[go: up one dir, main page]

CN113608239A - GNSS occultation troposphere parameter correction method based on BP neural network - Google Patents

GNSS occultation troposphere parameter correction method based on BP neural network Download PDF

Info

Publication number
CN113608239A
CN113608239A CN202110789422.1A CN202110789422A CN113608239A CN 113608239 A CN113608239 A CN 113608239A CN 202110789422 A CN202110789422 A CN 202110789422A CN 113608239 A CN113608239 A CN 113608239A
Authority
CN
China
Prior art keywords
tropopause
neural network
data
temperature
gnss occultation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110789422.1A
Other languages
Chinese (zh)
Other versions
CN113608239B (en
Inventor
白伟华
邓楠
刘小煦
刘梓琰
孙越强
杜起飞
刘黎军
李伟
王先毅
蔡跃荣
夏俊明
孟祥广
柳聪亮
谭广远
尹聪
胡鹏
黄飞雄
王冬伟
刘成
吴春俊
李福�
乔颢
程双双
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Space Science Center of CAS
Original Assignee
National Space Science Center of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Space Science Center of CAS filed Critical National Space Science Center of CAS
Priority to CN202110789422.1A priority Critical patent/CN113608239B/en
Publication of CN113608239A publication Critical patent/CN113608239A/en
Application granted granted Critical
Publication of CN113608239B publication Critical patent/CN113608239B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Molecular Biology (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Complex Calculations (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及大气科学研究领域,尤其涉及基于BP神经网络的GNSS掩星对流层参数的修正方法,所述方法包括:接收GNSS掩星探测仪采集反演得到的对流层顶参数产品数据;对对流层顶参数产品数据进行预处理;将预处理后的数据输入预先建立和训练好的修正模型,得到修正后的对流层顶高度和对流层顶温度;所述修正模型采用BP神经网络。本发明首次利用BP神经网络方法修正GNSS掩星对流层顶参数产品,尤其对高纬地区误差改进效果最明显,使用模型简洁高效、计算经济,并且可以有效修正GNSS掩星对流层顶产品高纬度区域参数的误差,提高了GNSS掩星对流层顶参数产品的质量。

Figure 202110789422

The invention relates to the field of atmospheric scientific research, in particular to a method for revising GNSS occultation troposphere parameters based on a BP neural network, the method comprising: receiving tropopause parameter product data obtained by acquisition and inversion by a GNSS occultation detector; The product data is preprocessed; the preprocessed data is input into the pre-established and trained correction model to obtain the corrected tropopause height and tropopause temperature; the correction model adopts a BP neural network. The invention uses the BP neural network method to correct the GNSS occultation tropopause parameter products for the first time, especially for the high latitude region, the error improvement effect is the most obvious, the use model is simple and efficient, the calculation is economical, and the high latitude region parameters of the GNSS occultation tropopause product can be effectively corrected. error, which improves the quality of GNSS occultation tropopause parameter products.

Figure 202110789422

Description

基于BP神经网络的GNSS掩星对流层参数的修正方法Correction method of GNSS occultation tropospheric parameters based on BP neural network

技术领域technical field

本发明涉及大气科学研究领域,尤其涉及基于BP神经网络的GNSS掩星对流层参数的修正方法。The invention relates to the field of atmospheric scientific research, in particular to a method for correcting GNSS occultation tropospheric parameters based on a BP neural network.

背景技术Background technique

对流层顶是大气气候研究中的热点区域。GNSS掩星探测技术具有高全球覆盖率、高垂直分辨率等特点,其最优探测区间为7-25km,契合对流层顶出现的高度,因此能得到高质量,高全球覆盖率的对流层顶产品(由GNSS掩星探测数据反演获取的对流层顶参数,以下简称GNSS掩星对流层顶参数;对流层顶参数主要包括对流层顶高度和对流层顶温度)。The tropopause is a hot spot in atmospheric climate research. GNSS occultation detection technology has the characteristics of high global coverage and high vertical resolution. The tropopause parameters retrieved from GNSS occultation detection data, hereinafter referred to as GNSS occultation tropopause parameters; tropopause parameters mainly include tropopause height and tropopause temperature).

对流层顶的判定方法通常使用根据世界气象组织WMO于1957年提出的对流层顶定义的温度递减率判定方法,即:最低的满足温度随高度升高递减率大于-2K/km的点,且该点至该点以上2km高度内任意一点间的温度递减率大于-2K/km。The judgment method of the tropopause usually uses the temperature lapse rate judgment method defined by the World Meteorological Organization (WMO) in 1957, that is: the lowest point that satisfies the temperature lapse rate with the increase of altitude is greater than -2K/km, and this point The temperature lapse rate between any point within 2km above this point is greater than -2K/km.

目前,ECMWF业务档案库提供的四维变分数据是精度很高的模型数据,但是掩星温度廓线反演得到的对流层顶产品与模型廓线得到的结果在部分地区有较为明显的差异。At present, the four-dimensional variational data provided by the ECMWF business archives are model data with high accuracy, but the tropopause products obtained from the inversion of the occultation temperature profile and the results obtained from the model profile have obvious differences in some areas.

我国风云三号C星(FY3C)GNSS掩星探测仪(简称GNOS)正常业务运行已达7年,提供的大气温度廓线的数量为每天400-500个。FY3C卫星GNOS掩星数据反演得到的对流层顶高度在高纬度地区相较ECMWF四维变分数据结果具有较大的负偏差。my country's Fengyun-3C (FY3C) GNSS Occultation Detector (GNOS) has been operating normally for 7 years, and the number of atmospheric temperature profiles provided is 400-500 per day. Compared with the ECMWF four-dimensional variational data, the tropopause height obtained from the FY3C satellite GNOS occultation data has a large negative deviation in high latitudes.

