[go: up one dir, main page]

CN113392607B - A method for determining configuration parameters and related equipment - Google Patents

A method for determining configuration parameters and related equipment Download PDF

Info

Publication number
CN113392607B
CN113392607B CN202010170690.0A CN202010170690A CN113392607B CN 113392607 B CN113392607 B CN 113392607B CN 202010170690 A CN202010170690 A CN 202010170690A CN 113392607 B CN113392607 B CN 113392607B
Authority
CN
China
Prior art keywords
configuration parameters
simulation test
data path
traffic
simulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010170690.0A
Other languages
Chinese (zh)
Other versions
CN113392607A (en
Inventor
姚为骏
谢磊
夏世远
邹钢
袁巧萍
邹志威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN202010170690.0A priority Critical patent/CN113392607B/en
Publication of CN113392607A publication Critical patent/CN113392607A/en
Application granted granted Critical
Publication of CN113392607B publication Critical patent/CN113392607B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent

Landscapes

  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种确定配置参数的方法及相关设备,包括:确定转发业务模拟信息,该转发业务模拟信息包括输入流量信息和数据通路行为;基于多组第一配置参数分别对转发业务模拟信息进行仿真测试,得到多组第一仿真测试结果;根据多组第一仿真测试结果,从多组第一配置参数中确定出目标第一仿真测试结果对应的目标第一配置参数。通过仿真测试的方式,可以有效提高确定配置参数的效率,确定配置参数无需要求技术人员具有较高的技术分析能力以及丰富的调试经验,并且,所确定出的配置参数,可以满足多个业务叠加时所要求的数据通路性能。

This application discloses a method for determining configuration parameters and related equipment, including: determining forwarding service simulation information, which includes input traffic information and data path behavior; and separately determining the forwarding service simulation information based on multiple sets of first configuration parameters. A simulation test is performed to obtain multiple sets of first simulation test results; and based on the multiple sets of first simulation test results, a target first configuration parameter corresponding to the target first simulation test result is determined from the multiple sets of first configuration parameters. Through simulation testing, the efficiency of determining configuration parameters can be effectively improved. Determining configuration parameters does not require technicians to have high technical analysis capabilities and rich debugging experience. Moreover, the determined configuration parameters can meet the needs of multiple business overlays. the required data path performance.

Description

一种确定配置参数的方法及相关设备A method for determining configuration parameters and related equipment

技术领域Technical field

本申请涉及仿真测试技术领域,特别是涉及一种确定配置参数的方法及相关设备。This application relates to the technical field of simulation testing, and in particular to a method for determining configuration parameters and related equipment.

背景技术Background technique

数据通路,是指在数字系统中,各个子系统通过数据总线连接形成的数据传送路径。通常情况下,数据通路上可能存在较多模块会对数据通路上的流量进行相应调控,如物理地址汇聚(MAC aggregation,MAG)模块、交换接口控制(fabric interface control,FIC)模块、流量管理(traffic management,TM)模块以及包重组块(packet reassemblyblocks,PRB)模块等,这些模块经过相应的参数配置后,可以控制数据通路的输出流量的优先级、速率等,因此,对于各个模块的参数配置,对数据通路的性能高低产生重要影响。Data path refers to the data transmission path formed by connecting various subsystems through a data bus in a digital system. Under normal circumstances, there may be many modules on the data path to control the traffic on the data path accordingly, such as physical address aggregation (MAC aggregation, MAG) module, switching interface control (fabric interface control, FIC) module, traffic management ( traffic management (TM) module and packet reassemblyblocks (PRB) module. After corresponding parameter configuration, these modules can control the priority and rate of the output traffic of the data path. Therefore, for the parameter configuration of each module, , which has an important impact on the performance of the data path.

目前,通常是在测试设备上对产品(如芯片、单板等)的数据通路进行上板测试,并由技术人员根据测试结果逐渐调整产品数据通路上各个模块被配置的参数,从而通过技术人员多次的上板测试以及配置参数调整,得到能够使得产品达到预期测试要求的配置参数。但是,这种确定配置参数的方式对于技术人员的技能要求较高,难度挑战较大,并且,确定配置参数的效率也较低。At present, the data path of the product (such as a chip, a single board, etc.) is usually tested on the test equipment, and the technical personnel gradually adjust the configured parameters of each module on the product data path based on the test results, thereby passing the technical personnel After multiple on-board tests and configuration parameter adjustments, the configuration parameters that can enable the product to meet the expected test requirements are obtained. However, this method of determining configuration parameters requires high skills and difficulty for technical personnel, and the efficiency of determining configuration parameters is also low.

发明内容Contents of the invention

本申请实施例提供了一种确定配置参数的方法及相关设备,以降低确定配置参数的过程中对于技术人员的技能要求,提高确定配置参数的效率。Embodiments of the present application provide a method for determining configuration parameters and related equipment, so as to reduce the skill requirements for technical personnel in the process of determining configuration parameters and improve the efficiency of determining configuration parameters.

第一方面,本申请实施例提供了一种确定配置参数的方法,具体的,首先确定转发业务模拟信息,该转发业务模拟信息包括输入流量信息和数据通路行为,其中,所述输入流量信息用于模拟多个转发业务所对应的输入流量,所述数据通路行为用于模拟传输所述输入流量的数据通路;然后,可以基于所述数据通路的多组第一配置参数分别对所述转发业务模拟信息进行仿真测试,得到多组第一仿真测试结果,该多组第一配置参数为不同的配置参数,所述多组第一仿真测试结果中的每组第一仿真测试结果用于模拟所述多个转发业务所对应的输入流量经过所述多组第一配置参数中的一组第一配置参数所对应的数据通路后的输出流量;这样,根据所述多组第一仿真测试结果,可以从所述多组第一配置参数中确定出目标第一仿真测试结果对应的目标第一配置参数。In the first aspect, embodiments of the present application provide a method for determining configuration parameters. Specifically, forwarding service simulation information is first determined. The forwarding service simulation information includes input traffic information and data path behavior, where the input traffic information is In order to simulate input traffic corresponding to multiple forwarding services, the data path behavior is used to simulate a data path that transmits the input traffic; then, the forwarding services can be configured based on multiple sets of first configuration parameters of the data path. The simulation information is subjected to simulation testing to obtain multiple sets of first simulation test results. The multiple sets of first configuration parameters are different configuration parameters. Each set of first simulation test results in the multiple sets of first simulation test results is used to simulate the The output traffic after the input traffic corresponding to the multiple forwarding services passes through the data path corresponding to a set of first configuration parameters in the multiple sets of first configuration parameters; in this way, according to the multiple sets of first simulation test results, The target first configuration parameter corresponding to the target first simulation test result can be determined from the plurality of sets of first configuration parameters.

在该实施方式中,采用仿真测试的方式来确定数据通路上各个模块对应的配置参数,这相比于在上板测试环境中反复试错来确定配置参数的方式,可以有效提高确定配置参数的效率,也节省了上板测试所需的开销。而且,仿真平台可以遍历多组配置参数,并给出每组配置参数对应的仿真测试结果,无需要求技术人员具有较高的技术分析能力以及丰富的调试经验,也能从多组配置参数中确定出所需的配置参数,从而可以降低对于技术人员的技能要求。同时,所确定出的配置参数,可以满足多个转发业务叠加时所要求的数据通路性能,这样可以避免产品的数据通路性能仅满足一种业务场景下的数据通路性能而不能满足另一种业务场景下的数据通路性能。In this embodiment, simulation testing is used to determine the configuration parameters corresponding to each module on the data path. This can effectively improve the accuracy of determining the configuration parameters compared to repeated trial and error in the on-board test environment. Efficiency also saves the overhead required for board testing. Moreover, the simulation platform can traverse multiple sets of configuration parameters and provide simulation test results corresponding to each set of configuration parameters. It does not require technicians to have high technical analysis capabilities and rich debugging experience, and can also determine from multiple sets of configuration parameters. The required configuration parameters can be identified, thereby reducing the skill requirements for technical personnel. At the same time, the determined configuration parameters can meet the data path performance required when multiple forwarding services are superimposed. This can avoid the data path performance of the product only meeting the data path performance in one business scenario but not another business. Data path performance under the scenario.

作为一种示例,该仿真平台可以是ESL仿真平台,也可以是其它仿真平台等。As an example, the simulation platform can be an ESL simulation platform, or other simulation platforms.

结合第一方面,在第一方面的第一种可能的实施方式中,所述输入流量信息包括业务类型、端口模板、速率模板、优先级模板以及包长模板中的任意一种或多种,所述数据通路行为包括端口信息和/或业务转发路径。在该实施方式中,可以利用一种或者多种模板来模拟转发业务的输入流量,用数据通路行为端口信息和/或业务转发路径来模拟输入流量的数据通路,从而实现对转发业务的模拟。In conjunction with the first aspect, in a first possible implementation manner of the first aspect, the input traffic information includes any one or more of a service type, a port template, a rate template, a priority template, and a packet length template, The data path behavior includes port information and/or service forwarding paths. In this embodiment, one or more templates can be used to simulate the input traffic of the forwarding service, and the data path behavior port information and/or the service forwarding path can be used to simulate the data path of the input traffic, thereby simulating the forwarding service.

结合第一方面的第一种实施方式,在第二方面的第二种可能的实施方式中,所述业务类型包括单播和/或组播;所述端口模板包括自发自收、半偏移、对称偏移、随机偏移、叶子全覆盖、叶子前半覆盖、叶子后半覆盖、叶子间隔半覆盖以及叶子随机覆盖中的任意一种或多种;所述速率模板包括突发开启、突发未开启、满流量、半流量以及自定义百分比流量中的任意一种或多种;所述优先级模板包括一种或者多种流量传输优先级,且当所述优先级模板包括多种流量传输优先级时,所述多种流量传输优先级之间的比例为预设比例和/或自定义比例;所述包长模板包括自定义包长、包长在预设包长区间内随机跳变、包长在预设包长区间内递增跳变以及多种包长混合中的任意一种或多种;所述端口信息包括端口编号、物理地址汇聚MAG来源以及端口速率中的任意一种或多种;所述业务转发路径用于描述业务的转发路径和/或转发时延。With reference to the first implementation manner of the first aspect, in a second possible implementation manner of the second aspect, the service type includes unicast and/or multicast; the port template includes spontaneous self-collection, half-offset , symmetrical offset, random offset, any one or more of leaf full coverage, leaf front half coverage, leaf back half coverage, leaf interval half coverage and leaf random coverage; the rate template includes burst on, burst Any one or more of unopened, full flow, half flow and custom percentage traffic; the priority template includes one or more traffic transmission priorities, and when the priority template includes multiple traffic transmission In priority, the ratio between the multiple traffic transmission priorities is a preset ratio and/or a custom ratio; the packet length template includes a custom packet length, and the packet length randomly jumps within the preset packet length interval. , the packet length increases and jumps within the preset packet length interval, and any one or more of a variety of packet length mixtures; the port information includes any one of port number, physical address aggregation MAG source, and port rate, or Multiple; the service forwarding path is used to describe the forwarding path and/or forwarding delay of the service.

结合第一方面至第一方面的第二种实施方式中的任意一种实施方式,在第一方面的第三种可能的实施方式中,所述数据通路上目标模块的配置参数为与所述目标模块对应的目标类中的成员赋值,所述数据通路上的不同目标模块对应于不同的目标类。在该实施方式中,可以通过定义的类来模拟数据通路上的模块,而数据通路上各模块的配置参数,即为其对应的类中的成员赋值。实际应用中,可以将数据通路或者承载该数据通路的设备(如单板、芯片等)抽象定义为一个大类,数据通路上的各个模块即为内部类,数据通路上各个模块进行参数配置过程,即为仿真平台对相应类中的成员进行赋值的过程,以此可以实现对转发业务模拟信息的仿真测试。With reference to any one of the first to second implementations of the first aspect, in a third possible implementation of the first aspect, the configuration parameters of the target module on the data path are the same as the The members in the target class corresponding to the target module are assigned values, and different target modules on the data path correspond to different target classes. In this implementation, the modules on the data path can be simulated through defined classes, and the configuration parameters of each module on the data path are assigned values to the members in the corresponding classes. In practical applications, the data path or the equipment (such as single boards, chips, etc.) carrying the data path can be abstractly defined as a large class. Each module on the data path is an internal class, and each module on the data path performs the parameter configuration process. , that is, the process of assigning values to members in the corresponding classes for the simulation platform, so that the simulation test of forwarding business simulation information can be realized.

结合第一方面至第一方面的第三种实施方式中的任意一种实施方式,在第一方面的第四种可能的实施方式中,所述方法还包括:根据所述多组第一配置参数以及所述多组第一仿真测试结果,训练得到机器学习模型,所述机器学习模型的输入为所述多组第一配置参数中的每组第一配置参数,所述机器学习模型的输出为所述每组第一配置参数对应的第一仿真测试结果。在该实施方式中,利用仿真平台得到多组配置参数对应的仿真测试结果后,可以利用配置参数以及其对应的仿真测试结果训练出机器学习模型,该机器学习模型可以基于输入的配置参数输出得到相应的仿真测试结果,这样,当需要得到某个配置参数所对应的仿真测试结果时,可以无需通过仿真的方式得到仿真测试结果,而可以直接利用该机器学习模型输出得到所需的仿真测试结果。With reference to any one of the first to third implementations of the first aspect, in a fourth possible implementation of the first aspect, the method further includes: according to the plurality of sets of first configurations Parameters and the plurality of sets of first simulation test results, a machine learning model is obtained by training. The input of the machine learning model is each group of first configuration parameters in the plurality of groups of first configuration parameters. The output of the machine learning model is the first simulation test result corresponding to each set of first configuration parameters. In this implementation, after using the simulation platform to obtain simulation test results corresponding to multiple sets of configuration parameters, the configuration parameters and their corresponding simulation test results can be used to train a machine learning model. The machine learning model can be obtained based on the input configuration parameter output. Corresponding simulation test results. In this way, when you need to obtain the simulation test results corresponding to a certain configuration parameter, you can obtain the simulation test results without using simulation. Instead, you can directly use the machine learning model output to obtain the required simulation test results. .

结合第一方面的第四种实施方式,在第一方面的第五种可能的实施方式中,所述方法还包括:确定多组不同的第二配置参数;将所述多组不同的第二配置参数分别输入所述机器学习模型以获得多组第二仿真测试结果,所述多组第二仿真测试结果为所述机器学习模型的输出;从所述多组第二仿真测试结果中确定目标第二仿真测试结果,所述目标第二仿真测试结果与预期输出流量一致,所述预期输出流量为目标转发业务的输入流量经过所述数据通路后的输出流量;确定所述目标第二仿真测试结果对应的第二配置参数。在该实施方式中,可以利用机器学习模型从一组配置参数中确定出满足目标转发业务场景下的数据通路性能要求的配置参数,从而可以不用再通过仿真测试或者上板测试的方式来确定配置参数,有效提高了确定配置参数的效率。With reference to the fourth implementation manner of the first aspect, in a fifth possible implementation manner of the first aspect, the method further includes: determining multiple sets of different second configuration parameters; Configuration parameters are respectively input into the machine learning model to obtain multiple sets of second simulation test results, and the multiple sets of second simulation test results are outputs of the machine learning model; the target is determined from the multiple sets of second simulation test results. The second simulation test result, the target second simulation test result is consistent with the expected output traffic, and the expected output traffic is the output traffic after the input traffic of the target forwarding service passes through the data path; determine the target second simulation test The second configuration parameter corresponding to the result. In this implementation, a machine learning model can be used to determine from a set of configuration parameters configuration parameters that meet the data path performance requirements in the target forwarding business scenario, so that there is no need to determine the configuration through simulation testing or board testing. parameters, effectively improving the efficiency of determining configuration parameters.

结合第一方面的第四种实施方式或者第五种实施方式,在第一方面的第六种可能的实施方式中,所述机器学习模型基于反向传播BP神经网络进行构建。In combination with the fourth implementation manner or the fifth implementation manner of the first aspect, in a sixth possible implementation manner of the first aspect, the machine learning model is constructed based on a back-propagation BP neural network.

第二方面,本申请实施例还提供了一种确定配置参数的装置,包括:第一确定模块,用于确定转发业务模拟信息,所述转发业务模拟信息包括输入流量信息和数据通路行为,其中,所述输入流量信息用于模拟多个转发业务所对应的输入流量,所述数据通路行为用于模拟传输所述输入流量的数据通路;仿真测试模块,用于基于所述数据通路的多组第一配置参数分别对所述转发业务模拟信息进行仿真测试,得到多组第一仿真测试结果,所述多组第一配置参数为不同的配置参数,所述多组第一仿真测试结果中的每组第一仿真测试结果用于模拟所述多个转发业务所对应的输入流量经过所述多组第一配置参数中的一组第一配置参数所对应的数据通路后的输出流量;第二确定模块,用于根据所述多组第一仿真测试结果,从所述多组第一配置参数中确定出目标第一仿真测试结果对应的目标第一配置参数。In a second aspect, embodiments of the present application also provide a device for determining configuration parameters, including: a first determination module for determining forwarding service simulation information, where the forwarding service simulation information includes input traffic information and data path behavior, where , the input traffic information is used to simulate the input traffic corresponding to multiple forwarding services, the data path behavior is used to simulate the data path that transmits the input traffic; the simulation test module is used to simulate multiple groups based on the data path The first configuration parameters perform simulation tests on the forwarding service simulation information respectively to obtain multiple sets of first simulation test results. The multiple sets of first configuration parameters are different configuration parameters. Among the multiple sets of first simulation test results, Each set of first simulation test results is used to simulate the output traffic after the input traffic corresponding to the multiple forwarding services passes through the data path corresponding to a set of first configuration parameters in the multiple sets of first configuration parameters; second A determining module, configured to determine a target first configuration parameter corresponding to the target first simulation test result from the plurality of sets of first configuration parameters according to the plurality of sets of first simulation test results.

结合第二方面,在第二方面的第一种可能的实施方式中,所述输入流量信息包括业务类型、端口模板、速率模板、优先级模板以及包长模板中的任意一种或多种,所述数据通路行为包括端口信息和/或业务转发路径。In conjunction with the second aspect, in a first possible implementation of the second aspect, the input traffic information includes any one or more of a service type, a port template, a rate template, a priority template, and a packet length template, The data path behavior includes port information and/or service forwarding paths.

结合第二方面的第一种实施方式,在第二方面的第二种可能的实施方式中,所述业务类型包括单播和/或组播;所述端口模板包括自发自收、半偏移、对称偏移、随机偏移、叶子全覆盖、叶子前半覆盖、叶子后半覆盖、叶子间隔半覆盖以及叶子随机覆盖中的任意一种或多种;所述速率模板包括突发开启、突发未开启、满流量、半流量以及自定义百分比流量中的任意一种或多种;所述优先级模板包括一种或者多种流量传输优先级,且当所述优先级模板包括多种流量传输优先级时,所述多种流量传输优先级之间的比例为预设比例和/或自定义比例;所述包长模板包括自定义包长、包长在预设包长区间内随机跳变、包长在预设包长区间内递增跳变以及多种包长混合中的任意一种或多种;所述端口信息包括端口编号、物理地址汇聚MAG来源以及端口速率中的任意一种或多种;所述业务转发路径用于描述业务的转发路径和/或转发时延。With reference to the first implementation manner of the second aspect, in a second possible implementation manner of the second aspect, the service type includes unicast and/or multicast; the port template includes spontaneous self-collection, half-offset , symmetrical offset, random offset, any one or more of leaf full coverage, leaf front half coverage, leaf back half coverage, leaf interval half coverage and leaf random coverage; the rate template includes burst on, burst Any one or more of unopened, full flow, half flow and custom percentage traffic; the priority template includes one or more traffic transmission priorities, and when the priority template includes multiple traffic transmission In priority, the ratio between the multiple traffic transmission priorities is a preset ratio and/or a custom ratio; the packet length template includes a custom packet length, and the packet length randomly jumps within the preset packet length interval. , the packet length increases and jumps within the preset packet length interval, and any one or more of a variety of packet length mixtures; the port information includes any one of port number, physical address aggregation MAG source, and port rate, or Multiple; the service forwarding path is used to describe the forwarding path and/or forwarding delay of the service.

结合第二方面至第二方面的第二种实施方式中的任意一种实施方式,在第二方面的第三种可能的实施方式中,所述数据通路上目标模块的配置参数为与所述目标模块对应的目标类中的成员赋值,所述数据通路上的不同目标模块对应于不同的目标类。With reference to any one of the second aspects to the second implementation manner of the second aspect, in a third possible implementation manner of the second aspect, the configuration parameters of the target module on the data path are the same as the The members in the target class corresponding to the target module are assigned values, and different target modules on the data path correspond to different target classes.

结合第二方面至第二方面的第三种实施方式中的任意一种实施方式,在第二方面的第四种可能的实施方式中,所述装置还包括:训练模块,用于根据所述多组第一配置参数以及所述多组第一仿真测试结果,训练得到机器学习模型,所述机器学习模型的输入为所述多组第一配置参数中的每组第一配置参数,所述机器学习模型的输出为所述每组第一配置参数对应的第一仿真测试结果。With reference to any one of the second aspect to the third implementation manner of the second aspect, in a fourth possible implementation manner of the second aspect, the device further includes: a training module, configured to perform the training according to the Multiple sets of first configuration parameters and the multiple sets of first simulation test results are trained to obtain a machine learning model, and the input of the machine learning model is each set of first configuration parameters in the multiple sets of first configuration parameters. The output of the machine learning model is the first simulation test result corresponding to each set of first configuration parameters.

结合第二方面的第四种实施方式,在第二方面的第五种可能的实施方式中,所述装置还包括:第三确定模块,用于确定多组不同的第二配置参数;输入模块,用于将所述多组不同的第二配置参数分别输入所述机器学习模型以获得多组第二仿真测试结果,所述多组第二仿真测试结果为所述机器学习模型的输出;第四确定模块,用于从所述多组第二仿真测试结果中确定目标第二仿真测试结果,所述目标第二仿真测试结果与预期输出流量一致,所述预期输出流量为目标转发业务的输入流量经过所述数据通路后的输出流量;第五确定模块,用于确定所述目标第二仿真测试结果对应的第二配置参数。With reference to the fourth implementation manner of the second aspect, in a fifth possible implementation manner of the second aspect, the device further includes: a third determination module for determining multiple sets of different second configuration parameters; an input module , used to input the multiple sets of different second configuration parameters into the machine learning model respectively to obtain multiple sets of second simulation test results, and the multiple sets of second simulation test results are the output of the machine learning model; Four determination modules, configured to determine a target second simulation test result from the plurality of sets of second simulation test results. The target second simulation test result is consistent with the expected output traffic, and the expected output traffic is the input of the target forwarding service. The output traffic after the traffic passes through the data path; the fifth determination module is used to determine the second configuration parameter corresponding to the target second simulation test result.

结合第二方面的第四种实施方式或者第五种实施方式,在第二方面的第六种可能的实施方式中,所述机器学习模型基于反向传播BP神经网络进行构建。In combination with the fourth implementation manner or the fifth implementation manner of the second aspect, in a sixth possible implementation manner of the second aspect, the machine learning model is constructed based on a back-propagation BP neural network.

第二方面所描述的确定配置参数的装置,对应于第一方面所描述的确定配置参数的方法,因此,第二方面的各种可能的实施方式以及其有益效果可以参照第一方面中对应实施方式以及有益效果的相关描述,在此不做赘述。The device for determining configuration parameters described in the second aspect corresponds to the method for determining configuration parameters described in the first aspect. Therefore, various possible implementations of the second aspect and their beneficial effects can be referred to the corresponding implementations in the first aspect. The relevant descriptions of methods and beneficial effects will not be described in detail here.

第三方面,本申请实施例还提供了一种设备,包括:处理器和存储器;所述存储器,用于存储指令或计算机程序;所述处理器,用于执行所述指令或计算机程序,执行上述第一方面中任一种实施方式所述的方法。In a third aspect, embodiments of the present application further provide a device, including: a processor and a memory; the memory is used to store instructions or computer programs; the processor is used to execute the instructions or computer programs, and execute The method described in any one of the embodiments of the above first aspect.

第三方面所描述的确定配置参数的设备,对应于第一方面所描述的确定配置参数的方法,因此,第三方面的各种可能的实施方式以及其有益效果可以参照第一方面中对应实施方式以及有益效果的相关描述,在此不做赘述。The device for determining configuration parameters described in the third aspect corresponds to the method for determining configuration parameters described in the first aspect. Therefore, various possible implementations of the third aspect and their beneficial effects can be referred to the corresponding implementations in the first aspect. The relevant descriptions of methods and beneficial effects will not be described in detail here.

第四方面,本申请实施例还提供了一种计算机可读存储介质,包括指令或计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面中任一种实施方式所述的方法。In a fourth aspect, embodiments of the present application also provide a computer-readable storage medium, including instructions or computer programs, which, when run on a computer, cause the computer to execute the method described in any one of the embodiments of the first aspect. .

第四方面所描述的确定配置参数的设备,对应于第一方面所描述的确定配置参数的方法,因此,第四方面的各种可能的实施方式以及其有益效果可以参照第一方面中对应实施方式以及有益效果的相关描述,在此不做赘述。The device for determining configuration parameters described in the fourth aspect corresponds to the method for determining configuration parameters described in the first aspect. Therefore, various possible implementations of the fourth aspect and their beneficial effects can be referred to the corresponding implementations in the first aspect. The relevant descriptions of methods and beneficial effects will not be described in detail here.

在本申请实施例的上述实现方式中,先确定转发业务模拟信息,该转发业务模拟信息可以包括输入流量信息和数据通路行为,其中,该输入流量信息用于模拟多个转发业务所对应的输入流量,而数据通路行为用于模拟传输该输入流量的数据通路;然后,可以基于数据通路的多组配置参数分别对该转发业务模拟信息进行仿真测试,得到多组仿真测试结果,其中,该多组配置参数为不同的配置参数,并且,多组仿真测试结果中的每组仿真测试结果用于模拟多个转发业务所对应的输入流量经过多组第一配置参数中的一组配置参数所对应的数据通路后的输出流量,从而可以根据多组仿真测试结果,确定出一个目标仿真测试结果,并将该目标仿真测试结果所对应的目标配置参数,作为最终所需确定出的配置参数。由于是采用仿真测试的方式来确定数据通路上各个模块对应的配置参数,仿真平台可以基于多组配置参数快速得到多组仿真测试结果,从而可以快速确定出所需的配置参数,一方面,相比于在上板测试环境中反复试错,仿真测试的方式可以有效提高确定配置参数的效率,也节省了上板测试所需的开销;另一方面,仿真平台可以遍历多组配置参数,并给出每组配置参数对应的仿真测试结果,无需要求技术人员具有较高的技术分析能力以及丰富的调试经验,也能从多组配置参数中确定出所需的配置参数,从而可以降低对于技术人员的技能要求。同时,所确定出的配置参数,可以满足多个业务叠加时所要求的数据通路性能,这样可以避免产品的数据通路性能仅满足一种业务场景下的数据通路性能而不能满足另一种业务场景下的数据通路性能。In the above implementation manner of the embodiment of the present application, the forwarding service simulation information is first determined. The forwarding service simulation information may include input flow information and data path behavior, wherein the input flow information is used to simulate input corresponding to multiple forwarding services. traffic, and the data path behavior is used to simulate the data path that transmits the input traffic; then, the forwarding service simulation information can be simulated and tested based on multiple sets of configuration parameters of the data path, and multiple sets of simulation test results are obtained. The group configuration parameters are different configuration parameters, and each group of simulation test results among the multiple groups of simulation test results is used to simulate the input traffic corresponding to multiple forwarding services passing through a group of configuration parameters corresponding to the multiple groups of first configuration parameters. The output traffic after the data path is used, so that a target simulation test result can be determined based on multiple sets of simulation test results, and the target configuration parameters corresponding to the target simulation test results can be used as the final required configuration parameters. Since simulation testing is used to determine the configuration parameters corresponding to each module on the data path, the simulation platform can quickly obtain multiple sets of simulation test results based on multiple sets of configuration parameters, so that the required configuration parameters can be quickly determined. On the one hand, it is relatively Compared with repeated trial and error in the on-board test environment, the simulation test method can effectively improve the efficiency of determining configuration parameters and save the overhead required for on-board testing; on the other hand, the simulation platform can traverse multiple sets of configuration parameters and The simulation test results corresponding to each set of configuration parameters are given. It is not necessary for technicians to have high technical analysis capabilities and rich debugging experience. The required configuration parameters can also be determined from multiple sets of configuration parameters, thus reducing the need for technology. Personnel skill requirements. At the same time, the determined configuration parameters can meet the data path performance required when multiple services are overlaid. This can avoid the data path performance of the product only meeting the data path performance in one business scenario but not another business scenario. data path performance.

附图说明Description of the drawings

为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present application, the drawings needed to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some implementations recorded in the present application. For example, those of ordinary skill in the art can also obtain other drawings based on these drawings.

图1为本申请实施例中一种确定配置参数的方法流程示意图;Figure 1 is a schematic flow chart of a method for determining configuration parameters in an embodiment of the present application;

图2为本申请实施例中定义数据通路上的模块对应的类的示意图;Figure 2 is a schematic diagram of defining classes corresponding to modules on the data path in the embodiment of the present application;

图3为本申请实施例中又一种确定配置参数的方法流程示意图;Figure 3 is a schematic flow chart of another method for determining configuration parameters in an embodiment of the present application;

图4为本申请实施例中反向传输神经网络示意图;Figure 4 is a schematic diagram of the reverse transmission neural network in the embodiment of the present application;

图5为本申请实施例中一种确定配置参数的装置结构示意图;Figure 5 is a schematic structural diagram of a device for determining configuration parameters in an embodiment of the present application;

图6为本申请实施例中一种设备的硬件结构示意图。Figure 6 is a schematic diagram of the hardware structure of a device in an embodiment of the present application.

具体实施方式Detailed ways

产品(如单板、芯片等)在落地过程中,该产品在数据通路上的性能参数所出现的问题往往是产品在特性交付时的关键痛点,其问题占比可能在60%以上。实际应用中,产品的数据通路上各个模块的配置参数存在多种组合(如300种组合等),因此,通常需要在测试设备上对产品数据通路上的性能参数(也即为数据通路上各个模块被配置的参数)进行上板测试,以确定哪种组合的配置参数满足实际应用的需求。当上板测试所得到的测试结果并不符合技术人员的预期时,技术人员通常会根据该测试结果调整数据通路上各个模块被配置的参数。During the implementation process of products (such as single boards, chips, etc.), problems with the performance parameters of the product on the data path are often the key pain points in product feature delivery, and the proportion of problems may be more than 60%. In actual applications, there are many combinations of configuration parameters of each module on the data path of the product (such as 300 combinations, etc.). Therefore, it is usually necessary to test the performance parameters on the product data path (that is, each module on the data path) on the test equipment. The configured parameters of the module) are tested on the board to determine which combination of configuration parameters meets the needs of the actual application. When the test results obtained from the on-board test do not meet the technician's expectations, the technician usually adjusts the configured parameters of each module on the data path based on the test results.

但是,上板测试过程中,由于技术人员很难获知到数据通路上各个模块对于流量的调控数据,从而难以根据测试结果定位出数据通路上需要调整的配置参数,这时,通常需要具有高水平的技术分析能力以及丰富的调试经验的技术人员,在上板环境中多次进行配置参数的调整,以使得产品数据通路基于调整后的配置参数的测试输出能够达到预期测试要求。由于是在上板测试环境中确定配置参数,为了尽量减少试错次数,对于技术人员的技能要求较高,难度挑战较大,并且,技术人员在上板测试环境中反复试错,也降低了确定配置参数的效率。同时,上板测试所涉及的领域较多、物料环境较多,使得上板测试的开销较大。However, during the board testing process, it is difficult for technicians to obtain the traffic control data of each module on the data path, and it is difficult to locate the configuration parameters that need to be adjusted on the data path based on the test results. In this case, a high level of knowledge is usually required. Technicians with strong technical analysis capabilities and rich debugging experience have made many adjustments to configuration parameters in the on-board environment so that the test output of the product data path based on the adjusted configuration parameters can meet the expected test requirements. Since the configuration parameters are determined in the on-board test environment, in order to minimize the number of trials and errors, the skill requirements for technical personnel are higher and the difficulty is greater. Moreover, technicians repeatedly try and make mistakes in the on-board test environment, which also reduces the cost. Determine the efficiency of configuration parameters. At the same time, on-board testing involves many areas and material environments, making on-board testing more expensive.

基于此,本申请实施例提供了一种确定配置参数的方法,旨在降低确定配置参数的过程中对于技术人员的技能要求,提高确定配置参数的效率,并降低开销。具体的,可以先确定转发业务模拟信息,该转发业务模拟信息可以包括输入流量信息和数据通路行为,其中,该输入流量信息用于模拟多个转发业务所对应的输入流量,而数据通路行为用于模拟传输该输入流量的数据通路;然后,可以基于数据通路的多组配置参数分别对该转发业务模拟信息进行仿真测试,得到多组仿真测试结果,其中,该多组配置参数为不同的配置参数,并且,多组仿真测试结果中的每组仿真测试结果用于模拟多个转发业务所对应的输入流量经过多组第一配置参数中的一组配置参数所对应的数据通路后的输出流量,从而可以根据多组仿真测试结果,确定出一个目标仿真测试结果,该目标仿真测试结果可以是与预期测试标准相符合的仿真测试结果,从而可以将该目标仿真测试结果所对应的目标配置参数,作为最终所需确定出的配置参数。Based on this, embodiments of the present application provide a method for determining configuration parameters, aiming to reduce the skill requirements of technical personnel in the process of determining configuration parameters, improve the efficiency of determining configuration parameters, and reduce overhead. Specifically, the forwarding service simulation information may be determined first. The forwarding service simulation information may include input traffic information and data path behavior. The input flow information is used to simulate the input traffic corresponding to multiple forwarding services, and the data path behavior is used to simulate the input traffic corresponding to multiple forwarding services. to simulate the data path that transmits the input traffic; then, the forwarding service simulation information can be simulated and tested based on multiple sets of configuration parameters of the data path to obtain multiple sets of simulation test results, where the multiple sets of configuration parameters are different configurations parameters, and each set of simulation test results in the multiple sets of simulation test results is used to simulate the output traffic after the input traffic corresponding to the multiple forwarding services passes through the data path corresponding to one set of configuration parameters in the multiple sets of first configuration parameters. , so that a target simulation test result can be determined based on multiple sets of simulation test results. The target simulation test result can be a simulation test result that is consistent with the expected test standard, so that the target configuration parameters corresponding to the target simulation test result can be , as the final required configuration parameters.

由于是采用仿真测试的方式来确定数据通路上各个模块对应的配置参数,仿真平台可以基于多组配置参数快速得到多组仿真测试结果,从而可以快速确定出所需的配置参数,一方面,相比于在上板测试环境中反复试错,仿真测试的方式可以有效提高确定配置参数的效率,也节省了上板测试所需的开销;另一方面,仿真平台可以遍历多组配置参数,并给出每组配置参数对应的仿真测试结果,无需要求技术人员具有较高的技术分析能力以及丰富的调试经验,也能从多组配置参数中确定出所需的配置参数,从而可以降低对于技术人员的技能要求。同时,所确定出的配置参数,可以满足多个业务叠加时所要求的数据通路性能,这样可以避免产品的数据通路性能仅满足一种业务场景下的数据通路性能而不能满足另一种业务场景下的数据通路性能。Since simulation testing is used to determine the configuration parameters corresponding to each module on the data path, the simulation platform can quickly obtain multiple sets of simulation test results based on multiple sets of configuration parameters, so that the required configuration parameters can be quickly determined. On the one hand, it is relatively Compared with repeated trial and error in the on-board test environment, the simulation test method can effectively improve the efficiency of determining configuration parameters and save the overhead required for on-board testing; on the other hand, the simulation platform can traverse multiple sets of configuration parameters and The simulation test results corresponding to each set of configuration parameters are given. It is not necessary for technicians to have high technical analysis capabilities and rich debugging experience. The required configuration parameters can also be determined from multiple sets of configuration parameters, thus reducing the need for technology. Personnel skill requirements. At the same time, the determined configuration parameters can meet the data path performance required when multiple services are overlaid. This can avoid the data path performance of the product only meeting the data path performance in one business scenario but not another business scenario. data path performance.

为使本申请的上述目的、特征和优点能够更加明显易懂,下面将结合附图对本申请实施例中的各种非限定性实施方式进行示例性说明。显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。In order to make the above objects, features and advantages of the present application more obvious and understandable, various non-limiting implementations in the embodiments of the present application will be illustratively described below with reference to the accompanying drawings. Obviously, the described embodiments are part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in this application, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of this application.

参阅图1,图1示出了本申请实施例中一种确定配置参数的方法的流程示意图,该方法可以应用于与仿真平台连接的设备,或者应用于承载有该仿真平台的设备上,该方法具体可以包括:Referring to Figure 1, Figure 1 shows a schematic flow chart of a method for determining configuration parameters in an embodiment of the present application. This method can be applied to a device connected to the simulation platform, or to a device carrying the simulation platform. The method Specific methods may include:

S101:确定转发业务模拟信息,该转发业务模拟信息包括输入流量信息以及数据通路行为,其中,该输入流量信息用于模拟读个转发业务所对应的输入流量,数据通路行为用于模拟传输输入流量的数据通路。S101: Determine the forwarding service simulation information. The forwarding service simulation information includes input traffic information and data path behavior. The input flow information is used to simulate the input traffic corresponding to the read forwarding service, and the data path behavior is used to simulate the transmission input traffic. data path.

在进行仿真测试的过程中,可以采用特定的信息来模拟多个转发业务,具体是用于模拟多个转发业务在数据通路上的输入流量信息以及数据通路行为(为便于描述,以下将该特定信息称之为转发业务模拟信息)。其中,输入流量信息,是用于模拟多个转发业务进行仿真测试时对应的输入流量,而数据通路行为,是用于模拟仿真测试过程中传输该输入流量的数据通路。During the simulation test, specific information can be used to simulate multiple forwarding services. Specifically, it is used to simulate the input traffic information and data path behavior of multiple forwarding services on the data path (for the convenience of description, the specific information will be used below. The information is called forwarding service simulation information). Among them, the input traffic information is the corresponding input traffic used to simulate multiple forwarding services for simulation testing, and the data path behavior is the data path used to transmit the input traffic during simulation testing.

具体实现时,转发业务模拟信息,可以是根据实际应用中的具体转发业务在数据通路上的输入流量和输出流量进行设定,比如,实际应用中,转发业务A的输入流量中包长通常为64Bit(比特),则该转发业务A对应的转发业务模拟信息中可以包括包长为64Bit的包长信息。During specific implementation, the forwarding service simulation information can be set according to the input flow and output flow of the specific forwarding service on the data path in actual applications. For example, in actual applications, the packet length in the input flow of forwarding service A is usually 64 Bit, then the forwarding service simulation information corresponding to the forwarding service A may include packet length information with a packet length of 64 Bit.

在一些示例性的具体实施方式中,转发业务模拟信息中的数据通路行为可以包括端口信息和/或业务转发路径。In some exemplary implementations, the data path behavior in forwarding service simulation information may include port information and/or service forwarding paths.

其中,端口信息具体可以包括端口编号(如端口ID)、物理地址汇聚(MACaggregation,MAG)来源以及端口速率中的任意一种或多种。MAG来源可以用于描述硬件上端口的LMAG(line MAC aggregation)/FMAG/IMAG来源;端口速率可以是根据网络芯片进行确定,例如可以是1Gbps、10Gbps、20Gbps、25Gbps、40Gbps、50Gbps、100Gbps、200Gbps、240Gbps、400Gbps、500Gbps等。The port information may specifically include any one or more of a port number (such as a port ID), a physical address aggregation (MAC aggregation, MAG) source, and a port rate. The MAG source can be used to describe the LMAG (line MAC aggregation)/FMAG/IMAG source of the port on the hardware; the port rate can be determined based on the network chip, for example, it can be 1Gbps, 10Gbps, 20Gbps, 25Gbps, 40Gbps, 50Gbps, 100Gbps, 200Gbps , 240Gbps, 400Gbps, 500Gbps, etc.

业务转发路径,可以用于描述转发业务的流量在数据通路的上的路径(即转发路径)。可选的,该业务转发路径也可以描述转发业务在转发时的所具有的转发时延。The service forwarding path can be used to describe the path of the forwarded service traffic on the data path (that is, the forwarding path). Optionally, the service forwarding path may also describe the forwarding delay of the forwarded service when forwarding.

另外,转发业务模拟信息中的输入流量信息具体可以是业务类型、端口模板、速率模板、优先级模板以及包长模板中的任意一种或者多种。In addition, the input traffic information in the forwarding service simulation information may be any one or more of service type, port template, rate template, priority template and packet length template.

其中,业务类型,是指该转发业务的报文发送方式,例如可分为单播和组播两种类型等。Among them, the service type refers to the packet sending method of the forwarding service, which can be divided into two types: unicast and multicast, for example.

端口模板,可以根据业务类型的不同而不同,具体的,当业务类型为单播时,该端口模板可以包括自发自收、半偏移、对称偏移以及随机偏移中的任意一种或者多种不同类型的模板。其中,自发自收,是指接收数据包的目的端口(tp)与发送数据包的源端口(sp)相同。半偏移,是指接收数据包的目的端口tp=(sp+(n-1)/2)%n,假设端口数目为n且为奇数;或者目的端口tp=(sp+n/2)%n,n为端口数目且为偶数。对称偏移,是指发送数据包的目标端口tp=n-1-sp,n为端口数目。随机偏移,是指接收数据包的目的端口tp为除源端口sp以外的任意端口。The port template can vary according to the service type. Specifically, when the service type is unicast, the port template can include any one or more of spontaneous self-collection, half offset, symmetric offset and random offset. different types of templates. Among them, spontaneous self-receiving means that the destination port (tp) for receiving data packets is the same as the source port (sp) for sending data packets. Half offset refers to the destination port tp of the received data packet=(sp+(n-1)/2)%n, assuming that the number of ports is n and an odd number; or the destination port tp=(sp+n/2)%n , n is the number of ports and is an even number. Symmetric offset refers to the destination port for sending data packets tp=n-1-sp, where n is the number of ports. Random offset means that the destination port tp of the received data packet is any port except the source port sp.

而当业务类型为组播时,该端口模板可以包括叶子全覆盖、叶子前半覆盖、叶子后半覆盖、叶子间隔半覆盖以及叶子随机覆盖中的任意一种或多种不同类型的模板。其中,叶子全覆盖,是指组播叶子成员数与端口数目相等,即每个组播叶子成员对应于一个端口,作为接收数据包的目的端口。When the service type is multicast, the port template can include any one or more different types of templates, including leaf full coverage, leaf front half coverage, leaf back half coverage, leaf interval half coverage, and leaf random coverage. Full leaf coverage means that the number of multicast leaf members is equal to the number of ports, that is, each multicast leaf member corresponds to a port and serves as the destination port for receiving data packets.

叶子前半覆盖,是指组播叶子成员与前一半的端口或者近似前一半的端口分别一一对应。例如,假设端口数目为n,分别用0至n进行编号,若n为奇数时,则接收数据包的目的端口tp(也即为组播叶子成员对应的目的端口)为{0,1,2,…,(n-1)/2},若n为偶数,则目的端口tp为{0,1,2,…,n/2-1}。The first half of the leaf coverage means that the multicast leaf members correspond to the first half of the ports or approximately the first half of the ports. For example, assume that the number of ports is n, numbered from 0 to n respectively. If n is an odd number, the destination port tp for receiving the data packet (that is, the destination port corresponding to the multicast leaf member) is {0,1,2 ,…,(n-1)/2}, if n is an even number, the destination port tp is {0,1,2,…,n/2-1}.

相应的,叶子后半覆盖,是指组播叶子成员分别与后一半的端口或者近似后一半的端口分别一一对应。例如,依旧假设端口数目为n,分别用0至n进行编号,n为奇数,则接收数据包的目的端口tp为{(n-1)/2,…,n-1},若n为偶数,则目的端口tp为{n/2,…,n-1}。Correspondingly, the second half of the leaf coverage means that the multicast leaf members correspond to the second half of the ports or approximately the last half of the ports in a one-to-one manner. For example, it is still assumed that the number of ports is n, numbered from 0 to n respectively, and n is an odd number, then the destination port tp for receiving the data packet is {(n-1)/2,...,n-1}, if n is an even number , then the destination port tp is {n/2,…,n-1}.

叶子间隔半覆盖,是指组播叶子成员与一半的端口或者近似一半的端口分别一一对应,并且任意两个组播叶子成员对应的端口之间至少间隔一个端口。例如,假设端口数目为n,分别用0至n进行编号,则若n为奇数,则接收数据包的目的端口tp可以为{0,2,4,…,n-1},若n为偶数,则目的端口tp可以为{0,2,4,…,n-2}。Leaf interval half coverage means that multicast leaf members correspond to half of the ports or approximately half of the ports, and there is at least one port between the ports corresponding to any two multicast leaf members. For example, assuming the number of ports is n, numbered from 0 to n respectively, then if n is an odd number, the destination port tp for receiving the data packet can be {0,2,4,…,n-1}, if n is an even number , then the destination port tp can be {0,2,4,…,n-2}.

叶子随机覆盖,是指从总的端口中随机选取组播叶子成员对应的目的端口。例如,假设端口数目为n,分别用0至n进行编号,而组播叶子成员数目为m(m≤n),则tp为从n个端口中随机选取的m个端口。Leaf random coverage refers to randomly selecting the destination port corresponding to the multicast leaf member from the total ports. For example, assuming that the number of ports is n, numbered from 0 to n respectively, and the number of multicast leaf members is m (m≤n), then tp is m ports randomly selected from n ports.

而输入流量信息中的速率模板,可以包括突发开启、突发未开启、满流量、半流量以及自定义百分比流量中的任意一种或多种。The rate template in the input traffic information can include any one or more of burst on, burst off, full flow, half flow, and custom percentage flow.

其中,突发(burst)开启,是指允许端口的流量发生骤变,比如,允许端口流量突然增加至较大值或者突然降低至较小值等。相应的,突发未开启,是指不允许端口的流量发生骤变。实际应用中,可以将该端口流量的变化值与预设阈值进行大小比较,以确定是否发生突发。Among them, burst opening refers to allowing the port traffic to change suddenly, for example, allowing the port traffic to suddenly increase to a larger value or suddenly decrease to a smaller value, etc. Correspondingly, bursting is not enabled, which means that the traffic on the port is not allowed to change suddenly. In actual applications, the change value of the port traffic can be compared with the preset threshold to determine whether a burst occurs.

满流量,是指转发业务的数据包(流量)在端口处的传输速率达到该端口传输速率的最大值。半流量,是指转发业务的数据包在端口处的传输速率达到该端口对应的最大传输速率的二分之一。自定义百分比,是指转发业务的数据包在端口处的传输速率可以由用户(技术人员)进行设定,如可以设定为40%,表征,该转发业务的数据包在端口处的传输速率达到该端口对应的最大传输速率的40%。Full traffic means that the transmission rate of data packets (traffic) of the forwarding service at the port reaches the maximum transmission rate of the port. Half traffic means that the transmission rate of forwarding service data packets at the port reaches one-half of the maximum transmission rate corresponding to the port. The custom percentage means that the transmission rate of the data packets of the forwarding service at the port can be set by the user (technical personnel). For example, it can be set to 40%, which indicates the transmission rate of the data packets of the forwarding service at the port. Reach 40% of the maximum transmission rate corresponding to the port.

而输入流量信息中的优先级模板,可以包括一种或者多种流量传输优先级,表征转发业务的流量在端口处进行传输时的优先级。举例来说,假设转发业务A的流量对应的优先级为Pri0,转发业务B的流量对应的优先级为Pri7,则当转发业务A和转发业务B的流量同时由同一端口进行传输时,可以优先传输转发业务B对应的流量,再传输转发业务A对应的流量(假设优先级数值越大,优先等级越高,越优先传输流量)。The priority template in the input traffic information can include one or more traffic transmission priorities, which represent the priority of forwarding service traffic when it is transmitted at the port. For example, assuming that the priority corresponding to the traffic of forwarding service A is Pri0, and the priority corresponding to the traffic of forwarding service B is Pri7, then when the traffic of forwarding service A and the traffic of forwarding service B are transmitted by the same port at the same time, priority can be The traffic corresponding to forwarding service B is transmitted, and then the traffic corresponding to forwarding service A is transmitted (assuming that the larger the priority value, the higher the priority level, and the more priority the traffic is transmitted).

假设在端口处传输的流量的优先级具有pri0、pri1、...、pri7共8种(当然,在其它实施方式中,也可以多于或者少于8种等),则优先级模板中可以包含一种流量传输优先级,如pri0这一优先级,或者pri7这一优先级等;也可以包含多种流量传输优先级,如同时包含pri0以及pri7,并且,这两个流量传输优先级的流量比例可以是1:1或者是其它预设比例,或者同时包含pri0至pri7这8种流量传输优先级,并且,各个流量传输优先级之间的流量比例可以为预设比例,如1:1:1:1:1:1:1:1等。在进一步可能的实施方式中,当优先级模板包括多种流量传输优先级时,各个流量传输优先级之间的比例还可以为用户(技术人员)自定义的比例,如转发业务A的流量可以包括Pri0和Pri7两种流量传输优先级的流量,则用户可以定义这两种流量传输优先级的流量比例为3:7等。Assume that the priority of the traffic transmitted at the port has pri0, pri1, ..., pri7, a total of 8 types (of course, in other implementations, there can be more or less than 8 types, etc.), then the priority template can Contains one traffic transmission priority, such as pri0 priority, or pri7 priority, etc.; it can also contain multiple traffic transmission priorities, such as including both pri0 and pri7, and the two traffic transmission priorities are The traffic ratio can be 1:1 or other preset ratios, or it can include 8 traffic transmission priorities from pri0 to pri7, and the traffic ratio between each traffic transmission priority can be a preset ratio, such as 1:1 :1:1:1:1:1:1 etc. In a further possible implementation, when the priority template includes multiple traffic transmission priorities, the ratio between the various traffic transmission priorities can also be a ratio customized by the user (technical personnel). For example, the traffic of forwarding service A can be Including traffic with two traffic transmission priorities, Pri0 and Pri7, the user can define the traffic ratio of these two traffic transmission priorities to be 3:7, etc.

而输入流量信息中的包长模板,是指转发业务的输入流量中数据包的长度模板,可以包括自定义包长、包长在预设包长区间内随机跳变、包长在预设包长区间内递增跳变以及多种包长混合中的任意一种或多种。The packet length template in the input traffic information refers to the length template of the data packets in the input traffic of the forwarding service, which can include customized packet lengths, packet lengths that randomly jump within the preset packet length interval, and packet lengths within the preset packet length interval. Incremental jumps within long intervals and any one or more of a variety of packet length mixtures.

其中,自定义包长,即为转发业务的输入流量中数据包的长度可以由用户进行设定,比如,用户可以设定该转发业务的输入流量中每个数据包的长度为64Bit,或者为128Bit等。Among them, the custom packet length, that is, the length of the data packet in the input traffic of the forwarding service can be set by the user. For example, the user can set the length of each data packet in the input traffic of the forwarding service to 64Bit, or to 128Bit etc.

包长在预设包长区间内随机跳变,是指转发业务的输入流量中数据包的长度可以是预设包长区间中的任意值(正整数)。比如,假设预设包长区间为[64Bit,256Bit],或者是[64Bit,9600Bit],则包长可以是64Bit、128Bit、192Bit、256Bit等长度值。并且,不同数据包的包长可以不同。The packet length jumps randomly within the preset packet length interval, which means that the length of the data packet in the input traffic of the forwarding service can be any value (positive integer) in the preset packet length interval. For example, assuming that the default packet length interval is [64Bit, 256Bit], or [64Bit, 9600Bit], the packet length can be 64Bit, 128Bit, 192Bit, 256Bit and other length values. Moreover, the packet lengths of different data packets can be different.

包长在预设包长区间内递增跳变,是指转发业务的输入流量中每个数据包的长度可以逐渐递增,并且,各个数据包的包长均在预设包长区间内。比如,假设预设包长区间为[64Bit,256Bit],或者是[64Bit,9600Bit],则包长可以从64Bit开始,依次递增。假设递增步长为1Bit,则第一个数据包的包长可以为64Bit,第二个数据包的包长可以为65Bit,第三个数据包的包长可以为66Bit等。当然,实际应用中,当某个数据包的包长为256Bit时,其下一个数据包的包长可以重新从64Bit开始进行递增。The packet length jumps incrementally within the preset packet length interval, which means that the length of each data packet in the input traffic of the forwarding service can gradually increase, and the packet length of each data packet is within the preset packet length interval. For example, assuming that the default packet length range is [64Bit, 256Bit], or [64Bit, 9600Bit], the packet length can start from 64Bit and increase sequentially. Assuming that the increment step size is 1Bit, the packet length of the first data packet can be 64Bit, the packet length of the second data packet can be 65Bit, the packet length of the third data packet can be 66Bit, etc. Of course, in actual applications, when the packet length of a certain data packet is 256 Bit, the packet length of the next data packet can be incremented from 64 Bit again.

多种包长混合,是指转发业务的输入流量中不同包长的数据包可以按照一定比例混合。比如,假设转发业务A流量中包含64Bit和1518Bit这两种包长的数据包,则这两种包长的数据包的比例可以是7:3,即70%的数据包的包长为64Bit,而30%的数据包的包长为1518Bit。在其它的示例中,转发业务A流量中包含64Bit、78Bit、576Bit、1518Bit四种包长的数据包,其比例依次为55:5:17:23;或者,转发业务A流量中包含64Bit、130Bit、260Bit、577Bit、1518Bit以及9000Bit六种包长的数据包,其比例依次为449:160:200:80:110:1等。Mixing of multiple packet lengths means that data packets of different packet lengths in the input traffic of the forwarding service can be mixed according to a certain proportion. For example, assuming that forwarding service A traffic contains data packets with two packet lengths, 64Bit and 1518Bit, the ratio of these two packet lengths can be 7:3, that is, 70% of the data packets have a packet length of 64Bit. The packet length of 30% of the data packets is 1518Bit. In other examples, the forwarding service A traffic contains data packets with four packet lengths: 64Bit, 78Bit, 576Bit, and 1518Bit, and the ratios are 55:5:17:23; or the forwarding service A traffic contains 64Bit, 130Bit , 260Bit, 577Bit, 1518Bit and 9000Bit six packet lengths, the ratios are 449:160:200:80:110:1, etc.

可选的,对于实际应用中的每个转发业务,本实施例中可以是采用三元组信息进行转发业务模拟。作为仿真测试的输入,该三元组信息具体可以为{端口信息,输入流量信息,业务转发路径}。这样,当某个端口下包括多个转发业务的输入流量时,利用各个转发业务对应的三元组信息(或者上述业务模拟信息)可以表征该端口下的多个转发业务的业务流,从而可以实现多个转发业务场景的叠加,进而基于叠加业务场景下所确定出的配置参数,可以满足多个不同转发业务场景下的数据通路性能要求。Optionally, for each forwarding service in actual applications, in this embodiment, triplet information may be used to simulate the forwarding service. As input to the simulation test, the triplet information can specifically be {port information, input traffic information, service forwarding path}. In this way, when a port includes input traffic of multiple forwarding services, the triplet information corresponding to each forwarding service (or the above-mentioned business simulation information) can be used to characterize the service flows of multiple forwarding services under the port, so that it can Realize the overlay of multiple forwarding business scenarios, and then based on the configuration parameters determined in the overlay business scenario, can meet the data path performance requirements in multiple different forwarding business scenarios.

S102:基于数据通路的多组第一配置参数分别对转发业务模拟信息进行仿真测试,得到多组第一仿真测试结果,其中,该多组第一配置参数为不同的配置参数,并且,多组第一仿真测试结果中的每组第一仿真测试结果用于模拟多个转发业务所对应的输入流量经过多组第一配置参数中的一组第一配置参数所对应的数据通路后的输出流量。S102: Perform simulation tests on the forwarding service simulation information based on multiple sets of first configuration parameters of the data path, and obtain multiple sets of first simulation test results, where the multiple sets of first configuration parameters are different configuration parameters, and multiple sets of first configuration parameters are Each set of first simulation test results in the first simulation test results is used to simulate the output traffic after input traffic corresponding to multiple forwarding services passes through a data path corresponding to a set of first configuration parameters in multiple sets of first configuration parameters. .

示例性的,在确定出各个转发业务分别对应的转发业务模拟信息后,可以将该转发业务模拟信息输入至仿真平台中进行仿真测试;该仿真平台可以基于数据通路的多组不同的配置参数分别对该转发业务模拟信息进行仿真测试,可以得到每组配置参数对应的仿真测试结果。其中,每组配置参数,即为数据通路上各个模块对应的一种配置参数的组合,不同组的配置参数之间,对应于数据通路上至少一个模块的配置参数不同。为方便描述,以下将该配置参数称之为第一配置参数。所得到的每组仿真测试结果,用于模拟多个转发业务所对应的输入流量经过相应的第一配置参数所对应的数据通路后的输出流量。为便于描述,以下将该仿真测试结果称之为第一仿真测试结果。For example, after determining the forwarding service simulation information corresponding to each forwarding service, the forwarding service simulation information can be input into a simulation platform for simulation testing; the simulation platform can be based on multiple sets of different configuration parameters of the data path. Perform a simulation test on the forwarding service simulation information to obtain the simulation test results corresponding to each set of configuration parameters. Each group of configuration parameters is a combination of configuration parameters corresponding to each module on the data path. Configuration parameters in different groups correspond to different configuration parameters of at least one module on the data path. For convenience of description, this configuration parameter is called the first configuration parameter below. Each set of simulation test results obtained is used to simulate the output traffic after input traffic corresponding to multiple forwarding services passes through the data path corresponding to the corresponding first configuration parameter. For the convenience of description, this simulation test result is referred to as the first simulation test result below.

可以理解,通过仿真测试的方式,可以得到每组第一配置参数所对应的第一仿真测试结果,从而无需在上板环境中测试该组第一配置参数所对应的流量输出。这样,获取测试结果的效率通常相对较高,而且,也可以节省上板测试所需的硬件开销。It can be understood that through simulation testing, the first simulation test results corresponding to each set of first configuration parameters can be obtained, thereby eliminating the need to test the traffic output corresponding to the set of first configuration parameters in the board environment. In this way, the efficiency of obtaining test results is usually relatively high, and the hardware overhead required for on-board testing can also be saved.

在一种示例性的具体实施方式中,在仿真测试过程中,可以利用类来抽象描述数据通路上的相应模块。具体的,可以利用将数据通路或者承载该数据通路的单板/芯片作为一个大类,而该数据通路上的各个模块可以做为内部类,相应的,每个模块下的子模块,即可作为该内部类子类,而各个模块的公有属性可以作为父类成员,各个模块的私有属性,可以作为子类成员。这样,对于数据通路上各个模块进行参数配置过程,即为仿真平台对相应类中的成员进行赋值的过程。以对数据通路上的目标模块为例,该目标模块可以是数据通路上的任意模块,则对该目标模块进行参数配置,即为在仿真平台中对与该目标模块相对应的类中的成员进行赋值。其中,数据通路上不同目标模块可以对应于不同的目标类,则不同目标模块的配置参数对应于不同目标类中的成员赋值。In an exemplary specific implementation, during the simulation test process, classes can be used to abstractly describe corresponding modules on the data path. Specifically, the data path or the single board/chip carrying the data path can be used as a major category, and each module on the data path can be used as an internal class. Correspondingly, the sub-modules under each module can be As a subclass of this internal class, the public attributes of each module can be used as members of the parent class, and the private attributes of each module can be used as members of the subclass. In this way, the parameter configuration process for each module on the data path is the process of assigning values to members in the corresponding classes for the simulation platform. Take the target module on the data path as an example. The target module can be any module on the data path. Then configuring the parameters of the target module is to configure the members of the class corresponding to the target module in the simulation platform. Make an assignment. Among them, different target modules on the data path can correspond to different target classes, and the configuration parameters of different target modules correspond to member assignments in different target classes.

作为一种示例,根据数据通路上的模块,可以采用如图2所示的方式定义与该模块对应的类。以对RB模块的Total级、RES级、Channel_Group级、Channel级四级水线配置参数为例,具体可以是对RB类、RES类、CHAN_GROUP类、CHAN类中的相应成员进行赋值。类似的,对于PA模块、PORT模块进行参数配置的过程,与配置EB模块参数的过程类似,在此不做赘述。As an example, according to the module on the data path, the class corresponding to the module can be defined as shown in Figure 2. Take the four-level waterline configuration parameters of Total level, RES level, Channel_Group level, and Channel level of the RB module as an example. Specifically, the corresponding members in the RB class, RES class, CHAN_GROUP class, and CHAN class can be assigned values. Similarly, the process of configuring parameters for the PA module and PORT module is similar to the process of configuring the parameters of the EB module, and will not be described in detail here.

这样,仿真平台可以根据每组第一配置参数对相应的类中成员进行赋值,从而模拟出对数据通路上各个模块的参数配置过程,并基于赋值后的类中成员对输入的转发业务模拟信息进行仿真测试,得到相应的第一仿真测试结果,从而基于不同组的第一配置参数可以多组第一仿真测试结果,每组第一配置参数对应于至少一组第一仿真测试结果。In this way, the simulation platform can assign values to the corresponding class members according to each group of first configuration parameters, thereby simulating the parameter configuration process of each module on the data path, and simulate the input forwarding business information based on the assigned class members. The simulation test is performed to obtain corresponding first simulation test results, so that multiple sets of first simulation test results can be based on different sets of first configuration parameters, and each set of first configuration parameters corresponds to at least one set of first simulation test results.

值得注意的是,本实施例中的仿真平台,具体可以是电子系统级(electronicsystem level,ESL)仿真平台,也可以其它仿真平台,本实施例对此并不限定。It is worth noting that the simulation platform in this embodiment may be an electronic system level (ESL) simulation platform or other simulation platforms, which is not limited in this embodiment.

S103:根据得到的多组第一仿真测试结果,可以从多组第一配置参数中确定出目标第一仿真测试结果对应的目标第一配置参数。S103: According to the obtained multiple sets of first simulation test results, the target first configuration parameter corresponding to the target first simulation test result can be determined from the multiple sets of first configuration parameters.

实际应用中,在得到多组第一仿真测试结果后,可以从中确定出与预期的流量输出结果相符合的第一仿真测试结果(为便于描述,以下称之为目标第一仿真测试结果),并将得到该目标第一仿真测试结果所采用的一组第一配置参数,作为最终所期望确定的目标第一配置参数。In practical applications, after obtaining multiple sets of first simulation test results, the first simulation test result that is consistent with the expected traffic output result can be determined (for convenience of description, hereafter referred to as the target first simulation test result), And a set of first configuration parameters used to obtain the target first simulation test result will be used as the final target first configuration parameters that are expected to be determined.

可见,上述通过仿真测试的方式确定目标第一配置参数的过程,相比于技术人员在上板环境中进行测试以确定目标第一配置参数的过程,确定目标第一配置参数的效率相对较高,而且,可以有效节省上板测试所需的硬件环境开销。同时,仿真平台可以自动基于多组不同的第一配置参数进行仿真测试并给出相应的第一仿真测试结果,无需要求技术人员具有较高的技术分析能力以及丰富的调试经验,降低了技术人员的技能要求。另外,由于平台可以是针对于多个转发业务的转发业务模拟信息进行仿真测试,这可以使得最终所确定出的第一配置参数可以满足多种不同转发业务场景下对于数据通路的性能要求。It can be seen that the above-mentioned process of determining the target first configuration parameter through simulation testing is relatively more efficient in determining the target first configuration parameter than the process in which technicians conduct testing in a board environment to determine the target first configuration parameter. , Moreover, it can effectively save the hardware environment overhead required for on-board testing. At the same time, the simulation platform can automatically conduct simulation tests based on multiple sets of different first configuration parameters and provide corresponding first simulation test results. It does not require technicians to have high technical analysis capabilities and rich debugging experience, which reduces the time required for technicians. skill requirements. In addition, since the platform can perform simulation tests on the forwarding service simulation information of multiple forwarding services, this can enable the finally determined first configuration parameter to meet the performance requirements for the data path in a variety of different forwarding service scenarios.

实际应用中,在基于仿真平台利用多组不同的第一配置参数所确定出的多组第一仿真测试结果后,还可以基于多组第一配置参数以及多组第一仿真测试结果进行机器学习。这样,无需再借助仿真平台进行仿真测试,利用机器学习所得到的模型可以快速确定出每组配置参数所对应的仿真测试结果,从而进一步减少数据通路的设计人员的工作投入,节省人力成本,提高确定配置参数的效率。In practical applications, after multiple sets of first simulation test results are determined based on multiple sets of different first configuration parameters based on the simulation platform, machine learning can also be performed based on multiple sets of first configuration parameters and multiple sets of first simulation test results. . In this way, there is no need to use a simulation platform to conduct simulation tests. The model obtained by machine learning can be used to quickly determine the simulation test results corresponding to each set of configuration parameters, thereby further reducing the work input of data path designers, saving labor costs, and improving Determine the efficiency of configuration parameters.

参阅图3,图3示出了本申请实施例中又一种确定配置参数的方法流程示意图,在执行了如图1所示的步骤S101至步骤S103之后,该方法还可以进一步执行:Referring to Figure 3, Figure 3 shows a schematic flowchart of another method for determining configuration parameters in an embodiment of the present application. After executing steps S101 to S103 as shown in Figure 1, the method can be further executed:

步骤S104:根据多组第一配置参数以及多组第一仿真测试结果,训练得到机器学习模型,该机器学习模型的输入为多组第一配置参数中的每组第一配置参数,机器学习模型的输出为每组第一配置参数所对应的第一仿真测试结果。Step S104: Train to obtain a machine learning model based on multiple sets of first configuration parameters and multiple sets of first simulation test results. The input of the machine learning model is each set of first configuration parameters in the multiple sets of first configuration parameters. The machine learning model The output of is the first simulation test result corresponding to each set of first configuration parameters.

本实施例中,可以记录仿真平台进行仿真测试时所采用的第一配置参数,以及基于该组第一配置参数所得到的第一仿真测试结果,然后可以将其划分为训练和测试机器学习模型的样本集以及测试集。In this embodiment, the first configuration parameters used by the simulation platform for simulation testing can be recorded, as well as the first simulation test results obtained based on the set of first configuration parameters, which can then be divided into training and testing machine learning models. sample set and test set.

在训练机器学习模型的过程中,可以将样本集中的每组第一配置参数作为该机器学习模型的输入,将该组第一配置参数对应的第一仿真测试结果作为该机器学习模型的输出,对机器学习模型进行训练,从而利用样本集中的多组第一配置参数和多组第一仿真测试结果训练得到机器学习模型。In the process of training the machine learning model, each set of first configuration parameters in the sample set can be used as the input of the machine learning model, and the first simulation test result corresponding to the set of first configuration parameters can be used as the output of the machine learning model, The machine learning model is trained to obtain the machine learning model by using multiple sets of first configuration parameters and multiple sets of first simulation test results in the sample set.

然后,可以利用测试集中所包含的每组第一配置参数以及其对应的第一仿真测试结果对训练得到的机器学习模型进行测试。具体为将测试集中的每组第一配置参数作为该机器学习模型的输入,由该机器学习模型基于该输入的配置参数输出得到结果,并将该结果与将测试集中与该第一配置参数对应的第一仿真测试结果进行比较,若机器学习模型输出的结果与对应的第一仿真测试结果之间满足预设的测试要求(比如相似度达到预设标准),则可以确定该机器学习模型通过测试,而若机器学习模型输出的结果与对应的仿真测试结果之间未达到预设的测试要求,则可以继续对该机器学习模型进行训练。Then, each set of first configuration parameters included in the test set and its corresponding first simulation test result can be used to test the trained machine learning model. Specifically, each set of first configuration parameters in the test set is used as the input of the machine learning model, the machine learning model outputs a result based on the input configuration parameters, and the result is corresponding to the first configuration parameter in the test set. Compare the first simulation test results. If the results output by the machine learning model and the corresponding first simulation test results meet the preset test requirements (for example, the similarity reaches the preset standard), it can be determined that the machine learning model has passed Test, and if the output results of the machine learning model and the corresponding simulation test results do not meet the preset test requirements, the machine learning model can continue to be trained.

作为一种示例,该机器学习模型可以是基于反向传播(back propagation,BP)神经网络进行构建。举例来说,BP神经网络可以如图4所示,其包括输入层、隐藏层以及输出层。假设转发业务的输入流量最多包括有Pri0至Pri6这7中流量传输优先级的流量,每组第一配置参数包括n个参数,分别为Param0,Param1,Param2,…,Paramn-1,则在训练机器学习模型时,可以将每组第一配置参数Param0,Param1,Param2,…,Paramn-1送入输入层作为模型的样本输入,将带宽中Pri0~Pri7各优先级流量依次对应的丢弃百分比LossPercent0,LossPercent1,LossPercent2,…,LossPercent7(也即为仿真测试结果)作为BP神经网络的样本输出,进行机器学习模型(或者说BP神经网络)的训练。As an example, the machine learning model can be built based on a back propagation (BP) neural network. For example, the BP neural network can be shown in Figure 4, which includes an input layer, a hidden layer and an output layer. Assume that the input traffic of the forwarding service includes at most 7 traffic transmission priorities from Pri0 to Pri6. Each group of first configuration parameters includes n parameters, which are Param 0 , Param 1 , Param 2 ,..., Param n-1. , then when training the machine learning model, each set of first configuration parameters Param 0 , Param 1 , Param 2 ,..., Param n-1 can be sent to the input layer as the sample input of the model, and priority will be given to Pri0 to Pri7 in the bandwidth. The discard percentages LossPercent 0 , LossPercent 1 , LossPercent 2 ,..., LossPercent 7 (that is, the simulation test results) corresponding to the level of traffic in sequence are used as the sample output of the BP neural network to train the machine learning model (or BP neural network).

这样,在训练得到机器学习模型后,可以不用再借助仿真平台进行仿真测试,针对于每种转发业务场景或者多种转发业务叠加的场景,可以根据每组配置参数,利用该机器学习模型快速输出得到该组配置参数所对应的仿真测试结果,从而可以进一步提高确定配置参数的效率。具体实现时,可以是通过继续执行步骤S105至步骤S107实现配置参数的确定。In this way, after the machine learning model is trained, there is no need to rely on a simulation platform for simulation testing. For each forwarding business scenario or a scenario where multiple forwarding services are superimposed, the machine learning model can be used to quickly output according to each set of configuration parameters. The simulation test results corresponding to the set of configuration parameters are obtained, thereby further improving the efficiency of determining the configuration parameters. In specific implementation, the configuration parameters may be determined by continuing to execute steps S105 to S107.

S105:确定多组不同的第二配置参数。S105: Determine multiple sets of different second configuration parameters.

在训练得到机器学习模型后,若需要确定满足某个业务场景下所要求的数据通路性能的配置参数,则可以利用机器学习模型来得到每组配置参数所对应的仿真测试结果。为便于描述,以下将输入至机器学习模型中的配置参数称之为第二配置参数,而最终所需确定出的配置参数即为第二配置参数中的其中一组配置参数。其中,所确定的多组不同的第二配置参数,可以是由技术人员进行给定,也可以是遍历数据通路上各个模块所有可能的配置参数组合,将其全部或者部分作为本实施例中的第二配置参数。After training the machine learning model, if you need to determine the configuration parameters that meet the required data path performance in a certain business scenario, you can use the machine learning model to obtain the simulation test results corresponding to each set of configuration parameters. For the convenience of description, the configuration parameters input into the machine learning model are referred to as second configuration parameters below, and the configuration parameters that need to be finally determined are one set of configuration parameters in the second configuration parameters. The multiple sets of different second configuration parameters determined may be given by technical personnel, or all possible configuration parameter combinations of each module on the data path may be traversed, and all or part of them may be used as the configuration parameters in this embodiment. Second configuration parameter.

在进一步可能的实施方式中,还可以确定出目标转发业务(实际应用中的任意一个或者多个业务)的输入流量经过数据通路后的预期流量输出,通常情况下,目标转发业务的输入流量经过数据通路上各个模块的配置参数的调控后,在数据通路上的输出流量与预期流量输出一致,表征此时数据通路上各个模块的配置参数能够使得数据通路的性能能够满足该目标转发业务场景下的要求。因此,还可以确定出目标转发业务的输入流量经过数据通路后的预期流量输出。In a further possible implementation, the expected traffic output after the input traffic of the target forwarding service (any one or more services in actual applications) passes through the data path can also be determined. Normally, the input traffic of the target forwarding service passes through After the configuration parameters of each module on the data path are adjusted, the output traffic on the data path is consistent with the expected traffic output, which means that the configuration parameters of each module on the data path can enable the performance of the data path to meet the target forwarding business scenario. requirements. Therefore, the expected traffic output after the input traffic of the target forwarding service passes through the data path can also be determined.

S106:将所述多组不同的第二配置参数分别输入机器学习模型以获得多组第二仿真测试结果,其中,该多组第二仿真测试结果为机器学习模型的输出。S106: Input the multiple sets of different second configuration parameters into the machine learning model respectively to obtain multiple sets of second simulation test results, where the multiple sets of second simulation test results are outputs of the machine learning model.

在获取仿真测试结果时,可以将第二配置参数输入至机器学习模型中,由机器学习模型输出每组第二配置参数所对应的第二仿真测试结果,从而基于多组第二配置参数可以得到多组第二仿真测试结果。When obtaining the simulation test results, the second configuration parameters can be input into the machine learning model, and the machine learning model outputs the second simulation test results corresponding to each set of second configuration parameters, so that based on the multiple sets of second configuration parameters, we can obtain Multiple sets of second simulation test results.

S107:从多组第二仿真测试结果中确定目标第二仿真测试结果,其中,该目标第二仿真测试结果与预期输出流量一致,而预期输出流量即为目标转发业务的输入流量经过数据通路后的输出流量。S107: Determine the target second simulation test result from multiple sets of second simulation test results, where the target second simulation test result is consistent with the expected output traffic, and the expected output traffic is the input traffic of the target forwarding service after passing through the data path. output flow.

具体实现时,在利用机器学习模型得到多组仿真测试结果后,可以将各个第二仿真测试结果与目标转发业务的输入流量经过数据通路后的预期流量输出进行比对,若多组第二仿真测试结果中存在目标第二仿真测试结果所表征的流量输出与预期流量输出一致,则该目标第二仿真测试结果所对应的候选配置参数即为所需确定的配置参数。In specific implementation, after using the machine learning model to obtain multiple sets of simulation test results, each second simulation test result can be compared with the expected traffic output after the input traffic of the target forwarding service passes through the data path. If multiple sets of second simulation test results are If the traffic output represented by the target second simulation test result is consistent with the expected traffic output in the test results, then the candidate configuration parameters corresponding to the target second simulation test result are the configuration parameters that need to be determined.

S108:确定目标第二仿真测试结果对应的第二配置参数。S108: Determine the second configuration parameter corresponding to the target second simulation test result.

在基于步骤S107确定出目标第二仿真测试结果后,可以将机器学习模型输出该目标第二仿真测试结果时,作为该机器学习模型输入的第二配置参数确定为所需确定的配置参数,也即为满足该目标转发业务场景所需的数据通路性能要求的配置参数。After the target second simulation test result is determined based on step S107, when the machine learning model outputs the target second simulation test result, the second configuration parameter as the input of the machine learning model is determined as the configuration parameter that needs to be determined, that is, That is, the configuration parameters meet the data path performance requirements required by the target forwarding business scenario.

在上述过程中,由于利用机器学习模型即可得到每组配置参数所对应的仿真测试结果,而可以不用再通过仿真测试的方式得到所需的每组配置参数所对应的仿真测试结果,从而可以提高获取仿真测试结果的效率,也就可以进一步提高确定配置参数的效率。In the above process, since the machine learning model can be used to obtain the simulation test results corresponding to each set of configuration parameters, it is no longer necessary to obtain the required simulation test results corresponding to each set of configuration parameters through simulation testing, so that it is possible to Improving the efficiency of obtaining simulation test results can further improve the efficiency of determining configuration parameters.

此外,本申请实施例还提供了一种确定配置参数的装置。参阅图5,图5示出了本申请实施例中一种确定配置参数的装置结构示意图,该装置500包括:In addition, the embodiment of the present application also provides a device for determining configuration parameters. Referring to Figure 5, Figure 5 shows a schematic structural diagram of a device for determining configuration parameters in an embodiment of the present application. The device 500 includes:

第一确定模块501,用于确定转发业务模拟信息,所述转发业务模拟信息包括输入流量信息和数据通路行为,其中,所述输入流量信息用于模拟多个转发业务所对应的输入流量,所述数据通路行为用于模拟传输所述输入流量的数据通路;The first determination module 501 is used to determine the forwarding service simulation information. The forwarding service simulation information includes input flow information and data path behavior, wherein the input flow information is used to simulate the input flow corresponding to multiple forwarding services, so The data path behavior described above is used to simulate the data path transmitting the input traffic;

仿真测试模块502,用于基于所述数据通路的多组第一配置参数分别对所述转发业务模拟信息进行仿真测试,得到多组第一仿真测试结果,所述多组第一配置参数为不同的配置参数,所述多组第一仿真测试结果中的每组第一仿真测试结果用于模拟所述多个转发业务所对应的输入流量经过所述多组第一配置参数中的一组第一配置参数所对应的数据通路后的输出流量;The simulation test module 502 is configured to conduct simulation tests on the forwarding service simulation information based on multiple sets of first configuration parameters of the data path, and obtain multiple sets of first simulation test results. The multiple sets of first configuration parameters are different Configuration parameters, each set of first simulation test results in the plurality of first simulation test results is used to simulate the input traffic corresponding to the plurality of forwarding services passing through a group of first configuration parameters in the plurality of sets. The output traffic after the data path corresponding to the configuration parameter;

第二确定模块503,用于根据所述多组第一仿真测试结果,从所述多组第一配置参数中确定出目标第一仿真测试结果对应的目标第一配置参数。The second determination module 503 is configured to determine the target first configuration parameter corresponding to the target first simulation test result from the multiple sets of first configuration parameters according to the multiple sets of first simulation test results.

在一种可能的实施方式中,所述输入流量信息包括业务类型、端口模板、速率模板、优先级模板以及包长模板中的任意一种或多种,所述数据通路行为包括端口信息和/或业务转发路径。In a possible implementation, the input traffic information includes any one or more of service type, port template, rate template, priority template and packet length template, and the data path behavior includes port information and/ or service forwarding path.

在一种可能的实施方式中,所述业务类型包括单播和/或组播;In a possible implementation, the service type includes unicast and/or multicast;

所述端口模板包括自发自收、半偏移、对称偏移、随机偏移、叶子全覆盖、叶子前半覆盖、叶子后半覆盖、叶子间隔半覆盖以及叶子随机覆盖中的任意一种或多种;The port template includes any one or more of spontaneous self-closing, half offset, symmetrical offset, random offset, full leaf coverage, leaf front half coverage, leaf back half coverage, leaf interval half coverage, and leaf random coverage. ;

所述速率模板包括突发开启、突发未开启、满流量、半流量以及自定义百分比流量中的任意一种或多种;The rate template includes any one or more of burst on, burst off, full flow, half flow, and custom percentage flow;

所述优先级模板包括一种或者多种流量传输优先级,且当所述优先级模板包括多种流量传输优先级时,所述多种流量传输优先级之间的比例为预设比例和/或自定义比例;The priority template includes one or more traffic transmission priorities, and when the priority template includes multiple traffic transmission priorities, the ratio between the multiple traffic transmission priorities is a preset ratio and/ Or custom proportion;

所述包长模板包括自定义包长、包长在预设包长区间内随机跳变、包长在预设包长区间内递增跳变以及多种包长混合中的任意一种或多种;The packet length template includes any one or more of a custom packet length, a random jump of the packet length within a preset packet length interval, an incremental jump of the packet length within the preset packet length interval, and a mixture of multiple packet lengths. ;

所述端口信息包括端口编号、物理地址汇聚MAG来源以及端口速率中的任意一种或多种;The port information includes any one or more of port number, physical address aggregation MAG source, and port rate;

所述业务转发路径用于描述业务的转发路径和/或转发时延。The service forwarding path is used to describe the forwarding path and/or forwarding delay of the service.

在一种可能的实施方式中,所述数据通路上目标模块的配置参数为与所述目标模块对应的目标类中的成员赋值,所述数据通路上的不同目标模块对应于不同的目标类。In a possible implementation, the configuration parameters of the target module on the data path are assigned to members in the target class corresponding to the target module, and different target modules on the data path correspond to different target classes.

在一种可能的实施方式中,所述装置500还包括:In a possible implementation, the device 500 further includes:

训练模块,用于根据所述多组第一配置参数以及所述多组第一仿真测试结果,训练得到机器学习模型,所述机器学习模型的输入为所述多组第一配置参数中的每组第一配置参数,所述机器学习模型的输出为所述每组第一配置参数对应的第一仿真测试结果。A training module, configured to train and obtain a machine learning model based on the plurality of sets of first configuration parameters and the plurality of sets of first simulation test results, where the input of the machine learning model is each of the plurality of sets of first configuration parameters. A set of first configuration parameters, and the output of the machine learning model is a first simulation test result corresponding to each set of first configuration parameters.

在一种可能的实施方式中,所述装置500还包括:In a possible implementation, the device 500 further includes:

第三确定模块,用于确定多组不同的第二配置参数;The third determination module is used to determine multiple sets of different second configuration parameters;

输入模块,用于将所述多组不同的第二配置参数分别输入所述机器学习模型以获得多组第二仿真测试结果,所述多组第二仿真测试结果为所述机器学习模型的输出;An input module, configured to input the multiple sets of different second configuration parameters into the machine learning model to obtain multiple sets of second simulation test results, where the multiple sets of second simulation test results are outputs of the machine learning model. ;

第四确定模块,用于从所述多组第二仿真测试结果中确定目标第二仿真测试结果,所述目标第二仿真测试结果与预期输出流量一致,所述预期输出流量为目标转发业务的输入流量经过所述数据通路后的输出流量;The fourth determination module is configured to determine a target second simulation test result from the plurality of sets of second simulation test results, the target second simulation test result is consistent with the expected output traffic, and the expected output traffic is the target forwarding service. The output traffic after the input traffic passes through the data path;

第五确定模块,用于确定所述目标第二仿真测试结果对应的第二配置参数。The fifth determination module is used to determine the second configuration parameter corresponding to the target second simulation test result.

在一种可能的实施方式中,所述机器学习模型基于反向传播BP神经网络进行构建。In a possible implementation, the machine learning model is constructed based on a back-propagation BP neural network.

需要说明的是,上述装置各模块之间的信息交互、执行过程等内容,由于与本申请实施例中方法实施例基于同一构思,其带来的技术效果与本申请实施例中方法实施例相同,为描述的方便和简洁,上述描述的装置、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。It should be noted that the information interaction, execution process, etc. between the modules of the above-mentioned device are based on the same concept as the method embodiments in the embodiments of this application, and the technical effects they bring are the same as those of the method embodiments in the embodiments of this application. , For the convenience and simplicity of description, for the specific working processes of the above-described devices and modules, reference can be made to the corresponding processes in the foregoing method embodiments, which will not be described again here.

此外,本申请实施例中还提供了一种设备,该设备可以执行上述方法实施例中所述的确定配置参数的方法。参阅图6,图6示出了该设备的一种示例性硬件结构示意图,该设备可以是上述任一实施例中的仿真平台或者承载有仿真平台的设备。该设备是一种硬件结构的装置,可以用于实现图5所示的装置500中的功能模块。例如,本领域技术人员可以想到图5所示的装置500中的第一确定模块501、仿真测试模块502以及第二确定模块503可以通过至少一个处理器601调用存储器602中的代码来实现。可选的,该设备还可用于实现上述任一实施例中仿真平台或者承载有仿真平台的设备的功能。In addition, the embodiment of the present application also provides a device that can perform the method of determining configuration parameters described in the above method embodiment. Referring to Figure 6, Figure 6 shows an exemplary hardware structure diagram of the device. The device can be the simulation platform in any of the above embodiments or a device carrying the simulation platform. This device is a hardware structure device that can be used to implement the functional modules in the device 500 shown in Figure 5. For example, those skilled in the art can imagine that the first determination module 501, the simulation test module 502 and the second determination module 503 in the device 500 shown in FIG. 5 can be implemented by at least one processor 601 calling the code in the memory 602. Optionally, the device can also be used to implement the functions of the simulation platform or the device carrying the simulation platform in any of the above embodiments.

该设备可以包括至少一个处理器601以及至少一个存储器602。处理器601可以与存储器602相连,例如可以通过如图6所示的总线603相连。当然,实际应用中,处理器601与存储器602之间的连接可以是包括各类接口、传输线或总线等,本实施例对此不做限定。The device may include at least one processor 601 and at least one memory 602. The processor 601 may be connected to the memory 602, for example, through a bus 603 as shown in FIG. 6 . Of course, in actual applications, the connection between the processor 601 and the memory 602 may include various interfaces, transmission lines or buses, etc., which is not limited in this embodiment.

该存储器602可以用于存储指令或计算机程序;The memory 602 may be used to store instructions or computer programs;

该处理器601可以用于执行所述指令或计算机程序,并根据所述计算机程序或指令执行如下步骤:The processor 601 can be used to execute the instructions or computer programs, and perform the following steps according to the computer programs or instructions:

确定转发业务模拟信息,所述转发业务模拟信息包括输入流量信息和数据通路行为,其中,所述输入流量信息用于模拟多个转发业务所对应的输入流量,所述数据通路行为用于模拟传输所述输入流量的数据通路;Determine the forwarding service simulation information, the forwarding service simulation information includes input traffic information and data path behavior, wherein the input flow information is used to simulate the input traffic corresponding to multiple forwarding services, and the data path behavior is used to simulate transmission The data path of the input traffic;

基于所述数据通路的多组第一配置参数分别对所述转发业务模拟信息进行仿真测试,得到多组第一仿真测试结果,所述多组第一配置参数为不同的配置参数,所述多组第一仿真测试结果中的每组第一仿真测试结果用于模拟所述多个转发业务所对应的输入流量经过所述多组第一配置参数中的一组第一配置参数所对应的数据通路后的输出流量;Simulation tests are performed on the forwarding service simulation information based on multiple sets of first configuration parameters of the data path to obtain multiple sets of first simulation test results. The multiple sets of first configuration parameters are different configuration parameters. The multiple sets of first configuration parameters are different configuration parameters. Each group of first simulation test results in the group of first simulation test results is used to simulate the input traffic corresponding to the plurality of forwarding services passing through the data corresponding to a group of first configuration parameters in the plurality of groups of first configuration parameters. Output flow after the passage;

根据所述多组第一仿真测试结果,从所述多组第一配置参数中确定出目标第一仿真测试结果对应的目标第一配置参数。According to the plurality of sets of first simulation test results, a target first configuration parameter corresponding to the target first simulation test result is determined from the plurality of sets of first configuration parameters.

在一些可能的实施方式中,所述输入流量信息包括业务类型、端口模板、速率模板、优先级模板以及包长模板中的任意一种或多种,所述数据通路行为包括端口信息和/或业务转发路径。In some possible implementations, the input traffic information includes any one or more of service type, port template, rate template, priority template, and packet length template, and the data path behavior includes port information and/or Service forwarding path.

在一些可能的实施方式中,所述业务类型包括单播和/或组播;In some possible implementations, the service type includes unicast and/or multicast;

所述端口模板包括自发自收、半偏移、对称偏移、随机偏移、叶子全覆盖、叶子前半覆盖、叶子后半覆盖、叶子间隔半覆盖以及叶子随机覆盖中的任意一种或多种;The port template includes any one or more of spontaneous self-closing, half-offset, symmetrical offset, random offset, full leaf coverage, leaf front half coverage, leaf back half coverage, leaf interval half coverage, and leaf random coverage. ;

所述速率模板包括突发开启、突发未开启、满流量、半流量以及自定义百分比流量中的任意一种或多种;The rate template includes any one or more of burst on, burst off, full flow, half flow, and custom percentage flow;

所述优先级模板包括一种或者多种流量传输优先级,且当所述优先级模板包括多种流量传输优先级时,所述多种流量传输优先级之间的比例为预设比例和/或自定义比例;The priority template includes one or more traffic transmission priorities, and when the priority template includes multiple traffic transmission priorities, the ratio between the multiple traffic transmission priorities is a preset ratio and/ Or custom proportion;

所述包长模板包括自定义包长、包长在预设包长区间内随机跳变、包长在预设包长区间内递增跳变以及多种包长混合中的任意一种或多种;The packet length template includes any one or more of a custom packet length, a random jump of the packet length within a preset packet length interval, an incremental jump of the packet length within the preset packet length interval, and a mixture of multiple packet lengths. ;

所述端口信息包括端口编号、物理地址汇聚MAG来源以及端口速率中的任意一种或多种;The port information includes any one or more of port number, physical address aggregation MAG source, and port rate;

所述业务转发路径用于描述业务的转发路径和/或转发时延。The service forwarding path is used to describe the forwarding path and/or forwarding delay of the service.

在一些可能的实施方式中,所述数据通路上目标模块的配置参数为与所述目标模块对应的目标类中的成员赋值,所述数据通路上的不同目标模块对应于不同的目标类。In some possible implementations, the configuration parameters of the target module on the data path assign values to members in the target class corresponding to the target module, and different target modules on the data path correspond to different target classes.

在一些可能的实施方式中,处理器601还可以根据所述计算机程序或指令执行如下步骤:In some possible implementations, the processor 601 can also perform the following steps according to the computer program or instructions:

根据所述多组第一配置参数以及所述多组第一仿真测试结果,训练得到机器学习模型,所述机器学习模型的输入为所述多组第一配置参数中的每组第一配置参数,所述机器学习模型的输出为所述每组第一配置参数对应的第一仿真测试结果。According to the multiple sets of first configuration parameters and the multiple sets of first simulation test results, a machine learning model is trained, and the input of the machine learning model is each set of first configuration parameters in the multiple sets of first configuration parameters. , the output of the machine learning model is the first simulation test result corresponding to each set of first configuration parameters.

在一些可能的实施方式中,处理器601还可以根据所述计算机程序或指令执行如下步骤:In some possible implementations, the processor 601 can also perform the following steps according to the computer program or instructions:

确定多组不同的第二配置参数;Determine multiple sets of different second configuration parameters;

将所述多组不同的第二配置参数分别输入所述机器学习模型以获得多组第二仿真测试结果,所述多组第二仿真测试结果为所述机器学习模型的输出;Input the multiple sets of different second configuration parameters into the machine learning model respectively to obtain multiple sets of second simulation test results, and the multiple sets of second simulation test results are the output of the machine learning model;

从所述多组第二仿真测试结果中确定目标第二仿真测试结果,所述目标第二仿真测试结果与预期输出流量一致,所述预期输出流量为目标转发业务的输入流量经过所述数据通路后的输出流量;A target second simulation test result is determined from the plurality of sets of second simulation test results. The target second simulation test result is consistent with the expected output traffic. The expected output traffic is the input traffic of the target forwarding service passing through the data path. The final output flow;

确定所述目标第二仿真测试结果对应的第二配置参数。Determine the second configuration parameter corresponding to the target second simulation test result.

在一些可能的实施方式中,所述机器学习模型基于反向传播BP神经网络进行构建。In some possible implementations, the machine learning model is constructed based on a back-propagation BP neural network.

值得注意,上述设备中处理器601根据存储器602中存储的计算机程序或指令所执行的操作内容,由于与本申请实施例中方法实施例基于同一构思,其带来的技术效果与本申请实施例中方法实施例相同,为描述的方便和简洁,上述描述的处理执行步骤的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。It is worth noting that the operation content executed by the processor 601 in the above device according to the computer program or instructions stored in the memory 602 is based on the same concept as the method embodiments in the embodiments of the present application, and the technical effects it brings are the same as those in the embodiments of the present application. The method embodiments are the same. For the convenience and simplicity of description, for the specific working process of the processing execution steps described above, reference can be made to the corresponding processes in the foregoing method embodiments, which will not be described again here.

需要说明的是,本申请中的处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(digital signalprocessing,DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以是个单独的半导体芯片,也可以跟其他电路一起集成为一个半导体芯片,例如,可以跟其他电路(如编解码电路、硬件加速电路或各种总线和接口电路)构成一个片上系统(system-on-a-chip),或者也可以作为一个专用集成电路(application-specificintegrated circuit,ASIC)的内置处理器集成在所述ASIC当中,该集成了处理器的ASIC可以单独封装或者也可以跟其他电路封装在一起。该处理器除了包括用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(fieldprogrammable gate array,FPGA)、可编程逻辑器件(programmable logic device,PLD)、或者实现专用逻辑运算的逻辑电路。It should be noted that the processor in this application may include but is not limited to at least one of the following: central processing unit (CPU), microprocessor, digital signal processing (DSP), microcontroller (microcontroller unit, MCU), or artificial intelligence processor and other types of computing devices that run software. Each computing device may include one or more cores for executing software instructions to perform calculations or processing. The processor can be a separate semiconductor chip, or it can be integrated with other circuits into a semiconductor chip. For example, it can form an on-chip system (such as a codec circuit, a hardware acceleration circuit, or various buses and interface circuits) with other circuits (such as codec circuits, hardware acceleration circuits, or various bus and interface circuits). system-on-a-chip), or can be integrated into the ASIC as a built-in processor of an application-specific integrated circuit (ASIC). The ASIC with integrated processor can be packaged separately or can be combined with Other circuits are packaged together. In addition to a core for executing software instructions to perform calculations or processing, the processor may further include necessary hardware accelerators, such as field programmable gate array (FPGA), programmable logic device , PLD), or a logic circuit that implements dedicated logic operations.

本申请实施例中的存储器,可以包括如下至少一种类型:只读存储器(read-onlymemory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable-only memory,EEPROM)。在某些场景下,存储器还可以是只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储介质、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。The memory in the embodiment of the present application may include at least one of the following types: read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM) or other types of dynamic storage devices that can store information and instructions, or electrically erasable programmable-only memory (EEPROM). In some scenarios, the memory can also be a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage medium, magnetic disk storage medium or other magnetic storage device, or can be used for portability or storage Any other medium that has the desired program code in the form of instructions or data structures and can be accessed by a computer, without limitation.

存储器可以是独立存在,与处理器相连。其中,存储器能够存储执行本申请实施例的技术方案的程序代码,并由处理器来控制执行,被执行的各类计算机程序代码也可被视为是处理器的驱动程序。例如,处理器用于执行存储器中存储的计算机程序代码,从而实现本申请实施例中的技术方案。The memory can exist independently and be connected to the processor. Among them, the memory can store program codes for executing the technical solutions of the embodiments of the present application, and the execution is controlled by the processor. Various types of computer program codes that are executed can also be regarded as drivers of the processor. For example, the processor is used to execute the computer program code stored in the memory, thereby implementing the technical solutions in the embodiments of the present application.

另外,本申请实施例还提供了一种计算机可读存储介质,包括指令或计算机程序,当其在计算机上运行时,使得计算机执行上述方法实施例中所述的确定配置参数的方法。In addition, embodiments of the present application also provide a computer-readable storage medium, which includes instructions or computer programs that, when run on a computer, cause the computer to perform the method of determining configuration parameters described in the above method embodiment.

本申请中“的(英文:of)”,相应的“(英文corresponding,relevant)”和“对应的(英文:corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。In this application, "of", corresponding "(corresponding, relevant)" and "corresponding (English: corresponding)" can sometimes be used interchangeably. It should be noted that when the difference is not emphasized, the intended The meaning of the expression is consistent.

需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。It should be noted that in the embodiments of this application, words such as "exemplary" or "for example" are used to represent examples, illustrations or explanations. Any embodiment or design described as "exemplary" or "such as" in the embodiments of the present application is not to be construed as preferred or advantageous over other embodiments or designs. Rather, use of the words "exemplary" or "such as" is intended to present the concept in a concrete manner.

本申请中,“至少一个”是指一个或者多个。“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。In this application, "at least one" means one or more. "Plural" means two or more. "And/or" describes the association of associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural. The character "/" generally indicates that the related objects are in an "or" relationship. "At least one of the following" or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items). For example, at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple . In addition, in order to facilitate a clear description of the technical solutions of the embodiments of the present application, in the embodiments of the present application, words such as “first” and “second” are used to distinguish identical or similar items with basically the same functions and effects. Those skilled in the art can understand that words such as "first" and "second" do not limit the number and execution order, and words such as "first" and "second" do not limit the number and execution order.

本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。The system architecture and business scenarios described in the embodiments of this application are for the purpose of explaining the technical solutions of the embodiments of this application more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of this application. Persons of ordinary skill in the art will know that with the network With the evolution of architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of this application are also applicable to similar technical problems.

在本申请所提供的几个实施例中,应该理解到,所揭露的装置、设备和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in this application, it should be understood that the disclosed devices, equipment and methods can be implemented in other ways. For example, the device embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented. On the other hand, the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit. The above integrated units can be implemented in the form of hardware or software functional units.

所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application. The aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。As mentioned above, the above embodiments are only used to illustrate the technical solution of the present application, but not to limit it. Although the present application has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that they can still make the foregoing technical solutions. The technical solutions described in each embodiment may be modified, or some of the technical features may be equivalently replaced; however, these modifications or substitutions do not cause the essence of the corresponding technical solutions to depart from the scope of the technical solutions in each embodiment of the present application.

Claims (14)

1.一种确定配置参数的方法,其特征在于,所述方法包括:1. A method for determining configuration parameters, characterized in that the method includes: 确定转发业务模拟信息,所述转发业务模拟信息包括输入流量信息和数据通路行为,其中,所述输入流量信息用于模拟多个转发业务所对应的输入流量,所述数据通路行为用于模拟传输所述输入流量的数据通路;Determine the forwarding service simulation information, the forwarding service simulation information includes input traffic information and data path behavior, wherein the input flow information is used to simulate the input traffic corresponding to multiple forwarding services, and the data path behavior is used to simulate transmission The data path of the input traffic; 基于所述数据通路的多组第一配置参数分别对所述转发业务模拟信息进行仿真测试,得到多组第一仿真测试结果,所述多组第一配置参数为不同的配置参数,所述多组第一仿真测试结果中的每组第一仿真测试结果用于模拟所述多个转发业务所对应的输入流量经过所述多组第一配置参数中的一组第一配置参数所对应的数据通路后的输出流量,其中,所述数据通路上目标模块的配置参数为与所述目标模块对应的目标类中的成员赋值,所述目标模块为所述数据通路上的一个模块,所述数据通路上的不同模块对应于不同的类;Simulation tests are performed on the forwarding service simulation information based on multiple sets of first configuration parameters of the data path to obtain multiple sets of first simulation test results. The multiple sets of first configuration parameters are different configuration parameters. The multiple sets of first configuration parameters are different configuration parameters. Each group of first simulation test results in the group of first simulation test results is used to simulate the input traffic corresponding to the plurality of forwarding services passing through the data corresponding to a group of first configuration parameters in the plurality of groups of first configuration parameters. Output traffic after the path, wherein the configuration parameters of the target module on the data path are assigned to members in the target class corresponding to the target module, the target module is a module on the data path, and the data Different modules on the pathway correspond to different classes; 根据所述多组第一仿真测试结果,从所述多组第一配置参数中确定出目标第一仿真测试结果对应的目标第一配置参数。According to the plurality of sets of first simulation test results, a target first configuration parameter corresponding to the target first simulation test result is determined from the plurality of sets of first configuration parameters. 2.根据权利要求1所述的方法,其特征在于,所述输入流量信息包括业务类型、端口模板、速率模板、优先级模板以及包长模板中的任意一种或多种,所述数据通路行为包括端口信息和/或业务转发路径。2. The method according to claim 1, characterized in that the input traffic information includes any one or more of service type, port template, rate template, priority template and packet length template, and the data path Behavior includes port information and/or service forwarding paths. 3.根据权利要求2所述的方法,其特征在于,3. The method according to claim 2, characterized in that, 所述业务类型包括单播和/或组播;The service type includes unicast and/or multicast; 所述端口模板包括自发自收、半偏移、对称偏移、随机偏移、叶子全覆盖、叶子前半覆盖、叶子后半覆盖、叶子间隔半覆盖以及叶子随机覆盖中的任意一种或多种;The port template includes any one or more of spontaneous self-closing, half-offset, symmetrical offset, random offset, full leaf coverage, leaf front half coverage, leaf back half coverage, leaf interval half coverage, and leaf random coverage. ; 所述速率模板包括突发开启、突发未开启、满流量、半流量以及自定义百分比流量中的任意一种或多种;The rate template includes any one or more of burst on, burst off, full flow, half flow, and custom percentage flow; 所述优先级模板包括一种或者多种流量传输优先级,且当所述优先级模板包括多种流量传输优先级时,所述多种流量传输优先级之间的比例为预设比例和/或自定义比例;The priority template includes one or more traffic transmission priorities, and when the priority template includes multiple traffic transmission priorities, the ratio between the multiple traffic transmission priorities is a preset ratio and/ Or custom proportion; 所述包长模板包括自定义包长、包长在预设包长区间内随机跳变、包长在预设包长区间内递增跳变以及多种包长混合中的任意一种或多种;The packet length template includes any one or more of a custom packet length, a random jump of the packet length within a preset packet length interval, an incremental jump of the packet length within the preset packet length interval, and a mixture of multiple packet lengths. ; 所述端口信息包括端口编号、物理地址汇聚MAG来源以及端口速率中的任意一种或多种;The port information includes any one or more of port number, physical address aggregation MAG source, and port rate; 所述业务转发路径用于描述业务的转发路径和/或转发时延。The service forwarding path is used to describe the forwarding path and/or forwarding delay of the service. 4.根据权利要求1至3任一项所述的方法,其特征在于,所述方法还包括:4. The method according to any one of claims 1 to 3, characterized in that the method further includes: 根据所述多组第一配置参数以及所述多组第一仿真测试结果,训练得到机器学习模型,所述机器学习模型的输入为所述多组第一配置参数中的每组第一配置参数,所述机器学习模型的输出为所述每组第一配置参数对应的第一仿真测试结果。According to the multiple sets of first configuration parameters and the multiple sets of first simulation test results, a machine learning model is trained, and the input of the machine learning model is each set of first configuration parameters in the multiple sets of first configuration parameters. , the output of the machine learning model is the first simulation test result corresponding to each set of first configuration parameters. 5.根据权利要求4所述的方法,其特征在于,所述方法还包括:5. The method according to claim 4, characterized in that, the method further comprises: 确定多组不同的第二配置参数;Determine multiple sets of different second configuration parameters; 将所述多组不同的第二配置参数分别输入所述机器学习模型以获得多组第二仿真测试结果,所述多组第二仿真测试结果为所述机器学习模型的输出;Input the multiple sets of different second configuration parameters into the machine learning model respectively to obtain multiple sets of second simulation test results, and the multiple sets of second simulation test results are the output of the machine learning model; 从所述多组第二仿真测试结果中确定目标第二仿真测试结果,所述目标第二仿真测试结果与预期输出流量一致,所述预期输出流量为目标转发业务的输入流量经过所述数据通路后的输出流量;A target second simulation test result is determined from the plurality of sets of second simulation test results. The target second simulation test result is consistent with the expected output traffic. The expected output traffic is the input traffic of the target forwarding service passing through the data path. The final output flow; 确定所述目标第二仿真测试结果对应的第二配置参数。Determine the second configuration parameter corresponding to the target second simulation test result. 6.根据权利要求4所述的方法,其特征在于,所述机器学习模型基于反向传播BP神经网络进行构建。6. The method according to claim 4, characterized in that the machine learning model is constructed based on a back propagation BP neural network. 7.一种确定配置参数的装置,其特征在于,所述装置包括:7. A device for determining configuration parameters, characterized in that the device includes: 第一确定模块,用于确定转发业务模拟信息,所述转发业务模拟信息包括输入流量信息和数据通路行为,其中,所述输入流量信息用于模拟多个转发业务所对应的输入流量,所述数据通路行为用于模拟传输所述输入流量的数据通路;The first determination module is used to determine the forwarding service simulation information. The forwarding service simulation information includes input flow information and data path behavior, wherein the input flow information is used to simulate the input flow corresponding to multiple forwarding services. The data path behavior is used to simulate the data path carrying the input traffic; 仿真测试模块,用于基于所述数据通路的多组第一配置参数分别对所述转发业务模拟信息进行仿真测试,得到多组第一仿真测试结果,所述多组第一配置参数为不同的配置参数,所述多组第一仿真测试结果中的每组第一仿真测试结果用于模拟所述多个转发业务所对应的输入流量经过所述多组第一配置参数中的一组第一配置参数所对应的数据通路后的输出流量,其中,所述数据通路上目标模块的配置参数为与所述目标模块对应的目标类中的成员赋值,所述目标模块为所述数据通路上的一个模块,所述数据通路上的不同模块对应于不同的类;A simulation test module, configured to perform simulation tests on the forwarding service simulation information based on multiple sets of first configuration parameters of the data path to obtain multiple sets of first simulation test results, where the multiple sets of first configuration parameters are different Configuration parameters, each set of first simulation test results in the plurality of sets of first simulation test results is used to simulate that the input traffic corresponding to the plurality of forwarding services passes through a set of first among the plurality of sets of first configuration parameters. The output traffic after configuring the data path corresponding to the parameter, wherein the configuration parameters of the target module on the data path are assigned values to the members in the target class corresponding to the target module, and the target module is on the data path. A module, different modules on the data path correspond to different classes; 第二确定模块,用于根据所述多组第一仿真测试结果,从所述多组第一配置参数中确定出目标第一仿真测试结果对应的目标第一配置参数。The second determination module is configured to determine the target first configuration parameter corresponding to the target first simulation test result from the plurality of sets of first configuration parameters according to the plurality of sets of first simulation test results. 8.根据权利要求7所述的装置,其特征在于,所述输入流量信息包括业务类型、端口模板、速率模板、优先级模板以及包长模板中的任意一种或多种,所述数据通路行为包括端口信息和/或业务转发路径。8. The device according to claim 7, wherein the input traffic information includes any one or more of service type, port template, rate template, priority template and packet length template, and the data path Behavior includes port information and/or service forwarding paths. 9.根据权利要求8所述的装置,其特征在于,9. The device according to claim 8, characterized in that, 所述业务类型包括单播和/或组播;The service type includes unicast and/or multicast; 所述端口模板包括自发自收、半偏移、对称偏移、随机偏移、叶子全覆盖、叶子前半覆盖、叶子后半覆盖、叶子间隔半覆盖以及叶子随机覆盖中的任意一种或多种;The port template includes any one or more of spontaneous self-closing, half-offset, symmetrical offset, random offset, full leaf coverage, leaf front half coverage, leaf back half coverage, leaf interval half coverage, and leaf random coverage. ; 所述速率模板包括突发开启、突发未开启、满流量、半流量以及自定义百分比流量中的任意一种或多种;The rate template includes any one or more of burst on, burst off, full flow, half flow, and custom percentage flow; 所述优先级模板包括一种或者多种流量传输优先级,且当所述优先级模板包括多种流量传输优先级时,所述多种流量传输优先级之间的比例为预设比例和/或自定义比例;The priority template includes one or more traffic transmission priorities, and when the priority template includes multiple traffic transmission priorities, the ratio between the multiple traffic transmission priorities is a preset ratio and/ Or custom proportion; 所述包长模板包括自定义包长、包长在预设包长区间内随机跳变、包长在预设包长区间内递增跳变以及多种包长混合中的任意一种或多种;The packet length template includes any one or more of a custom packet length, a random jump of the packet length within a preset packet length interval, an incremental jump of the packet length within the preset packet length interval, and a mixture of multiple packet lengths. ; 所述端口信息包括端口编号、物理地址汇聚MAG来源以及端口速率中的任意一种或多种;The port information includes any one or more of port number, physical address aggregation MAG source, and port rate; 所述业务转发路径用于描述业务的转发路径和/或转发时延。The service forwarding path is used to describe the forwarding path and/or forwarding delay of the service. 10.根据权利要求7至9任一项所述的装置,其特征在于,所述装置还包括:10. The device according to any one of claims 7 to 9, characterized in that the device further includes: 训练模块,用于根据所述多组第一配置参数以及所述多组第一仿真测试结果,训练得到机器学习模型,所述机器学习模型的输入为所述多组第一配置参数中的每组第一配置参数,所述机器学习模型的输出为所述每组第一配置参数对应的第一仿真测试结果。A training module, configured to train and obtain a machine learning model based on the plurality of sets of first configuration parameters and the plurality of sets of first simulation test results, where the input of the machine learning model is each of the plurality of sets of first configuration parameters. A set of first configuration parameters, and the output of the machine learning model is a first simulation test result corresponding to each set of first configuration parameters. 11.根据权利要求10所述的装置,其特征在于,所述装置还包括:11. The device according to claim 10, characterized in that the device further comprises: 第三确定模块,用于确定多组不同的第二配置参数;The third determination module is used to determine multiple sets of different second configuration parameters; 输入模块,用于将所述多组不同的第二配置参数分别输入所述机器学习模型以获得多组第二仿真测试结果,所述多组第二仿真测试结果为所述机器学习模型的输出;An input module, configured to input the multiple sets of different second configuration parameters into the machine learning model to obtain multiple sets of second simulation test results, where the multiple sets of second simulation test results are outputs of the machine learning model. ; 第四确定模块,用于从所述多组第二仿真测试结果中确定目标第二仿真测试结果,所述目标第二仿真测试结果与预期输出流量一致,所述预期输出流量为目标转发业务的输入流量经过所述数据通路后的输出流量;The fourth determination module is configured to determine a target second simulation test result from the plurality of sets of second simulation test results, the target second simulation test result is consistent with the expected output traffic, and the expected output traffic is the target forwarding service. The output traffic after the input traffic passes through the data path; 第五确定模块,用于确定所述目标第二仿真测试结果对应的第二配置参数。The fifth determination module is used to determine the second configuration parameter corresponding to the target second simulation test result. 12.根据权利要求10所述的装置,其特征在于,所述机器学习模型基于反向传播BP神经网络进行构建。12. The device according to claim 10, wherein the machine learning model is constructed based on a back propagation BP neural network. 13.一种用于确定配置参数的设备,其特征在于,包括:处理器和存储器;13. A device for determining configuration parameters, characterized by comprising: a processor and a memory; 所述存储器,用于存储指令或计算机程序;The memory is used to store instructions or computer programs; 所述处理器,用于执行所述指令或计算机程序,执行权利要求1-6任意一项所述的方法。The processor is configured to execute the instructions or computer program to perform the method described in any one of claims 1-6. 14.一种计算机可读存储介质,其特征在于,包括指令或计算机程序,当其在计算机上运行时,使得计算机执行以上权利要求1-6任意一项所述的方法。14. A computer-readable storage medium, characterized in that it includes instructions or computer programs that, when run on a computer, cause the computer to perform the method described in any one of claims 1-6 above.
CN202010170690.0A 2020-03-12 2020-03-12 A method for determining configuration parameters and related equipment Active CN113392607B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010170690.0A CN113392607B (en) 2020-03-12 2020-03-12 A method for determining configuration parameters and related equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010170690.0A CN113392607B (en) 2020-03-12 2020-03-12 A method for determining configuration parameters and related equipment

Publications (2)

Publication Number Publication Date
CN113392607A CN113392607A (en) 2021-09-14
CN113392607B true CN113392607B (en) 2024-02-02

Family

ID=77615748

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010170690.0A Active CN113392607B (en) 2020-03-12 2020-03-12 A method for determining configuration parameters and related equipment

Country Status (1)

Country Link
CN (1) CN113392607B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113992507B (en) * 2021-10-11 2023-10-27 新华三信息安全技术有限公司 Method, device, server and storage medium for determining default parameter values
CN114003310A (en) * 2021-10-29 2022-02-01 深信服科技股份有限公司 A method, device, device and medium for parameter selection based on business scenarios
CN114331917B (en) * 2022-03-08 2022-06-21 深圳比特微电子科技有限公司 Equipment debugging method and controller
CN114428748B (en) * 2022-03-30 2022-06-21 北京数腾软件科技有限公司 Simulation test method and system for real service scene
CN116056245B (en) * 2022-07-19 2023-10-20 荣耀终端有限公司 Data scheduling method, device and computer readable storage medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110728096A (en) * 2018-06-29 2020-01-24 三星电子株式会社 Methods of fabricating integrated circuits and computing systems for designing integrated circuits

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI236252B (en) * 2002-12-27 2005-07-11 Hon Hai Prec Ind Co Ltd Apparatus and method for a network testing system
US9769060B2 (en) * 2015-07-20 2017-09-19 Schweitzer Engineering Laboratories, Inc. Simulating, visualizing, and searching traffic in a software defined network
US20190311290A1 (en) * 2018-04-06 2019-10-10 Mentor Graphics Corporation Deep Learning Based Test Compression Analyzer
US10853554B2 (en) * 2019-06-28 2020-12-01 Intel Corporation Systems and methods for determining a configuration for a microarchitecture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110728096A (en) * 2018-06-29 2020-01-24 三星电子株式会社 Methods of fabricating integrated circuits and computing systems for designing integrated circuits

Also Published As

Publication number Publication date
CN113392607A (en) 2021-09-14

Similar Documents

Publication Publication Date Title
CN113392607B (en) A method for determining configuration parameters and related equipment
US10496770B2 (en) System level simulation in Network on Chip architecture
US9785732B2 (en) Verification low power collateral generation
US7555420B2 (en) Method and system for network emulation
CN109933535B (en) Test case generation method and device and server
US20110191088A1 (en) Object-oriented network-on-chip modeling
JP2018191279A (en) Test traffic generation and inspection methods, and associated switch input or output ports and switches
CN114090250B (en) EDA hardware acceleration method and system based on Banyan network and multi-FPGA structure
CN108120917B (en) Test clock circuit determination method and device
US10149181B2 (en) Signal output apparatus, board, and signal output method
CN106789652A (en) Service shunting method and device
CN109587010A (en) A kind of method for detecting connectivity, stream forwarding device and network controller
CN118138488A (en) Ethernet stress testing method, device and electronic equipment for vehicle-mounted controller
US20070282932A1 (en) Bus inverting code generating apparatus and method of generating bus inverting code using the same
CN116192654A (en) A method and device for dynamic access of physical equipment in a network shooting range
CN119766731A (en) Congestion control method, device, electronic device and storage medium
CN104853447B (en) A kind of data information processing method and device
CN108228965B (en) Simulation verification method, device and equipment for memory cell
CN110958177B (en) Network-on-chip route optimization method, device, equipment and readable storage medium
CN113238897A (en) System-level test method and device of chip, computer equipment and storage medium
Bhaskar et al. A study of the effect of virtual channels on the performance of network-on-chip
Mubeen Evaluation of source routing for mesh topology network on chip platforms
CN113852511A (en) Network performance testing method and device and computer readable storage medium
CN110971475A (en) Port forwarding test method, test system construction method and auxiliary test equipment
CN108616374B (en) Test excitation system of comprehensive core processor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant