CN1261860C - Exponential calculation method and device for floating point numbers - Google Patents
Exponential calculation method and device for floating point numbers Download PDFInfo
- Publication number
- CN1261860C CN1261860C CN 02127091 CN02127091A CN1261860C CN 1261860 C CN1261860 C CN 1261860C CN 02127091 CN02127091 CN 02127091 CN 02127091 A CN02127091 A CN 02127091A CN 1261860 C CN1261860 C CN 1261860C
- Authority
- CN
- China
- Prior art keywords
- floating
- mentioned
- exponent
- point number
- mantissa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004364 calculation method Methods 0.000 title claims description 11
- 238000006243 chemical reaction Methods 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 12
- 238000001514 detection method Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 8
- 238000006073 displacement reaction Methods 0.000 description 1
Images
Landscapes
- Complex Calculations (AREA)
Abstract
Description
技术领域technical field
本发明是有关于一种指数运算的方法和装置,特别是有关一种浮点数的指数运算方法和装置。The present invention relates to a method and device for exponential calculation, in particular to a method and device for exponential calculation of floating point numbers.
背景技术Background technique
在目前的电子计算机中,浮点数F最常用的表示法为:In the current electronic computer, the most commonly used representation of the floating point number F is:
F=M×βE F=M× βE
其中M为尾数(mantissa),E为指数,β为指数的基数。Where M is the mantissa, E is the exponent, and β is the base of the exponent.
电机和电子工程师协会(Institute of Electrical and ElectronicEngineers,IEEE)为浮点数的表示法订立了四种标准格式,前两种格式为单一精确32位元格式(single-precision 32-bit format)以及双位精确64位元格式(double-precision 64-bit format),另外两种为延伸格式用于表示运算时的中间结果。对于单一精确32位元格式表示法而言,最重要的目的即是表现浮点数的精确度,而只有在为了得到更多的有效位数时,才利用双位精确64位元格式表示法使用双倍长度(Double Length)储存空间存放该浮点数。The Institute of Electrical and Electronic Engineers (Institute of Electrical and Electronic Engineers, IEEE) has established four standard formats for the representation of floating-point numbers. The first two formats are single-precision 32-bit format and double-bit format. Accurate 64-bit format (double-precision 64-bit format), and the other two are extended formats used to represent intermediate results during operations. For the single-precision 32-bit format representation, the most important purpose is to express the accuracy of floating-point numbers, and only use the double-bit precise 64-bit format representation to obtain more effective digits. The double length (Double Length) storage space stores the floating point number.
参阅图1,图1显示上述单一精确32位元格式表示法的示意图。在此表示法中,以2为基数,浮点数F=(-1)S·2E·M,其中M为该浮点数的尾数(mantissa),使用23位元表示,E为该浮点数的指数,使用8位元表示,S为该符点数的符号数使用1位元表示。Referring to FIG. 1, FIG. 1 shows a schematic diagram of the above-mentioned single precise 32-bit format representation. In this notation, with 2 as the base, the floating point number F=(-1) S 2 E ·M, where M is the mantissa of the floating point number, represented by 23 bits, and E is the mantissa of the floating point number The exponent is represented by 8 bits, and S is the symbol number of the point number represented by 1 bit.
在目前的电子计算机中,所有的运算几乎都采用浮点数的运算,因此浮点数的运算效率决定了该电子计算机的效能。而在目前的做法中,通常都使用查表的方法,事先建立一对照表,在运算时配合查表,以求得浮点数的指数运算结果,而用此方法做浮点数的指数运算时,会碰到一些运算精确度的问题,一个8位元的对照表已是相当庞大的,但使用8位元的对照表做浮点数的指数运算,其运算结果的精确度仍是不够的,因为通常一个浮点数尾数的部分都有23位元。In current electronic computers, almost all calculations use floating-point calculations, so the calculation efficiency of floating-point numbers determines the performance of the electronic computer. In the current practice, the method of looking up the table is usually used to establish a comparison table in advance, and cooperate with the table lookup during the operation to obtain the result of the exponential operation of the floating-point number. When using this method to perform the exponential operation of the floating-point number, There will be some problems with the accuracy of calculations. An 8-bit comparison table is already quite large, but using an 8-bit comparison table to perform floating-point exponent operations, the accuracy of the operation results is still not enough, because Usually the mantissa part of a floating point number has 23 bits.
发明内容Contents of the invention
有鉴于此,本发明的主要目的在于提供一种浮点数的指数运算装置和方法,用于获得具有最高精确度的浮点数的指数运算结果。In view of this, the main purpose of the present invention is to provide a floating-point number exponent operation device and method for obtaining the floating-point number exponent operation result with the highest precision.
为达成上述目的,本发明提供一种浮点数的指数运算装置,用于获得一浮点数以2为底的一指数运算结果,该浮点数的表示法为(-1)Sx·2Ex·mx,该指数运算结果的表示法为(-1)Sy·2Ey·my,其中Sx为该浮点数的符号数、Sy为该指数运算结果的符号数、Ex为该浮点数的指数、Ey为该指数运算结果的指数、mx为该浮点数的尾数、my为该指数运算结果的尾数且1≤mx<2、1≤my<2,该指数运算装置包括:一转换装置,用以接收上述浮点数的符号数、上述浮点数的指数以及上述浮点数的尾数输入,将上述浮点数转换成一整数部分和一分数部分输出;K个指数对照表,上述分数部分具有N个位元,将N个位元分成K份,每一部分分别具有N1、N2、...、NK位元,且N=N1+N2+...+NK,每一个指数表接收上述K部分中的一份输入,并且查表产生一输出结果;一乘法器,用以接收上述每一个指数对照表的输出结果输入,并且产生上述指数运算结果的尾数。其中上述转换装置输出的整数部分为上述指数运算结果的指数,上述指数运算结果的符号数其值为零,且上述N、N1、N2、...、NK为自然数。In order to achieve the above object, the present invention provides a floating-point number exponent operation device, which is used to obtain a floating-point number with base 2 as an exponent operation result, and the representation of the floating-point number is (-1) Sx 2 Ex m x , the expression of the exponent operation result is (-1) Sy 2 Ey m y , where Sx is the symbol number of the floating point number, Sy is the symbol number of the exponent operation result, Ex is the exponent of the floating point number, Ey is the exponent of the exponent operation result, m x is the mantissa of the floating point number, m y is the mantissa of the exponent operation result and 1≤m x <2, 1≤m y <2, and the exponent operation device includes: a conversion The device is used to receive the sign number of the floating point number, the exponent of the floating point number and the mantissa input of the floating point number, and convert the floating point number into an integer part and a fractional part for output; K exponent comparison tables, the fractional part has N Divide N bits into K parts, each part has N 1 , N 2 ,..., N K bits respectively, and N=N 1 +N 2 +...+N K , each The exponent table receives an input from the above-mentioned K part, and looks up the table to generate an output result; a multiplier is used to receive the input of the output result of each of the above-mentioned exponent comparison tables, and generate the mantissa of the above-mentioned exponent operation result. Wherein the integer part output by the conversion device is the exponent of the result of the exponential operation, the value of the sign number of the result of the exponential operation is zero, and the above N, N 1 , N 2 , . . . , N K are natural numbers.
另一方面,本发明也提供一种浮点数的指数运算方法,用于获得一浮点数以2为底的一指数运算结果,该浮点数的表示法为(-1)Sx·2Ex·mx,其中Sx为该浮点数的符号数、Ex为该浮点数的指数、mx为该浮点数的尾数,且1≤mx<2,该指数运算方法包括下列步骤:首先,将上述浮点数的符号数、上述浮点数的指数以及上述浮点数的尾数输入一转换装置中;接着,在上述转换装置中把上述浮点数转换成一整数部分和一分数部分;将上述分数部分分成K个部分,上述分数部分具有N个位元,每一部分分别具有N1、N2、...、NK位元,且N=N1+N2+...+NK,每一个指数表接收上述K部分中的一份输入,并且查表产生一输出结果;接着,将上述每一个指数表的输出结果输入一乘法器中产生一尾数;最后利用上述尾数、上述整数部分,以及一值为零的符号数表示上述指数运算结果,该指数运算结果的表示法为(-1)Sy·2Ey·my,其中sy为该符号数、Ey为上述整数部分、my为上述输出尾数,且1≤my<2,且上述N、N1、N2、...、NK为自然数。On the other hand, the present invention also provides a floating-point number exponent operation method, which is used to obtain an exponent operation result of a floating-point number with base 2, and the representation of the floating-point number is (-1) Sx 2 Ex m x , where Sx is the symbol number of the floating point number, Ex is the exponent of the floating point number, m x is the mantissa of the floating point number, and 1≤m x <2, the exponent calculation method includes the following steps: first, the above floating point The sign number of point number, the exponent of above-mentioned floating-point number and the mantissa of above-mentioned floating-point number are input in a conversion device; Then, in above-mentioned conversion device, above-mentioned floating-point number is converted into an integer part and a fractional part; The above-mentioned fractional part is divided into K parts , the above-mentioned fraction part has N bits, each part has N 1 , N 2 ,..., N K bits respectively, and N=N 1 +N 2 +...+N K , each index table receives An input in the above-mentioned K part, and a look-up table produces an output result; Then, the output result of each of the above-mentioned index tables is input in a multiplier to generate a mantissa; finally use the above-mentioned mantissa, the above-mentioned integer part, and a value of The sign number of zero represents the above-mentioned exponent operation result, and the representation of the exponent operation result is (-1) Sy 2 Ey m y , wherein sy is the sign number, Ey is the above-mentioned integer part, and m y is the above-mentioned output mantissa, And 1≤my <2, and the above-mentioned N, N 1 , N 2 , ..., N K are natural numbers.