发明内容SUMMARY OF THE INVENTION

本发明的目的在于克服现有技术缺陷,提出了基于BP神经网络的GNSS掩星对流层参数的修正方法。The purpose of the present invention is to overcome the defects of the prior art, and propose a method for correcting GNSS occultation tropospheric parameters based on BP neural network.

为了实现上述目的,本发明提出了一种基于BP神经网络的GNSS掩星对流层参数的修正方法,所述方法包括:In order to achieve the above object, the present invention proposes a method for revising GNSS occultation tropospheric parameters based on BP neural network, the method comprising:

接收GNSS掩星探测仪采集反演得到的对流层顶参数产品数据;Receive the tropopause parameter product data acquired and retrieved by the GNSS occultation detector;

对对流层顶参数产品数据进行预处理;Preprocessing the tropopause parameter product data;

将预处理后的数据输入预先建立和训练好的修正模型,得到修正后的对流层顶高度和对流层顶温度;Input the preprocessed data into the pre-established and trained correction model to obtain the corrected tropopause height and tropopause temperature;

所述修正模型采用BP神经网络。The correction model adopts BP neural network.

作为上述方法的一种改进,所述对流层顶参数产品数据包括:根据GNSS掩星干温廓线计算得到的对流层顶温度、对流层顶高度、廓线经纬度以及对应的采集日期和时间。As an improvement of the above method, the tropopause parameter product data includes: tropopause temperature, tropopause height, profile latitude and longitude, and the corresponding collection date and time calculated according to the GNSS occultation stem temperature profile.

作为上述方法的一种改进,所述预处理具体包括:As an improvement of the above method, the preprocessing specifically includes:

对廓线经纬度以及对应的采集日期和时间进行归一化处理。Normalize the latitude and longitude of the profile and the corresponding collection date and time.

作为上述方法的一种改进,所述修正模型的输入为预处理后的对流层顶参数产品数据,输出为修正后的对流层顶高度和对流层顶温度,采用的BP神经网络包括5层全连接层,其中有3层为隐藏层,每个隐藏层有10个神经元,每个神经元均采用Relu激活函数。As an improvement of the above method, the input of the correction model is the preprocessed tropopause parameter product data, and the output is the corrected tropopause height and tropopause temperature. The adopted BP neural network includes 5 fully connected layers, Among them, 3 layers are hidden layers, each hidden layer has 10 neurons, and each neuron adopts the Relu activation function.

作为上述方法的一种改进,所述方法还包括修正模型的训练步骤,具体包括:As an improvement of the above method, the method further includes a training step of revising the model, specifically including:

选取FY3C掩星数据与ECMWF业务档案库的温度廓线数据,按照时间、经度和纬度进行匹配,通过温度递减率算法计算匹配后温度廓线的对流层顶高度和对流层顶温度,得到原始样本集;Select the FY3C occultation data and the temperature profile data of the ECMWF business archives, match them according to time, longitude and latitude, and calculate the tropopause height and tropopause temperature of the matched temperature profile through the temperature lapse rate algorithm to obtain the original sample set;

对原始样本集的数据进行筛选,剔除由于温度廓线无法判定对流层顶的无效数据,再基于采样算法和归一化算法进行预处理,根据一定比例将预处理后的样本集数据随机分配到训练集和测试集中;The data of the original sample set is screened, and the invalid data that cannot be determined due to the temperature profile of the tropopause are eliminated, and then preprocessed based on the sampling algorithm and the normalization algorithm, and the preprocessed sample set data is randomly assigned to the training according to a certain proportion. set and test set;

初始化网络的权值矩阵,设置每对两两相连的神经元的求和权值;Initialize the weight matrix of the network, and set the summation weight of each pair of neurons connected in pairs;

将训练集数据依次输入BP神经网络,根据前向传播计算对应的对流层顶温度与对流层顶高度,以匹配的ECMWF对流层顶温度与对流层顶高度作为参考真值,由计算结果和参考真值计算MSE损失函数,通过Adam自适应调整动态学习率,迭代更新权值矩阵直至损失函数收敛并且满足预设的最大迭代次数,从而得到预训练好的修正模型;The training set data is input into the BP neural network in turn, and the corresponding tropopause temperature and tropopause height are calculated according to the forward propagation. The matching ECMWF tropopause temperature and tropopause height are used as the reference true values, and the MSE is calculated from the calculation results and reference true values. For the loss function, the dynamic learning rate is adaptively adjusted by Adam, and the weight matrix is iteratively updated until the loss function converges and meets the preset maximum number of iterations, thereby obtaining a pre-trained correction model;

将测试集数据依次输入预训练好的修正模型,判断输出结果是否达到评估要求,判断为否,重新训练;判断为是,得到训练好的修正模型。Input the test set data into the pre-trained correction model in turn, and judge whether the output result meets the evaluation requirements.

作为上述方法的一种改进,所述训练集和测试集的数据纬度分布保持一致。As an improvement of the above method, the data latitude distributions of the training set and the test set are kept consistent.

