[go: up one dir, main page]

CN113392370B - A SLAM system - Google Patents

A SLAM system Download PDF

Info

Publication number
CN113392370B
CN113392370B CN202110658243.4A CN202110658243A CN113392370B CN 113392370 B CN113392370 B CN 113392370B CN 202110658243 A CN202110658243 A CN 202110658243A CN 113392370 B CN113392370 B CN 113392370B
Authority
CN
China
Prior art keywords
information
key frame
level
storage
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110658243.4A
Other languages
Chinese (zh)
Other versions
CN113392370A (en
Inventor
任杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metoak Technology Beijing Co ltd
Yuanxiang Technology Suzhou Co ltd
Original Assignee
Yuanxiang Technology Suzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuanxiang Technology Suzhou Co ltd filed Critical Yuanxiang Technology Suzhou Co ltd
Priority to CN202110658243.4A priority Critical patent/CN113392370B/en
Priority to CN202111532176.8A priority patent/CN114154117B/en
Publication of CN113392370A publication Critical patent/CN113392370A/en
Application granted granted Critical
Publication of CN113392370B publication Critical patent/CN113392370B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/16Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/60Memory management

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices For Executing Special Programs (AREA)
  • Instructional Devices (AREA)

Abstract

本发明公开了一种SLAM系统;属于可移动平台同步定位与地图构建这一领域;其技术要点在于:对机器视觉所接收到的图像抽象和表达为不同层级的信息;越高层的信息单个存储量越低,越低层的信息单个存储量越高;越高层的信息编号越多;越低层的信息编号越少。采用本发明的一种SLAM系统,达到长时大尺度SLAM下回环检测的性能与高效性。

Figure 202110658243

The invention discloses a SLAM system, which belongs to the field of synchronous positioning and map construction of movable platforms; the technical points of the system are: abstracting and expressing images received by machine vision into information of different levels; information of higher layers is stored individually The lower the amount, the higher the single storage capacity of the lower layer information; the higher the information number of the higher layer; the lower the information number of the lower layer. By adopting the SLAM system of the present invention, the performance and efficiency of loopback detection under long-term large-scale SLAM can be achieved.

Figure 202110658243

Description

SLAM system
Technical Field
The invention relates to the technical field of automobile synchronous positioning and map construction, in particular to an SLAM system.
Background
SLAM, an acronym for Simultaneous localization and Mapping, which is interpreted as: synchronous positioning and map construction; the technology is a core technology (which belongs to support software in the field of intelligent transportation) for realizing autonomous navigation positioning and building an environment map for an automobile.
The existing Visual SLAM algorithm faces the main problem that a large amount of historical information needs to be stored to carry out Loop Detection (Loop Closure Detection) in a larger scale and a longer time range to reduce accumulated deviation when facing Long-term (Long-term) and large-scale (Large-scale) scenes.
For example, CN111767854A proposes a SLAM loop detection method combining scene text semantic information, which has the core steps of: for any key frame in the key frame set, calculating the cosine similarity of the total information vector and the current frame total information vector, and taking the key frame of which the similarity is greater than a certain threshold and which is not directly adjacent to the current frame as a loop candidate frame. As this approach, there is the aforementioned problem of storing information vectors for each key frame. This is very stressful for hardware storage devices.
Disclosure of Invention
The invention aims to provide an SLAM system which solves the defects in the prior art.
A SLAM system, comprising: the system comprises a current key frame information extraction module, a current key frame information storage importance coefficient calculation module and a key frame set level information storage importance coefficient calculation and storage module; a key frame set level information calculating and storing module;
the current key frame information storage importance coefficient calculation module is connected with the key frame set level information storage importance coefficient calculation and storage module;
the current key frame information extraction module and the key frame set level information storage importance coefficient calculation and storage module are respectively connected with the key frame set level information calculation and storage module;
the current key frame information extraction module is used for extracting information of different levels from a current key frame image;
the current key frame information storage importance coefficient calculation module is used for calculating storage importance coefficients of different levels of information of the current key frame;
the key frame set level information storage importance coefficient calculation and storage module is used for storing the storage importance coefficients of different level information of the current key frame set;
the key frame set level information calculation and storage module is used for determining a storage mode for extracting information of different levels from the current key frame image transmitted by the current key frame information extraction module.
Further, the SLAM system further includes: the system comprises an information level sequence establishing module and an information level memory space establishing module;
the information level sequence establishing module and the information level memory space establishing module are respectively connected with the current key frame information extracting module; the information level sequence establishing module and the information level storage capacity establishing module are respectively connected with the current key frame information storage importance coefficient calculating module.
Further, the information hierarchy sequence establishing module is configured to establish an information hierarchy sequence of a key frame set, and is configured to instruct the current key frame information extracting module to extract information of a current key frame image, and is a carrier operated in step S100; the information level storage quantity establishing module is used for establishing different level information storage spaces of the key frame set, and is a carrier operated in step S200.
A SLAM method, characterized by:
abstracting and expressing images received by machine vision into different levels of information;
the higher the information individual storage amount, the higher the information individual storage amount of the lower layer (i.e., X)j,βThe storage space occupied by a single is less than Xj+1,βA single occupied storage space);
the higher the information number of the layer, the more; the lower the layer, the less the information number (i.e., Q described below)j>Qj+1)。
A SLAM method comprising the steps of:
s100, establishing an information hierarchy sequence of the key frames:
the information hierarchy sequence of the key frame is expressed as follows according to the descending order of the hierarchy level by level: level 1 information, level 2 information, level j information … … …, level k information:
s200, determining the storage capacity of each information level of the key frame:
the storage amount of the 1 st level information is Q1The storage amount of the 2 nd level information is Q2… … … … the storage capacity of the j level information is Qj… … … … the k-th level information has a storage capacity of Qk
For Q1~QkFor example, there are: q1>Q2>……Qj-1>Qj>……Qk
S300, the current key frame is the Yth key frame, and the information of layers 1 to k is extracted from the Yth key frame: x1,Y、X2,Y、……Xj,Y、……Xk,Y(ii) a And simultaneously calculating the storage importance coefficients of the information of the 1 st to k th layers extracted from the Yth key frame: z1,Y、Z2Y、……Zj,Y、……Zk,Y
X1,Y、X2,Y、……Xj,Y、……Xk,YRespectively represent: level 1 information of the Yth key frame, the Yth key frame… … th level information of the Y-th key frame, … … th level information of the Y-th key frame;
Z1,Y、Z2,Y、……Zj,Y、……Zk,Yrespectively represent: a storage importance coefficient of level 1 information of a Y-th key frame, a storage importance coefficient of level 2 information of the Y-th key frame, a storage importance coefficient of a j-th level information of … … the Y-th key frame, a storage importance coefficient of a k-th level information of … … the Y-th key frame;
s400, the storage importance coefficients of the information of the 1 st to k th layers extracted from the current Y-th key frame are: z1,Y、Z2,Y、……Zj,Y、……Zk,YAdding the importance parameter into a storage importance coefficient matrix of the current key frame level information (all the storage importance parameters of the extracted 1 st-k level information of the Y-th key frame are stored into the storage importance coefficient matrix of the current key frame level information);
S500,
extracting the information of the 1 st to k th layers from the current Y-th key frame: x1,Y、X2,Y、……Xj,Y、……Xk,Y,Adding the key frame level information into a current key frame level information matrix:
when 0 is present<Y≤QkWhen the current key frame set is selected, all the extracted 1 st-k level information of the Y key frame is stored into the current key frame set;
the above steps are expressed as follows:
Figure GDA0003381839210000031
Xj,Iexpressing j level information of the I key frame;
when Q isj<Y≤Qj-1When j represents any natural number from 2 to k;
storing all the level information from level 1 to level j-1 of the Y key frame into the current key frame set, wherein the steps are expressed by adopting the following formula:
Figure GDA0003381839210000032
for j-th to k-th level information of the Y-th key frame, calculating layer by layer, and determining whether to store:
for any of the j-th to k-th layers:
first, from Zβ,1,Zβ,2……Zβ,I……Zβ,Y-1Finding the minimum value, which takes Zβ,mThe information storage importance parameter of the mth key frame beta level is minimum;
secondly, according to Zβ,m、Zβ,YDetermines whether to store the beta level information X of the Y-th key frameβ,Y
When Z isβ,m>Zβ,Y
Then Zβ,YGiven a new value such that Zβ,YNo longer participate in the ranking;
Xβ,Ygiving a new value of NULL or 0, namely not storing the beta level information of the Yth key frame;
when Z isβ,m≤Zβ,Y
Then Zβ,mGiven a new value such that Zβ,mNo longer participate in the ranking;
Xβ,massigning a new value of NULL or 0, i.e., deleting the beta level information of the mth key frame and adding the beta level information X of the Yth key frameβ,YStoring, namely, the storage space of the beta level information of the mth key frame is reserved to the storage space of the beta level information of the Yth key frame, namely, the storage space of the beta level information is always kept at Qβ
When Q is1<When Y is in the range of:
for the level 1-k information of the Y key frame, calculating layer by layer, and determining whether to store:
for any of the 1 st to k th layers,
first, from Zβ,1,Zβ,2……Zβ,I……Zβ,Y-1Finding the minimum value, which takes Zβ,mThe information storage importance parameter of the mth key frame beta level is minimum;
secondly, according to Zβ,m、Zβ,YDetermines whether to store the beta level information X of the Y-th key frameβ,Y
When Z isβ,m>Zβ,Y
Then Zβ,YGiven a new value such that Zβ,YNo longer participate in the ranking;
Xβ,Ygiving a new value of NULL or 0, namely not storing the beta level information of the Yth key frame;
when Z isβ,m≤Zβ,Y
Then Zβ,mGiven a new value such that Zβ,mNo longer participate in the ranking;
Xβ,massigning a new value of NULL or 0, i.e., deleting the beta level information of the mth key frame and adding the beta level information X of the Yth key frameβ,YStoring, namely, the storage space of the beta level information of the mth key frame is reserved to the storage space of the beta level information of the Yth key frame, namely, the storage space of the beta level information is always kept at Qβ
Further, "when Z" in step S500β,m>Zβ,Y,Zβ,YNew values are assigned ", NULL or + ∞.
Further, in step S100, k is not less than 4.
The invention has the beneficial effects that:
first, the basic idea of the present application is: abstracting and expressing information received by machine vision at different semantic levels, and coding the information from the information level; the higher the semantic feature of the higher layer, the more simplified the information quantity stored, the higher the extraction frequency, the longer the time stored in the SLAM system; conversely, the lower the level of the point cloud feature, the larger the amount of data stored, the lower the frequency of extraction, and the shorter the time for storage in the SLAM system. By setting different storage and retrieval index configurations, the performance and the efficiency of freely allocating storage/retrieval and long-time large-scale SLAM loop detection are achieved.
Secondly, based on the basic concept of the application, a method for storing the SLAM key frame matrix is provided: the storage is determined by means of a double coefficient, namely: and storing the importance coefficient matrix and the current key frame level information matrix to jointly determine how the newly acquired 1 st-k level information of the Y-th key frame is stored into the current key frame level information matrix.
Drawings
The invention will be further described in detail with reference to examples of embodiments shown in the drawings to which, however, the invention is not restricted.
Fig. 1 is a sequence layout diagram of information hierarchy according to the first embodiment.
Fig. 2 is a schematic diagram of "original image-dense point cloud feature" extraction according to the first embodiment.
Detailed Description
A SLAM method comprising the steps of:
s100, establishing an information hierarchy sequence of the key frames:
the information hierarchy sequence of the key frame is expressed as follows according to the descending order of the hierarchy level by level: level 1 information, level 2 information, level j information … … …, level k information:
s200, determining the storage capacity of each information level of the key frame:
the storage amount of the 1 st level information is Q1The storage amount of the 2 nd level information is Q2… … … … the storage capacity of the j level information is Qj… … … … the k-th level information has a storage capacity of Qk
For Q1~QkFor example, there are: q1>Q2>……Qj-1>Qj>……Qk
S300, the current key frame is the Yth key frame, and the information of layers 1 to k is extracted from the Yth key frame: x1,Y、X2,Y、……Xj,Y、……Xk,Y(ii) a Computing the Y-th key frame extraction at the same timeTaking the storage importance coefficients of the information of the 1 st to k th layers: z1,Y、Z2,Y、……Zj,Y、……Zk,Y
X1,Y、X2,Y、……Xj,Y、……Xk,YRespectively represent: level 1 information of the Y-th key frame, level 2 information of the Y-th key frame, … … level j information of the Y-th key frame, … … level k information of the Y-th key frame;
Z1,Y、Z2,Y、……Zj,Y、……Zk,Yrespectively represent: a storage importance coefficient of level 1 information of a Y-th key frame, a storage importance coefficient of level 2 information of the Y-th key frame, a storage importance coefficient of a j-th level information of … … the Y-th key frame, a storage importance coefficient of a k-th level information of … … the Y-th key frame;
s400, the storage importance coefficients of the information of the 1 st to k th layers extracted from the current Y-th key frame are: z1,Y、Z2,Y、……Zj,Y、……Zk,YAdding the importance parameter into a storage importance parameter set (namely, adding the importance parameter set into a storage importance coefficient matrix of the hierarchy information of the current key frame) of the current key frame (at the moment, the corresponding current key frame has 1 st to Y-1 st key frames):
all storage importance parameters of the extracted 1 st-k level information of the Y-th key frame are stored into a storage importance coefficient matrix of the current key frame level information;
the above steps can be expressed as follows:
Figure GDA0003381839210000061
S500,
extracting the information of the 1 st to k th layers from the current Y-th key frame: x1,Y、X2,Y、……Xj,Y、……Xk,Y,Add to the current key frame set (i.e., to the current key frame level information matrix):
kwhen 0 is present<When Y is less than or equal to QStoring all the extracted 1 st-k level information of the Y-th key frame into the current key frame set;
the above steps can be expressed as follows:
Figure GDA0003381839210000062
Xj,Iinformation of j level expressing the I key frame (the meaning of other expressions can be known from it, for example, Xk,YK-th level information expressed as the Y-th key frame).
k k-1When Q is<When Y is less than or equal to QAnd storing all the level information from level 1 to level k-1 of the Y-th key frame into the current key frame set, wherein the steps can be expressed as follows:
Figure GDA0003381839210000063
for the kth layer information of the Y-th key frame:
first, from Zk,1,Zk,2……Zk,I……Zk,Y-1Finding the minimum value, which takes Zk,mThe information storage importance parameter of the kth level of the mth key frame is minimum;
secondly, according to Zk,m、Zk,YDetermines whether to store the kth level information X of the Yth key framek,Y
When Z isk,m>Zk,Y
Then Zk,YAssigning a new value (e.g., NULL or + ∞) (so that Zk,YNo longer participating in the ranking);
Xk,Ygiving a new value of NULL or 0, namely not storing the kth level information of the Yth key frame;
when Z isk,m≤Zk,Y
Then Zk,mA new value is given to the value of,so that Z isk,mNo longer participate in the ranking;
Xk,massigning a new value of NULL or 0, i.e. removing the kth level information of the mth key frame and adding the kth level information X of the Yth key framek,YStoring, namely, the storage space of the k-level information of the mth key frame is saved to the storage space of the k-level information of the Yth key frame (namely, the storage amount of the k-level information is always kept at Qk)。
……
j j-1When Q is<When Y is less than or equal to QAnd storing all the level information from level 1 to level j-1 of the Y-th key frame into the current key frame set, wherein the steps can be expressed as follows:
Figure GDA0003381839210000071
for the j-th to k-th level (it should be noted that j in this application represents any natural number between [1, k ] rather than k-1, i.e. the order of j, k in english does not represent the distance between the two) information of the Y-th key frame, the calculation is performed layer by layer to determine whether to store:
for the jth level information of the yth key frame:
first, from Zj,1,Zj,2……Zj,I……Zj,Y-1Finding the minimum value, which takes Zj,mThe j level information storage importance parameter of the mth key frame is minimum;
secondly, according to Zj,m、Zj,YDetermines whether to store the j level information X of the Y key framej,Y
When Z isj,m>Zj,Y
Then Zj,YAssigning a new value (e.g., NULL or + ∞) such that Zj,YNo longer participate in the ranking;
Xj,Ygiving a new value of NULL or 0, namely not storing the j level information of the Y key frame;
when Z isj,m≤Zj,Y
Then Zj,mGiven a new value such that Zj,mNo longer participate in the ranking;
Xj,massigning a new value of NULL or 0, i.e. deleting the j level information of the mth key frame and adding the j level information X of the Yth key framej,YStoring, namely, the storage space of the j level information of the mth key frame is made to be equal to the storage space of the j level information of the Yth key frame (namely, the storage amount of the j level information is always kept at Qj)。
For the j +1 th level information of the Y-th key frame:
first, from Zj+1,1,Zj+1,2……Zj+1,I……Zj+1,Y-1Finding the minimum value, which takes Zj+1,mThe j +1 th level information storage importance parameter of the mth key frame is minimum;
secondly, according to Zj+1,m、Zj+1,YDetermines whether to store the j +1 th level information X of the Yth key framej+1,Y
When Z isj+1,m>Zj+1,Y
Then Zj+1,YAssigning a new value (e.g., NULL or + ∞) such that Zj+1,YNo longer participate in the ranking;
Xj+1,Ygiving a new value of NULL or 0, namely not storing the j +1 level information of the Yth key frame;
when Z isj+1,m≤Zj+1,Y
Then Zj+1,mGiven a new value such that Zj+1,mNo longer participate in the ranking;
Xj+1,massigning a new value of NULL or 0, i.e. removing the j +1 level information of the mth key frame and deleting the j +1 level information X of the Yth key framej+1,YStoring, namely, the storage space of the j +1 level information of the mth key frame is made to be equal to the storage space of the j +1 level information of the Yth key frame (namely, the storage amount of the j +1 level information is always kept at Qj+1)。
………
For the kth layer information of the Y-th key frame:
first, from Zk,1,Zk,2……Zk,I……Zk,Y-1Finding the minimum value, which takes Zk,mThe information storage importance parameter of the kth level of the mth key frame is minimum;
secondly, according to Zk,m、Zk,YDetermines whether to store the kth level information X of the Yth key framek,Y
When Z isk,m>Zk,Y
Then Zk,YAssigning a new value (e.g., NULL or + ∞) (so that Zk,YNo longer participating in the ranking);
Xk,Ygiving a new value of NULL or 0, namely not storing the kth level information of the Yth key frame;
when Z isk,m≤Zk,Y
Then Zk,mGiven a new value such that Zk,mNo longer participate in the ranking;
Xk,massigning a new value of NULL or 0, i.e. removing the kth level information of the mth key frame and adding the kth level information X of the Yth key framek,YStoring, namely, the storage space of the k-level information of the mth key frame is saved to the storage space of the k-level information of the Yth key frame (namely, the storage amount of the k-level information is always kept at Qk)。
……
2 1When Q is<When Y is less than or equal to Q
Storing all the level 1 information of the Y-th key frame into the current key frame set, wherein the steps can be expressed as follows:
|X1,1X1,2......X1,I......X1,Y-1|—>|X1,1X1,2......X1,I......X1,Y-1X1,Y|
for the 2 nd to k th level information of the Y-th key frame, calculating layer by layer, and determining whether to store:
for the level 2 information of the Y-th key frame:
first, from Z2,1,Z2,2……Z2,I……Z2,Y-1Finding the minimum value, which takes Z2,mTo indicate that the storage importance parameter of the mth key frame level 2 information is minimum;
secondly, according to Z2,m、Z2,YDetermines whether to store the 2 nd level information X of the Yth key frame2,Y
When Z is2,m>Z2,Y
Then Z2,YAssigning a new value (e.g., NULL or + ∞) such that Z2,YNo longer participate in the ranking;
X2,Ygiving a new value of NULL or 0, namely not storing the 2 nd level information of the Yth key frame;
when Z is2,m≤Z2,Y
Then Z2,mGiven a new value such that Z2,mNo longer participate in the ranking;
X2,massigning a new value of NULL or 0, i.e., deleting the 2 nd level information of the mth key frame and deleting the 2 nd level information X of the Yth key frame2,YStoring, namely, the storage space of the 2 nd level information of the mth key frame is saved to the storage space of the 2 nd level information of the Yth key frame (namely, the storage amount of the 2 nd level information is always kept at Q2)。
For the level 3 information of the Yth key frame:
first, from Z3,1,Z3,2……Z3,I……Z3,Y-1Finding the minimum value, which takes Z3,mTo indicate that the 3 rd level information storage importance parameter of the mth key frame is minimum;
secondly, according to Z3,m、Z3,YDetermines whether to store the 3 rd level information X of the Yth key frame3,Y
When Z is3,m>Z3,Y
Then Z3,YGiven a new value (e.g. N)ULL or + ∞) such that Z3,YNo longer participate in the ranking;
X3,Ygiving a new value of NULL or 0, namely not storing the 3 rd level information of the Yth key frame;
when Z is3,m≤Z3,Y
Then Z3,mGiven a new value such that Z3,mNo longer participate in the ranking;
X3,massigning a new value of NULL or 0, i.e., removing the 3 rd level information of the mth key frame and adding the 3 rd level information X of the yth key frame3,YStoring, namely, the storage space of the 3 rd level information of the mth key frame is saved to the 3 rd level information storage space of the Yth key frame (namely, the storage space of the 3 rd level information is always kept at Q3)。
………
For the kth layer information of the Y-th key frame:
first, from Zk,1,Zk,2……Zk,I……Zk,Y-1Finding the minimum value, which takes Zk,mThe information storage importance parameter of the kth level of the mth key frame is minimum;
secondly, according to Zk,m、Zk,YDetermines whether to store the kth level information X of the Yth key framek,Y
When Z isk,m>Zk,Y
Then Zk,YAssigning a new value (e.g., NULL or + ∞) (so that Zk,YNo longer participating in the ranking);
Xk,Ygiving a new value of NULL or 0, namely not storing the kth level information of the Yth key frame;
when Z isk,m≤Zk,Y
Then Zk,mGiven a new value such that Zk,mNo longer participate in the ranking;
Xk,massigning a new value of NULL or 0, i.e. removing the kth level information of the mth key frame and adding the kth level information X of the Yth key framek,YStoring, i.e. the mth key frameThe storage space of k-level information is allowed to be the k-level information storage space of the Y-th key frame (namely, the storage amount of the k-level information is always kept at Qk)。
1When Q is<At Y time
For the level 1-k information of the Y key frame, calculating layer by layer, and determining whether to store:
for level 1 information of the Y-th key frame:
first, from Z1,1,Z1,2……Z1,I……Z1,Y-1Finding the minimum value, which takes Z1,mThe 1 st level information storage importance parameter of the mth key frame is minimum;
secondly, according to Z1,m、Z1,YDetermines whether to store the level 1 information X of the Yth key frame1,Y
When Z is1,m>Z1,Y
Then Z1,YAssigning a new value (e.g., NULL or + ∞) such that Z1,YNo longer participate in the ranking;
X1,Ygiving a new value of NULL or 0, namely not storing the level 1 information of the Yth key frame;
when Z is1,m≤Z1,Y
Then Z1,mGiven a new value such that Z1,mNo longer participate in the ranking;
X1,massigning a new value of NULL or 0, i.e. deleting the level 1 information of the mth key frame and deleting the level 1 information X of the Yth key frame1,YStoring, namely, the storage space of the 1 st level information of the mth key frame is saved to the 1 st level information storage space of the Yth key frame (namely, the storage amount of the 1 st level information is always kept at Q1)。
For the level 2 information of the Y-th key frame:
first, from Z2,1,Z2,2……Z2,I……Z2,Y-1Finding the minimum value, which takes Z2,mTo represent, i.e. the mth key frameThe 2 nd level information storage importance parameter is minimum;
secondly, according to Z2,m、Z2,YDetermines whether to store the 2 nd level information X of the Yth key frame2,Y
When Z is2,m>Z2,Y
Then Z2,YAssigning a new value (e.g., NULL or + ∞) such that Z2,YNo longer participate in the ranking;
X2,Ygiving a new value of NULL or 0, namely not storing the 2 nd level information of the Yth key frame;
when Z is2,m≤Z2,Y
Then Z2,mGiven a new value such that Z2,mNo longer participate in the ranking;
X2,massigning a new value of NULL or 0, i.e., deleting the 2 nd level information of the mth key frame and deleting the 2 nd level information X of the Yth key frame2,YStoring, namely, the storage space of the 2 nd level information of the mth key frame is saved to the storage space of the 2 nd level information of the Yth key frame (namely, the storage amount of the 2 nd level information is always kept at Q2)。
For the level 3 information of the Yth key frame:
first, from Z3,1,Z3,2……Z3,I……Z3,Y-1Finding the minimum value, which takes Z3,mTo indicate that the 3 rd level information storage importance parameter of the mth key frame is minimum;
secondly, according to Z3,m、Z3,YDetermines whether to store the 3 rd level information X of the Yth key frame3,Y
When Z is3,m>Z3,Y
Then Z3,YAssigning a new value (e.g., NULL or + ∞) such that Z3,YNo longer participate in the ranking;
X3,Ygiving a new value of NULL or 0, namely not storing the 3 rd level information of the Yth key frame;
when Z is3,m≤Z3,Y
Then Z3,mGiven a new value such that Z3,mNo longer participate in the ranking;
X3,massigning a new value of NULL or 0, i.e., removing the 3 rd level information of the mth key frame and adding the 3 rd level information X of the yth key frame3,YStoring, namely, the storage space of the 3 rd level information of the mth key frame is saved to the 3 rd level information storage space of the Yth key frame (namely, the storage space of the 3 rd level information is always kept at Q3)。
………
For the kth layer information of the Y-th key frame:
first, from Zk,1,Zk,2……Zk,I……Zk,Y-1Finding the minimum value, which takes Zk,mThe information storage importance parameter of the kth level of the mth key frame is minimum;
secondly, according to Zk,m、Zk,YDetermines whether to store the kth level information X of the Yth key framek,Y
When Z isk,m>Zk,Y
Then Zk,YAssigning a new value (e.g., NULL or + ∞) (so that Zk,YNo longer participating in the ranking);
Xk,Ygiving a new value of NULL or 0, namely not storing the kth level information of the Yth key frame;
when Z isk,m≤Zk,Y
Then Zk,mGiven a new value such that Zk,mNo longer participate in the ranking;
Xk,massigning a new value of NULL or 0, i.e. removing the kth level information of the mth key frame and adding the kth level information X of the Yth key framek,YStoring, namely, the storage space of the k-level information of the mth key frame is saved to the storage space of the k-level information of the Yth key frame (namely, the storage amount of the k-level information is always kept at Qk)。
A SLAM system, comprising: the system comprises an information level sequence establishing module, an information level memory space establishing module, a current key frame information extracting module, a current key frame information storage importance coefficient calculating module and a key frame set level information storage importance coefficient calculating and storing module; a key frame set level information calculating and storing module;
the information level sequence establishing module and the information level memory space establishing module are respectively connected with the current key frame information extracting module;
the information level sequence establishing module and the information level storage capacity establishing module are respectively connected with the current key frame information storage importance coefficient calculating module;
the current key frame information storage importance coefficient calculation module is connected with the key frame set level information storage importance coefficient calculation and storage module;
the current key frame information extraction module and the key frame set level information storage importance coefficient calculation and storage module are respectively connected with the key frame set level information calculation and storage module;
the information level sequence establishing module is used for establishing an information level sequence of a key frame set and guiding the current key frame information extracting module to extract information of a current key frame image, and is a carrier operated in the step S100;
the information level storage quantity establishing module is used for establishing different level information storage spaces of the key frame set and is a carrier operated in the step S200;
the current key frame information extraction module is used for extracting information of different levels from the current key frame image, and is a carrier operated in the step S300;
the current key frame information storage importance coefficient calculation module is used for calculating storage importance coefficients of different levels of information of the current key frame;
the key frame set level information storage importance coefficient calculation and storage module is used for storing the storage importance coefficients of different level information of the current key frame set;
the key frame set level information calculation and storage module is used for determining a storage mode (namely determining whether the key frame set level information is stored) for extracting information of different levels from the current key frame image transmitted by the current key frame information extraction module.
It should be noted that: the information level sequence establishing module and the information level storage capacity establishing module are not necessary technical features, that is, the S100 and the S200 are not necessarily set by the two modules, and a designer can directly set related parameters in the software system.
The first embodiment is as follows: as shown in fig. 1, in a SLAM method, information of a key frame set is processed hierarchically; the method comprises the following steps:
s100, establishing an information level sequence of the key frame set:
level 1 information, namely a characteristic word set (namely a BOW model) of a scene;
level 2 information: spatial relationship expression of spatial entities;
level 3 information: point/line/surface features;
level 4 information: dense point cloud features.
S200, establishing the storage priority of the information of the key frame set according to the information level sequence established in the step S100: the storage amount of the information level of the hierarchy is larger than that of the information level of the hierarchy, and the storage time of the information level of the hierarchy is longer than that of the information level of the hierarchy.
Specifically, S200 is to determine the storage capacity of the 1 st to 4 th information levels of the key frame:
the storage amount of the 1 st level information is Q1The amount of storage of the 2 nd level information is Q50000240000, the amount of storage of the 3 rd level information is Q310000, the storage amount of the 4 th hierarchy information is Q4=700:
S300, the current key frame is the Y-th key frame, as shown in fig. 1: extracting information of layers 1-4 from the Yth key frame: x1,Y、X2,Y、X3,Y、Xk,Y
And simultaneously calculating the storage importance coefficients of the information of the 1 st to k th layers extracted from the Yth key frame: z1,Y、Z2,Y、Z3,Y、Zk,Y(ii) a The calculation principle of the storage importance coefficient can be specifically determined and adjusted by a system designer according to actual requirements and environments. For example: i am giving the machine in an indoor simulated environment a design of: the storage importance coefficient of the crossroad is positioned by 1.0, the storage importance coefficient of the T-shaped crossroad is positioned by 0.8, and the storage importance coefficient of the middle of the road is positioned by 0.5.
X1,Y、X2,Y、X3,Y、X4,YRespectively represent: level 1 information of a Y-th key frame, level 2 information of the Y-th key frame, level 3 information of the Y-th key frame, and level 4 information of the Y-th key frame;
Z1,Y、Z2,Y、Z3,Y、Z4,Yrespectively represent: the storage importance coefficient of the 1 st level information of the Y-th key frame, the storage importance coefficient of the 2 nd level information of the Y-th key frame, the storage importance coefficient of the 3 rd level information of the Y-th key frame and the storage importance coefficient of the 4 th level information of the Y-th key frame;
s400, the storage importance coefficient of the information of the 1 st to 4 th layers extracted from the current Y-th key frame is: z1,Y、Z2,Y、Z3,Y、Z4,YAdding the importance coefficient into a storage importance coefficient matrix of the current key frame level information:
all storage importance parameters of the extracted 1 st-4 th-level information of the Y-th key frame are stored into a storage importance coefficient matrix of the current key frame level information;
the above steps can be expressed as follows:
Figure GDA0003381839210000131
s500, extracting the information of the 1 st to 4 th layers from the current Y-th key frame: x1,Y、X2,Y、X3,Y、X4,Y,Adding the key frame into a current key frame level information matrix:
extracting the information of the 1 st to 4 th layers of the current Y-th key frame: x1,Y、X2,Y、X3,Y、X4,Y,Adding the key frame level information into a current key frame level information matrix:
4when 0 is present<When Y is less than or equal to QStoring all the extracted 1 st-4 th-level information of the Y-th key frame into a current key frame set;
the above steps can be expressed as follows:
Figure GDA0003381839210000141
j j-1when Q is<When Y is less than or equal to QAnd storing all the level information from level 1 to level j-1 of the Y-th key frame into the current key frame set, wherein the steps can be expressed as follows:
Figure GDA0003381839210000142
for the j-th to 4-th level information of the Y-th key frame, calculating layer by layer, and determining whether to store:
for any of the jth to 4 th layers,
first, from Zβ,1,Zβ,2……Zβ,I……Zβ,Y-1Finding the minimum value, which takes Zβ,mThe information storage importance parameter of the mth key frame beta level is minimum;
secondly, according to Zβ,m、Zβ,YDetermines whether to store the beta level information X of the Y-th key frameβ,Y
When Z isβ,m>Zβ,Y
Then Zβ,YAssigning a new value (e.g., NULL or + ∞) such that Zβ,YNo longer participate in the ranking;
Xβ,Ygiving a new value of NULL or 0, namely not storing the beta level information of the Yth key frame;
when Z isβ,m≤Zβ,Y
Then Zβ,mGiven a new value such that Zβ,mNo longer participate in the ranking;
Xβ,massigning a new value of NULL or 0, i.e., deleting the beta level information of the mth key frame and adding the beta level information X of the Yth key frameβ,YStoring, namely, the storage space of the beta level information of the mth key frame is saved to the storage space of the beta level information of the Yth key frame (namely, the storage space of the beta level information is always kept at Qβ)。
1When Q is<At Y time
For the level 1-4 information of the Y key frame, calculating layer by layer, and determining whether to store:
for any beta-th layer of the 1 st to 4 th layers,
first, from Zβ,1,Zβ,2……Zβ,I……Zβ,Y-1Finding the minimum value, which takes Zβ,mThe information storage importance parameter of the mth key frame beta level is minimum;
secondly, according to Zβ,m、Zβ,YDetermines whether to store the beta level information X of the Y-th key frameβ,Y
When Z isβ,m>Zβ,Y
Then Zβ,YAssigning a new value (e.g., NULL or + ∞) such that Zβ,YNo longer participate in the ranking;
Xβ,Ygiving a new value of NULL or 0, namely not storing the beta level information of the Yth key frame;
when Z isβ,m≤Zβ,Y
Then Zβ,mGiven a new value such that Zβ,mNo longer participate in the ranking;
Xβ,massigning a new value of NULL or 0, i.e., deleting the beta level information of the mth key frame and adding the beta level information X of the Yth key frameβ,YStoring, i.e. of the mth key frameThe storage space of the beta level information is allowed to be equal to the storage space of the beta level information of the Y key frame (namely, the storage space of the beta level information is always kept at Qβ)。
It should be noted that, according to the first embodiment: for any I key frame j layer information Xj,IThe value is not limited to be a numerical value, that is, it may be a character set, for example, as in the first embodiment: x1,IIs the BOW model data, and may also be a data set, for example: the first embodiment is as follows: x4,IIs a dense point cloud data set.
The above-mentioned embodiments are only for convenience of description, and are not intended to limit the present invention in any way, and those skilled in the art will understand that the technical features of the present invention can be modified or changed by other equivalent embodiments without departing from the scope of the present invention.

Claims (3)

1. A SLAM system, comprising: the system comprises a current key frame information extraction module, a current key frame information storage importance coefficient calculation module and a key frame set level information storage importance coefficient calculation and storage module; a key frame set level information calculating and storing module;
the current key frame information storage importance coefficient calculation module is connected with the key frame set level information storage importance coefficient calculation and storage module;
the current key frame information extraction module and the key frame set level information storage importance coefficient calculation and storage module are respectively connected with the key frame set level information calculation and storage module;
the current key frame information extraction module is used for extracting information of different levels from a current key frame image;
the current key frame information storage importance coefficient calculation module is used for calculating storage importance coefficients of different levels of information of the current key frame;
the key frame set level information storage importance coefficient calculation and storage module is used for storing the storage importance coefficients of different level information of the current key frame set;
the key frame set level information calculation and storage module is used for determining a storage mode for extracting information of different levels from the current key frame image transmitted by the current key frame information extraction module.
2. The SLAM system of claim 1, further comprising: the system comprises an information level sequence establishing module and an information level memory space establishing module;
the information level sequence establishing module and the information level memory space establishing module are respectively connected with the current key frame information extracting module; the information level sequence establishing module and the information level storage capacity establishing module are respectively connected with the current key frame information storage importance coefficient calculating module.
3. The SLAM system of claim 2, wherein the information-level sequence building module is configured to build an information-level sequence of key frame sets and to direct the current key frame information extraction module to extract information of current key frame images; the information level storage quantity establishing module is used for establishing different level information storage spaces of the key frame set.
CN202110658243.4A 2021-06-15 2021-06-15 A SLAM system Active CN113392370B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202110658243.4A CN113392370B (en) 2021-06-15 2021-06-15 A SLAM system
CN202111532176.8A CN114154117B (en) 2021-06-15 2021-06-15 SLAM method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110658243.4A CN113392370B (en) 2021-06-15 2021-06-15 A SLAM system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202111532176.8A Division CN114154117B (en) 2021-06-15 2021-06-15 SLAM method

Publications (2)

Publication Number Publication Date
CN113392370A CN113392370A (en) 2021-09-14
CN113392370B true CN113392370B (en) 2022-01-04

Family

ID=77620882

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202111532176.8A Active CN114154117B (en) 2021-06-15 2021-06-15 SLAM method
CN202110658243.4A Active CN113392370B (en) 2021-06-15 2021-06-15 A SLAM system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202111532176.8A Active CN114154117B (en) 2021-06-15 2021-06-15 SLAM method

Country Status (1)

Country Link
CN (2) CN114154117B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111461140A (en) * 2020-03-30 2020-07-28 北京航空航天大学 Line Descriptor Construction and Matching Method for SLAM System
CN112240768A (en) * 2020-09-10 2021-01-19 西安电子科技大学 Visual-Inertial Navigation Fusion SLAM Method Based on Runge-Kutta4 Improved Pre-integration
CN112904901A (en) * 2021-01-14 2021-06-04 吉林大学 Path planning method based on binocular vision slam and fusion algorithm

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371513B1 (en) * 1999-12-06 2003-02-07 주식회사 팬택앤큐리텔 Method and apparatus of summerizing and browsing video sequences using fidelity values of key frame stored in its edge of key frame hierarchy
US9674507B2 (en) * 2013-04-30 2017-06-06 Qualcomm Incorporated Monocular visual SLAM with general and panorama camera movements
US10533850B2 (en) * 2013-07-12 2020-01-14 Magic Leap, Inc. Method and system for inserting recognized object data into a virtual world
US9355123B2 (en) * 2013-07-19 2016-05-31 Nant Holdings Ip, Llc Fast recognition algorithm processing, systems and methods
US10217221B2 (en) * 2016-09-29 2019-02-26 Intel Corporation Place recognition algorithm
US11187536B2 (en) * 2018-01-12 2021-11-30 The Trustees Of The University Of Pennsylvania Probabilistic data association for simultaneous localization and mapping
CN108830220B (en) * 2018-06-15 2021-01-05 山东大学 Visual semantic library construction and global positioning method based on deep learning
EP3637057B1 (en) * 2018-07-19 2024-08-28 Uisee Technologies (Beijing) Ltd Method, device, system and storage medium for storing and loading visual positioning map
CN109671120A (en) * 2018-11-08 2019-04-23 南京华捷艾米软件科技有限公司 A kind of monocular SLAM initial method and system based on wheel type encoder
CN109711365A (en) * 2018-12-29 2019-05-03 佛山科学技术学院 A visual SLAM loop closure detection method and device integrating semantic information
CN109903314B (en) * 2019-03-13 2025-03-28 腾讯科技(深圳)有限公司 A method for locating image regions, a method for model training and related devices
CN110533587B (en) * 2019-07-03 2023-06-13 浙江工业大学 SLAM method based on visual priori information and map restoration
CN110598713B (en) * 2019-08-06 2022-05-06 厦门大学 Intelligent image automatic description method based on deep neural network
CN112258600A (en) * 2020-10-19 2021-01-22 浙江大学 A simultaneous localization and map construction method based on vision and lidar

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111461140A (en) * 2020-03-30 2020-07-28 北京航空航天大学 Line Descriptor Construction and Matching Method for SLAM System
CN112240768A (en) * 2020-09-10 2021-01-19 西安电子科技大学 Visual-Inertial Navigation Fusion SLAM Method Based on Runge-Kutta4 Improved Pre-integration
CN112904901A (en) * 2021-01-14 2021-06-04 吉林大学 Path planning method based on binocular vision slam and fusion algorithm

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Efficient on-board Stereo SLAM through constrained-covisibility strategies";Castro Gastón 等;《Robotics and Autonomous Systems》;20180506;第116卷(第5期);第192-205页 *
"基于BA优化和KL散度的RGB-D SLAM系统";徐岩 等;《东北大学学报(自然科学版)》;20200715;第41卷(第7期);第933-937页 *

Also Published As

Publication number Publication date
CN114154117A (en) 2022-03-08
CN114154117B (en) 2022-08-23
CN113392370A (en) 2021-09-14

Similar Documents

Publication Publication Date Title
CN114241464A (en) Cross-view image real-time matching geolocation method and system based on deep learning
CN109684428A (en) Spatial data building method, device, equipment and storage medium
CN108594816A (en) A kind of method and system for realizing positioning and composition by improving ORB-SLAM algorithms
CN113936109B (en) Method, device, equipment and storage medium for processing high-precision map point cloud data
WO2016095068A1 (en) Pedestrian detection apparatus and method
CN113780532B (en) Training method, device, equipment and storage medium of semantic segmentation network
CN102810116A (en) Automatic routing and load balancing method and system based on database connection
CN119380033B (en) A remote sensing image reference segmentation method and system
CN113850136A (en) Yolov5 and BCNN-based vehicle orientation identification method and system
CN117631618B (en) A real-time optimization method and system for DCS logic configuration screen connection
CN119625328B (en) Continuous semantic segmentation method and system based on balanced multi-granularity fusion feature distillation
CN116310621B (en) A few-sample image recognition method based on feature library construction
CN116912486A (en) Target segmentation method and electronic device based on edge convolution and multi-dimensional feature fusion
CN115187920B (en) Mobile robot-oriented large-range semantic map construction method
CN113010642A (en) Semantic relation recognition method and device, electronic equipment and readable storage medium
CN114648762B (en) Semantic segmentation method, device, electronic device and computer-readable storage medium
CN111027551B (en) Image processing method, apparatus and medium
CN113392370B (en) A SLAM system
CN118470255B (en) A method for constructing LOD2+ building models based on image segmentation network
CN110717405A (en) Face feature point positioning method, device, medium and electronic equipment
CN119090946A (en) A visual SLAM loop detection method, system, device and medium based on structured scenes
CN117407727A (en) Vector similarity determining method and vector searching method
CN118093766A (en) A method and related device for processing address information in a map system
CN115507842B (en) A lightweight UAV map construction method based on facets
CN116797830A (en) Image risk classification method and device based on YOLOv7

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240117

Address after: 1208-1211, 12th Floor, No. 51 Xueyuan Road, Haidian District, Beijing, 100080

Patentee after: METOAK TECHNOLOGY (BEIJING) CO.,LTD.

Patentee after: Yuanxiang Technology (Suzhou) Co.,Ltd.

Address before: 215163 floor 8, building 10, Su hi tech software park, No. 78, Keling Road, science and Technology City, high tech Zone, Suzhou, Jiangsu

Patentee before: Yuanxiang Technology (Suzhou) Co.,Ltd.