附图说明Description of drawings
图1表示习知单一精确32位元格式表示法的示意图;FIG. 1 shows a schematic diagram of a conventional single precise 32-bit format representation;
图2表示本发明浮点数的指数运算装置的架构示意图;Fig. 2 shows the schematic diagram of the structure of the exponent operation device of the floating-point number of the present invention;
图3表示本发明转换装置的架构示意图;Fig. 3 shows the schematic diagram of the structure of the conversion device of the present invention;
图4表示本发明实施例的浮点数的指数运算装置的架构示意图。FIG. 4 shows a schematic diagram of the structure of the floating-point number exponent operation device according to the embodiment of the present invention.
图号说明:Description of figure number:
M、mx-浮点数的尾数;M, m x - the mantissa of the floating-point number;
E、Ex-浮点数的指数;E, Ex-exponent of floating point number;
S、Sx-符点数的符号数;S, Sx-the symbol number of symbol points;
Ix-整数部分;Ix - integer part;
Fx-分数部分;Fx - fraction part;
10-转换装置;10 - conversion device;
12-移位装置;12 - displacement device;
14-检测装置;14 - detection device;
16-决定装置;16 - decision means;
201-20K-指数对照表;20 1 -20 K - index comparison table;
30-乘法器;30 - multiplier;
Fsc-移位分数部分;Fsc - fractional part of the shift;
Isc-移位整数部分输出;Isc - shifted integer part output;
Err-错误讯息;Err - error message;
Sy-指数运算结果的符号数;Sy - sign number of exponential operation result;
Ey-该数运算结果的指数;Ey - the exponent of the result of the number operation;
my-指数运算结果的尾数。m y - the mantissa of the result of the exponent operation.
具体实施方式Detailed ways
图2表示本发明浮点数的指数运算装置的架构示意图。如图所示,浮点数的指数运算装置包括转换装置10、K个指数对照表201-20K以及乘法器30。转换装置10用以接收一浮点数X的符号数Sx、该浮点数X的指数Ex以及该浮点数X的尾数mx输入,将该浮点数转换成一整数部分Ix和一分数部分Fx输出并且在无法将该浮点数表示成整数部分和分数部分时输出错误讯息Err。分数部分Fx具有N个位元,将N个位元分成K份,每一部分分别具有N1、N2、...、NK位元,且N=N1+N2+...+NK,K个指数对照表201-20K中的每一个指数表接收上述K部分中的一份输入,并且查表产生一输出结果。乘法器30用以接收每一个指数表的输出结果输入,并且产生一指数运算结果Y的尾数my。其中转换装置10输出的整数部分Ix为该指数运算结果Y的指数Ey而且因为指数运算结果Y都为正数,所以指数运算结果Y的符号数Sy为零。FIG. 2 shows a schematic diagram of the structure of the floating-point exponential computing device of the present invention. As shown in the figure, the floating-point exponent calculation device includes a
上述浮点数X的表示法为:The representation of the above floating-point number X is:
X=(-1)Sx·2Ex·mx (1)X=(-1) Sx 2 Ex m x (1)
其中Sx为该浮点数的符号数,当浮点数X为正数时,浮点数的符号数Sx为0。当浮点数X为负数时,浮点数的符号数Sx为1;Ex为该浮点数的指数;mx为该浮点数的尾数,且1≤mx<2。Wherein Sx is the sign number of the floating point number, when the floating point number X is a positive number, the sign number Sx of the floating point number is 0. When the floating-point number X is a negative number, the sign number Sx of the floating-point number is 1; Ex is the exponent of the floating-point number; m x is the mantissa of the floating-point number, and 1≤m x <2.
本发明的浮点数的指数运算装置,用于获得该浮点数X以2为底的指数运算结果Y:The floating-point number exponent operation device of the present invention is used to obtain the exponent operation result Y of the floating-point number X with base 2:
Y=2X=(-1)Sy·2Ey·my (2)Y=2 X =(-1) Sy 2 Ey m y (2)
其中Sy为该指数运算结果的符号数,因为指数运算结果Y都为正数,所以指数运算结果Y的符号数Sy为零;Ey为该指数运算结果的指数;my为该指数运算结果的尾数,且1≤my<2。Wherein Sy is the symbol number of the exponential operation result, because the exponential operation result Y is a positive number, so the symbol number Sy of the exponential operation result Y is zero; Ey is the exponent of the exponent operation result; m y is the index of the exponent operation result mantissa, and 1≤m y <2.
为了求得Y,本发明的方法先将X分成整数部分和分数部分:In order to obtain Y, the method of the present invention first divides X into an integer part and a fractional part:
X=(-1)Sx·2Ex·mx=Ix+Fx (3)X=(-1) Sx 2 Ex m x =Ix+Fx (3)
其中Ix为整数部分、Fx为分数部分且0≤Fx<1。Wherein Ix is an integer part, Fx is a fractional part and 0≤Fx<1.
Fx=q·2-N=(Ai·2Ni)·2-N (4)Fx=q·2 -N =(Ai·2 Ni )·2 -N (4)
其中q为N位元数字,Ai为Ni位元数字。Among them, q is a N-digit number, and Ai is a Ni-digit number.
因此,指数运算结果的指数Ey、该指数运算结果的尾数my以及指数运算结果Y的符号数Sy分别为:Therefore, the exponent Ey of the exponent operation result, the mantissa m y of the exponent operation result, and the symbol number Sy of the exponent operation result Y are respectively:
Ey=Ix (6)Ey=Ix (6)
Sy=0 (8)Sy=0 (8)
且中
利用本发明的浮点数的指数运算装置可获得该浮点数X以2为底的指数运算结果Y,首先,将浮点数X的符号数Sx、浮点数X的指数Ex以及浮点数X的尾数mx输入转换装置10中。接着,在转换装置10中把浮点数X表示成整数部分Ix和分数部分Fx(参考第3式)。接着,将上述分数部分分成K个部分,上述分数部分具有N个位元,每一部分分别具有N1、N2、...、NK位元,且N=N1+N2+...+NK,每一个指数表接收上述N部分中的一份输入,并且查表产生一输出结果,再将每一个指数表的输出结果输入乘法器30中产生指数运算结果Y的尾数my(参考第4、5以及7式)。最后,利用尾数my、整数部分Ix,以及一值为零的符号数Sy,表示指数运算结果Y,该指数运算结果Y的表示法为(-1)Sy·2Fy·my,其中Sy为符号数其值为零(参考第8式),Ey为整数部分Ix(参考第6式),my为尾数且1≤my<2。Utilize the exponent operation device of floating-point number of the present invention to obtain this floating-point number X with 2 as the exponent operation result Y, at first, the symbol number Sx of floating-point number X, the exponent Ex of floating-point number X and the mantissa m of floating-point number X x is input into the
图3表示本发明转换装置的架构示意图。如图所示,该转换装置10包括移位装置12、检测装置14以及决定装置16。移位装置12用以接收浮点数的指数Ex以及浮点数的尾数mx输入,依据浮点数的指数Ex将浮点数的尾数mx移位,举例来说,当浮点数的指数Ex正整数,则依据该正整数将浮点数的尾数mx向左移,例如:浮点数的指数Ex为5,则浮点数的尾数mx向左移5位元,当浮点数的指数Ex负整数,则依据该正整数将浮点数的尾数mx向右移,例如:浮点数的指数Ex为-1,则浮点数的尾数mx向右移1位元,而移位装置12产生一移位分数部分Fsc和一移位整数部分Isc输出。FIG. 3 shows a schematic diagram of the structure of the conversion device of the present invention. As shown in the figure, the converting
检测装置14用以检测移位装置12,在移位装置12溢位时发出错误讯息Err。决定装置16用以接收移位整数部分Isc以及浮点数的符号数Sx输入,并且依据浮点数的符号数Sx决定移位整数部分Isc的正负号以产生整数部分Ix输出该转换装置10,当Sx为1时,Ix=-Isc,当Sx为0时,Ix=Isc。其中移位分数部分Fsc输出该转换装置10后即为分数部分Fx。The detecting
图4表示本发明实施例的浮点数的指数运算装置的架构示意图。如图所示,浮点数的指数运算装置包括移位装置12、检测装置14、决定装置16、3个指数对照表201-203以及乘法器30。本实施例的浮点数的指数运算装置用于获得该浮点数X以2为底的指数运算结果Y即=2X,该浮点数X的表示法为X=(-1)Sx·2Ex·mx,其中Sx为该浮点数的符号数,以1位元表示,当浮点数X为正数时,浮点数的符号数Sx为0,当浮点数X为负数时,浮点数的符号数Sx为1;Ex为该浮点数的指数,以8位元表示;mx为该浮点数的尾数,以24位元表示,且1≤mx<2。FIG. 4 shows a schematic diagram of the structure of the floating-point number exponent operation device according to the embodiment of the present invention. As shown in the figure, the floating-point exponent computing device includes a shifting
为了求得Y,需先将X分成用8位元表示的整数部分Ix以及用23位元表示的分数部分Fx,其中0≤Fx<1;移位装置12接收浮点数的指数Ex以及浮点数的尾数mx输入,依据浮点数的指数Ex将浮点数的尾数mx移位,举例来说,当浮点数的指数Ex正整数,则依据该正整数将浮点数的尾数mx向左移,例如:浮点数的指数Ex为5,则浮点数的尾数mx向左移5位元,当浮点数的指数Ex负整数,则依据该正整数将浮点数的尾数mx向右移,例如:浮点数的指数Ex为-1,则浮点数的尾数mx向右移1位元,而移位装置12产生一移位分数部分Fsc和一移位整数部分Isc输出。检测装置14用以检测移位装置12,在移位装置12溢位时发出错误讯息Err,该错误讯息Err包括溢位讯息和向下溢位讯息。当浮点数的指数Ex大于7时,浮点数的尾数mx向左移超过7位元,此时即发出溢位讯息。当浮点数的指数Ex小于-23时,浮点数的尾数mx向右移超过23位元,此时即发出向下溢位讯息。决定装置16用以接收移位整数部分Isc以及浮点数的符号数Sx输入,并且依据浮点数的符号数Sx决定移位整数部分Isc的正负号以产生用8位元表示的整数部分Ix输出该转换装置10,当Sx为1时,Ix=-Isc,当Sx为0时,Ix=Isc。In order to obtain Y, X needs to be divided into an integer part Ix represented by 8 bits and a fractional part Fx represented by 23 bits, wherein 0≤Fx<1; the shifting
其中移位分数部分Fsc在输出该转换装置10后即为利用23位元表示的分数部分Fx整数部分,而整数部分Ix即为指数运算结果Y的指数Ey(参考第6式)。Wherein the shifted fractional part Fsc is the integer part of the fractional part Fx represented by 23 bits after being output from the
接着,把分数部分Fx分成3个部分,分别为8位元、8位元和7位元,依序将每一个部分输入指数对照表20、22、24中,并在每一个指数对照表中产生一输出结果,再将每一个指数表的输出结果输入乘法器30中产生指数运算结果Y的尾数my。Then, the fractional part Fx is divided into 3 parts, respectively 8 bits, 8 bits and 7 bits, each part is input in the index comparison table 20, 22, 24 in order, and in each index comparison table Generate an output result, and then input the output result of each exponent table into the
根据第7式:According to formula 7:
在此实施例中,1≤i≤3,3为指数对照表的个数,所以:In this embodiment, 1≤i≤3, 3 is the number of the index comparison table, so:
其中
因为指数运算结果Y都为正数,所以指数运算结果Y的符号数Sy为零(参考第8式)。Since the exponential operation results Y are all positive numbers, the sign number Sy of the exponential operation result Y is zero (refer to Expression 8).
最后,利用my、Ix,以及Sy表示指数运算结果Y,其表示法为Y=(-1)Sy·2Ey·my,其中Sy为该指数运算结果的符号数、Ey为该指数运算结果的指数、my为该指数运算结果的尾数,且1≤my<2。Finally, use my y , Ix , and Sy to represent the exponent operation result Y, and its notation is Y=(-1) Sy · 2 Ey · m y , where Sy is the sign number of the exponent operation result, and Ey is the exponent operation result The exponent of the result, m y is the mantissa of the exponent operation result, and 1≤m y <2.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 02127091 CN1261860C (en) | 2002-07-29 | 2002-07-29 | Exponential calculation method and device for floating point numbers |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 02127091 CN1261860C (en) | 2002-07-29 | 2002-07-29 | Exponential calculation method and device for floating point numbers |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN1472635A CN1472635A (en) | 2004-02-04 |
| CN1261860C true CN1261860C (en) | 2006-06-28 |
Family
ID=34143466
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 02127091 Expired - Fee Related CN1261860C (en) | 2002-07-29 | 2002-07-29 | Exponential calculation method and device for floating point numbers |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN1261860C (en) |
Families Citing this family (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7321914B2 (en) * | 2004-02-18 | 2008-01-22 | General Motors Corporation | Fast method for calculating powers of two as a floating point data type |
| EP2189897B1 (en) * | 2008-11-19 | 2013-04-24 | VEGA Grieshaber KG | Multiplication of an integer with a floating-point number |
| CN104866281A (en) * | 2014-02-21 | 2015-08-26 | 北京国睿中数科技股份有限公司 | Device and method for realizing floating-point number symbol analysis and substitution |
| CN105183426A (en) * | 2015-08-18 | 2015-12-23 | 深圳市振邦智能科技有限公司 | Floating point number display method and apparatus applied to 8-bit single chip microcomputer |
| CN113721884B (en) * | 2021-09-01 | 2022-04-19 | 北京百度网讯科技有限公司 | Operation method, operation device, chip, electronic device and storage medium |
-
2002
- 2002-07-29 CN CN 02127091 patent/CN1261860C/en not_active Expired - Fee Related
Also Published As
| Publication number | Publication date |
|---|---|
| CN1472635A (en) | 2004-02-04 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN105468331B (en) | Independent floating point conversion unit | |
| CN1049778C (en) | Arithmetic device for realizing Viterbi decoding of convolutional code for error correction | |
| CN105634499B (en) | A Data Conversion Method Based on New Short Floating-Point Data | |
| CN1215862A (en) | Computing method and computing device | |
| CN104598197B (en) | A kind of floating-point inverse and/or inverse square root operation method and its device | |
| CN1658153A (en) | Composite Dynamic Fixed-point Number Representation and Algorithm and Its Processor Structure | |
| CN1173930A (en) | Logarithm/antilogarithmic converter using quadratic term and its usage method | |
| CN1431594A (en) | Method for parallel computing code of CRC in multiple channels and multiple bits | |
| CN110515584A (en) | Floating-point Computation method and system | |
| CN1261860C (en) | Exponential calculation method and device for floating point numbers | |
| US20040010531A1 (en) | Apparatus and method for calculating an exponential calculating result of a floating-point number | |
| CN1265281C (en) | Logarithm operation method and device for floating point numbers | |
| JP2001005643A (en) | Exponentiation unit | |
| CN108109166A (en) | For the computational methods and device of Image entropy in automatic exposure | |
| US9059726B2 (en) | Apparatus and method for performing a convert-to-integer operation | |
| JP4273071B2 (en) | Divide and square root calculator | |
| CN101056415A (en) | A method and device for converting the multiplication operation to the addition and shift operation | |
| CN102566965B (en) | Floating-point number logarithmic operation device with flat errors | |
| CN104615404A (en) | A high-speed floating-point division unit device based on table look-up operation | |
| CN1205583C (en) | Square-root computer capable of reducing error | |
| Boldo et al. | When double rounding is odd | |
| CN1783060A (en) | Cholesky decomposition algorithm device | |
| CN116594954A (en) | A general in-memory matrix computing engine and its operation method | |
| CN100340940C (en) | Logarithmic Transformation Method and Device | |
| CN1570847A (en) | Digital Signal Processor Using Jumping Floating-Point Arithmetic |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20060628 Termination date: 20160729 |