一种基于BP神经网络的GNSS掩星对流层参数的修正系统,所述系统包括:修正模型、接收模块、预处理模块和输出模块;其中,A correction system for GNSS occultation tropospheric parameters based on BP neural network, the system includes: a correction model, a receiving module, a preprocessing module and an output module; wherein,

所述接收模块,用于接收GNSS掩星探测仪采集反演得到的对流层顶参数产品数据;The receiving module is used to receive the tropopause parameter product data obtained by the GNSS occultation detector acquisition and inversion;

所述预处理模块,用于对对流层顶参数产品数据进行预处理;The preprocessing module is used to preprocess the tropopause parameter product data;

所述输出模块,用于将预处理后的数据输入预先建立和训练好的修正模型,得到修正后的对流层顶高度和对流层顶温度;The output module is used for inputting the preprocessed data into a pre-established and trained correction model to obtain the corrected tropopause height and tropopause temperature;

所述修正模型采用BP神经网络。The correction model adopts BP neural network.

与现有技术相比,本发明的优势在于:Compared with the prior art, the advantages of the present invention are:

本发明首次利用BP神经网络方法修正GNSS掩星对流层顶参数产品,尤其对高纬地区误差改进效果最明显,使用模型简洁高效、计算经济,并且可以有效修正GNSS掩星对流层顶产品高纬度区域参数的误差,提高了GNSS掩星对流层顶参数产品的质量。The invention uses the BP neural network method to correct the GNSS occultation tropopause parameter products for the first time, especially for the high latitude region, the error improvement effect is the most obvious, the use model is simple and efficient, the calculation is economical, and the high latitude region parameters of the GNSS occultation tropopause product can be effectively corrected. error, which improves the quality of GNSS occultation tropopause parameter products.

附图说明Description of drawings

图1是本发明的基于BP神经网络的GNSS掩星对流层参数的修正方法总体流程图;Fig. 1 is the overall flow chart of the correction method of GNSS occultation tropospheric parameters based on BP neural network of the present invention;

图2是本发明的BP神经网络训练流程示意图;Fig. 2 is the BP neural network training flow schematic diagram of the present invention;

图3是训练集和测试集数据示例,包括纬度和季节分布;Figure 3 is an example of training set and test set data, including latitude and seasonal distribution;

图4是采用本发明方法的修正效果图,其中图4(a)是对流层顶高度修正效果,图4(b)是对流层顶温度修正效果。Fig. 4 is a correction effect diagram using the method of the present invention, wherein Fig. 4(a) is the correction effect of the tropopause height, and Fig. 4(b) is the correction effect of the tropopause temperature.

具体实施方式Detailed ways

经过调研,FY3C等卫星GNSS掩星数据反演得到的对流层参数有较大偏差,尤其GNSS掩星数据反演的对流层顶高度在高纬度地区相较ECMWF四维变分数据结果具有较大的负偏差,因此尝试对GNSS对流层顶参数产品的高纬度地区负偏差进行修正,以达到提高产品精度的目的。After investigation, it is found that the tropospheric parameters obtained from the GNSS occultation data of FY3C and other satellites have a large deviation, especially the tropopause height obtained from the GNSS occultation data has a large negative deviation compared with the ECMWF four-dimensional variational data in high latitude regions. , so try to correct the negative deviation of the GNSS tropopause parameter product in the high latitude area to achieve the purpose of improving the product accuracy.

由于对流层顶产品多为格点平均或纬度平均,是统计结果。对此,选择使用BP神经网络方法对GNSS掩星对流层顶参数产品进行修正。Since the tropopause products are mostly grid-averaged or latitude-averaged, they are statistical results. In this regard, the BP neural network method is chosen to correct the GNSS occultation tropopause parameter products.

本发明的目的在于提供一种基于BP神经网络的GNSS掩星对流层顶参数修正方法,具备计算效率高,回归修正效果好的优点,能够有效提高GNSS掩星对流层顶参数产品的质量,特别是有负偏差的高纬度地区参数产品的质量。The purpose of the present invention is to provide a GNSS occultation tropopause parameter correction method based on BP neural network, which has the advantages of high calculation efficiency and good regression correction effect, and can effectively improve the quality of GNSS occultation tropopause parameter products. Negative bias for high latitude parameter product quality.

为利用BP神经网络算法提高GNSS掩星对流层顶参数产品高纬度地区的精度,技术方案主要包括以下五个步骤,如图1所示:In order to use the BP neural network algorithm to improve the accuracy of GNSS occultation tropopause parameter products in high latitude areas, the technical solution mainly includes the following five steps, as shown in Figure 1:

第一步:原始数据样本集构建。选取大量的GNSS掩星温度廓线数据和ECMWF四维变分模型温度廓线数据进行时空匹配,计算时空匹配的GNSS掩星产品与ECMWF数据各自的对流层顶高度与温度,得到原始样本;The first step: the construction of the original data sample set. Select a large number of GNSS occultation temperature profile data and ECMWF four-dimensional variational model temperature profile data for space-time matching, calculate the tropopause height and temperature of the space-time matched GNSS occultation products and ECMWF data, and obtain the original sample;

第二步:生成训练集和测试集。首先对原始样本数据进行筛选,剔除一些由于温度廓线无法判定对流层顶而导致的无效值;筛选后,基于采样算法和归一化算法解决数据集分布不均匀、量纲不一致的问题,再按照6.5:3.5将预处理后的样本集切分成训练集和测试集。Step 2: Generate training set and test set. First, the original sample data is screened to eliminate some invalid values caused by the inability of the temperature profile to determine the tropopause; after screening, the problem of uneven distribution of the data set and inconsistent dimensions is solved based on the sampling algorithm and the normalization algorithm, and then according to the 6.5:3.5 Divide the preprocessed sample set into training set and test set.

第三步:构建BP神经网络模型。首先根据输入特征与输出特征确定模型输入层与输出层神经元的数量,再根据不断试验分别确定神经网络隐藏层数目与隐藏层神经元数目,从而构建以GNSS掩星对流层顶高度,温度以及归一化后的时间,日期,经度,纬度为输入参数,修正后的对流层顶高度与温度为输出参数的BP神经网络模型。Step 3: Build a BP neural network model. Firstly, the number of neurons in the input layer and output layer of the model is determined according to the input and output characteristics, and then the number of hidden layers and neurons in the hidden layer of the neural network are determined according to continuous experiments. The normalized time, date, longitude and latitude are the input parameters, and the corrected tropopause height and temperature are the output parameters of the BP neural network model.

第四步:BP神经网络模型训练。具体流程如图2所示。首先优化模型结构,经过测试,神经网络使用了5层全连接神经网络,其中有3个隐藏层,每个隐藏层有10个神经元。然后分配每个神经元的激活函数,在本模型中均使用了Relu函数。随后初始化网络的权值矩阵,给出每对两两相连的神经元的求和权值。以匹配的ECMWF对流层顶温度与对流层顶高度作为参考真值,设置损失函数为MSE,误差反向传播迭代器算法为Adam,该算法使用自适应的动态学习率,从较小的学习率η起逐步提升,保证训练精度。随后,根据验证集误差确定了训练的epoch数。多次训练更新权值矩阵直至损失函数收敛或满足最大迭代次数,迭代次数为25000次。Step 4: BP neural network model training. The specific process is shown in Figure 2. First, optimize the model structure. After testing, the neural network uses a 5-layer fully connected neural network, which has 3 hidden layers, and each hidden layer has 10 neurons. The activation function of each neuron is then assigned, and the Relu function is used in this model. The weight matrix of the network is then initialized to give the summed weights of each pair of neurons connected in pairs. Taking the matched ECMWF tropopause temperature and tropopause height as reference values, set the loss function as MSE and the error back-propagation iterator algorithm as Adam, which uses an adaptive dynamic learning rate, starting from a smaller learning rate η Gradually improve the training accuracy. Subsequently, the number of epochs for training is determined based on the validation set error. The weight matrix is updated by training multiple times until the loss function converges or the maximum number of iterations is satisfied, and the number of iterations is 25,000.

第五步:对流层顶参数修正。利用训练好的BP神经网络模型计算修正后的对流层顶高度和温度参数,评价修正效果。Step 5: Correction of tropopause parameters. Use the trained BP neural network model to calculate the corrected tropopause height and temperature parameters to evaluate the correction effect.

下面结合附图和实施例对本发明的技术方案进行详细的说明。The technical solutions of the present invention will be described in detail below with reference to the accompanying drawings and embodiments.

实施例1Example 1

本发明的实施例1提出了基于BP神经网络的GNSS掩星对流层参数的修正方法。Embodiment 1 of the present invention proposes a method for correcting GNSS occultation tropospheric parameters based on BP neural network.

利用FY3C卫星上GNSS掩星探测仪(简称GNOS)的掩星观测数据,采用本发明的基于BP神经网络方法修正FY3C星GNSS掩星高纬度地区对流层顶参数对数据进行修正。FY3C卫星发射于2013年9月,是太阳同步轨道卫星,其轨道倾角98.8°,平均海拔836km,轨道周期为101.5分钟。其搭载的GNSS掩星接收机GNOS可以同时兼容北斗导航卫星系统(BDS)的信号与全球定位系统(GPS)的信号。FY3CGNOS正常业务运行期间提供的大气温度廓线的数量为每天400-500个。Using the occultation observation data of the GNSS occultation detector (GNOS) on the FY3C satellite, the data is corrected by using the BP neural network based method of the present invention to correct the tropopause parameters in the high latitude area of the GNSS occultation of the FY3C satellite. Launched in September 2013, the FY3C satellite is a sun-synchronous orbit satellite with an orbital inclination of 98.8°, an average altitude of 836km, and an orbital period of 101.5 minutes. Its GNSS occultation receiver GNOS is compatible with Beidou Navigation Satellite System (BDS) signals and Global Positioning System (GPS) signals at the same time. The number of atmospheric temperature profiles provided during normal operational operations of FY3CGNOS is 400-500 per day.

第一步原始数据样本构建:FY3C掩星数据与ECMWF数据进行时空匹配。本实例使用了2018年6月-2018年8月(JJA)的FY3C掩星数据与ECMWF业务档案库的温度廓线数据,按照时间、经度、纬度进行匹配,通过温度递减率算法计算匹配后温度廓线的对流层顶高度与温度,得到原始样本集。其中2018.6-2018.8时间段内20187组数据,测试集10798组数据。The first step is to construct raw data samples: FY3C occultation data and ECMWF data are matched in space and time. In this example, the FY3C occultation data from June 2018 to August 2018 (JJA) and the temperature profile data of the ECMWF business archive are used for matching according to time, longitude and latitude, and the temperature after matching is calculated by the temperature decrement rate algorithm. The tropopause height and temperature of the profile were obtained to obtain the original sample set. Among them, 20187 sets of data in the 2018.6-2018.8 time period, and 10798 sets of data in the test set.

第二步生成训练集和测试集:对原始样本集进行筛选,剔除由于温度廓线无法判定对流层顶的无效数据,随机选取65%作为训练集,剩余35%作为测试集,保证两季训练集,测试集数据的纬度分布一致,具体纬度分布见图3。The second step is to generate a training set and a test set: screen the original sample set, remove the invalid data that cannot be determined due to the temperature profile of the tropopause, randomly select 65% as the training set, and the remaining 35% as the test set, to ensure two seasons of training sets , the latitude distribution of the test set data is consistent, and the specific latitude distribution is shown in Figure 3.

第三步BP神经网络搭建:选择使用5层BP神经网络,包括3层隐藏层,损失函数选择MSE函数,误差反向传播使用Adam算法。接着选定模型的评价指标为均方根误差RMSE,就此搭建了以修正前FY3C掩星对流层顶参数为输入,修正后FY3C掩星对流层顶参数为输出的BP神经网络模型。The third step is to build a BP neural network: choose to use a 5-layer BP neural network, including 3 hidden layers, choose the MSE function for the loss function, and use the Adam algorithm for error back propagation. Then, the evaluation index of the selected model is the root mean square error (RMSE), and a BP neural network model is built, which takes the parameters of the FY3C occultation tropopause before correction as the input and the tropopause parameters of the corrected FY3C occultation as the output.

具体包括:Specifically include:

首先构建模型,该神经网络使用了5层全连接神经网络,其中有3个隐藏层,每个隐藏层有10个神经元。输入数据为FY3C对流层顶高度,温度以及归一化后的时间,日期,经度,纬度。输出数据为修正后的对流层顶高度与温度。First build the model, which uses a 5-layer fully connected neural network with 3 hidden layers and 10 neurons in each hidden layer. The input data are FY3C tropopause height, temperature, and normalized time, date, longitude, and latitude. The output data is the corrected tropopause height and temperature.

经过Relu函数激活,通过Adam自适应调整动态学习率,直到模型得到输出值,计算输出值与目标值的误差,即损失函数。根据误差更新网络参数,如此循环直至达到规定循环次数或损失函数满足要求。训练模型成功,保存参数。After the activation of the Relu function, the dynamic learning rate is adaptively adjusted by Adam until the model obtains the output value, and the error between the output value and the target value is calculated, that is, the loss function. The network parameters are updated according to the error, and the cycle is repeated until the specified number of cycles is reached or the loss function meets the requirements. Train the model successfully, save the parameters.

第四步BP神经网络模型训练:初始化权值矩阵,将训练集的FY3C掩星对流层顶相关参数输入网络,以训练集的对应ECMWF对流层顶高度与温度为目标参数。通过迭代训练更新权值矩阵,使得MSE趋近最小,迭代次数为25000次。The fourth step is to train the BP neural network model: initialize the weight matrix, input the relevant parameters of the FY3C occultation tropopause in the training set into the network, and take the corresponding ECMWF tropopause height and temperature of the training set as the target parameters. The weight matrix is updated through iterative training to make the MSE approach the minimum, and the number of iterations is 25,000.

训练集与测试集具有相同的纬度分布,均在80°N~80°S。时间为夏季(2018.6-2018.8)。输入数据为FY3C卫星GNSS掩星干温廓线计算得到的对流层顶温度,对流层顶高度,廓线经纬度,日期,时间,目标数据为与FY3C卫星GNSS掩星干温廓线匹配的ECMWF四维变分温度廓线计算得到的对流层顶高度以及对流层顶温度。在将训练数据送入机器学习模型之前,对经纬度,日期,时间数据进行归一化处理。The training set and the test set have the same latitude distribution, both at 80°N~80°S. The time is summer (2018.6-2018.8). The input data is the tropopause temperature, tropopause height, profile latitude and longitude, date, and time calculated from the FY3C satellite GNSS occultation stem temperature profile. The target data is the ECMWF four-dimensional variation that matches the FY3C satellite GNSS occultation stem temperature profile. Temperature profile calculated tropopause height and tropopause temperature. The latitude, longitude, date, and time data are normalized before feeding the training data into the machine learning model.

第五步对流层顶参数修正:将待测的数据输入BP神经网络对流层顶参数修正模型中,获得修正后的对流层顶高度和温度参数,评估模型对于FY3C掩星对流层顶参数的修正情况。整体上,该方法明显的降低了FY3C掩星对流层顶参数与ECMWF结果的偏差,具体修正情况如图4。Step 5: Correction of tropopause parameters: Input the data to be measured into the BP neural network tropopause parameter correction model, obtain the corrected tropopause height and temperature parameters, and evaluate the correction of the model for the FY3C occultation tropopause parameters. On the whole, this method significantly reduces the deviation between the parameters of the FY3C occultation tropopause and the ECMWF results, and the specific correction is shown in Figure 4.

图4为修正前后FY3C星GNSS掩星数据产品与ECMWF模式数据在各地理网格中误差绝对值的减小值(标倒三角的网格代表误差增加),其中图4(a)表示对流层顶高度修正效果,图4(b)表示对流层顶温度修正效果。在夏季(6~8月)期间,神经网络对于北半球高纬地区FY3C星GNSS掩星对流层顶的参数的修正效果十分明显,仅有个别格点附有标记,但在南半球高纬地区,虽然整体上具有一定修正效果,但也存在一些附有标记的网格点。Figure 4 shows the decrease in the absolute value of the error between the FY3C star GNSS occultation data product and the ECMWF model data in each geographic grid before and after correction (the grid marked with an inverted triangle represents the increase in error), of which Figure 4(a) represents the tropopause Altitude correction effect, Figure 4(b) shows the tropopause temperature correction effect. During the summer (June-August), the neural network has an obvious effect on the correction of the parameters of the FY3C star GNSS occultation tropopause in the high latitudes of the northern hemisphere. Only individual grid points are marked, but in the high latitudes of the southern hemisphere, although the overall There is a certain correction effect on the grid, but there are also some grid points with markers attached.

实施例2Example 2

本发明的实施例2提出了一种基于BP神经网络的GNSS掩星对流层参数的修正系统,基于实施例1的方法实现,所述系统包括:修正模型、接收模块、预处理模块和输出模块;其中,Embodiment 2 of the present invention proposes a BP neural network-based GNSS occultation tropospheric parameter correction system, which is implemented based on the method of Embodiment 1, and the system includes: a correction model, a receiving module, a preprocessing module, and an output module; in,

所述接收模块,用于接收GNSS掩星探测仪采集反演得到的对流层顶参数产品数据;The receiving module is used to receive the tropopause parameter product data obtained by the GNSS occultation detector acquisition and inversion;

所述预处理模块,用于对对流层顶参数产品数据进行预处理;The preprocessing module is used to preprocess the tropopause parameter product data;

所述输出模块,用于将预处理后的数据输入预先建立和训练好的修正模型,得到修正后的对流层顶高度和对流层顶温度;The output module is used for inputting the preprocessed data into a pre-established and trained correction model to obtain the corrected tropopause height and tropopause temperature;

所述修正模型采用BP神经网络。The correction model adopts BP neural network.

最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention and not to limit them. Although the present invention has been described in detail with reference to the embodiments, those of ordinary skill in the art should understand that any modification or equivalent replacement of the technical solutions of the present invention will not depart from the spirit and scope of the technical solutions of the present invention, and should be included in the present invention. within the scope of the claims.

Claims (7)

1.一种基于BP神经网络的GNSS掩星对流层参数的修正方法,所述方法包括:1. a correction method for GNSS occultation tropospheric parameters based on BP neural network, the method comprises: 接收GNSS掩星探测仪采集反演得到的对流层顶参数产品数据;Receive the tropopause parameter product data acquired and retrieved by the GNSS occultation detector; 对对流层顶参数产品数据进行预处理;Preprocessing the tropopause parameter product data; 将预处理后的数据输入预先建立和训练好的修正模型,得到修正后的对流层顶高度和对流层顶温度;Input the preprocessed data into the pre-established and trained correction model to obtain the corrected tropopause height and tropopause temperature; 所述修正模型采用BP神经网络。The correction model adopts BP neural network. 2.根据权利要求1所述的基于BP神经网络的GNSS掩星对流层参数的修正方法,其特征在于,所述对流层顶参数产品数据包括:根据GNSS掩星干温廓线计算得到的对流层顶温度、对流层顶高度、廓线经纬度以及对应的采集日期和时间。2. the correction method of the GNSS occultation troposphere parameter based on BP neural network according to claim 1, is characterized in that, described tropopause parameter product data comprises: the tropopause temperature obtained according to GNSS occultation stem temperature profile calculation , tropopause height, profile latitude and longitude, and the corresponding collection date and time. 3.根据权利要求2所述的基于BP神经网络的GNSS掩星对流层参数的修正方法,其特征在于,所述预处理具体包括:3. the correction method of the GNSS occultation troposphere parameter based on BP neural network according to claim 2, is characterized in that, described preprocessing specifically comprises: 对廓线经纬度以及对应的采集日期和时间进行归一化处理。Normalize the latitude and longitude of the profile and the corresponding collection date and time. 4.根据权利要求1所述的基于BP神经网络的GNSS掩星对流层参数的修正方法,其特征在于,所述修正模型的输入为预处理后的对流层顶参数产品数据,输出为修正后的对流层顶高度和对流层顶温度,采用的BP神经网络包括5层全连接层,其中有3层为隐藏层,每个隐藏层有10个神经元,每个神经元均采用Relu激活函数。4. the correction method of the GNSS occultation troposphere parameter based on BP neural network according to claim 1, is characterized in that, the input of described correction model is the tropopause parameter product data after preprocessing, and the output is the troposphere after correction The top height and the top temperature of the troposphere, the BP neural network used includes 5 fully connected layers, 3 of which are hidden layers, each hidden layer has 10 neurons, and each neuron uses the Relu activation function. 5.根据权利要求4所述的基于BP神经网络的GNSS掩星对流层参数的修正方法,其特征在于,所述方法还包括修正模型的训练步骤,具体包括:5. the revising method of the GNSS occultation troposphere parameter based on BP neural network according to claim 4, is characterized in that, described method also comprises the training step of revising model, specifically comprises: 选取FY3C掩星数据与ECMWF业务档案库的温度廓线数据,按照时间、经度和纬度进行匹配,通过温度递减率算法计算匹配后温度廓线的对流层顶高度和对流层顶温度,得到原始样本集;Select the FY3C occultation data and the temperature profile data of the ECMWF business archives, match them according to time, longitude and latitude, and calculate the tropopause height and tropopause temperature of the matched temperature profile through the temperature lapse rate algorithm to obtain the original sample set; 对原始样本集的数据进行筛选,剔除由于温度廓线无法判定对流层顶的无效数据,再基于采样算法和归一化算法进行预处理,根据一定比例将预处理后的样本集数据随机分配到训练集和测试集中;The data of the original sample set is screened, and the invalid data that cannot be determined due to the temperature profile of the tropopause are eliminated, and then preprocessed based on the sampling algorithm and the normalization algorithm, and the preprocessed sample set data is randomly assigned to the training according to a certain proportion. set and test set; 初始化网络的权值矩阵,设置每对两两相连的神经元的求和权值;Initialize the weight matrix of the network, and set the summation weight of each pair of neurons connected in pairs; 将训练集数据依次输入BP神经网络,根据前向传播计算对应的对流层顶温度与对流层顶高度,以匹配的ECMWF对流层顶温度与对流层顶高度作为参考真值,由计算结果和参考真值计算MSE损失函数,通过Adam自适应调整动态学习率,迭代更新权值矩阵直至损失函数收敛并且满足预设的最大迭代次数,从而得到预训练好的修正模型;The training set data is input into the BP neural network in turn, and the corresponding tropopause temperature and tropopause height are calculated according to the forward propagation. The matching ECMWF tropopause temperature and tropopause height are used as the reference true values, and the MSE is calculated from the calculation results and reference true values. For the loss function, the dynamic learning rate is adaptively adjusted by Adam, and the weight matrix is iteratively updated until the loss function converges and meets the preset maximum number of iterations, thereby obtaining a pre-trained correction model; 将测试集数据依次输入预训练好的修正模型,判断输出结果是否达到评估要求,判断为否,重新训练;判断为是,得到训练好的修正模型。Input the test set data into the pre-trained correction model in turn, and judge whether the output result meets the evaluation requirements. 6.根据权利要求3所述的基于BP神经网络的GNSS掩星对流层参数的修正方法,其特征在于,所述训练集和测试集的数据纬度分布保持一致。6. The method for correcting GNSS occultation troposphere parameters based on BP neural network according to claim 3, wherein the data latitude distribution of the training set and the test set is consistent. 7.一种基于BP神经网络的GNSS掩星对流层参数的修正系统,其特征在于,所述系统包括:修正模型、接收模块、预处理模块和输出模块;其中,7. A correction system for GNSS occultation tropospheric parameters based on BP neural network, characterized in that the system comprises: a correction model, a receiving module, a preprocessing module and an output module; wherein, 所述接收模块,用于接收GNSS掩星探测仪采集反演得到的对流层顶参数产品数据;The receiving module is used to receive the tropopause parameter product data obtained by the GNSS occultation detector acquisition and inversion; 所述预处理模块,用于对对流层顶参数产品数据进行预处理;The preprocessing module is used to preprocess the tropopause parameter product data; 所述输出模块,用于将预处理后的数据输入预先建立和训练好的修正模型,得到修正后的对流层顶高度和对流层顶温度;The output module is used for inputting the preprocessed data into a pre-established and trained correction model to obtain the corrected tropopause height and tropopause temperature; 所述修正模型采用BP神经网络。The correction model adopts BP neural network.
CN202110789422.1A 2021-07-13 2021-07-13 GNSS occultation troposphere parameter correction method based on BP neural network Active CN113608239B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110789422.1A CN113608239B (en) 2021-07-13 2021-07-13 GNSS occultation troposphere parameter correction method based on BP neural network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110789422.1A CN113608239B (en) 2021-07-13 2021-07-13 GNSS occultation troposphere parameter correction method based on BP neural network

Publications (2)

Publication Number Publication Date
CN113608239A true CN113608239A (en) 2021-11-05
CN113608239B CN113608239B (en) 2023-10-17

Family

ID=78337502

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110789422.1A Active CN113608239B (en) 2021-07-13 2021-07-13 GNSS occultation troposphere parameter correction method based on BP neural network

Country Status (1)

Country Link
CN (1) CN113608239B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304208A (en) * 2022-06-15 2022-11-08 中煤科工集团杭州研究院有限公司 Emulsion explosive production wastewater treatment method
CN115406911A (en) * 2022-08-24 2022-11-29 山东省科学院海洋仪器仪表研究所 Troposphere atmosphere temperature and humidity profile inversion method based on multi-target genetic algorithm
CN120257848A (en) * 2025-06-04 2025-07-04 天津云遥宇航科技有限公司 A method for dynamic correction of the bottom refractive index of occulted stars based on deep learning

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563452B1 (en) * 1998-07-06 2003-05-13 Honeywell International Inc. Apparatus and method for determining wind profiles and for predicting clear air turbulence
US20080169975A1 (en) * 2007-01-12 2008-07-17 Young Paul Yee Process for generating spatially continuous wind profiles from wind profiler measurements
CN102682335A (en) * 2012-04-13 2012-09-19 东南大学 Neural network method for precisely determining tropospheric delay in region
US20140201667A1 (en) * 2011-03-02 2014-07-17 Barbara Schoeberl System and Method for Generating and Displaying Climate System Models
CN105787556A (en) * 2016-02-23 2016-07-20 东南大学 Saastamoinen model-based BP nerve network troposphere delay correction method
CN105988146A (en) * 2015-01-29 2016-10-05 中国科学院空间科学与应用研究中心 Application data processing method of spaceborne microwave radiometer
CN107703554A (en) * 2017-08-24 2018-02-16 安徽四创电子股份有限公司 The warm and humid profile Inversion System of multichannel millimeter wave radiometer and its inversion method
CN109116385A (en) * 2018-08-14 2019-01-01 厦门理工学院 A kind of long-range network RTK tropospheric delay estimation method based on BP neural network
CN109145434A (en) * 2018-08-16 2019-01-04 北京理工大学 A method of broadcast ephemeris orbit error is predicted using improved BP
CN110275182A (en) * 2019-06-25 2019-09-24 中国科学院国家空间科学中心 A profiling system for atmospheric temperature and pressure in near space
CN111323797A (en) * 2020-03-17 2020-06-23 中国科学院国家空间科学中心 Method for inverting convective stratum top parameter by using GNSS atmospheric occultation bending angle data
CN111639747A (en) * 2020-05-14 2020-09-08 中国科学院国家空间科学中心 GNSS-R sea surface wind speed inversion method and system based on BP neural network
US20210041299A1 (en) * 2015-03-16 2021-02-11 Fredrick S. Solheim Characterizing tropospheric boundary layer thermodynamic and refractivity profiles utilizing selected waveband infrared observations

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563452B1 (en) * 1998-07-06 2003-05-13 Honeywell International Inc. Apparatus and method for determining wind profiles and for predicting clear air turbulence
US20080169975A1 (en) * 2007-01-12 2008-07-17 Young Paul Yee Process for generating spatially continuous wind profiles from wind profiler measurements
US20140201667A1 (en) * 2011-03-02 2014-07-17 Barbara Schoeberl System and Method for Generating and Displaying Climate System Models
CN102682335A (en) * 2012-04-13 2012-09-19 东南大学 Neural network method for precisely determining tropospheric delay in region
CN105988146A (en) * 2015-01-29 2016-10-05 中国科学院空间科学与应用研究中心 Application data processing method of spaceborne microwave radiometer
US20210041299A1 (en) * 2015-03-16 2021-02-11 Fredrick S. Solheim Characterizing tropospheric boundary layer thermodynamic and refractivity profiles utilizing selected waveband infrared observations
CN105787556A (en) * 2016-02-23 2016-07-20 东南大学 Saastamoinen model-based BP nerve network troposphere delay correction method
CN107703554A (en) * 2017-08-24 2018-02-16 安徽四创电子股份有限公司 The warm and humid profile Inversion System of multichannel millimeter wave radiometer and its inversion method
CN109116385A (en) * 2018-08-14 2019-01-01 厦门理工学院 A kind of long-range network RTK tropospheric delay estimation method based on BP neural network
CN109145434A (en) * 2018-08-16 2019-01-04 北京理工大学 A method of broadcast ephemeris orbit error is predicted using improved BP
CN110275182A (en) * 2019-06-25 2019-09-24 中国科学院国家空间科学中心 A profiling system for atmospheric temperature and pressure in near space
CN111323797A (en) * 2020-03-17 2020-06-23 中国科学院国家空间科学中心 Method for inverting convective stratum top parameter by using GNSS atmospheric occultation bending angle data
CN111639747A (en) * 2020-05-14 2020-09-08 中国科学院国家空间科学中心 GNSS-R sea surface wind speed inversion method and system based on BP neural network

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ZIYAN LIU.ET.AL: "Comparison of RO tropopause height based on different tropopause determination methods", ADVANCES IN SPACE RESEARCH *
廖蜜 等: "FY-3C的掩星探测特点和初步结果", 气象科技进展, vol. 6, no. 1 *
王红光: "地基GNSS掩星反演对流层大气波导的方法和实验研究", 中国博士学位论文全文数据库 *
袁韡 等: "利用COSMIC数据分析全球对流层顶温度和高度的变化特性", 空间科学学报, vol. 29, no. 3 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304208A (en) * 2022-06-15 2022-11-08 中煤科工集团杭州研究院有限公司 Emulsion explosive production wastewater treatment method
CN115304208B (en) * 2022-06-15 2023-09-08 中煤科工集团杭州研究院有限公司 Method for treating wastewater generated in emulsion explosive production
CN115406911A (en) * 2022-08-24 2022-11-29 山东省科学院海洋仪器仪表研究所 Troposphere atmosphere temperature and humidity profile inversion method based on multi-target genetic algorithm
CN120257848A (en) * 2025-06-04 2025-07-04 天津云遥宇航科技有限公司 A method for dynamic correction of the bottom refractive index of occulted stars based on deep learning

Also Published As

Publication number Publication date
CN113608239B (en) 2023-10-17

Similar Documents

Publication Publication Date Title
CN113608239B (en) GNSS occultation troposphere parameter correction method based on BP neural network
CN111639747B (en) GNSS-R sea surface wind speed inversion method and system based on BP neural network
CN109344865B (en) A Data Fusion Method of Multiple Data Sources
CN112949158B (en) A method to improve the spatial resolution and accuracy of groundwater level changes
CN112163375B (en) Long-time sequence near-ground ozone inversion method based on neural network
CN106780079B (en) Winter wheat different growth period leaf area index inversion method based on remote sensing data
CN113108918B (en) A method for retrieving temperature from thermal infrared remote sensing data from polar-orbiting meteorological satellites
CN113537561A (en) Ultra-short-term solar radiation prediction method and system based on foundation cloud picture
CN103322981B (en) Method for on-orbit optimization of imaging parameters of TDI CCD camera
CN112345458A (en) Wheat yield estimation method based on multispectral image of unmanned aerial vehicle
CN115327662B (en) Regional ionosphere TEC prediction method based on statistical learning
CN114330098A (en) A Prediction Method of Potential Evapotranspiration of Greenhouse Cabbage Based on CNN-BiLSTM Fusion Neural Network
Xin et al. Reduction of uncertainties in surface heat flux over the Tibetan Plateau from ERA‐Interim to ERA5
CN118736424B (en) A remote sensing monitoring method and system for root soil moisture content during spring wheat growth period
CN106022470A (en) Troposphere delay correction method based on BP-EGNOS fusion model
CN115876948A (en) Carbon satellite assimilation system based on satellite column concentration and 4D-LETKF mixed assimilation algorithm and construction method thereof
CN117688299A (en) Water body atmosphere correction method and system based on multilayer stack integrated learning
CN116705186A (en) Deep learning-based wind cloud satellite near-surface air temperature inversion method
Glahn Determining an optimal decay factor for bias-correcting MOS temperature and dewpoint forecasts
CN113762768B (en) Dynamic Risk Assessment Method of Agricultural Drought Based on Weather Generator and Crop Model
CN118586743A (en) Winter wheat yield forecast method based on revised meteorological data and crop growth model
CN117493475A (en) A method and system for reconstructing monthly runoff in areas lacking data based on machine learning
CN118520349A (en) Annual climate prediction method and device
CN113609757A (en) GNSS occultation troposphere parameter correction method based on random forest regression
CN115222837B (en) True color cloud image generation method and device, electronic equipment and storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant