CN112214038A - Linear Active Disturbance Rejection Control System for Multiple Input Multiple Output Nonlinear System and Its Application - Google Patents
Linear Active Disturbance Rejection Control System for Multiple Input Multiple Output Nonlinear System and Its Application Download PDFInfo
- Publication number
- CN112214038A CN112214038A CN202011051392.6A CN202011051392A CN112214038A CN 112214038 A CN112214038 A CN 112214038A CN 202011051392 A CN202011051392 A CN 202011051392A CN 112214038 A CN112214038 A CN 112214038A
- Authority
- CN
- China
- Prior art keywords
- output
- control
- input
- disturbance rejection
- active disturbance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003638 chemical reducing agent Substances 0.000 claims description 22
- 230000001360 synchronised effect Effects 0.000 claims description 21
- 230000008878 coupling Effects 0.000 claims description 11
- 238000010168 coupling process Methods 0.000 claims description 11
- 238000005859 coupling reaction Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- 239000011159 matrix material Substances 0.000 claims description 7
- 238000013507 mapping Methods 0.000 claims description 6
- 101710163391 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase Proteins 0.000 abstract 2
- 238000002620 method output Methods 0.000 abstract 1
- 238000013461 design Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 230000001131 transforming effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/12—Target-seeking control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
本发明公开了一种多输入多输出非线性系统的线性自抗扰控制系统及其应用,多输入多输出非线性系统的线性自抗扰控制系统包括伺服驱动器和运动控制卡,伺服驱动器的输出端与非线性系统的电机相连接,伺服驱动器的输入端与运动控制卡相连接;所述运动控制卡包括自抗扰控制器和非线性系统的控制芯片电路,所述自抗扰控制器以软件形式写入所述控制芯片电路中;所述伺服驱动器中设有驱动芯片电路;控制芯片电路的输出端与驱动芯片电路的输入端对应连接,实现对电机的控制;自抗扰控制器采用基于动态逆的方法输出反馈控制率。本发明的线性自抗扰控制系统利用动态逆来求解控制率对总扰动进行补偿,从而解决了系统控制增益的不确定带来的控制器不稳定问题。
The invention discloses a linear active disturbance rejection control system of a multi-input multi-output nonlinear system and its application. The linear active disturbance rejection control system of the multi-input multi-output nonlinear system comprises a servo driver and a motion control card. The output of the servo driver The terminal is connected with the motor of the nonlinear system, and the input terminal of the servo driver is connected with the motion control card; the motion control card includes the ADRC controller and the control chip circuit of the non-linear system, and the ADRC is connected with the control chip circuit of the nonlinear system. The software is written into the control chip circuit; the servo driver is provided with a drive chip circuit; the output end of the control chip circuit is correspondingly connected with the input end of the drive chip circuit to realize the control of the motor; the active disturbance rejection controller adopts The dynamic inverse based method outputs the feedback control rate. The linear active disturbance rejection control system of the present invention utilizes the dynamic inverse to solve the control rate to compensate the total disturbance, thereby solving the controller instability problem caused by the uncertainty of the system control gain.
Description
技术领域technical field
本发明涉及机电伺服系统的控制器分析与设计技术领域,尤其涉及多输入多输出非线性系统的线性自抗扰控制系统及其应用。The invention relates to the technical field of controller analysis and design of an electromechanical servo system, in particular to a linear active disturbance rejection control system of a multi-input multi-output nonlinear system and its application.
背景技术Background technique
在许多工程应用中,控制目标(机器臂、轮船、车辆等)沿着某一期望路径运行是首要的,其次关心的是运行过程中对速度的要求.这种类型的应用问题被许多学者所描述,称之为输出机动(outputmaneuvering)控制问题。机动控制问题通常由几何任务和动态任务两部分组成.几何任务是受控目标到达并沿着期望路径(路径变量δ的函数)运行。动态任务是沿期望路径运行时还要满足的额外动态指标,如时间、速度、加速度等指标.而一般跟踪控制问题的路径变量δ都是时间t的函数,通常取为δ=t,因此机动控制问题比一般的跟踪控制问题更加广泛。In many engineering applications, the control object (robot arm, ship, vehicle, etc.) to run along a desired path is the primary concern, and the second concern is the speed requirement during the operation. This type of application problem has been studied by many scholars Description, called the output maneuvering (output maneuvering) control problem. Maneuver control problems usually consist of two parts: a geometrical task and a dynamical task. The geometrical task is the arrival of the controlled target and running along the desired path (a function of the path variable δ). Dynamic tasks are additional dynamic indicators that must be satisfied when running along the desired path, such as time, speed, acceleration and other indicators. The path variable δ of general tracking control problems is a function of time t, usually taken as δ=t, so maneuvering The control problem is broader than the general tracking control problem.
现有的多输入多输出严反馈非线性控制系统的设计中,由于系统的控制增益是不断变化的,使得传统的线性自抗扰控制器中控制增益标称值的参数不易选取,会导致系统控制的不稳定,抗干扰能力较弱。In the design of the existing multi-input multi-output strict feedback nonlinear control system, because the control gain of the system is constantly changing, it is difficult to select the parameters of the nominal value of the control gain in the traditional linear active disturbance rejection controller, which will cause the system to change. The control is unstable and the anti-interference ability is weak.
发明内容SUMMARY OF THE INVENTION
针对上述存在的问题,本发明旨在提供一种多输入多输出非线性系统的线性自抗扰控制系统及其应用,通过广义比例积分观测器来估计系统的状态和总扰动,然后利用动态逆来求解控制率对总扰动进行补偿,从而解决了系统控制增益的不确定带来的控制器不稳定问题。In view of the above existing problems, the present invention aims to provide a linear active disturbance rejection control system of a multi-input multi-output nonlinear system and its application. The generalized proportional-integral observer is used to estimate the state and total disturbance of the system, and then the dynamic inverse is used to estimate the state and total disturbance of the system. To solve the control rate to compensate the total disturbance, so as to solve the controller instability problem caused by the uncertainty of the system control gain.
为了实现上述目的,本发明所采用的技术方案如下:In order to achieve the above object, the technical scheme adopted in the present invention is as follows:
多输入多输出非线性系统的线性自抗扰控制系统,其特征在于:包括伺服驱动器和运动控制卡,所述伺服驱动器的输出端与所述非线性系统的电机相连接,所述伺服驱动器的输入端与所述运动控制卡相连接;The linear active disturbance rejection control system of the multi-input multi-output nonlinear system is characterized in that: it includes a servo driver and a motion control card, the output end of the servo driver is connected with the motor of the nonlinear system, and the The input end is connected with the motion control card;
所述运动控制卡包括自抗扰控制器和非线性系统的控制芯片电路,所述自抗扰控制器以软件形式写入所述控制芯片电路中;所述伺服驱动器中设有驱动芯片电路,所述控制芯片电路的输出端与所述驱动芯片电路的输入端对应连接,以驱动所述驱动芯片电路;所述驱动芯片电路的驱动频率调节信号输出端和驱动半桥电路调节信号输出端分别与所述非线性系统的电机输入端对应连接;The motion control card includes an active disturbance rejection controller and a control chip circuit of a nonlinear system, and the active disturbance rejection controller is written into the control chip circuit in the form of software; the servo driver is provided with a drive chip circuit, The output end of the control chip circuit is correspondingly connected with the input end of the drive chip circuit to drive the drive chip circuit; the drive frequency adjustment signal output end of the drive chip circuit and the drive half bridge circuit adjustment signal output end are respectively correspondingly connected with the motor input end of the nonlinear system;
所述自抗扰控制器采用基于动态逆的方法输出反馈控制率。The active disturbance rejection controller adopts a dynamic inverse-based method to output a feedback control rate.
进一步的,所述多输入多输出非线性系统的动态方程为其中,是各子系统的状态; 是非线性系统的控制输入,Ωx,Ωu分别为分别为子系统状态x和控制输入u所取范围的集合,且Ωx,Ωu分别包含其原点;Further, the dynamic equation of the multi-input multi-output nonlinear system is in, is the state of each subsystem; is the control input of the nonlinear system, Ω x , Ω u are the sets of the ranges taken by the subsystem state x and the control input u, respectively, and Ω x , Ω u respectively contain the origin;
所述非线性系统的可测量输出为 示系统受到的外部扰动;表示总的系统状态,包含各子系统xi的状态以及各子系统相互耦合的状态, n=n1+n2+…nm为系统的总阶数,i∈(1,2,…,m)表示系统的耦合状态,包括外部扰动和内部不确定性的总和; i,j∈{1,2,…m}表示系统的控制增益;The measurable output of the nonlinear system is Indicates the external disturbance to the system; Represents the total system state, including the state of each subsystem xi and the state of each subsystem coupling, n=n 1 +n 2 +…n m is the total order of the system, i∈(1, 2,…,m) represents the coupled state of the system, including the sum of external disturbances and internal uncertainties; i, j∈{1, 2,...m} represents the control gain of the system;
令则多输入多输出严反馈非线性系统的动态方程可以表示为make Then the dynamic equation of the multi-input multi-output strict feedback nonlinear system can be expressed as
进一步的,假设函数φi,l(·),i∈(1,…,m),l∈(1,…,ni-1)至少ni+p阶连续可微,且φi,l(0)=0,则函数可表示 其中,表示已知的系统动态,表示未知的系统动态且对自变量是局部 Lipschitz的,系统的状态x对各子系统的状态xi是局部Lipschitz的, Further, it is assumed that the functions φ i,l (·), i∈(1,...,m), l∈(1,...,n i -1) are at least of order n i +p continuously differentiable, and φ i,l (0)=0, then the function representable in, represents the known system dynamics, represents the unknown system dynamics and is local Lipschitz to the independent variable, the state x of the system is local Lipschitz to the state x i of each subsystem,
则根据假设,存在一微分同胚映射Then according to the hypothesis, there is a differential homeomorphic mapping
其中,ξi(0)=0, in, ξ i (0)=0,
将微分同胚映射变换成积分串联型系统,则可得Transforming the differential homeomorphic map into an integral series system, we can get
其中,表示总的系统状态,包含各子系统ξi的状态以及各子系统相互耦合的状态,且 in, represents the overall system state, including the state of each subsystem ξ i and the state of the mutual coupling of each subsystem, and
进一步的,所述多输入多输出严反馈非线性系统跟踪的目标系统为其中,属于一紧集 Further, the target system of the multi-input multi-output strict feedback nonlinear system tracking is: in, belong to a compact set
将目标系统变换为积分串联型系统,可得其中, Transforming the target system into an integral series system, we can get in,
设其中,i=1,…,m,j=2,…,ni,根据微分同胚映射的积分串联型系统和目标系统的积分串联型系统可得其中,误差增益矩阵满足为Hurwitz矩阵, Assume Among them, i=1,...,m,j=2,...,n i , according to the integral series system of the differential homeomorphic mapping and the integral series system of the target system, we can get in, Error Gain Matrix Satisfy is the Hurwitz matrix,
进一步的,采用基于动态逆的方法输出反馈控制率的具体操作包括以下步骤,Further, the specific operation of using the dynamic inverse-based method to output the feedback control rate includes the following steps:
S1:定义为实际测量的输出与期望输出的状态误差的总和;S1: Definition is the sum of the state error of the actual measured output and the expected output;
S2:根据步骤S1中定义的Fi(ξ,ζ,wi,u),可将动态逆设计为其中,B=(bij)m×m,参数μi为小正数,μ=(μ1,…,μm)T, S2: According to F i (ξ, ζ, wi , u) defined in step S1, the dynamic inverse can be designed as Wherein, B=(b ij ) m×m , the parameter μ i is a small positive number, μ=(μ 1 , . . . , μ m ) T ,
S3:令在输出反馈的情况下,只有ξi,1可测量且未知,利用广义比例积分观测器来求解ξi和 S3: order In the case of output feedback, only ξi ,1 is measurable and unknown, use a generalized proportional-integral observer to solve for ξ i and
其中,参数满足为Hurwitz多项式,εi为一个小正数,且ε=(ε1,…,εm)T;Among them, the parameter Satisfy is a Hurwitz polynomial, ε i is a small positive number, and ε=(ε 1 , ..., ε m ) T ;
S4:将步骤S3中的广义比例积分观测器和步骤S2中的动态逆结合起来,得到自抗扰控制器的输出反馈控制率,S4: Combine the generalized proportional-integral observer in step S3 and the dynamic inverse in step S2 to obtain the output feedback control rate of the active disturbance rejection controller,
其中, in,
进一步的,多输入多输出非线性系统的线性自抗扰控制系统在具有多输入多输出特征的两自由度机械臂机电伺服控制装置中的应用。Further, the application of the linear active disturbance rejection control system of the multiple-input multiple-output nonlinear system in the electromechanical servo control device of a two-degree-of-freedom manipulator with multiple-input multiple-output characteristics.
进一步的,所述两自由度机械臂机电伺服控制装置包括基座和安装在所述基座上的第一减速器,所述第一减速器的输入轴与第一永磁同步电机的输出轴固定连接,所述第一减速器的输出轴与第一机械臂的首端固定连接,所述第一机械臂的末端连接有第二减速器,所述第二减速器的输入轴与第二永磁同步电机的输出轴固定连接,所述第二减速器的输出轴上连接有第二机械臂;Further, the two-degree-of-freedom mechanical arm electromechanical servo control device includes a base and a first reducer mounted on the base, the input shaft of the first reducer and the output shaft of the first permanent magnet synchronous motor. Fixed connection, the output shaft of the first reducer is fixedly connected to the head end of the first mechanical arm, the end of the first mechanical arm is connected with a second reducer, and the input shaft of the second reducer is connected to the second reducer. The output shaft of the permanent magnet synchronous motor is fixedly connected, and the output shaft of the second reducer is connected with a second mechanical arm;
所述第一永磁同步电机和所述第二永磁同步电机的输入端与所述伺服驱动器的输出端对应连接。The input ends of the first permanent magnet synchronous motor and the second permanent magnet synchronous motor are correspondingly connected with the output end of the servo driver.
进一步的,所述两自由度机械臂机电伺服控制装置的动态方程为其中,Further, the dynamic equation of the two-degree-of-freedom mechanical arm electromechanical servo control device is: in,
M11=a1+a2 cosθ2,M 11 =a 1 +a 2 cosθ 2 ,
M22=a3,M 22 =a 3 ,
G1(θ)=a4 sinθ1+a5 sin(θ1+θ2),G 1 (θ)=a 4 sinθ 1 +a 5 sin(θ 1 +θ 2 ),
G2(θ)=a5 sin(θ1+θ2),G 2 (θ)=a 5 sin(θ 1 +θ 2 ),
a2=m2l2l1,a 2 =m 2 l 2 l 1 ,
式中,l1,l2分别表示第一机械臂和第二机械臂的长度,θ1,θ2分别表示第一机械臂和第二机械臂的关节角,m1,m2分别表示第一机械臂和第二机械臂的质量,u1为第一机械臂的控制输入,u2为第二机械臂的控制输入, d1,d2分别表示第一机械臂和第二机械臂受到的外部扰动;In the formula, l 1 and l 2 represent the lengths of the first manipulator and the second manipulator respectively, θ 1 and θ 2 represent the joint angles of the first manipulator and the second manipulator respectively, m 1 and m 2 represent the first manipulator and the second manipulator respectively. The mass of the first manipulator and the second manipulator, u1 is the control input of the first manipulator, u2 is the control input of the second manipulator, d1, d2 represent the first manipulator and the second manipulator respectively. external disturbance;
令NG1=N1+G1,NG2=N2+G2,则两自由度机械臂机电伺服控制装置的动态方程可以变换为Let NG 1 =N 1 +G 1 , NG 2 =N 2 +G 2 , then the dynamic equation of the two-degree-of-freedom manipulator electromechanical servo control device can be transformed into
由于M11,M22随着θ2的变化而变化,因此两自由度机械臂机电伺服控制装置是控制增益不确定的多入多出的非线性系统,并且子系统之间存在着状态耦合和控制耦合。Since M 11 and M 22 change with the change of θ 2 , the electromechanical servo control device of the two-degree-of-freedom manipulator is a nonlinear system with multiple inputs and multiple outputs with uncertain control gains, and there are state coupling and Control coupling.
进一步的,所述应用的具体操作包括以下步骤,Further, the specific operation of the application includes the following steps:
S5:令 S5: order
则两自由度机械臂机电伺服控制装置的动态方程可以继续变换成Then the dynamic equation of the electromechanical servo control device of the two-degree-of-freedom manipulator can be transformed into
S6:令其中用x表示θ,则两自由度机械臂机电伺服控制装置的动态方程进一步变换为其中,表示控制装置的两个状态,w1表示第一机械臂受到d1,d2干扰的总和,w2表示第二机械臂受到d1,d2干扰的总和;S6: order in Using x to represent θ, the dynamic equation of the two-degree-of-freedom manipulator electromechanical servo control device is further transformed into in, Indicates the two states of the control device, w 1 represents the sum of the disturbances of d 1 and d 2 for the first manipulator, and w 2 represents the sum of the disturbances of d 1 and d 2 for the second manipulator;
S7:步骤S6中的两自由度机械臂机电伺服控制装置的动态方程的参考系统为其中,r1=[r1,1 r1,2]T,r2=[r2,1 r2,2]T,是利用五次项拟合生成的有界指令信号;S7: The reference system of the dynamic equation of the two-degree-of-freedom manipulator electromechanical servo control device in step S6 is: where, r 1 =[r 1,1 r 1,2 ] T , r 2 =[r 2,1 r 2,2 ] T , is the bounded command signal generated by quintic fitting;
S8:将步骤S4中的自抗扰控制器设计成根据控制器的输出来控制第一永磁同步电机和第二永磁同步电机的旋转角度;S8: Design the active disturbance rejection controller in step S4 as controlling the rotation angles of the first permanent magnet synchronous motor and the second permanent magnet synchronous motor according to the output of the controller;
其中,分别表示的控制输出结果,分别表示的控制输出结果。in, Respectively The control output result of , Respectively control output result.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明的线性自抗扰控制系统采用基于动态逆的方法输出反馈控制率的控制器,通过广义比例积分观测器来估计系统的状态和总扰动,然后利用动态逆来求解控制率对总扰动进行补偿,从而解决了系统控制增益的不确定带来的控制器不稳定问题,使得非线性系统在轨迹跟踪运动效果上有着显著的改善,参数的变动、系统模型不确定性等因素几乎无法对系统运动效果造成影响,并且系统在运动过程中具有很强的抗干扰能力。The linear active disturbance rejection control system of the present invention adopts a dynamic inverse-based method to output a controller of the feedback control rate, estimates the state and total disturbance of the system through a generalized proportional-integral observer, and then uses the dynamic inverse to solve the control rate for the total disturbance. Therefore, the instability of the controller caused by the uncertainty of the control gain of the system is solved, and the nonlinear system has a significant improvement in the trajectory tracking motion effect. The movement effect has an impact, and the system has a strong anti-interference ability during the movement.
附图说明Description of drawings
图1为本发明中两自由度机械臂机电伺服控制装置结构示意图。FIG. 1 is a schematic structural diagram of an electromechanical servo control device for a two-degree-of-freedom manipulator according to the present invention.
图2为本发明仿真实验中两自由度机械臂实验平台结构示意图。FIG. 2 is a schematic structural diagram of an experimental platform of a two-degree-of-freedom manipulator in a simulation experiment of the present invention.
图3为本发明仿真实验中不同系统抗干扰能力的实验结果。FIG. 3 is the experimental result of the anti-interference ability of different systems in the simulation experiment of the present invention.
其中:1-第一永磁同步电机,2-第一减速器,3-基座,4-第一机械臂, 5-第二机械臂,6-第二减速器,7-第二永磁同步电机。Among them: 1-first permanent magnet synchronous motor, 2-first reducer, 3-base, 4-first manipulator, 5-second manipulator, 6-second reducer, 7-second permanent magnet Synchronous motor.
具体实施方式Detailed ways
为了使本领域的普通技术人员能更好的理解本发明的技术方案,下面结合附图和实施例对本发明的技术方案做进一步的描述。In order to enable those skilled in the art to better understand the technical solutions of the present invention, the technical solutions of the present invention are further described below with reference to the accompanying drawings and embodiments.
多输入多输出非线性系统的线性自抗扰控制系统,包括伺服驱动器和运动控制卡,所述伺服驱动器的输出端与所述非线性系统的电机相连接,所述伺服驱动器的输入端与所述运动控制卡相连接;A linear active disturbance rejection control system for a multi-input multi-output nonlinear system, including a servo driver and a motion control card, the output end of the servo driver is connected to the motor of the nonlinear system, and the input end of the servo driver is connected to the connected to the motion control card;
所述运动控制卡包括自抗扰控制器和非线性系统的控制芯片电路,所述自抗扰控制器以软件形式写入所述控制芯片电路中;所述伺服驱动器中设有驱动芯片电路,所述控制芯片电路的输出端与所述驱动芯片电路的输入端对应连接,以驱动所述驱动芯片电路;所述驱动芯片电路的驱动频率调节信号输出端和驱动半桥电路调节信号输出端分别与所述非线性系统的电机输入端对应连接;The motion control card includes an active disturbance rejection controller and a control chip circuit of a nonlinear system, and the active disturbance rejection controller is written into the control chip circuit in the form of software; the servo driver is provided with a drive chip circuit, The output end of the control chip circuit is correspondingly connected with the input end of the drive chip circuit to drive the drive chip circuit; the drive frequency adjustment signal output end of the drive chip circuit and the drive half bridge circuit adjustment signal output end are respectively correspondingly connected with the motor input end of the nonlinear system;
所述自抗扰控制器采用基于动态逆的方法输出反馈控制率。The active disturbance rejection controller adopts a dynamic inverse-based method to output a feedback control rate.
具体的,所述多输入多输出非线性系统的动态方程为其中,是各子系统的状态; 是非线性系统的控制输入,Ωx,Ωu分别为分别为子系统状态x和控制输入u所取范围的集合,且Ωx,Ωu分别包含其原点;Specifically, the dynamic equation of the multi-input multi-output nonlinear system is: in, is the state of each subsystem; is the control input of the nonlinear system, Ω x , Ω u are the sets of the ranges taken by the subsystem state x and the control input u, respectively, and Ω x , Ω u respectively contain the origin;
所述非线性系统的可测量输出为 示系统受到的外部扰动;表示总的系统状态,包含各子系统xi的状态以及各子系统相互耦合的状态, n=n1+n2+…nm为系统的总阶数,i∈(1,2,…,m)表示系统的耦合状态,包括外部扰动和内部不确定性的总和; i,j∈{1,2,…m}表示系统的控制增益;The measurable output of the nonlinear system is Indicates the external disturbance to the system; Represents the total system state, including the state of each subsystem xi and the state of each subsystem coupling, n=n 1 +n 2 +…n m is the total order of the system, i∈(1, 2,…,m) represents the coupled state of the system, including the sum of external disturbances and internal uncertainties; i, j∈{1, 2,...m} represents the control gain of the system;
令则多输入多输出严反馈非线性系统的动态方程可以表示为make Then the dynamic equation of the multi-input multi-output strict feedback nonlinear system can be expressed as
假设函数φi,l(·),i∈(1,…,m),l∈(1,…,ni-1)至少ni+p阶连续可微,且φi,l(0)=0,则函数可表示 其中,表示已知的系统动态,表示未知的系统动态且对自变量是局部 Lipschitz的,系统的状态x对各子系统的状态xi是局部Lipschitz的, Assume that the functions φ i,l (·),i∈(1,…,m),l∈(1,…,n i -1) are continuously differentiable at least of order n i +p, and φ i,l (0) =0, then the function representable in, represents the known system dynamics, represents the unknown system dynamics and is local Lipschitz to the independent variable, the state x of the system is local Lipschitz to the state x i of each subsystem,
该假设保证了原点是开环系统的平衡点,若完全未知,那么 This assumption guarantees that the origin is the equilibrium point of the open-loop system, if completely unknown, then
根据该假设,存在一微分同胚映射其中,ξi(0)=0, According to this assumption, there is a differential homeomorphic map in, ξ i (0)=0,
将微分同胚映射变换成积分串联型系统,则可得其中,表示总的系统状态,包含各子系统ξi的状态以及各子系统相互耦合的状态,且 Transforming the differential homeomorphic map into an integral series system, we can get in, represents the overall system state, including the state of each subsystem ξ i and the state of the mutual coupling of each subsystem, and
本发明中的自抗扰控制器的设计目标是使得多输入多输出严反馈非线性系统的状态x跟踪一个目标系统的状态r。The design goal of the active disturbance rejection controller in the present invention is to make the state x of the multi-input multi-output strict feedback nonlinear system track the state r of a target system.
所述多输入多输出严反馈非线性系统跟踪的目标系统为其中, 属于一紧集 The target system of the multi-input multi-output strict feedback nonlinear system tracking is: in, belong to a compact set
将目标系统变换为积分串联型系统,可得其中, Transforming the target system into an integral series system, we can get in,
设其中,i=1,…,m,j=2,…,ni,根据微分同胚映射的积分串联型系统和目标系统的积分串联型系统可得其中,误差增益矩阵满足为Hurwitz矩阵, Assume Among them, i=1,...,m,j=2,...,n i , according to the integral series system of the differential homeomorphic mapping and the integral series system of the target system, we can get in, Error Gain Matrix Satisfy is the Hurwitz matrix,
由多输入多输出非线性系统的动态方程可知,该非线性系统的控制增益bij(t)是时变的,因此对该系统设计传统的LADRC时,bij(t)的标称值b0不易选取,所以本发明的目标是为多输入多输出非线性不确定严反馈系统设计一个引入动态逆的线性自抗扰控制器,不仅能对系统的外扰,内部不确定性组成的总扰动进行估计补偿,并且不涉及b0值的选取问题,避免了 bij(t)的不确定性对闭环系统的稳定性带来影响。From the dynamic equation of the multi-input multi-output nonlinear system, it can be known that the control gain b ij (t) of the nonlinear system is time-varying, so when designing the traditional LADRC for this system, the nominal value of b ij (t) b 0 is not easy to choose, so the goal of the present invention is to design a linear active disturbance rejection controller with dynamic inverse for the multi-input multi-output nonlinear uncertain strict feedback system, which can not only control the external disturbance of the system, but also the total amount composed of internal uncertainties. The disturbance is estimated and compensated, and the selection of the b 0 value is not involved, which avoids the influence of the uncertainty of b ij (t) on the stability of the closed-loop system.
采用基于动态逆的方法输出反馈控制率的具体操作包括以下步骤,The specific operation of using the dynamic inverse-based method to output the feedback control rate includes the following steps:
S1:定义为实际测量的输出与期望输出的状态误差的总和……;S1: Definition is the sum of the state error of the actual measured output and the expected output...;
S2:根据步骤S1中定义的Fi(ξ,ζ,wi,u),可将动态逆设计为其中,B=(bij)m×m,参数μi为小正数, S2: According to F i (ξ, ζ, wi , u) defined in step S1, the dynamic inverse can be designed as Among them, B=(b ij ) m×m , the parameter μ i is a small positive number,
S3:令在输出反馈的情况下,只有ξi,1可测量且未知,利用广义比例积分观测器来求解ξi和 S3: order In the case of output feedback, only ξi ,1 is measurable and unknown, use a generalized proportional-integral observer to solve for ξ i and
其中,参数满足为Hurwitz多项式,εi为一个小正数,且ε=(ε1,…,εm)T;Among them, the parameter Satisfy is a Hurwitz polynomial, ε i is a small positive number, and ε=(ε 1 , ..., ε m ) T ;
S4:将步骤S3中的广义比例积分观测器和步骤S2中的动态逆结合起来,得到自抗扰控制器的输出反馈控制率,S4: Combine the generalized proportional-integral observer in step S3 and the dynamic inverse in step S2 to obtain the output feedback control rate of the active disturbance rejection controller,
其中, in,
进一步的,将本发明中的多输入多输出非线性系统的线性自抗扰控制系统应用在具有多输入多输出特征的两自由度机械臂机电伺服控制装置中。Further, the linear active disturbance rejection control system of the multi-input multi-output nonlinear system in the present invention is applied to a two-degree-of-freedom mechanical arm electromechanical servo control device with multi-input and multi-output characteristics.
具体的,所述两自由度机械臂机电伺服控制装置包括基座3和安装在所述基座3上的第一减速器2,所述第一减速器2通过螺栓与所述基座3 连接,所述第一减速器2的输入轴与第一永磁同步电机1的输出轴也通过螺栓固定连接,所述第一减速器2的输出轴与第一机械臂4的首端通过轴销固定连接,所述第一机械臂4的末端通过螺栓连接有第二减速器6,所述第二减速器6的输入轴与第二永磁同步电机7的输出轴通过螺栓固定连接,所述第二减速器6的输出轴上通过轴销连接有第二机械臂5;Specifically, the two-degree-of-freedom mechanical arm electromechanical servo control device includes a
所述第一永磁同步电机1和所述第二永磁同步电机7的输入端与所述伺服驱动器的输出端对应连接。The input ends of the first permanent magnet synchronous motor 1 and the second permanent magnet synchronous motor 7 are correspondingly connected to the output end of the servo driver.
进一步的,所述两自由度机械臂机电伺服控制装置的动态方程为Further, the dynamic equation of the two-degree-of-freedom mechanical arm electromechanical servo control device is:
其中, in,
M11=a1+a2 cosθ2,M 11 =a 1 +a 2 cosθ 2 ,
M22=a3,M 22 =a 3 ,
G1(θ)=a4 sinθ1+a5 sin(θ1+θ2),G 1 (θ)=a 4 sinθ 1 +a 5 sin(θ 1 +θ 2 ),
G2(θ)=a5 sin(θ1+θ2),G 2 (θ)=a 5 sin(θ 1 +θ 2 ),
a2=m2l2l1,a 2 =m 2 l 2 l 1 ,
式中,l1,l2分别表示第一机械臂和第二机械臂的长度,θ1,θ2分别表示第一机械臂和第二机械臂的关节角,m1,m2分别表示第一机械臂和第二机械臂的质量,u1为第一机械臂的控制输入,u2为第二机械臂的控制输入, d1,d2分别表示第一机械臂和第二机械臂受到的外部扰动;In the formula, l 1 and l 2 represent the lengths of the first manipulator and the second manipulator respectively, θ 1 and θ 2 represent the joint angles of the first manipulator and the second manipulator respectively, m 1 and m 2 represent the first manipulator and the second manipulator respectively. The mass of the first manipulator and the second manipulator, u1 is the control input of the first manipulator, u2 is the control input of the second manipulator, d1, d2 represent the first manipulator and the second manipulator respectively. external disturbance;
令NG1=N1+G1,NG2=N2+G2,则两自由度机械臂机电伺服控制装置的动态方程可以变换为Let NG 1 =N 1 +G 1 , NG 2 =N 2 +G 2 , then the dynamic equation of the two-degree-of-freedom manipulator electromechanical servo control device can be transformed into
由于M11,M22随着θ2的变化而变化,因此两自由度机械臂机电伺服控制装置是控制增益不确定的多入多出的非线性系统,并且子系统之间存在着状态耦合和控制耦合。Since M 11 and M 22 change with the change of θ 2 , the electromechanical servo control device of the two-degree-of-freedom manipulator is a nonlinear system with multiple inputs and multiple outputs with uncertain control gains, and there are state coupling and Control coupling.
进一步,将本发明中的多输入多输出非线性系统的线性自抗扰控制系统应用到两自由度机械臂机电伺服控制装置中的具体操作包括以下步骤,Further, the specific operation of applying the linear active disturbance rejection control system of the multi-input multi-output nonlinear system in the present invention to the electromechanical servo control device of a two-degree-of-freedom manipulator includes the following steps:
S5:令 S5: order
则两自由度机械臂机电伺服控制装置的动态方程可以继续变换成Then the dynamic equation of the electromechanical servo control device of the two-degree-of-freedom manipulator can be transformed into
S6:令其中用x表示θ,则两自由度机械臂机电伺服控制装置的动态方程进一步变换为其中,表示控制装置的两个状态,w1表示第一机械臂受到d1,d2干扰的总和,w2表示第二机械臂受到d1,d2干扰的总和;S6: order in Using x to represent θ, the dynamic equation of the two-degree-of-freedom manipulator electromechanical servo control device is further transformed into in, Indicates the two states of the control device, w 1 represents the sum of the disturbances of d 1 and d 2 for the first manipulator, and w 2 represents the sum of the disturbances of d 1 and d 2 for the second manipulator;
S7:步骤S6中的两自由度机械臂机电伺服控制装置的动态方程的参考系统为其中,r1=[r1,1 r1,2]T,r2=[r2,1 r2,2]T,是利用五次项拟合生成的有界指令信号;S7: The reference system of the dynamic equation of the two-degree-of-freedom manipulator electromechanical servo control device in step S6 is: where, r 1 =[r 1,1 r 1,2 ] T , r 2 =[r 2,1 r 2,2 ] T , is the bounded command signal generated by quintic fitting;
S8:将步骤S4中的自抗扰控制器设计成根据控制器的输出来控制第一永磁同步电机和第二永磁同步电机的旋转角度;S8: Design the active disturbance rejection controller in step S4 as controlling the rotation angles of the first permanent magnet synchronous motor and the second permanent magnet synchronous motor according to the output of the controller;
其中,分别表示的控制输出结果,分别表示的控制输出结果。in, Respectively The control output result of , Respectively control output result.
通过上述过程,即可获得引入动态逆方法的多输入多输出严反馈非线性系统的线性自抗扰控制器来控制两自由度机械臂系统两个永磁同步电机的旋转角度。Through the above process, the linear active disturbance rejection controller of the multi-input multi-output strict feedback nonlinear system incorporating the dynamic inverse method can be obtained to control the rotation angles of the two permanent magnet synchronous motors of the two-degree-of-freedom manipulator system.
仿真实验:Simulation:
利用两自由度机械臂实验平台验证本发明中的线性自抗扰控制系统在轨迹跟踪控制中的应用效果,实验平台如附图2所示,由旋转电机、减速器、机械臂、GTHD伺服驱动器以及GT-800-SV运动控制卡组成。The application effect of the linear active disturbance rejection control system in the present invention in trajectory tracking control is verified by using a two-degree-of-freedom manipulator experimental platform. The experimental platform is shown in Figure 2. And GT-800-SV motion control card.
让第二机械臂末端跟踪一个字母R的轨迹,在第二机械臂末端增加 1kg负载,分别在3s和13s给θ1,θ2同时增加幅值为10V的阶跃信号,对比本发明中的控制系统(DILADRC)与传统LADRC在带有负载情况下的抗干扰能力,结果如附图3所示,其中,(a)为x方向跟踪轨迹对比结果, (b)为x方向跟踪误差对比结果,(c)为y方向跟踪轨迹对比结果,(d) 为y方向跟踪误差对比结果,(e)为R的轨迹跟踪情况对比结果。Let the end of the second manipulator track the trajectory of a letter R, add a load of 1kg to the end of the second manipulator, and add a step signal with an amplitude of 10V to θ 1 and θ 2 at 3s and 13s respectively. The anti-interference ability of the control system (DILADRC) and traditional LADRC under load, the results are shown in Figure 3, where (a) is the comparison result of the x-direction tracking trajectory, (b) is the x-direction tracking error comparison result , (c) is the comparison result of the y-direction tracking trajectory, (d) is the comparison result of the y-direction tracking error, and (e) is the comparison result of the trajectory tracking of R.
根据附图3中(a)(c)可知,在3s和13s时,无论是在x方向还是 y方向,传统LADRC控制下的系统受到干扰的影响导致跟踪位移偏离期望位移的值大于DILADRC,反应在R轨迹上的效果如图(e)所示,在受到干扰之后,DILADRC受到干扰的影响导致R轨迹的变形小于LADRC。根据附图3中(b)(d)可知,无论是在x还是y方向,由于受到干扰的作用,导致LADRC控制下系统在3s和13s的跟踪偏差明显大于 DILADRC。According to (a) and (c) in Figure 3, at 3s and 13s, no matter in the x-direction or the y-direction, the system under the traditional LADRC control is affected by the disturbance, causing the tracking displacement to deviate from the expected displacement value greater than DILADRC, and the response The effect on the R trajectory is shown in Fig. (e), after being disturbed, DILADRC is affected by the disturbance resulting in the deformation of the R trajectory smaller than that of LADRC. According to (b) and (d) in Fig. 3, whether in the x or y direction, the tracking deviation of the system under the control of LADRC at 3s and 13s is significantly larger than that of DILADRC due to the interference.
仿真实验结果验证了本发明设计的DILADRC的抗干扰性能比传统 LADRC好。The simulation experiment results verify that the anti-interference performance of the DILADRC designed by the present invention is better than that of the traditional LADRC.
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The foregoing has shown and described the basic principles, main features and advantages of the present invention. Those skilled in the art should understand that the present invention is not limited by the above-mentioned embodiments, and the descriptions in the above-mentioned embodiments and the description are only to illustrate the principle of the present invention. Without departing from the spirit and scope of the present invention, the present invention will have Various changes and modifications fall within the scope of the claimed invention. The claimed scope of the present invention is defined by the appended claims and their equivalents.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011051392.6A CN112214038B (en) | 2020-09-29 | 2020-09-29 | Linear active disturbance rejection control system of multi-input multi-output nonlinear system and application thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202011051392.6A CN112214038B (en) | 2020-09-29 | 2020-09-29 | Linear active disturbance rejection control system of multi-input multi-output nonlinear system and application thereof |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN112214038A true CN112214038A (en) | 2021-01-12 |
| CN112214038B CN112214038B (en) | 2022-09-06 |
Family
ID=74050907
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202011051392.6A Expired - Fee Related CN112214038B (en) | 2020-09-29 | 2020-09-29 | Linear active disturbance rejection control system of multi-input multi-output nonlinear system and application thereof |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN112214038B (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113406971A (en) * | 2021-07-13 | 2021-09-17 | 天津大学 | Distributed unmanned aerial vehicle queue and dynamic obstacle avoidance control method |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030199997A1 (en) * | 2002-04-18 | 2003-10-23 | Zhiqiang Gao | Scaling and parameterizing a controller |
| CN102799113A (en) * | 2012-08-01 | 2012-11-28 | 中国电子科技集团公司第十研究所 | Method for controlling servo system of active disturbance rejection control technology |
| CN103777641A (en) * | 2014-02-19 | 2014-05-07 | 北京理工大学 | Compound active-disturbances-rejection control method of tracking control over aircraft |
| CN104698845A (en) * | 2015-02-10 | 2015-06-10 | 天津大学 | Radar antenna servo tracking method based on active-disturbance-rejection controller and radar antenna servo tracking system |
| CN109507890A (en) * | 2019-01-09 | 2019-03-22 | 中南大学 | A kind of unmanned plane dynamic inverse generalized predictive controller based on ESO |
| CN110687870A (en) * | 2019-08-28 | 2020-01-14 | 济南大学 | Manipulator tracking controller and system based on nonlinear extended state observer |
-
2020
- 2020-09-29 CN CN202011051392.6A patent/CN112214038B/en not_active Expired - Fee Related
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20030199997A1 (en) * | 2002-04-18 | 2003-10-23 | Zhiqiang Gao | Scaling and parameterizing a controller |
| CN102799113A (en) * | 2012-08-01 | 2012-11-28 | 中国电子科技集团公司第十研究所 | Method for controlling servo system of active disturbance rejection control technology |
| CN103777641A (en) * | 2014-02-19 | 2014-05-07 | 北京理工大学 | Compound active-disturbances-rejection control method of tracking control over aircraft |
| CN104698845A (en) * | 2015-02-10 | 2015-06-10 | 天津大学 | Radar antenna servo tracking method based on active-disturbance-rejection controller and radar antenna servo tracking system |
| CN109507890A (en) * | 2019-01-09 | 2019-03-22 | 中南大学 | A kind of unmanned plane dynamic inverse generalized predictive controller based on ESO |
| CN110687870A (en) * | 2019-08-28 | 2020-01-14 | 济南大学 | Manipulator tracking controller and system based on nonlinear extended state observer |
Non-Patent Citations (6)
| Title |
|---|
| HUANG, ZHIJIAN, ET AL.: "A Data-driven Online ADP Control Method for Nonlinear System Based on Policy Iteration and Nonlinear MIMO Decoupling ADRC", 《NEUROCOMPUTING》 * |
| J. VERBERNE, ET AL.: "Robust Control Architecture for Wind Rejection in Quadrotors", 《2019 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS)》 * |
| Z. CHEN, ET AL.: "Linear Active Disturbance Rejection Control for Nonaffine Strict-Feedback Nonlinear Systems", 《IEEE ACCESS》 * |
| 吴超 等: "基于LADRC的无人直升机轨迹跟踪", 《航空学报》 * |
| 徐李佳: "基于全通道耦合特征模型的高超飞行器控制研究", 《空间控制技术与应用》 * |
| 陈志翔 等: "自适应扩张状态观测器收敛性分析与应用", 《控制理论与应用》 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113406971A (en) * | 2021-07-13 | 2021-09-17 | 天津大学 | Distributed unmanned aerial vehicle queue and dynamic obstacle avoidance control method |
Also Published As
| Publication number | Publication date |
|---|---|
| CN112214038B (en) | 2022-09-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110065070B (en) | Robot self-adaptive impedance control system based on dynamic model | |
| CN110170992B (en) | A multi-fault fault-tolerant control method for a modular manipulator based on dynamic programming | |
| WO2024093507A1 (en) | Generalized dynamic predictive control method for realizing trajectory tracking of manipulator system | |
| Khan et al. | Control strategies for robotic manipulators | |
| Lin et al. | Decoupled torque control of series elastic actuator with adaptive robust compensation of time-varying load-side dynamics | |
| CN116339141A (en) | A global fixed-time trajectory tracking sliding mode control method for manipulators | |
| CN111531548A (en) | Active-disturbance-rejection control method of multi-shaft series mechanical arm | |
| CN111958606A (en) | Distributed robust tracking control method applied to multi-degree-of-freedom mechanical arm | |
| CN113341733B (en) | Linear motor system fault and unknown disturbance compensation method | |
| CN108227490A (en) | A kind of model-free adaption sliding-mode control of New-type mixed-coupled formula automobile electrophoretic coating conveyor structure | |
| CN111673742A (en) | Industrial robot trajectory tracking control algorithm | |
| CN115556103A (en) | A Fractional Impedance Controller and Its Design Method Based on Dynamics Feedforward | |
| CN117055347A (en) | Mechanical arm self-adaptive robust bounded control method considering inequality constraint | |
| CN108828952A (en) | Steering engine Electric Loading System intelligent control method based on CMAC Neural Network | |
| Chen et al. | Low chattering trajectory tracking control of non-singular fast terminal sliding mode based on disturbance observer | |
| CN108469734A (en) | Consider the motor servo system Auto-disturbance-rejection Control of state constraint | |
| CN112214038B (en) | Linear active disturbance rejection control system of multi-input multi-output nonlinear system and application thereof | |
| CN112147894A (en) | Active control method of wheeled mobile robot based on kinematics and dynamics model | |
| Xia et al. | A new fault tolerant strategy using adaptive time delay estimation for robot manipulators with actuator faults | |
| Zhou et al. | Adaptive robust non-singular fast terminal sliding mode control for a two-link robotic manipulator with NN-based ESO | |
| Guo et al. | Robust controller design based on double-layer nonlinear disturbance observers and sliding mode control for nonlinear systems with mismatched disturbances and uncertainties | |
| Li et al. | A modified active disturbance rejection control method for the compliance control of the flexible joint robots | |
| CN119036434B (en) | A Fault Estimation and Fault-Tolerant Control Method Based on Unknown Input Sliding Mode Observer | |
| Fu et al. | ESO-based adaptive robust force control of linear electric load simulator | |
| CN112202376A (en) | Linear motor active disturbance rejection control design method based on Taylor tracking differentiator |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220906 |
|
| CF01 | Termination of patent right due to non-payment of annual fee |