CN1294875C - Time series analysis method of nuclear magnetic resonance for brain functions based on constrained optimization - Google Patents
Time series analysis method of nuclear magnetic resonance for brain functions based on constrained optimization Download PDFInfo
- Publication number
- CN1294875C CN1294875C CNB200310120541XA CN200310120541A CN1294875C CN 1294875 C CN1294875 C CN 1294875C CN B200310120541X A CNB200310120541X A CN B200310120541XA CN 200310120541 A CN200310120541 A CN 200310120541A CN 1294875 C CN1294875 C CN 1294875C
- Authority
- CN
- China
- Prior art keywords
- function
- hemodynamics
- brain
- pixel
- mathematic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 36
- 238000005457 optimization Methods 0.000 title claims abstract description 16
- 230000003925 brain function Effects 0.000 title claims abstract description 15
- 238000005481 NMR spectroscopy Methods 0.000 title claims abstract description 14
- 238000012731 temporal analysis Methods 0.000 title claims description 12
- 238000000700 time series analysis Methods 0.000 title claims description 12
- 230000000004 hemodynamic effect Effects 0.000 claims abstract description 42
- 230000006870 function Effects 0.000 claims abstract description 33
- 230000008569 process Effects 0.000 claims description 2
- 238000007689 inspection Methods 0.000 claims 3
- 210000004556 brain Anatomy 0.000 abstract description 15
- 238000011160 research Methods 0.000 abstract description 5
- 208000014644 Brain disease Diseases 0.000 abstract description 4
- 238000000551 statistical hypothesis test Methods 0.000 abstract description 4
- 238000004458 analytical method Methods 0.000 abstract description 3
- 238000003745 diagnosis Methods 0.000 abstract description 3
- 238000011156 evaluation Methods 0.000 abstract description 3
- 239000003814 drug Substances 0.000 abstract description 2
- 238000012300 Sequence Analysis Methods 0.000 abstract 1
- 238000002599 functional magnetic resonance imaging Methods 0.000 description 9
- 230000004044 response Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000004393 prognosis Methods 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 230000002490 cerebral effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
Images
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
技术领域technical field
本发明涉及核磁共振技术领域,特别是一种基于约束优化的脑功能核磁共振时间序列分析方法,用于医学临床中的手术前的脑功能定位、脑疾病的诊断和愈后评估、脑科学研究中的脑功能区定位以及脑功能区的功能连接分析,属于智能信息处理技术。The present invention relates to the field of nuclear magnetic resonance technology, in particular to a time-series analysis method of brain function nuclear magnetic resonance based on constraint optimization, which is used in clinical medicine for brain function positioning before surgery, brain disease diagnosis and prognosis evaluation, and brain science research The location of the brain functional area and the functional connection analysis of the brain functional area belong to the intelligent information processing technology.
背景技术Background technique
自从脑功能核磁共振(functional magnetic resonance imaging)fMRI技术诞生以来,fMRI时间序列分析一直是各国fMRI研究者关注的一个热门研究方向。一般地,fMRI时间序列分析算法可分为model-driven和data-driven两大类。由于data-driven方法的生理学意义上的合理性以及易用性,逐渐受到各国神经科学家的青睐。Model-driven方法中具有代表性的是一般线性模型和逆卷积模型。简而言之,一般线性模型是通过人为指定设计矩阵将血液动力学先验知识加入模型中,再进行多元回归分析,从而可以得到先验模型与fMRI数据的适合度。它的缺点是设计矩阵的指定比较主观。逆卷积模型首先通过时间序列与刺激序列的逆卷积运算得到卷积核,再进行多元回归分析,即其设计矩阵是估计出来的。概括来讲,一般线性模型假设不同的被试,不同的脑区具有相同的血液动力学变化。而逆卷积模型则假定不同的象素具有不同的血液动力学变化。从此意义上讲,逆卷积模型更符合人脑的生理学特性。与一般线性模型相比,逆卷积模型虽然在一定程度上提高了敏感性,但是研究表明,人脑的每个刺激(trial)之间的血液动力学变化是不同的,对于此情况逆卷积模型就无能为力了。Since the birth of functional magnetic resonance imaging fMRI technology, fMRI time series analysis has always been a hot research direction that fMRI researchers from all over the world pay attention to. Generally, fMRI time series analysis algorithms can be divided into two categories: model-driven and data-driven. Due to the physiological rationality and ease of use of the data-driven method, it is gradually favored by neuroscientists from all over the world. The representative ones in the Model-driven method are the general linear model and the deconvolution model. In short, the general linear model is to add the prior knowledge of hemodynamics into the model by artificially specifying the design matrix, and then perform multiple regression analysis, so that the fitness of the prior model and fMRI data can be obtained. Its disadvantage is that the specification of the design matrix is subjective. The deconvolution model first obtains the convolution kernel through the deconvolution operation of the time series and the stimulus sequence, and then performs multiple regression analysis, that is, the design matrix is estimated. In summary, the general linear model assumes that different subjects have the same hemodynamic changes in different brain regions. The deconvolution model assumes that different pixels have different hemodynamic changes. In this sense, the deconvolution model is more in line with the physiological characteristics of the human brain. Compared with the general linear model, although the deconvolution model improves the sensitivity to a certain extent, studies have shown that the hemodynamic changes between each stimulus (trial) of the human brain are different. The product model is powerless.
发明内容Contents of the invention
本发明的目的在于针对现有技术的不足,提出一种新的脑功能核磁共振时间序列分析方法,该方法考虑到人脑的每个刺激(trial)之间的血液动力学不一致性,进而提高脑功能激活区检测的准确度。本发明基于逆卷积技术和约束最优化方法,结合统计假设检验,充分利用脑功能核磁共振时间序列信息,提出了一个新颖的脑功能核磁共振时间序列分析方法。由于采用了约束最优化方法,结合脑血液动力学响应研究的最新进展,通过在模型中增加新的约束,模型本身可以做到自扩充。The purpose of the present invention is to propose a new brain function nuclear magnetic resonance time series analysis method for the deficiencies in the prior art, which takes into account the hemodynamic inconsistency between each stimulation (trial) of the human brain, and then improves Accuracy of detection of brain functional activation areas. Based on the deconvolution technology and the constraint optimization method, combined with the statistical hypothesis test, the present invention makes full use of the brain function nuclear magnetic resonance time series information, and proposes a novel brain function nuclear magnetic resonance time series analysis method. Due to the constrained optimization method, combined with the latest progress in the study of cerebral hemodynamic response, the model itself can be self-expanded by adding new constraints to the model.
本发明所提出的基于最优化的脑功能核磁共振时间序列分析算法,包括估计单个象素的血液动力学函数、估计不同刺激的血液动力学函数和统计假设检验三个基本步骤:The brain functional nuclear magnetic resonance time series analysis algorithm based on optimization proposed by the present invention includes three basic steps of estimating the hemodynamic function of a single pixel, estimating the hemodynamic function of different stimuli, and statistical hypothesis testing:
1、估计单个象素的血液动力学函数1. Estimate the hemodynamic function of a single pixel
对每一个象素来讲,都有一个伴随的时间序列。在此方法中,我们认为,此时间序列中包含三种分量:1)来源于外部刺激的血液动力学信号;2)由呼吸、心跳等生理活动以及磁共振系统带来的漂移;3)噪声。我们假设血液动力学变化过程是一个线性系统,即,For each pixel, there is an accompanying time series. In this method, we believe that this time series contains three components: 1) hemodynamic signals derived from external stimuli; 2) drift caused by physiological activities such as breathing and heartbeat and magnetic resonance systems; 3) noise . We assume that the hemodynamic process is a linear system, that is,
时间序列=刺激序列血液动力学函数+漂移+噪声Time series = stimulus sequencehemodynamic function + drift + noise
其中,代表卷积运算。利用逆卷积技术,通过最小二乘方法,我们可以估计出每个象素所对应的血液动力学函数。Among them, represents the convolution operation. Using the deconvolution technique and the least square method, we can estimate the hemodynamic function corresponding to each pixel.
2、估计不同刺激的血液动力学函数2. Estimate the hemodynamic function of different stimuli
基于血液动力学的研究成果以及约束最优化方法,我们假设不同的刺激所引起的血液动力学响应是不同的。计算不同刺激的血液动力学函数的公式如下:Based on the research results of hemodynamics and the constrained optimization method, we hypothesize that different stimuli cause different hemodynamic responses. The formula for calculating the hemodynamic function for different stimuli is as follows:
s.t. Hj∈N(h,ε)st H j ∈ N(h, ε)
其中,Hj是第j个刺激的血液动力学函数,J是刺激的总个数, 是去卷积后的时间序列,N(h,ε)代表h的邻域,h是步骤1中求得的单个象素的血液动力学函数。基于上式的基本框架,我们可以加入另一个约束条件Among them, Hj is the hemodynamic function of the jth stimulus, J is the total number of stimuli, is the time series after deconvolution, N(h, ε) represents the neighborhood of h, and h is the hemodynamic function of a single pixel obtained in step 1. Based on the basic framework of the above formula, we can add another constraint
s.t. Hj∈N(h,ε)st H j ∈ N(h, ε)
FWHM(Hi)∶FWHM(Hj)=RTi∶RTj,i≠jFWHM(H i ): FWHM(H j )=RT i :RT j , i≠j
其中,FWHM(H1)是血液动力学函数H1的半高全宽,RTi是第i个刺激的反应时。Wherein, FWHM(H 1 ) is the full width at half maximum of the hemodynamic function H 1 , and RT i is the response time of the i-th stimulus.
3、统计假设检验3. Statistical hypothesis testing
为了确定某个象素是否激活,我们进行统计假设检验。To determine whether a certain pixel is active, we perform a statistical hypothesis test.
零假设: Null hypothesis:
备择假设: Alternative Hypothesis:
统计量F为The statistic F is
其中,Hmin是约束最优化最优解,
本发明采用约束最优化方法,可以考虑到不同刺激之间血液动力学响应的不一致性,并且通过增加新的约束条件,可使得我们的方法灵活扩充,是一种简洁和有效的脑功能核磁共振时间序列分析方法。本发明可用于医学临床的手术前的脑功能定位、脑疾病中的诊断和愈后评估、脑科学研究中的脑功能区定位以及脑功能区功能连接分析。The present invention adopts the constraint optimization method, which can take into account the inconsistency of hemodynamic responses between different stimuli, and by adding new constraints, our method can be flexibly expanded, which is a simple and effective brain functional MRI Time Series Analysis Methods. The invention can be used for the location of brain function before operation in medical clinic, the diagnosis and prognosis evaluation of brain disease, the location of brain function area and the analysis of function connection of brain function area in brain science research.
附图说明Description of drawings
图1是本发明的基于约束优化的脑功能核磁共振时间序列分析方法的原理图;Fig. 1 is the schematic diagram of the brain function nuclear magnetic resonance time series analysis method based on constraint optimization of the present invention;
图2和图3是本发明的基于约束优化的脑功能核磁共振时间序列分析方法所选时间序列图。Fig. 2 and Fig. 3 are time series diagrams selected by the time series analysis method of brain function nuclear magnetic resonance based on constraint optimization in the present invention.
具体实施方式Detailed ways
为更好地理解本发明的技术方案,以下结合附图及具体的实施例作进一步描述。In order to better understand the technical solution of the present invention, further description will be made below in conjunction with the accompanying drawings and specific embodiments.
本发明基于最优化的脑功能核磁共振时间序列分析方法原理如图1所示。The principle of the present invention based on the optimized brain function nuclear magnetic resonance time series analysis method is shown in FIG. 1 .
步骤1:获取功能磁共振时间序列。脑功能核磁共振时间的采集在具备平面回波成像(EPI)序列的磁共振扫描仪上完成。成像的具体参数无特殊要求,但一般不少于3层,采样时间点一般为数十个或更多,空间分辨率一般为数毫米,如3×3mm2。Step 1: Acquire fMRI time series. Acquisition of brain functional MRI time was completed on a magnetic resonance scanner equipped with an echo planar imaging (EPI) sequence. There are no special requirements for the specific parameters of the imaging, but generally there are no less than 3 layers, the sampling time points are generally dozens or more, and the spatial resolution is generally several millimeters, such as 3×3mm2.
步骤2:估计单个象素的血液动力学函数。对步骤1中获得的时间序列进行逆卷积运算,逆卷积的结果为单个象素的血液动力学函数。Step 2: Estimate the hemodynamic function of a single pixel. Perform deconvolution operation on the time series obtained in step 1, and the result of deconvolution is the hemodynamic function of a single pixel.
步骤3:估计不同刺激的血液动力学函数。根据步骤2中估计出的单个象素的血液动力学函数运用最优化方法(公式(2))可以估计出单个刺激的血液动力学函数。Step 3: Estimate the hemodynamic function for different stimuli. The hemodynamic function of a single stimulus can be estimated by using the optimization method (formula (2)) according to the hemodynamic function of a single pixel estimated in step 2.
步骤4:统计假设检验。逐一对各象素进行统计假设检验(公式(3)),进而检测激活的象素。Step 4: Statistical hypothesis testing. A statistical hypothesis test (formula (3)) is performed on each pixel one by one to detect activated pixels.
图2中,所选时间序列如图2。其中共有13个刺激,91个时间点。In Figure 2, the selected time series is shown in Figure 2. There are 13 stimuli and 91 time points.
图3中,虚线表示原始的时间序列,实线表示13个刺激的血液动力学函数,下方的虚线尖锋表示刺激呈现的时间。In Figure 3, the dotted line represents the original time series, the solid line represents the hemodynamic function of 13 stimuli, and the sharp dotted line below represents the time of stimulus presentation.
实施例Example
1、估计单个象素的血液动力学函数1. Estimate the hemodynamic function of a single pixel
所选时间序列如图2。其中共有13个刺激,91个时间点。The selected time series is shown in Figure 2. There are 13 stimuli and 91 time points.
我们首先估计象素的血液动力学函数,结果为:[3.26 5.38 0.50 -3.92 -3.96 -4.46 -2.57]We first estimate the hemodynamic function of the pixel, the result is: [3.26 5.38 0.50 -3.92 -3.96 -4.46 -2.57]
2、估计不同刺激的血液动力学函数2. Estimate the hemodynamic function of different stimuli
利用第一步中估计出的象素的血液动力学函数以及约束最优化(参见公式(2)),我们可以得到每个刺激的血液动力学函数(参见图3)。Using the hemodynamic function of the pixel estimated in the first step and constrained optimization (see equation (2)), we can obtain the hemodynamic function of each stimulus (see Fig. 3).
3、统计假设检验3. Statistical hypothesis testing
用公式(3),计算的F统计量的值是18.53,服从F(7,195)分布,相应的概率值为2.5618e-018。一般情况下,若取p-value为0.01。则此象素为激活象素。另外,与传统的逆卷积方法相比较,得到下表:
通过比较,本发明方法的F统计量为18.53,而传统逆卷积方法的统计量为16.94。可见,本方法要优于传统的逆卷积方法。By comparison, the F statistic of the method of the present invention is 18.53, while the statistic of the traditional deconvolution method is 16.94. It can be seen that this method is superior to the traditional deconvolution method.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB200310120541XA CN1294875C (en) | 2003-12-12 | 2003-12-12 | Time series analysis method of nuclear magnetic resonance for brain functions based on constrained optimization |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB200310120541XA CN1294875C (en) | 2003-12-12 | 2003-12-12 | Time series analysis method of nuclear magnetic resonance for brain functions based on constrained optimization |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1626032A CN1626032A (en) | 2005-06-15 |
| CN1294875C true CN1294875C (en) | 2007-01-17 |
Family
ID=34761537
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB200310120541XA Expired - Fee Related CN1294875C (en) | 2003-12-12 | 2003-12-12 | Time series analysis method of nuclear magnetic resonance for brain functions based on constrained optimization |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN1294875C (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101292871B (en) * | 2007-04-25 | 2010-05-26 | 中国科学院自动化研究所 | A Method for Extracting Brain Activation Regions in Magnetic Resonance Imaging Based on Pattern Recognition Classification |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105182263A (en) | 2008-04-28 | 2015-12-23 | 康奈尔大学 | Accurate quantification of magnetic suceptibility in molecular mri |
| CN101637386B (en) * | 2009-07-10 | 2012-07-25 | 中国人民解放军第三军医大学第一附属医院 | MRI positioning measurement method of anteroposterior diameter and left-right diameter of ventriculus quartus cerebri of human bodies |
| CN102508184B (en) * | 2011-10-26 | 2015-04-08 | 中国科学院自动化研究所 | Brain function active region detection method based on moving average time series models |
| US9213076B2 (en) * | 2012-02-27 | 2015-12-15 | Medimagemetric LLC | System, process and computer-accessible medium for providing quantitative susceptibility mapping |
| CN102973279B (en) * | 2012-12-18 | 2014-09-17 | 哈尔滨工业大学 | Near-infrared brain-machine interface signal detection method integrating independent component analysis |
| DE102013204310A1 (en) | 2013-03-13 | 2014-09-18 | Siemens Aktiengesellschaft | Operating method for a computer for determining an optimized measurement sequence for a medical imaging system |
| CN104434109B (en) * | 2014-12-19 | 2017-02-22 | 大连海事大学 | Functional nuclear magnetic resonance time sequence matching method |
| EP4152032A1 (en) * | 2021-09-17 | 2023-03-22 | Koninklijke Philips N.V. | Determination of a subject specific hemodynamic response function |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6292683B1 (en) * | 1999-05-18 | 2001-09-18 | General Electric Company | Method and apparatus for tracking motion in MR images |
| US6370416B1 (en) * | 1998-11-25 | 2002-04-09 | Ge Medical Systems Global Technology Company Llc | fMRI signal processing |
| CN1356091A (en) * | 2000-08-18 | 2002-07-03 | Ge医疗系统环球技术有限公司 | Image processing method and device, record medium and imaging equipment |
| CN1382418A (en) * | 2001-04-23 | 2002-12-04 | 西门子公司 | Realizing stepless transition of multiple self-rotating integrated images in nuclear spin tomography |
-
2003
- 2003-12-12 CN CNB200310120541XA patent/CN1294875C/en not_active Expired - Fee Related
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6370416B1 (en) * | 1998-11-25 | 2002-04-09 | Ge Medical Systems Global Technology Company Llc | fMRI signal processing |
| US6292683B1 (en) * | 1999-05-18 | 2001-09-18 | General Electric Company | Method and apparatus for tracking motion in MR images |
| CN1356091A (en) * | 2000-08-18 | 2002-07-03 | Ge医疗系统环球技术有限公司 | Image processing method and device, record medium and imaging equipment |
| CN1382418A (en) * | 2001-04-23 | 2002-12-04 | 西门子公司 | Realizing stepless transition of multiple self-rotating integrated images in nuclear spin tomography |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101292871B (en) * | 2007-04-25 | 2010-05-26 | 中国科学院自动化研究所 | A Method for Extracting Brain Activation Regions in Magnetic Resonance Imaging Based on Pattern Recognition Classification |
Also Published As
| Publication number | Publication date |
|---|---|
| CN1626032A (en) | 2005-06-15 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN115359045B (en) | Image volume neural network disease prediction system based on multi-mode magnetic resonance imaging | |
| Sorrentino et al. | Brain functional networks become more connected as amyotrophic lateral sclerosis progresses: a source level magnetoencephalographic study | |
| Zuo et al. | Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space | |
| CN107316334B (en) | Personalized precise magnetic resonance imaging method | |
| CN108898135B (en) | A method for constructing a brain limbic system map | |
| CN110969614B (en) | Brain age prediction method and system based on three-dimensional convolutional neural network | |
| CN111753833A (en) | A Parkinson's Aided Recognition Method for Building Brain Network Modeling Based on fMRI and DTI | |
| US20170238879A1 (en) | Method of Analyzing the Brain Activity of a Subject | |
| CN112837807B (en) | Early intelligent high-precision auxiliary diagnosis method for T2DM brain aging cognitive impairment | |
| CN1294875C (en) | Time series analysis method of nuclear magnetic resonance for brain functions based on constrained optimization | |
| CN110811622A (en) | An individualized structural connection brain mapping method based on diffusion magnetic resonance imaging fiber tract tracing technology | |
| Fraenz et al. | Interindividual differences in matrix reasoning are linked to functional connectivity between brain regions nominated by Parieto-Frontal Integration Theory | |
| CN119295473A (en) | A multimodal dynamic structure-function multi-layer brain network computing method and terminal | |
| Furtula et al. | Upper motor neuron involvement in amyotrophic lateral sclerosis evaluated by triple stimulation technique and diffusion tensor MRI | |
| CN114065825A (en) | A method for localization of magnetic brain MEG sources based on structural similarity | |
| CN113838105A (en) | Estimation method, device and medium for driving parameters of diffuse microcirculation model based on deep learning | |
| CN100348152C (en) | Method for eliminating functional magnetic resonance data noise based on independent component space relativity | |
| CN116863025B (en) | Traceability reconstruction method and device for magnetoencephalography data, electronic device and medium | |
| CN115546337B (en) | Individual and group brain map construction system based on multi-view clustering | |
| US20140309517A1 (en) | Method of Automatically Analyzing Brain Fiber Tracts Information | |
| CN113066145B (en) | Fast whole-body diffusion-weighted imaging method and related equipment based on deep learning | |
| Vizza et al. | On the analysis of biomedical signals for disease classification | |
| CN117095812A (en) | A method, system, equipment and medium for identifying the cognitive level of patients with mild brain trauma | |
| CN102334992B (en) | Dispersion tensor imaging method and system | |
| CN103838941A (en) | A Comparative Average Method for NMR Data Processing |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070117 Termination date: 20171212 |