收、处理和分析哑资源的相关数据,如故障信息、设备历史数据等,为哑资源的管理提供智能化支持。第一上传时间戳是第一哑资源故障信息被上传到哑资源识别云端时的时间标记,用于确定故障发生和上传的具体时间。第一风险光缆是经过筛选确定的,与第一哑资源故障相关联的、可能存在风险的光缆。第一光缆排查向量是用于标识光缆健康状况的数据向量,可以包含光缆的位置、历史故障次数、信号衰减情况等参数,方便对其进行进一步的故障定位和分析。例如,一个排查向量可能是(0.85,2,5),分别表示光缆健康度为0.85,过去2年发生过故障5次。Specifically, the dumb resource identification cloud is a cloud computing platform responsible for receiving, processing, and analyzing dumb resource-related data, such as fault information and historical device data, to provide intelligent support for dumb resource management. The first upload timestamp is the time stamp when the first dumb resource fault information is uploaded to the dumb resource identification cloud. It is used to determine the specific time of fault occurrence and upload. The first risk optical cable is a screened and identified optical cable associated with the first dumb resource fault and potentially at risk. The first optical cable troubleshooting vector is a data vector used to identify the health status of the optical cable. It can include parameters such as the cable's location, number of historical faults, and signal attenuation, facilitating further fault location and analysis. For example, a troubleshooting vector might be (0.85, 2, 5), indicating that the optical cable health is 0.85 and that it has experienced five faults in the past two years.
当哑资源识别云端接收到第一哑资源故障信息后,会获取该故障信息上传的时间戳,即第一上传时间戳。然后,利用数据挖掘和关联分析算法,结合光缆数据库中的信息,根据时间戳在所有的光缆数据中筛选出可能与该故障相关联的光缆作为第一风险光缆,并为其标识第一光缆排查向量。例如,在一个大型通信网络中,某一光缆段A的故障信息在上午10点上传到云端,而云端通过分析发现同一时间段内,与该光缆段A相邻的支线光缆B的信号衰减增大,则将光缆B标记为第一风险光缆,并生成包含其位置、型号等信息的第一光缆排查向量。When the dumb resource identification cloud receives the first dumb resource fault information, it obtains the timestamp of the fault information upload, i.e., the first upload timestamp. Then, using data mining and association analysis algorithms, combined with information in the optical cable database, it filters out the optical cables that may be associated with the fault from all the optical cable data based on the timestamp as the first risk optical cables, and identifies the first optical cable troubleshooting vector for them. For example, in a large communication network, the fault information of a certain optical cable segment A is uploaded to the cloud at 10 am. The cloud analyzes and finds that the signal attenuation of the branch optical cable B adjacent to the optical cable segment A increases during the same time period. In this case, the optical cable B is marked as the first risk optical cable, and the first optical cable troubleshooting vector containing its location, model, and other information is generated.
通过基于上传时间戳的关联风险光缆筛选,将管理范围从单个故障节点扩展到相关联的光缆等资源,有助于在故障发生时快速确定受影响的范围,为后续的故障定位和光缆寿命预测等操作提供了方向,提高了哑资源管理的全面性和系统性。By screening associated risk optical cables based on upload timestamps, the management scope is expanded from a single fault node to associated optical cables and other resources. This helps to quickly determine the affected scope when a fault occurs, provides direction for subsequent operations such as fault location and optical cable life prediction, and improves the comprehensiveness and systematicness of dumb resource management.
步骤S4:根据所述第一风险光缆的第一光缆排查向量标识进行故障定位后,依据故障定位结果进行光缆寿命预测输出所述第一风险光缆的第一更新光缆寿命,并将所述第一更新光缆寿命存储在所述第一风险光缆的第一光缆RFID。Step S4: After locating the fault according to the first optical cable troubleshooting vector identifier of the first risk optical cable, predict the optical cable life according to the fault location result to output a first updated optical cable life of the first risk optical cable, and store the first updated optical cable life in the first optical cable RFID of the first risk optical cable.
具体而言,在筛选出风险光缆后,通过现场检测设备(如OTDR)沿着光缆排查向量指示的方向和信息进行检测,找到光缆的故障点,从而得到故障定位结果。这个故障定位结果包括光缆故障具体位置、故障原因等信息。例如,在一个光缆网络中,光缆在某一特定节点处出现破损,导致信号中断。在根据第一光缆排查向量进行故障定位,获取故障定位结果后,结合故障定位结果和光缆的历史数据,如以往的维护记录、故障次数、运行环境等,利用类似于步骤S2中的寿命预测方法(如基于数据挖掘、机器学习的算法或基于物理模型的方法)进行光缆寿命预测,确定光缆的预计剩余寿命,即第一更新光缆寿命,这个第一更新光缆寿命反映了光缆在当前状态下的预期可使用时间。例如,对于一根被定位出有轻微损伤的光缆,根据其损伤程度、以往的维修记录以及所处的环境条件(如是否经常受到外界施工的影响),利用基于物理模型的寿命预测方法,预测其剩余寿命为1年。将这个第一更新光缆寿命信息通过RFID写入器存储到第一光缆RFID中,以便后续的维护和管理能够基于最新的寿命预期进行规划。Specifically, after identifying risky optical cables, on-site testing equipment (such as an OTDR) conducts testing along the direction and information indicated by the optical cable troubleshooting vector to locate the fault point in the optical cable, thereby obtaining a fault location result. This fault location result includes information such as the specific location of the optical cable fault and the cause of the fault. For example, in an optical cable network, a cable may be damaged at a specific node, resulting in signal interruption. After obtaining the fault location result based on the first optical cable troubleshooting vector, the fault location result is combined with historical optical cable data, such as previous maintenance records, number of faults, and operating environment. A lifespan prediction method similar to that in step S2 (such as an algorithm based on data mining, machine learning, or a physical model) is used to predict the expected remaining lifespan of the optical cable, i.e., the first updated optical cable lifespan. This first updated optical cable lifespan reflects the expected service life of the optical cable in its current state. For example, for an optical cable identified as having minor damage, a physical model-based lifespan prediction method can be used to predict a remaining lifespan of one year based on the damage severity, previous maintenance records, and environmental conditions (such as whether it is frequently affected by external construction). The first updated optical cable life information is stored in the first optical cable RFID through the RFID writer so that subsequent maintenance and management can be planned based on the latest life expectancy.
通过对故障设备相关联的光缆资源进行精准的寿命预测和数据更新,进一步完善了哑资源全生命周期的管理,有助于合理安排资源的维护和更新,提高整个哑资源网络的可靠性和运行效率。By accurately predicting the lifespan and updating the data of optical cable resources associated with faulty equipment, the management of the entire life cycle of dumb resources is further improved, which helps to rationally arrange the maintenance and update of resources and improve the reliability and operating efficiency of the entire dumb resource network.
进一步的,在第一哑资源故障检测节点分析输出第一哑资源故障前,包括:Furthermore, before the first dummy resource fault detection node analyzes and outputs the first dummy resource fault, the method includes:
步骤S01:在哑资源光缆拓扑进行RFID配置,得到K个节点RFID和H个光缆RFID,其中,所述K个节点RFID配置在所述哑资源光缆拓扑中K个哑资源设备,所述H个光缆RFID配置在所述哑资源光缆拓扑中H条哑资源光缆。Step S01: RFID configuration is performed in a dumb resource optical cable topology to obtain K node RFIDs and H optical cable RFIDs, wherein the K node RFIDs are configured on K dumb resource devices in the dumb resource optical cable topology, and the H optical cable RFIDs are configured on H dumb resource optical cables in the dumb resource optical cable topology.
步骤S02:根据所述K个节点RFID的布设特征进行中继设备配置,得到K条中继识别链路。Step S02: performing relay device configuration according to the layout characteristics of the K RFID nodes to obtain K relay identification links.
步骤S03:根据所述K条中继识别链路对所述H个光缆RFID的中继设备覆盖分析,并根据分析结果进行中继设备补偿,输出H条光缆识别链路。Step S03: Analyze the relay device coverage of the H optical cable RFIDs according to the K relay identification links, perform relay device compensation according to the analysis results, and output H optical cable identification links.
步骤S04:根据所述K个哑资源设备的设备类型进行边缘故障节点配置,得到M个哑资源故障检测节点,其中,所述K个哑资源设备基于设备一致性与所述M个哑资源故障检测节点通信连接,所述M个哑资源故障检测节点与哑资源故障检测云端通信连接。Step S04: Configure edge fault nodes according to the device types of the K dumb resource devices to obtain M dumb resource fault detection nodes, wherein the K dumb resource devices are communicatively connected with the M dumb resource fault detection nodes based on device consistency, and the M dumb resource fault detection nodes are communicatively connected with the dumb resource fault detection cloud.
具体而言,哑资源光缆拓扑指光缆网络中哑资源的分布和连接关系,包括光交箱、分纤箱、接头盒等关键连接点以及光缆的铺设路径等。在哑资源光缆拓扑中进行RFID配置时,首先需要确定光缆网络中的关键连接点,如光交箱、分纤箱、接头盒等。在这些关键连接点中选择至少一种类型的设备安装RFID标签,每个标签存储哑资源设备的编号、型号、安装日期等信息,得到节点RFID,多个为了便于描述以及本领域技术人员理解本方案,以K指代连接点数量,K为正整数。例如,在一个城市的光通信网络中,有100个关键连接点,包括50个光交箱、30个分纤箱和20个接头盒,分别在50个光交箱上安装RFID标签,形成50个节点RFID(K=50)。同时,在哑资源光缆拓扑中的H条哑资源光缆上选择合适的位置安装RFID标签,用于存储光缆编号、型号、铺设日期等信息。其中,H为正整数,表示哑资源光缆的数量。通过在哑资源设备和光缆上配置RFID标签,实现了对设备和光缆信息的标识和存储,方便对整个哑资源光缆拓扑进行信息化管理。Specifically, the dumb resource cable topology refers to the distribution and connection relationships of dumb resources in the optical cable network, including key connection points such as optical cross-connect boxes, fiber splitter boxes, and splice closures, as well as the cable installation paths. When configuring RFID in a dumb resource cable topology, the key connection points in the optical cable network, such as optical cross-connect boxes, fiber splitter boxes, and splice closures, must first be identified. RFID tags are then installed on at least one type of device within these key connection points. Each tag stores information such as the dumb resource device's serial number, model, and installation date, resulting in a node RFID tag. For ease of description and understanding of this solution by those skilled in the art, the number of connection points is represented by K, where K is a positive integer. For example, in a city's optical communication network, there are 100 key connection points, including 50 optical cross-connect boxes, 30 fiber splitter boxes, and 20 splice closures. RFID tags are installed on each of the 50 optical cross-connect boxes, resulting in 50 node RFID tags (K = 50). Simultaneously, RFID tags are installed at appropriate locations on each of the H dumb resource cables in the dumb resource cable topology to store information such as the cable serial number, model, and installation date. Where H is a positive integer representing the number of dumb resource cables. By configuring RFID tags on dumb resource devices and cables, device and cable information can be identified and stored, facilitating information management of the entire dumb resource cable topology.
分析K个节点RFID的布设特征,包括节点RFID的地理位置、相互之间的距离以及与其他设备的连接关系等。根据这些特征确定需要配置中继设备的位置和数量,得到K条中继识别链路,每条链路连接不同的节点RFID或者连接节点RFID与其他相关设备。示例性的,在某段光缆网络中,有10个节点RFID分布在一条长10公里的光缆上,每隔1公里有一个节点RFID。RFID读写器的有效读取距离为100米,那么在每两个相邻节点RFID之间,每隔500米就需要安装一个中继设备,从而得到10条中继识别链路。通过合理配置中继设备,扩大了RFID读写器的覆盖范围,确保了对哑资源设备的全面覆盖和有效识别,提高了资源识别的可靠性和效率。Analyze the layout characteristics of K node RFIDs, including the geographical location of the node RFIDs, the distance between them, and the connection relationship with other devices. Based on these characteristics, determine the location and number of relay devices that need to be configured, and obtain K relay identification links, each of which connects a different node RFID or connects the node RFID with other related devices. For example, in a certain section of optical cable network, there are 10 node RFIDs distributed on a 10-kilometer-long optical cable, with a node RFID every 1 kilometer. The effective reading range of the RFID reader is 100 meters, so a relay device needs to be installed every 500 meters between every two adjacent node RFIDs, resulting in 10 relay identification links. By rationally configuring relay devices, the coverage range of the RFID reader is expanded, ensuring comprehensive coverage and effective identification of dumb resource devices, and improving the reliability and efficiency of resource identification.
在得到K条中继识别链路后,对H个光缆RFID的中继设备覆盖情况进行分析,评估K条中继识别链路对H个光缆RFID的覆盖情况,即哪些光缆RFID能够被中继设备有效覆盖。根据覆盖分析的结果,对覆盖不足的区域增加中继设备,以确保所有光缆RFID都能被有效识别。例如,通过模拟RFID信号的传播路径和强度,检查每个光缆RFID是否在中继设备的有效覆盖范围内。示例性的,在中继设备覆盖分析中发现有5条光缆RFID位于中继设备覆盖的边缘区域,信号较弱,那么就需要在这5条光缆RFID附近增加中继设备进行中继设备补偿。补偿完成后,以每个哑资源设备为中心,根据设备与其他设备的光缆连接关系,确定每个设备的每组光缆,进而根据每个光缆的RFID布设位置进行远程RFID自动识别的中继识别链路分析构建,获得H条光缆识别链路,每条链路对应一条光缆RFID的识别路径。通过对中继设备的覆盖分析和补偿,优化了光缆RFID的识别链路,确保了对所有光缆资源的全面覆盖和准确识别,进一步提高了哑资源管理的精细化程度。After obtaining K relay identification links, the relay device coverage of H optical cable RFIDs is analyzed to assess the coverage of the K relay identification links for the H optical cable RFIDs, specifically which optical cable RFIDs are effectively covered by the relay devices. Based on the coverage analysis results, relay devices are added to areas with insufficient coverage to ensure that all optical cable RFIDs are effectively identified. For example, by simulating the propagation path and strength of RFID signals, each optical cable RFID is checked to ensure that it is within the effective coverage of the relay device. For example, if the relay device coverage analysis reveals that five optical cable RFIDs are located at the edge of the relay device coverage area, resulting in weak signals, additional relay devices are needed near these five optical cable RFIDs for relay device compensation. After compensation is completed, each dumb resource device is used as the center, and the optical cable connections between the device and other devices are determined. Then, relay identification links for remote RFID automatic identification are analyzed and constructed based on the RFID placement of each optical cable. H optical cable identification links are obtained, each corresponding to an optical cable RFID identification path. Through coverage analysis and compensation of relay equipment, the identification link of optical cable RFID is optimized, ensuring comprehensive coverage and accurate identification of all optical cable resources, and further improving the refinement of dumb resource management.
根据K个哑资源设备的设备类型,如光交箱、分纤箱、接头盒等,在靠近哑资源网络边缘或关键连接点的位置配置边缘故障节点,用于监测设备的运行状态和故障情况。然后,基于K个哑资源设备在设备类型上的一致性,将K个哑资源设备与M个哑资源故障检测节点进行通信连接。其中,每个边缘故障节点用于接收并处理同一类型设备的数据,以确保数据处理效率。同时,将M个哑资源故障检测节点与哑资源故障检测云端建立通信连接,以便将故障信息实时上传到云端进行处理和分析。示例性的,K=100,即有100个哑资源设备,根据设备类型和一致性,配置了M=20个哑资源故障检测节点,每个故障检测节点连接一定数量的设备,如1个节点连接5个光交箱,第二个节点连接5个分纤箱等。通过合理的边缘故障节点配置和通信连接,实现了对哑资源设备故障的实时监测和快速响应,提高了故障处理的及时性和准确性,为后续的维护和管理提供了有力支持。Based on the device types of K dumb resource devices, such as optical cross-connect boxes, fiber splitter boxes, and splice boxes, edge fault nodes are deployed near the edge of the dumb resource network or at key connection points to monitor the device's operating status and fault conditions. Then, based on the consistency of the K dumb resource devices' device types, these K dumb resource devices are communicatively connected to M dumb resource fault detection nodes. Each edge fault node receives and processes data from devices of the same type to ensure data processing efficiency. Simultaneously, these M dumb resource fault detection nodes establish a communication connection with the dumb resource fault detection cloud to upload fault information to the cloud in real time for processing and analysis. For example, if K = 100, meaning there are 100 dumb resource devices, M = 20 dumb resource fault detection nodes are deployed based on device type and consistency. Each fault detection node is connected to a certain number of devices, such as one node connected to five optical cross-connect boxes, a second node connected to five fiber splitter boxes, and so on. Through the rational configuration of edge fault nodes and communication connections, real-time monitoring and rapid response to dumb resource device faults are achieved, improving the timeliness and accuracy of fault handling and providing strong support for subsequent maintenance and management.
进一步的,如图2所示,步骤S02包括:Furthermore, as shown in FIG2 , step S02 includes:
步骤S021:交互获得中继设备的设备覆盖半径。Step S021: interactively obtain the device coverage radius of the relay device.
步骤S022:预设节点覆盖数量,并以所述设备覆盖半径和节点覆盖数量为约束,根据所述K个节点RFID的布设特征进行中继设备配置位点拟合,得到中继设备布设阵列。Step S022: presetting the number of node coverages, and taking the device coverage radius and the number of node coverages as constraints, performing relay device configuration site fitting according to the layout characteristics of the K node RFIDs to obtain a relay device layout array.
步骤S023:根据所述K个节点RFID的布设特征,对所述中继设备布设阵列进行中继识别响应分析,定位RFID识别中心,其中,所述固定式RFID读写器布设在所述RFID识别中心。Step S023: performing relay identification response analysis on the relay device layout array according to the layout characteristics of the K RFID nodes, and locating the RFID identification center, wherein the fixed RFID reader is deployed at the RFID identification center.
步骤S024:根据所述RFID识别中心和中继设备布设阵列,构建所述K个节点RFID的所述K条中继识别链路。Step S024: constructing the K relay identification links of the K RFID nodes according to the array arrangement of the RFID identification center and the relay device.
具体而言,中继设备的设备覆盖半径是指中继设备在有效工作范围内能够接收和转发RFID信号的最大距离。在这个距离内,中继设备可以确保信号的强度和质量满足RFID读写的需要。通过与中继设备制造商的技术文档交互或现场测试来获得中继设备的设备覆盖半径。Specifically, the relay device's coverage radius is the maximum distance within which the relay device can receive and forward RFID signals within its effective operating range. Within this distance, the relay device ensures that the signal strength and quality meet RFID reading and writing requirements. Obtain the relay device's coverage radius by consulting the relay device manufacturer's technical documentation or conducting field testing.
预设节点覆盖数量,即单个中继设备能够有效覆盖的节点RFID的最大数量。然后,根据K个节点RFID的布设特征,在满足设备覆盖半径和节点覆盖数量约束的条件下,使用几何拟合算法或优化算法来确定中继设备的布置位置,形成中继设备布设阵列。这个中继设备布设阵列是根据拟合结果得到的中继设备布置位置集合。例如,使用遗传算法来寻找满足条件的中继设备配置位点,遗传算法通过模拟生物进化过程,对中继设备的初始随机布设位置进行交叉、变异等操作,以最小化未被覆盖的节点数量为目标,经过多代的进化,找到较优的布设位置,形成中继设备布设阵列。The preset node coverage number is the maximum number of node RFIDs that a single relay device can effectively cover. Then, based on the layout characteristics of the K node RFIDs, a geometric fitting algorithm or an optimization algorithm is used to determine the layout positions of the relay devices, while satisfying the device coverage radius and node coverage number constraints, to form a relay device layout array. This relay device layout array is a set of relay device layout positions obtained based on the fitting results. For example, a genetic algorithm is used to find relay device configuration sites that meet the conditions. The genetic algorithm simulates the biological evolution process and performs crossover, mutation, and other operations on the initial random layout positions of the relay devices, with the goal of minimizing the number of uncovered nodes. After multiple generations of evolution, a better layout position is found to form a relay device layout array.
根据K个节点RFID的布设特征,对中继设备布设阵列进行识别响应分析,模拟或实际测试中继设备在布设位置对节点RFID的识别响应情况,以确定RFID信号的最佳识别位置,即RFID识别中心。在实际实施过程中,可以使用信号传播模型或实际测试工具,如RFID读写器和标签测试仪,对中继设备布设阵列中的每个中继设备与K个节点RFID之间的信号进行检测,根据检测到的每个中继设备到各个节点RFID的信号强度、识别成功率等数据,使用聚类分析算法,将那些在信号强度和识别成功率等方面表现相似的中继设备归为一类。在每个聚类中,通过计算聚类中心来确定RFID识别中心,并在每个RFID识别中心布设固定式RFID读写器,实现节点RFID信息的读取和写入。Based on the deployment characteristics of K RFID nodes, the relay device array is analyzed for recognition and response. Simulations or actual tests are conducted on the relay device's recognition response to the node RFID at the deployment location to determine the optimal RFID signal recognition location, i.e., the RFID recognition center. In actual implementation, signal propagation models or practical testing tools, such as RFID readers and tag testers, can be used to detect the signal between each relay device in the relay device array and the K RFID nodes. Based on the detected signal strength and recognition success rate from each relay device to each node RFID, a cluster analysis algorithm is used to group relay devices with similar signal strength and recognition success rate into a single cluster. Within each cluster, the RFID recognition center is determined by calculating the cluster center. A fixed RFID reader is then deployed at each RFID recognition center to read and write node RFID information.
根据确定的RFID识别中心和中继设备布设阵列,以RFID识别中心为核心,将中继设备布设阵列中的中继设备与节点RFID进行连接规划。根据信号传输的最优路径原则(例如,选择信号衰减最小的路径),确定从每个节点RFID到识别中心的链路,构建K个节点RFID的K条中继识别链路,确保每个节点RFID都能通过对应的中继识别链路被有效识别和连接。Based on the determined RFID identification center and relay device array, with the RFID identification center as the core, the relay devices in the relay device array are connected to the node RFIDs. Based on the principle of optimal signal transmission path (for example, choosing the path with minimal signal attenuation), the link from each node RFID to the identification center is determined. K relay identification links are constructed for K node RFIDs to ensure that each node RFID can be effectively identified and connected through the corresponding relay identification link.
通过以上步骤,实现了中继设备的合理配置和优化布置,构建了高效的中继识别链路,有助于实现对节点RFID的有效管理和数据传输,为哑资源的自动识别和管理提供了基础架构,提高了哑资源管理的效率和准确性。Through the above steps, the reasonable configuration and optimized layout of relay equipment are achieved, and an efficient relay identification link is built, which helps to achieve effective management and data transmission of node RFID, provides an infrastructure for the automatic identification and management of dumb resources, and improves the efficiency and accuracy of dumb resource management.
进一步的,步骤S03包括:Furthermore, step S03 includes:
步骤S031:根据所述设备覆盖半径和中继设备布设阵列构建中继设备覆盖空间。Step S031: constructing a relay device coverage space according to the device coverage radius and the relay device layout array.
步骤S032:将所述H个光缆RFID的布设特征与所述中继设备覆盖空间对齐,得到多个未覆盖RFID。Step S032: Align the layout features of the H optical cable RFIDs with the coverage space of the relay device to obtain a plurality of uncovered RFIDs.
步骤S033:根据所述多个未覆盖RFID进行所述中继设备布设阵列的中继设备补偿,得到更新设备布设阵列。Step S033: performing relay device compensation of the relay device layout array according to the multiple uncovered RFIDs to obtain an updated device layout array.
步骤S034:根据所述RFID识别中心和更新设备布设阵列,构建所述H个光缆RFID的所述H条光缆识别链路。Step S034: constructing the H optical cable identification links of the H optical cable RFIDs according to the array of the RFID identification center and the update device.
具体而言,中继设备覆盖空间是指根据中继设备的设备覆盖半径和其中继设备布设阵列所形成的信号覆盖区域。这个空间定义了中继设备能够有效接收和转发RFID信号的范围。根据中继设备的覆盖半径和布设阵列,以中继设备布设阵列中的每个中继设备为球心,以设备覆盖半径为半径构建球体空间。这些球体空间相互叠加、融合,最终形成一个整体的中继设备覆盖空间。示例性的,有10个中继设备,每个设备的覆盖半径为300米,通过布设阵列在某区域内构建中继设备覆盖空间,这个空间是一个由多个圆形覆盖区域组成的连续区域。明确中继设备的覆盖范围,可以为后续的覆盖分析和补偿提供基础,确保对光缆RFID的全面覆盖。Specifically, the relay device coverage space refers to the signal coverage area formed by the device coverage radius of the relay device and the relay device layout array. This space defines the range in which the relay device can effectively receive and forward RFID signals. According to the coverage radius and layout array of the relay device, a spherical space is constructed with each relay device in the relay device layout array as the center of the sphere and the device coverage radius as the radius. These spherical spaces overlap and merge with each other to eventually form an overall relay device coverage space. For example, there are 10 relay devices, each with a coverage radius of 300 meters. By laying out the array, a relay device coverage space is constructed in a certain area. This space is a continuous area composed of multiple circular coverage areas. Clarifying the coverage range of the relay device can provide a basis for subsequent coverage analysis and compensation, ensuring comprehensive coverage of optical cable RFID.
光缆RFID的布设特征是指H个光缆RFID在光缆网络中的分布特点,包括光缆RFID的布设位置、方向、密度、连接关系等。将H个光缆RFID的布设特征数据(如坐标位置)与中继设备覆盖空间的模型进行对比分析,找出未被覆盖的光缆RFID(即多个未覆盖RFID),为后续的中继设备补偿提供明确的目标,提高覆盖的完整性。在实际实施过程中,可以采用空间判断算法,如射线法或点在多面体内部判断算法(对于三维空间情况),来判断每个光缆RFID是否在中继设备覆盖空间内。根据未覆盖RFID的位置,使用模拟退火算法、遗传算法等优化算法,以未覆盖RFID到最近中继设备的距离之和最小为目标函数,来计算新中继设备的位置坐标,确定需要增加的中继设备数量和位置,或者调整现有中继设备的位置,确保所有光缆RFID都能被有效识别,提高中继设备的覆盖完整性和可靠性。在进行中继设备补偿后,得到新的中继设备布置位置集合,即更新设备布设阵列。The layout characteristics of optical cable RFIDs refer to the distribution characteristics of H optical cable RFIDs within the optical cable network, including their placement, orientation, density, and connectivity. Comparing the layout characteristics (e.g., coordinates) of the H optical cable RFIDs with the model of the relay device coverage space can identify uncovered optical cable RFIDs (i.e., multiple uncovered RFIDs). This provides clear targets for subsequent relay device compensation and improves coverage integrity. In practical implementation, spatial detection algorithms, such as the ray method or the point-inside-polyhedron detection algorithm (for three-dimensional space), can be used to determine whether each optical cable RFID is within the relay device coverage space. Based on the locations of uncovered RFIDs, optimization algorithms such as simulated annealing and genetic algorithms are used, with the objective function of minimizing the sum of distances from uncovered RFIDs to the nearest relay device. The coordinates of new relay devices are calculated to determine the number and locations of additional relay devices or to adjust the positions of existing relay devices. This ensures that all optical cable RFIDs are effectively identified, improving relay device coverage integrity and reliability. After the relay device compensation is performed, a new relay device arrangement position set is obtained, that is, the device arrangement array is updated.
根据RFID识别中心和更新后的中继设备布设阵列,构建H个光缆RFID的H条光缆识别链路,实现对光缆RFID信息的远程读取和传输。示例性的,对于50个光缆RFID,在补偿后构建50条光缆识别链路,每条链路连接一个光缆RFID到最近的中继设备,并经过RFID识别中心。Based on the RFID identification center and the updated relay device, an array is laid out to construct H optical cable identification links for H optical cable RFIDs, enabling remote reading and transmission of optical cable RFID information. For example, for 50 optical cable RFIDs, 50 optical cable identification links are constructed after compensation, with each link connecting one optical cable RFID to the nearest relay device and passing through the RFID identification center.
通过以上步骤,实现了对中继设备覆盖空间的构建、对齐分析、补偿优化以及光缆识别链路的构建,确保了所有光缆RFID的全面覆盖和有效识别,为哑资源的精细化管理提供了科学合理的管理框架。Through the above steps, the construction of the relay equipment coverage space, alignment analysis, compensation optimization and the construction of the optical cable identification link were realized, ensuring the comprehensive coverage and effective identification of all optical cable RFIDs, and providing a scientific and reasonable management framework for the refined management of dumb resources.
进一步的,步骤S1包括:Furthermore, step S1 includes:
步骤S11:通过解析所述第一哑资源故障进行设备定位,得到第一哑资源设备。Step S11: locating the device by analyzing the first dumb resource fault to obtain the first dumb resource device.
步骤S12:根据所述第一哑资源设备从所述K条中继识别链路定位并激活第一中继识别链路。Step S12: Locate and activate a first relay identification link from the K relay identification links according to the first dumb resource device.
步骤S13:通过所述第一中继识别链路对所述第一哑资源设备对应的第一节点RFID进行自动识别处理,以提取所述第一设备历史信息。Step S13: Automatically identify the first node RFID corresponding to the first dumb resource device through the first relay identification link to extract the first device history information.
具体而言,对第一哑资源故障进行详细分析,根据第一哑资源故障的相关信息(如故障发生的位置、故障类型对应的设备范围等)确定第一哑资源设备的具体位置或身份。如果故障信息包含位置信息(例如故障发生在某个特定区域的光缆或设备附近),则根据预先构建的哑资源光缆拓扑图进行比对,通过拓扑图查找该分段连接的设备。如果故障信息包含设备类型或设备标识相关的信息,直接在已知的哑资源设备列表中进行匹配。例如,如果故障信息表明是某种特定型号的分纤箱出现故障,就在设备列表中搜索该型号的分纤箱作为第一哑资源设备。Specifically, a detailed analysis of the first dumb resource fault is performed, and the specific location or identity of the first dumb resource device is determined based on relevant information about the first dumb resource fault (such as the fault location and the device range corresponding to the fault type). If the fault information includes location information (for example, the fault occurred near optical cables or equipment in a specific area), a comparison is performed against a pre-built dumb resource optical cable topology map, and the device connected to that segment is found using the topology map. If the fault information includes information related to the device type or device identifier, a match is directly performed against the list of known dumb resource devices. For example, if the fault information indicates that a specific model of fiber optic splitter box has failed, the device list is searched for that model of fiber optic splitter box as the first dumb resource device.
根据第一哑资源设备的位置和连接关系,在K条中继识别链路中进行搜索,找到与第一哑资源设备相关的链路,确定为第一中继识别链路。例如,如果第一哑资源设备是通过某条特定的光缆连接到其他设备,而这条光缆对应的是某条中继识别链路的一部分,那么就确定这条中继识别链路为第一中继识别链路。确定第一中继识别链路后,通过发送激活信号使其处于工作状态。Based on the location and connection relationship of the first dumb resource device, a search is performed among the K relay identification links to find a link associated with the first dumb resource device and determine it as the first relay identification link. For example, if the first dumb resource device is connected to other devices via a specific optical cable, and this optical cable corresponds to part of a relay identification link, then this relay identification link is determined to be the first relay identification link. After the first relay identification link is determined, an activation signal is sent to activate it.
第一中继识别链路激活后,利用RFID识别设备(如RFID读写器)对第一节点RFID进行识别。RFID读写器通过发射射频信号与第一节点RFID进行通信,接收RFID返回的信号。这个信号包含了第一节点RFID存储的信息,从中提取第一设备历史信息。After the first relay identification link is activated, an RFID identification device (such as an RFID reader) identifies the first node RFID. The RFID reader transmits radio frequency signals to communicate with the first node RFID and receives a return signal. This signal contains the information stored by the first node RFID, from which the first device's historical information is extracted.
通过以上步骤,实现了从故障检测到设备定位,再到中继识别链路的激活和RFID自动识别处理的完整流程,为后续的设备寿命预测和维护优化提供了必要的数据支持。Through the above steps, the complete process from fault detection to equipment positioning, to activation of the relay identification link and RFID automatic identification processing is realized, providing the necessary data support for subsequent equipment life prediction and maintenance optimization.
进一步的,步骤S2包括:Furthermore, step S2 includes:
步骤S21:根据所述第一哑资源故障和第一设备历史信息进行故障运维分析,输出第一运维补偿策略。Step S21: performing a fault operation and maintenance analysis based on the first dumb resource fault and the first device historical information, and outputting a first operation and maintenance compensation strategy.
步骤S22:根据所述第一运维补偿策略和第一设备历史信息进行寿命预测更新,输出第一更新设备寿命。Step S22: performing life prediction update according to the first operation and maintenance compensation strategy and the first equipment historical information, and outputting a first updated equipment life.
步骤S23:将所述第一更新设备寿命、第一哑资源故障、第一运维补偿策略存储至所述第一节点RFID。Step S23: storing the first update device life, the first dumb resource failure, and the first operation and maintenance compensation strategy in the first node RFID.
具体而言,根据第一哑资源故障和第一设备历史信息进行故障原因分析、影响评估等,从而制定出针对当前故障和历史运维情况,优化设备后续的运维管理的具体措施和计划,存储为第一运维补偿策略。首先深入分析第一哑资源故障的类型、严重程度、发生频率等信息。同时,检索第一设备历史信息,查看设备是否有类似的故障历史,以及之前的处理方式和效果。根据分析结果制定运维补偿策略。在实际实施过程中,可以参考设备的技术手册、运维经验知识库等资源制定运维补偿策略。例如,运维经验知识库中记录了针对该设备不同故障类型的常见解决方案,通过查询该知识库来确定合适的运维策略。Specifically, based on the first dumb resource failure and the historical information of the first device, the cause of the failure is analyzed, the impact is assessed, etc., so as to formulate specific measures and plans for the current failure and historical operation and maintenance conditions, and optimize the subsequent operation and maintenance management of the equipment, and store them as the first operation and maintenance compensation strategy. First, an in-depth analysis of the type, severity, frequency of occurrence and other information of the first dumb resource failure is performed. At the same time, the historical information of the first device is retrieved to check whether the device has a similar failure history, as well as the previous handling methods and effects. An operation and maintenance compensation strategy is formulated based on the analysis results. In the actual implementation process, the operation and maintenance compensation strategy can be formulated by referring to resources such as the technical manual of the device and the operation and maintenance experience knowledge base. For example, the operation and maintenance experience knowledge base records common solutions for different types of failures of the device, and the appropriate operation and maintenance strategy is determined by querying the knowledge base.
根据第一运维补偿策略(如维修、更换部件等操作)以及第一设备历史信息(已有的运行时长、以往的维修记录等),重新评估第一哑资源设备的剩余使用寿命,得到更新后的设备寿命,即第一更新设备寿命。首先,根据第一运维补偿策略的内容对已有的设备寿命预测模型进行调整。例如,第一运维补偿策略是更换了设备的关键部件,那么在寿命预测模型中,该部件对应的寿命参数需要更新。假设原设备寿命预测模型为L=L0-kT-mF(其中L是剩余寿命,L0是初始寿命,T是运行时间,F是故障次数,k和m是系数),如果更换了一个关键部件,该部件的初始寿命为Lnew,则新的寿命预测模型变为L=Lnew+(L0-kT-mF)。获得新的寿命预测模型后,将第一设备历史信息中的数据(如已运行的时间、已发生的故障次数等)代入调整后的寿命预测模型中进行计算,得到第一更新设备寿命。例如,已知设备已经运行了T=1000小时,发生了F=5次故障,根据新的寿命预测模型计算出L的值,即为第一更新设备寿命。Based on the first O&M compensation strategy (such as repairs and component replacements) and the first device's historical information (existing operating hours, previous maintenance records, etc.), the remaining useful life of the first dummy resource device is re-evaluated to obtain an updated device life, namely the first updated device life. First, the existing device life prediction model is adjusted based on the first O&M compensation strategy. For example, if the first O&M compensation strategy involves replacing a key component of the device, the corresponding life parameters in the life prediction model need to be updated. Assume the original device life prediction model is L = L 0 - kT - mF (where L is the remaining life, L 0 is the initial life, T is the operating time, F is the number of failures, and k and m are coefficients). If a key component is replaced with an initial life of L new , the new life prediction model becomes L = L new + (L 0 - kT - mF). After obtaining the new life prediction model, the data in the first device's historical information (such as operating time and number of failures) is substituted into the adjusted life prediction model for calculation to obtain the first updated device life. For example, it is known that the equipment has been running for T = 1000 hours and has experienced F = 5 failures. The value of L calculated according to the new life prediction model is the first updated equipment life.
将第一更新设备寿命、第一哑资源故障、第一运维补偿策略等信息通过RFID写入器写入到第一节点RFID中,便于后续的自动识别和管理,实现设备信息的实时更新和共享。在写入过程中,要确保写入操作的准确性和完整性。可以通过校验和验证等机制来保证写入信息的正确性。例如,在写入信息后,再次读取第一节点RFID中的信息并与写入的原始信息进行比对,如果存在差异则重新写入。Information such as the first updated device lifespan, the first dumb resource failure, and the first operation and maintenance compensation strategy is written to the first node RFID using an RFID writer. This facilitates subsequent automatic identification and management, enabling real-time updating and sharing of device information. During the writing process, the accuracy and completeness of the write operation must be ensured. The correctness of the written information can be ensured through mechanisms such as checksum verification. For example, after writing the information, the information in the first node RFID is read again and compared with the original written information. If any discrepancies are found, the information is rewritten.
通过以上步骤,实现了对故障设备的精准运维分析、寿命预测更新以及信息的高效存储,有助于提高哑资源设备的可靠性和运行效率,为后续的设备管理和维护提供了科学依据和实时数据支持,进一步提升了哑资源管理精细化程度。Through the above steps, accurate operation and maintenance analysis of faulty equipment, life prediction updates and efficient storage of information are achieved, which helps to improve the reliability and operation efficiency of dumb resource equipment, provides a scientific basis and real-time data support for subsequent equipment management and maintenance, and further improves the level of refinement of dumb resource management.
进一步的,步骤S3包括:Furthermore, step S3 includes:
步骤S31:根据所述第一哑资源故障的第一上传时间戳和哑资源光缆拓扑进行故障信息筛选,输出第二哑资源故障。Step S31: Fault information is filtered according to the first upload timestamp of the first dumb resource fault and the dumb resource optical cable topology, and a second dumb resource fault is output.
步骤S32:在所述哑资源识别云端索引调用所述第二哑资源故障对应的第二哑资源设备和第二上传时间戳。Step S32: The second dumb resource device and the second upload timestamp corresponding to the second dumb resource failure are indexed and called in the dumb resource identification cloud.
步骤S33:根据所述第二哑资源设备和第一哑资源设备在所述哑资源光缆拓扑提取所述第一风险光缆。Step S33: extracting the first risk optical cable from the dumb resource optical cable topology according to the second dumb resource device and the first dumb resource device.
步骤S34:依据所述第一上传时间戳和第二上传时间戳计算输出所述第一光缆排查向量。Step S34: Calculate and output the first optical cable troubleshooting vector based on the first upload timestamp and the second upload timestamp.
具体而言,根据第一哑资源故障的第一上传时间戳,以及哑资源光缆拓扑中与该故障相关的光缆连接关系和节点情况,在一定时间范围内(如前后1小时内)从众多故障信息中筛选出与当前故障相关联的其他故障信息,输出为第二哑资源故障。可以使用数据库查询工具,如SQL,结合时间戳和拓扑关系进行筛选。例如,在SQL查询中,使用时间戳字段和设备位置字段作为筛选条件,第一哑资源故障的上传时间戳为2023-10-12 10:00:00,在哑资源光缆拓扑中筛选出在2023-10-12 09:00:00至2023-10-12 11:00:00之间发生的其他故障,作为第二哑资源故障。通过时间戳和拓扑结构的筛选,能够发现与当前故障可能存在关联的其他故障,为后续的风险光缆提取提供更全面的信息,提高故障分析的准确性。Specifically, based on the first upload timestamp of the first dumb resource fault, as well as the fiber optic cable connections and node information related to the fault in the dumb resource fiber optic cable topology, other fault information related to the current fault is filtered out from the numerous fault information within a certain time range (e.g., within an hour before and after), and output as the second dumb resource fault. Database query tools, such as SQL, can be used to filter by combining timestamps and topological relationships. For example, in an SQL query, using the timestamp field and device location field as filtering criteria, if the upload timestamp of the first dumb resource fault is 2023-10-12 10:00:00, other faults occurring between 2023-10-12 09:00:00 and 2023-10-12 11:00:00 in the dumb resource fiber optic cable topology are filtered out as the second dumb resource fault. By filtering by timestamp and topology, other faults that may be related to the current fault can be discovered, providing more comprehensive information for subsequent risk fiber optic cable extraction and improving the accuracy of fault analysis.
第二哑资源设备是指与第二哑资源故障相关的设备。第二上传时间戳是指第二哑资源故障信息被上传到云端的时间标记。在哑资源识别云端的数据库中,根据第二哑资源故障的信息(如故障位置、时间等)进行索引调用,获取对应的第二哑资源设备和第二上传时间戳。The second dumb resource device refers to the device associated with the second dumb resource failure. The second upload timestamp is the time stamp when the second dumb resource failure information is uploaded to the cloud. In the dumb resource identification cloud database, an index is retrieved based on the second dumb resource failure information (such as failure location and time) to obtain the corresponding second dumb resource device and second upload timestamp.
在哑资源光缆拓扑中,查找第一哑资源设备和第二哑资源设备之间的连接关系,包括直接连接和间接连接的光缆,确定二者共同连接的光缆作为第一风险光缆。例如,如果第一哑资源设备和第二哑资源设备通过某条光缆直接相连,或者二者都连接到同一个中间节点且共享某条光缆,则可将这条光缆作为第一风险光缆。In the dumb resource optical cable topology, the connection relationship between the first dumb resource device and the second dumb resource device is searched, including both directly connected and indirectly connected optical cables. The optical cable that connects the two devices is identified as the first risk optical cable. For example, if the first dumb resource device and the second dumb resource device are directly connected via an optical cable, or if both devices are connected to the same intermediate node and share an optical cable, this optical cable can be identified as the first risk optical cable.
计算第一上传时间戳和第二上传时间戳的差值。例如,如果第一上传时间戳为t1,第二上传时间戳为t2,计算Δt=t1-t2。根据时间戳的差值构建光缆排查向量。如果Δt>0,表示第一哑资源故障发生在第二哑资源故障之前,那么光缆排查向量的方向为从第一哑资源设备所在的光缆区域指向第二哑资源设备所在的光缆区域;如果Δt<0,则方向相反。可以根据实际的光缆拓扑结构和故障分布情况,确定向量的具体数值和含义。例如,在二维的光缆拓扑平面上,可以用(x,y)坐标表示光缆排查向量的方向和大小,其中x和y的值根据时间戳差值和光缆拓扑的几何关系确定。Calculate the difference between the first upload timestamp and the second upload timestamp. For example, if the first upload timestamp is t1 and the second upload timestamp is t2 , calculate Δt = t1 - t2 . Construct a cable troubleshooting vector based on the timestamp difference. If Δt > 0, indicating that the first dumb resource fault occurred before the second dumb resource fault, the direction of the cable troubleshooting vector is from the cable area where the first dumb resource device is located to the cable area where the second dumb resource device is located. If Δt < 0, the direction is the opposite. The specific value and meaning of the vector can be determined based on the actual cable topology and fault distribution. For example, on a two-dimensional cable topology plane, the direction and magnitude of the cable troubleshooting vector can be represented by (x, y) coordinates, where the x and y values are determined based on the timestamp difference and the geometric relationship of the cable topology.
通过以上步骤,实现了从故障信息筛选到风险光缆提取以及光缆排查向量构建的完整流程,不仅能够发现与当前故障相关联的其他故障,还能准确识别风险光缆并构建排查向量,为后续的故障处理和光缆维护提供具体的方向指导,进一步提升哑资源的维护管理的准确性。Through the above steps, the complete process from fault information screening to risky optical cable extraction and optical cable troubleshooting vector construction is realized. It can not only discover other faults related to the current fault, but also accurately identify risky optical cables and construct troubleshooting vectors, providing specific direction guidance for subsequent fault handling and optical cable maintenance, and further improving the accuracy of dumb resource maintenance management.
进一步的,步骤S4包括:Furthermore, step S4 includes:
步骤S41:以所述第一光缆排查向量为约束,使用光时域反射仪对所述第一风险光缆进行故障排查定位,输出第一光缆故障信息。Step S41: using the first optical cable troubleshooting vector as a constraint, using an optical time domain reflectometer to troubleshoot and locate the first risk optical cable, and outputting first optical cable fault information.
步骤S42:采用所述第一风险光缆遍历所述H条光缆识别链路,定位第一光缆识别链路。Step S42: using the first risk optical cable to traverse the H optical cable identification links, and locating the first optical cable identification link.
步骤S43:通过激活所述第一光缆识别链路对所述第一风险光缆对应的第一光缆RFID进行自动识别处理,以提取第一光缆历史信息。Step S43: automatically identifying the first optical cable RFID corresponding to the first risky optical cable by activating the first optical cable identification link to extract first optical cable history information.
步骤S44:根据所述第一光缆历史信息和第一光缆故障信息进行寿命衰减预测,输出所述第一更新光缆寿命。Step S44: performing life attenuation prediction based on the first optical cable history information and the first optical cable fault information, and outputting the first updated optical cable life.
步骤S45:将所述第一更新光缆寿命存储至所述第一光缆RFID。Step S45: storing the first updated optical cable life in the first optical cable RFID.
具体而言,光时域反射仪(OTDR)是一种用于测量光缆故障位置和特性的仪器,通过向光缆中发射光脉冲并接收反射回来的光线来确定光缆中的断点、损耗点等故障位置。第一光缆故障信息是指通过OTDR检测得到的关于第一风险光缆的故障位置、类型等详细信息。根据光缆的类型和测试要求设置光时域反射仪的测试参数,如测试波长、脉冲宽度、测量范围等。根据第一光缆排查向量确定光时域反射仪的测试起始点和方向。例如,如果第一光缆排查向量指示从光缆的一端向另一端排查,那么将光时域反射仪连接到光缆的相应端,启动测量,在测试过程中OTDR会显示反射信号的曲线,通过分析曲线中的异常点来确定第一风险光缆的故障位置和类型,并输出第一光缆故障信息。通过OTDR的精确测量,能够快速、准确地定位光缆中的故障位置和类型,为后续的修复工作提供明确的指导,减少故障排查的时间和成本。Specifically, an optical time-domain reflectometer (OTDR) is an instrument used to measure the location and characteristics of optical cable faults. It transmits light pulses into the cable and receives the reflected light to determine the location of faults, such as breaks and losses, within the cable. The first optical cable fault information refers to detailed information about the fault location and type, obtained through OTDR testing, regarding the first-risk optical cable. OTDR test parameters, such as test wavelength, pulse width, and measurement range, are set based on the cable type and test requirements. The OTDR test start point and direction are determined based on the first optical cable troubleshooting vector. For example, if the first optical cable troubleshooting vector indicates troubleshooting from one end of the cable to the other, connect the OTDR to the corresponding ends of the cable and start the measurement. During the test, the OTDR displays a curve of the reflected signal. By analyzing the abnormal points in the curve, the fault location and type of the first-risk optical cable are determined, and the first optical cable fault information is output. The OTDR's precise measurement can quickly and accurately locate the fault location and type within the optical cable, providing clear guidance for subsequent repair work and reducing troubleshooting time and costs.
采用第一风险光缆的信息,在H条光缆识别链路中进行遍历搜索,逐一访问光缆识别链路中的每一个元素,查找与该第一风险光缆相关联的识别链路,确定为第一光缆识别链路。Using the information of the first risk optical cable, a traversal search is performed in H optical cable identification links, each element in the optical cable identification link is accessed one by one, and an identification link associated with the first risk optical cable is found and determined to be the first optical cable identification link.
通过激活第一光缆识别链路,使用RFID读写器对第一光缆RFID进行自动识别处理。RFID读写器通过第一光缆识别链路发送射频信号,激活第一光缆RFID标签,标签返回存储的信息,读写器接收并读取这些信息,提取出第一光缆历史信息,包括光缆的铺设日期、维护记录等历史信息。By activating the first optical cable identification link, the RFID reader automatically identifies the first optical cable's RFID tag. The RFID reader sends a radio frequency signal through the first optical cable identification link, activating the first optical cable's RFID tag. The tag returns stored information, which the reader receives and reads, extracting historical information about the first optical cable, including the cable's installation date and maintenance records.
根据第一光缆历史信息和第一光缆故障信息,调整光缆寿命预测模型。将第一光缆历史信息代入调整后的寿命预测模型中进行计算,得到第一更新光缆寿命。使用RFID读写设备将第一更新光缆寿命信息写入到第一光缆RFID中,方便光缆信息的集中管理和后续查询。具体实现过程与获得第一更新设备寿命类似,可参考前述相关描述。Based on the first optical cable's historical information and the first optical cable's fault information, the optical cable life prediction model is adjusted. The first optical cable's historical information is substituted into the adjusted life prediction model for calculation to obtain a first updated optical cable life. An RFID reader/writer is used to write the first updated optical cable life information to the first optical cable's RFID tag, facilitating centralized management of optical cable information and subsequent querying. The specific implementation process is similar to obtaining the first updated device life, and can be referenced in the aforementioned related description.
通过以上步骤,实现了对第一风险光缆的故障排查、识别链路定位、自动识别处理以及寿命预测和信息更新,不仅提高了光缆故障处理的效率和准确性,还为光缆的维护和更新提供了科学依据和实时数据支持,进一步提升了哑资源管理水平。Through the above steps, the first-risk optical cable is troubleshooting, link location identification, automatic identification processing, life prediction and information update are realized. This not only improves the efficiency and accuracy of optical cable fault handling, but also provides a scientific basis and real-time data support for the maintenance and update of optical cables, further improving the level of dumb resource management.
进一步的,本申请实施例所述方法还包括:Furthermore, the method described in the embodiment of the present application also includes:
步骤S51:所述哑资源识别云端根据所述第二哑资源设备定位第二节点RFID。Step S51: the dumb resource identification cloud locates the second node RFID according to the second dumb resource device.
步骤S52:从所述第二节点RFID提取第二更新设备寿命。Step S52: extracting a second updated device lifetime from the second node RFID.
步骤S53:对所述第一更新设备寿命、第二更新设备寿命和第一更新光缆寿命进行偏差计算,输出寿命偏差系数。Step S53: performing deviation calculation on the life of the first update device, the life of the second update device, and the life of the first update optical cable, and outputting a life deviation coefficient.
步骤S54:若所述寿命偏差系数满足预设偏差阈值,则序列化所述第一更新设备寿命、第二更新设备寿命和第一更新光缆寿命,并根据排序结果提取最短寿命参数。Step S54: If the lifetime deviation coefficient meets the preset deviation threshold, the first update device lifetime, the second update device lifetime and the first update optical cable lifetime are sequenced, and the shortest lifetime parameter is extracted according to the sequence result.
步骤S55:所述哑资源识别云端将所述最短寿命参数经由所述M个哑资源故障检测节点下发至所述第一节点RFID、第二节点RFID和第一光缆RFID进行哑资源生命周期更新。Step S55: The dummy resource identification cloud sends the shortest lifespan parameter to the first node RFID, the second node RFID and the first optical cable RFID via the M dummy resource fault detection nodes to update the dummy resource lifecycle.
具体而言,在哑资源识别云端中,依据第二哑资源设备的相关信息(如设备标识、设备位置等)来确定与之对应的第二节点RFID的位置或身份。示例性的,可以通过查询云端数据库,使用第二哑资源设备的标识信息(如设备编号)作为关键字进行搜索。Specifically, in the dumb resource identification cloud, the location or identity of the corresponding second node RFID is determined based on relevant information about the second dumb resource device (e.g., device identification, device location, etc.). For example, a search can be performed by querying a cloud database, using the identification information of the second dumb resource device (e.g., device number) as a keyword.
使用RFID读取设备与第二节点RFID进行通信,从第二节点RFID中读取存储在其中的第二更新设备寿命信息。计算第一更新设备寿命、第二更新设备寿命和第一更新光缆寿命之间的差异程度,得到寿命偏差系数。寿命偏差系数反映了第一更新设备寿命、第二更新设备寿命和第一更新光缆寿命之间的偏离程度,数值越大,偏离程度越高。首先计算第一更新设备寿命L1与第二更新设备寿命L2的差值ΔL12=L1-L2,第一更新设备寿命L1与第一更新光缆寿命L3的差值ΔL13=L1-L3,第二更新设备寿命L2与第一更新光缆寿命L3的差值ΔL23=L2-L3。根据差值计算寿命偏差系数C,例如C=(|ΔL12|+|ΔL13|+|ΔL23|)/(L1+L2+L3)。An RFID reader communicates with the second node RFID and reads the second update device lifetime information stored therein from the second node RFID. The differences between the first update device lifetime, the second update device lifetime, and the first update optical cable lifetime are calculated to obtain a lifetime deviation coefficient. The lifetime deviation coefficient reflects the degree of deviation between the first update device lifetime, the second update device lifetime, and the first update optical cable lifetime; a larger value indicates a greater degree of deviation. First, the difference between the first update device lifetime L1 and the second update device lifetime L2 is calculated as ΔL12 = L1 - L2 ; the difference between the first update device lifetime L1 and the first update optical cable lifetime L3 is calculated as ΔL13 = L1 - L3 ; and the difference between the second update device lifetime L2 and the first update optical cable lifetime L3 is calculated as ΔL23 = L2 - L3 . Based on these differences, the lifetime deviation coefficient C is calculated, for example, C = (|ΔL12| + |ΔL13| + |ΔL23|) / (L1 + L2 + L3).
预设偏差阈值是预先设定的一个数值,用于衡量寿命偏差系数是否在可接受的范围内。将计算得到的寿命偏差系数C与预设偏差阈值T进行比较。如果C≤T,表示三者的寿命偏差在可接受范围内。将第一更新设备寿命L1、第二更新设备寿命L2和第一更新光缆寿命L3组成一个数组(L1,L2,L3),然后使用排序算法(如冒泡排序算法)将数组中的元素按照从小到大的顺序排列。根据排序后的结果,提取数组中的第一个元素作为最短寿命参数。The preset deviation threshold is a pre-set value used to measure whether the lifetime deviation coefficient is within an acceptable range. The calculated lifetime deviation coefficient C is compared with the preset deviation threshold T. If C ≤ T, the lifetime deviation between the three is within an acceptable range. The first update device lifetime L1 , the second update device lifetime L2 , and the first update optical cable lifetime L3 are combined into an array ( L1 , L2 , L3 ). Then, a sorting algorithm (such as a bubble sort algorithm) is used to sort the elements in the array in ascending order. Based on the sorted result, the first element in the array is extracted as the shortest lifetime parameter.
哑资源识别云端将最短寿命参数对第一节点RFID、第二节点RFID和第一光缆RFID所对应的哑资源(设备或光缆)的生命周期相关信息进行更新,以反映最新的寿命情况。哑资源识别云端首先对最短寿命参数进行格式化和封装处理,以便于在网络中传输。例如,将最短寿命参数转换为特定的数据包格式,添加目标RFID的标识信息等。M个哑资源故障检测节点接收来自云端的数据包。每个节点根据自身的路由策略和网络连接情况,将数据包转发到下一个节点或者直接发送到目标RFID所在的设备或光缆区域。这些节点可以利用网络通信协议(如TCP/IP协议)来确保数据的可靠传输。第一节点RFID、第二节点RFID和第一光缆RFID接收到包含最短寿命参数的数据包后,对自身存储的生命周期相关信息进行更新。例如,如果最短寿命参数是以小时为单位的数值,将该数值更新到存储设备或光缆剩余寿命的相应字段中。可以使用RFID的写入功能来完成这个更新操作。The dumb resource identification cloud updates the lifecycle information of the dumb resources (devices or optical cables) corresponding to the first node RFID, the second node RFID, and the first optical cable RFID using the minimum lifetime parameter to reflect the latest lifecycle status. The dumb resource identification cloud first formats and encapsulates the minimum lifetime parameter for network transmission. For example, it converts the minimum lifetime parameter into a specific data packet format and adds the target RFID's identification information. M dumb resource fault detection nodes receive the data packet from the cloud. Each node forwards the data packet to the next node based on its routing strategy and network connectivity, or directly sends it to the device or optical cable area where the target RFID is located. These nodes can utilize network communication protocols (such as TCP/IP) to ensure reliable data transmission. After receiving the data packet containing the minimum lifetime parameter, the first node RFID, the second node RFID, and the first optical cable RFID update their stored lifecycle information. For example, if the minimum lifetime parameter is a value in hours, this value is updated in the corresponding field storing the remaining life of the device or optical cable. This update can be accomplished using the RFID's write function.
上述步骤,通过计算寿命偏差系数并智能排序寿命数据,评估设备和光缆的健康状况,优先维护最脆弱的设备,进而降低整体哑资源网络的故障风险。同时自动同步生命周期更新,提高哑资源管理维护决策的智能化水平,保证整个哑资源网络的长期稳定运行。The above steps evaluate the health of devices and cables by calculating the lifespan deviation coefficient and intelligently sorting lifespan data. This prioritizes maintenance of the most vulnerable devices, thereby reducing the overall risk of failure in the dumb resource network. Simultaneously, lifecycle updates are automatically synchronized, improving the intelligence of dumb resource management and maintenance decisions and ensuring the long-term stable operation of the entire dumb resource network.
综上所述,本申请实施例所提供的支持RFID自动识别的哑资源生命周期管理方法具有如下有益效果:In summary, the method for managing the lifecycle of dumb resources supporting RFID automatic identification provided by the embodiments of the present application has the following beneficial effects:
本申请实施例通过在哑资源光缆拓扑中进行RFID配置,包括在K个哑资源设备和H条哑资源光缆上安装RFID标签,构建了哑资源的数字化标识基础。在此基础上,通过中继设备配置和链路分析补偿,扩大了RFID读写器的覆盖范围,确保了对所有哑资源设备和光缆的全面覆盖和有效识别。同时,通过合理的边缘故障节点配置和通信连接,实现了对哑资源设备故障的实时监测和快速响应。进一步地,通过故障运维分析和寿命预测更新,提高了设备维护的科学性和资源管理的精细化程度。通过光缆故障排查和信息更新,确保了光缆资源的高效维护和管理。随后,云端进一步利用第二哑资源设备的数据,综合第一、第二设备及光缆的寿命信息计算寿命偏差系数,判断是否存在异常老化情况,并在偏差超出阈值时,提取最短寿命参数,下发至哑资源故障检测节点,完成哑资源生命周期更新。The embodiment of the present application constructs a digital identification foundation for dumb resources by performing RFID configuration in the dumb resource optical cable topology, including installing RFID tags on K dumb resource devices and H dumb resource optical cables. On this basis, the coverage of the RFID reader is expanded through relay device configuration and link analysis compensation, ensuring comprehensive coverage and effective identification of all dumb resource devices and optical cables. At the same time, through reasonable edge fault node configuration and communication connection, real-time monitoring and rapid response to dumb resource device failures are achieved. Furthermore, through fault operation and maintenance analysis and life prediction updates, the scientific nature of equipment maintenance and the refinement of resource management are improved. Through optical cable fault detection and information updates, efficient maintenance and management of optical cable resources are ensured. Subsequently, the cloud further uses the data of the second dumb resource device, comprehensively calculates the life deviation coefficient of the first and second devices and optical cables, determines whether there is abnormal aging, and extracts the shortest life parameter when the deviation exceeds the threshold, and sends it to the dumb resource fault detection node to complete the dumb resource life cycle update.
整体而言,本申请实施例通过引入RFID自动识别技术,实现了哑资源故障的快速检测与定位,结合了哑资源的历史运维数据和当前故障情况进行寿命预测,提高了寿命预测的准确性。其次,将哑资源故障与关联风险光缆进行关联分析,实现了从哑资源到光缆的全面管理,提高了哑资源故障处理的效率和准确性,从而显著提升了哑资源的管理效率和资源利用率,实现了哑资源的精细化管理。Overall, the embodiments of this application, through the introduction of RFID automatic identification technology, achieve rapid detection and location of dumb resource faults. This technology combines the dumb resource's historical operation and maintenance data with its current fault conditions to predict its lifespan, improving the accuracy of lifespan predictions. Secondly, by correlating dumb resource faults with associated risky optical cables, comprehensive management from dumb resources to optical cables is achieved, improving the efficiency and accuracy of dumb resource fault handling, thereby significantly improving dumb resource management efficiency and resource utilization, and enabling refined management of dumb resources.
实施例二,如图3所示,基于前述实施例一同样的发明构思,本申请实施例提供了支持RFID自动识别的哑资源生命周期管理系统,所述系统包括:In the second embodiment, as shown in FIG3 , based on the same inventive concept as in the first embodiment, the present embodiment provides a dumb resource lifecycle management system supporting RFID automatic identification, the system comprising:
中继识别链路激活模块10,用于在第一哑资源故障检测节点分析输出第一哑资源故障后,根据所述第一哑资源故障进行中继识别链路激活,以对所述第一哑资源故障对应的第一节点RFID进行自动识别,提取第一设备历史信息,其中,RFID自动识别通过固定式RFID读写器与中继设备协同工作实现。The relay identification link activation module 10 is used to activate the relay identification link according to the first dumb resource fault after the first dumb resource fault detection node analyzes and outputs the first dumb resource fault, so as to automatically identify the first node RFID corresponding to the first dumb resource fault and extract the first device history information, wherein the RFID automatic identification is achieved through the collaborative work of a fixed RFID reader and a relay device.
寿命衰减预测模块,用于根据所述第一哑资源故障和第一设备历史信息进行寿命衰减预测,输出第一更新设备寿命,并将所述第一更新设备寿命存储至所述第一节点RFID。The life decay prediction module is used to perform life decay prediction based on the first dummy resource failure and the first device history information, output a first updated device life, and store the first updated device life to the first node RFID.
关联风险光缆筛选模块30,用于哑资源识别云端在接收所述第一哑资源故障后,根据所述第一哑资源故障的第一上传时间戳进行关联风险光缆筛选,定位第一风险光缆。The associated risk optical cable screening module 30 is used for dumb resource identification. After receiving the first dumb resource fault, the cloud performs associated risk optical cable screening according to the first upload timestamp of the first dumb resource fault to locate the first risk optical cable.
光缆寿命预测模块40,用于根据所述第一风险光缆的第一光缆排查向量标识进行故障定位后,依据故障定位结果进行光缆寿命预测输出所述第一风险光缆的第一更新光缆寿命,并将所述第一更新光缆寿命存储在所述第一风险光缆的第一光缆RFID。The optical cable life prediction module 40 is used to locate the fault according to the first optical cable troubleshooting vector identifier of the first risk optical cable, predict the optical cable life according to the fault location result, output the first updated optical cable life of the first risk optical cable, and store the first updated optical cable life in the first optical cable RFID of the first risk optical cable.
进一步的,本申请实施例所述系统还包括中继链路构建模块,所述中继链路构建模块用于执行以下步骤:Furthermore, the system described in the embodiment of the present application further includes a relay link construction module, and the relay link construction module is configured to perform the following steps:
在哑资源光缆拓扑进行RFID配置,得到K个节点RFID和H个光缆RFID,其中,所述K个节点RFID配置在所述哑资源光缆拓扑中K个哑资源设备,所述H个光缆RFID配置在所述哑资源光缆拓扑中H条哑资源光缆;根据所述K个节点RFID的布设特征进行中继设备配置,得到K条中继识别链路;根据所述K条中继识别链路对所述H个光缆RFID的中继设备覆盖分析,并根据分析结果进行中继设备补偿,输出H条光缆识别链路;根据所述K个哑资源设备的设备类型进行边缘故障节点配置,得到M个哑资源故障检测节点,其中,所述K个哑资源设备基于设备一致性与所述M个哑资源故障检测节点通信连接,所述M个哑资源故障检测节点与哑资源故障检测云端通信连接。RFID is configured in the dumb resource optical cable topology to obtain K node RFIDs and H optical cable RFIDs, wherein the K node RFIDs are configured in K dumb resource devices in the dumb resource optical cable topology, and the H optical cable RFIDs are configured in H dumb resource optical cables in the dumb resource optical cable topology; relay device configuration is performed according to the layout characteristics of the K node RFIDs to obtain K relay identification links; relay device coverage of the H optical cable RFIDs is analyzed according to the K relay identification links, and relay device compensation is performed according to the analysis results to output H optical cable identification links; edge fault node configuration is performed according to the device type of the K dumb resource devices to obtain M dumb resource fault detection nodes, wherein the K dumb resource devices are communicatively connected to the M dumb resource fault detection nodes based on device consistency, and the M dumb resource fault detection nodes are communicatively connected to the dumb resource fault detection cloud.
进一步的,所述中继链路构建模块还用于执行以下步骤:Furthermore, the relay link construction module is further configured to perform the following steps:
交互获得中继设备的设备覆盖半径;预设节点覆盖数量,并以所述设备覆盖半径和节点覆盖数量为约束,根据所述K个节点RFID的布设特征进行中继设备配置位点拟合,得到中继设备布设阵列;根据所述K个节点RFID的布设特征,对所述中继设备布设阵列进行中继识别响应分析,定位RFID识别中心,其中,所述固定式RFID读写器布设在所述RFID识别中心;根据所述RFID识别中心和中继设备布设阵列,构建所述K个节点RFID的所述K条中继识别链路。Interactively obtain the device coverage radius of the relay device; preset the number of node coverage, and with the device coverage radius and the number of node coverage as constraints, perform relay device configuration site fitting according to the layout characteristics of the K node RFIDs to obtain a relay device layout array; perform relay identification response analysis on the relay device layout array according to the layout characteristics of the K node RFIDs, and locate the RFID identification center, wherein the fixed RFID reader is deployed in the RFID identification center; based on the RFID identification center and the relay device layout array, construct the K relay identification links of the K node RFIDs.
进一步的,所述中继链路构建模块还用于执行以下步骤:Furthermore, the relay link construction module is further configured to perform the following steps:
根据所述设备覆盖半径和中继设备布设阵列构建中继设备覆盖空间;将所述H个光缆RFID的布设特征与所述中继设备覆盖空间对齐,得到多个未覆盖RFID;根据所述多个未覆盖RFID进行所述中继设备布设阵列的中继设备补偿,得到更新设备布设阵列;根据所述RFID识别中心和更新设备布设阵列,构建所述H个光缆RFID的所述H条光缆识别链路。A relay device coverage space is constructed based on the device coverage radius and the relay device layout array; the layout characteristics of the H optical cable RFIDs are aligned with the relay device coverage space to obtain multiple uncovered RFIDs; relay device compensation of the relay device layout array is performed based on the multiple uncovered RFIDs to obtain an updated device layout array; and the H optical cable identification links of the H optical cable RFIDs are constructed based on the RFID identification center and the updated device layout array.
进一步的,本申请实施例中继识别链路激活模块10还用于执行以下步骤:Furthermore, in the embodiment of the present application, the relay identification link activation module 10 is further configured to perform the following steps:
通过解析所述第一哑资源故障进行设备定位,得到第一哑资源设备;根据所述第一哑资源设备从所述K条中继识别链路定位并激活第一中继识别链路;通过所述第一中继识别链路对所述第一哑资源设备对应的第一节点RFID进行自动识别处理,以提取所述第一设备历史信息。The device is located by analyzing the first dumb resource fault to obtain the first dumb resource device; the first relay identification link is located and activated from the K relay identification links according to the first dumb resource device; the first node RFID corresponding to the first dumb resource device is automatically identified and processed through the first relay identification link to extract the first device historical information.
进一步的,本申请实施例设备寿命预测模块20还用于执行以下步骤:Furthermore, the equipment life prediction module 20 of the embodiment of the present application is further configured to perform the following steps:
根据所述第一哑资源故障和第一设备历史信息进行故障运维分析,输出第一运维补偿策略;根据所述第一运维补偿策略和第一设备历史信息进行寿命预测更新,输出第一更新设备寿命;将所述第一更新设备寿命、第一哑资源故障、第一运维补偿策略存储至所述第一节点RFID。Perform a fault operation and maintenance analysis based on the first dumb resource failure and the first device historical information, and output a first operation and maintenance compensation strategy; perform a life prediction update based on the first operation and maintenance compensation strategy and the first device historical information, and output a first updated device life; store the first updated device life, the first dumb resource failure, and the first operation and maintenance compensation strategy to the first node RFID.
进一步的,本申请实施例关联风险光缆筛选模块30还用于执行以下步骤:Furthermore, the risk-associated optical cable screening module 30 in the embodiment of the present application is further configured to perform the following steps:
根据所述第一哑资源故障的第一上传时间戳和哑资源光缆拓扑进行故障信息筛选,输出第二哑资源故障;在所述哑资源识别云端索引调用所述第二哑资源故障对应的第二哑资源设备和第二上传时间戳;根据所述第二哑资源设备和第一哑资源设备在所述哑资源光缆拓扑提取所述第一风险光缆;依据所述第一上传时间戳和第二上传时间戳计算输出所述第一光缆排查向量。Fault information is screened based on the first upload timestamp of the first dumb resource fault and the dumb resource optical cable topology, and a second dumb resource fault is output; the second dumb resource device and the second upload timestamp corresponding to the second dumb resource fault are called in the dumb resource identification cloud index; the first risk optical cable is extracted in the dumb resource optical cable topology based on the second dumb resource device and the first dumb resource device; the first optical cable troubleshooting vector is calculated and output based on the first upload timestamp and the second upload timestamp.
进一步的,本申请实施例光缆寿命预测模块40还用于执行以下步骤:Furthermore, the optical cable life prediction module 40 of the embodiment of the present application is further configured to perform the following steps:
以所述第一光缆排查向量为约束,使用光时域反射仪对所述第一风险光缆进行故障排查定位,输出第一光缆故障信息;采用所述第一风险光缆遍历所述H条光缆识别链路,定位第一光缆识别链路;通过激活所述第一光缆识别链路对所述第一风险光缆对应的第一光缆RFID进行自动识别处理,以提取第一光缆历史信息;根据所述第一光缆历史信息和第一光缆故障信息进行寿命衰减预测,输出所述第一更新光缆寿命;将所述第一更新光缆寿命存储至所述第一光缆RFID。Taking the first optical cable troubleshooting vector as a constraint, use an optical time domain reflectometer to troubleshoot and locate the first risk optical cable, and output first optical cable fault information; use the first risk optical cable to traverse the H optical cable identification links to locate the first optical cable identification link; automatically identify and process the first optical cable RFID corresponding to the first risk optical cable by activating the first optical cable identification link to extract the first optical cable history information; perform life attenuation prediction based on the first optical cable history information and the first optical cable fault information, and output the first updated optical cable life; store the first updated optical cable life in the first optical cable RFID.
进一步的,本申请实施例所述系统还包括生命周期更新模块,所述生命周期更新模块用于执行以下步骤:Furthermore, the system of the embodiment of the present application further includes a lifecycle update module, which is configured to perform the following steps:
所述哑资源识别云端根据所述第二哑资源设备定位第二节点RFID;从所述第二节点RFID提取第二更新设备寿命;对所述第一更新设备寿命、第二更新设备寿命和第一更新光缆寿命进行偏差计算,输出寿命偏差系数;若所述寿命偏差系数满足预设偏差阈值,则序列化所述第一更新设备寿命、第二更新设备寿命和第一更新光缆寿命,并根据排序结果提取最短寿命参数;所述哑资源识别云端将所述最短寿命参数经由所述M个哑资源故障检测节点下发至所述第一节点RFID、第二节点RFID和第一光缆RFID进行哑资源生命周期更新。The dumb resource identification cloud locates the second node RFID according to the second dumb resource device; extracts the second update device life from the second node RFID; calculates the deviation of the first update device life, the second update device life and the first update optical cable life, and outputs the life deviation coefficient; if the life deviation coefficient meets the preset deviation threshold, the first update device life, the second update device life and the first update optical cable life are serialized, and the shortest life parameter is extracted according to the sorting result; the dumb resource identification cloud sends the shortest life parameter to the first node RFID, the second node RFID and the first optical cable RFID via the M dumb resource fault detection nodes to update the dumb resource life cycle.
本说明书通过前述对支持RFID自动识别的哑资源生命周期管理方法的详细描述,本领域技术人员可以清楚地知道本实施例中支持RFID自动识别的哑资源生命周期管理系统,对于实施例二公开的系统而言,由于其与实施例一公开的方法相对应,具有相应的功能模块和有益效果,相关之处参见方法部分说明即可。Through the above detailed description of the dumb resource lifecycle management method that supports RFID automatic identification in this specification, those skilled in the art can clearly understand the dumb resource lifecycle management system that supports RFID automatic identification in this embodiment. For the system disclosed in Example 2, since it corresponds to the method disclosed in Example 1 and has corresponding functional modules and beneficial effects, the relevant details can be referred to the method section.
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。The above description of the disclosed embodiments is intended to enable one skilled in the art to implement or use the present application. Various modifications to these embodiments will be readily apparent to one skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the present application. Therefore, the present application is not limited to the embodiments shown herein, but is intended to conform to the widest scope consistent with the principles and novel features disclosed herein.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202510777411.XA CN120321103B (en) | 2025-06-11 | 2025-06-11 | Dumb resource lifecycle management method and system supporting RFID automatic identification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202510777411.XA CN120321103B (en) | 2025-06-11 | 2025-06-11 | Dumb resource lifecycle management method and system supporting RFID automatic identification |
Publications (2)
Publication Number | Publication Date |
---|---|
CN120321103A CN120321103A (en) | 2025-07-15 |
CN120321103B true CN120321103B (en) | 2025-08-15 |
Family
ID=96324567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202510777411.XA Active CN120321103B (en) | 2025-06-11 | 2025-06-11 | Dumb resource lifecycle management method and system supporting RFID automatic identification |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN120321103B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118194890A (en) * | 2023-12-27 | 2024-06-14 | 高勘(广州)技术有限公司 | Optical cable dumb resource digital management method, system, equipment and storage medium |
CN119250087A (en) * | 2024-09-27 | 2025-01-03 | 中国移动通信集团设计院有限公司 | A management method, device, equipment, medium and product for dumb resource information |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114553680B (en) * | 2022-03-04 | 2023-06-13 | 华信咨询设计研究院有限公司 | Communication bottom network fault quick positioning auxiliary method and device |
CN117034640A (en) * | 2023-08-22 | 2023-11-10 | 河南博锐流体设备有限公司 | Pipeline life prediction method, system, terminal equipment and storage medium |
CN117459406B (en) * | 2023-12-26 | 2024-02-23 | 国网浙江省电力有限公司宁波供电公司 | Optical cable resource operation and maintenance management method, equipment and storage medium |
CN119026615B (en) * | 2024-10-29 | 2025-01-28 | 成都市特种设备检验检测研究院(成都市特种设备应急处置中心) | Buried pipeline full life cycle tracking digital twin system establishment method based on RFID |
CN120013520A (en) * | 2025-01-23 | 2025-05-16 | 中国电力科学研究院有限公司 | Life cycle prediction management method, system, equipment and medium for power optical cable |
-
2025
- 2025-06-11 CN CN202510777411.XA patent/CN120321103B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118194890A (en) * | 2023-12-27 | 2024-06-14 | 高勘(广州)技术有限公司 | Optical cable dumb resource digital management method, system, equipment and storage medium |
CN119250087A (en) * | 2024-09-27 | 2025-01-03 | 中国移动通信集团设计院有限公司 | A management method, device, equipment, medium and product for dumb resource information |
Also Published As
Publication number | Publication date |
---|---|
CN120321103A (en) | 2025-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Farabi | AI-Augmented OTDR Fault Localization Framework for Resilient Rural Fiber Networks in the United States | |
CN117907754A (en) | Power distribution network maintenance method and system based on fault analysis | |
CN104717008A (en) | Optical fiber circuit routing searching method, fault detecting method and detecting system | |
CN103780305A (en) | Concentrated monitoring and managing method and system of power distribution network communication optical cable network | |
CN118278914A (en) | Method for realizing equipment fault rush repair based on GIS (geographic information System) | |
CN119109512A (en) | A method and system for locating faults in long-distance communication trunk optical cables | |
CN119847116A (en) | Fault event positioning method based on topology model tracking analysis | |
CN115345466A (en) | Power distribution network online evaluation system based on network frame topology and multi-source data fusion | |
CN118150943A (en) | Distribution network ground fault location method, system, electronic equipment and storage medium | |
CN114726708A (en) | Network element equipment fault prediction method and system based on artificial intelligence | |
GB2477921A (en) | Analysing a network using a network model with simulated changes | |
CN118172567A (en) | Communication network dummy resource management method and device | |
CN118210642A (en) | Remote reliability life verification test system and method thereof | |
CN118802585A (en) | Data processing method, device, equipment and storage medium | |
CN120321103B (en) | Dumb resource lifecycle management method and system supporting RFID automatic identification | |
CN118828250B (en) | A method and system for intelligent monitoring of water conservancy projects combined with 5G communication technology | |
CN119892216A (en) | Optical fiber network fault emergency dispatching method, system, equipment and medium | |
CN103607240A (en) | Method and device for fault judgment in breakage process of link of intelligent substation | |
CN113935630A (en) | SCD and SPCD-based transformer substation secondary system link troubleshooting guiding method | |
Cherini et al. | Building operator-centric digital twins for optical transport networks: from data models to real applications | |
CN118280007A (en) | Hydropower station inspection method and system based on identification analysis | |
CN108399126A (en) | Intelligent environment protection automated testing method, device, computer equipment and storage medium | |
CN119893332B (en) | Low-power-consumption wireless communication intelligent ammeter data transmission management method and system | |
CN101888657B (en) | Mobile data core network fault positioning method based on multipoint access multipath analysis | |
CN120454856B (en) | Intelligent inspection method and system for power distribution communication network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |