[go: up one dir, main page]

CN1119869C - Long burst error-correcting decoding method adopting Reed-solomon code - Google Patents

Long burst error-correcting decoding method adopting Reed-solomon code Download PDF

Info

Publication number
CN1119869C
CN1119869C CN01110134A CN01110134A CN1119869C CN 1119869 C CN1119869 C CN 1119869C CN 01110134 A CN01110134 A CN 01110134A CN 01110134 A CN01110134 A CN 01110134A CN 1119869 C CN1119869 C CN 1119869C
Authority
CN
China
Prior art keywords
burst
alpha
code
error
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN01110134A
Other languages
Chinese (zh)
Other versions
CN1322063A (en
Inventor
殷柳国
陆建华
吴佑寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN01110134A priority Critical patent/CN1119869C/en
Publication of CN1322063A publication Critical patent/CN1322063A/en
Application granted granted Critical
Publication of CN1119869C publication Critical patent/CN1119869C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/17Burst error correction, e.g. error trapping, Fire codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • H03M13/151Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
    • H03M13/1515Reed-Solomon codes

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Error Detection And Correction (AREA)

Abstract

The present invention belongs to the technical field of communication. The method comprises the steps that the erroneous position of burst errors is hypothesized to be the minimum 2t bit of a receiving polynomial by effectively utilizing the relation of the receiving polynomial of RS codes before and after cyclic shift and the correlativity of the erroneous position of long burst errors based on the cycle characteristics of the RS codes, and thereby, the encoding method is simplified into a method for cyclically shifting the receiving polynomial and solving erroneous patterns by a group of linear equations. The present invention is suitable for error correction encoding of the long burst errors by correspondingly small encoding delay time and correspondingly high information transmission speed.

Description

一种采用里德-索洛门码的长突发纠错译码方法A Long Burst Error Correction Decoding Method Using Reed-Solomon Code

技术领域technical field

本发明属于通信技术领域,特别涉及采用前向差错控制(FEC)技术在数据传输及存贮系统中的一种采用里德-索洛门码(以下简称RS码)纠正长突发错误的有效而快速的译码方法。The invention belongs to the technical field of communication, in particular to an effective method for correcting long burst errors using Reed-Solomon code (hereinafter referred to as RS code) in a data transmission and storage system using forward error control (FEC) technology. And fast decoding method.

背景技术Background technique

数据在存贮以及传输过程中经常会引发突发错误。产生这种错误的原因有线性噪声、解调过程中的同步丢失、无线传输中的多径衰落、磁性存储器中的磁道缺损等。这种突发错误一般呈周期性出现并且持续时间比较长。由于这种长突发错误的存在,大大限制了特定带宽下的信息传输速率和特定面积下存储器的存储容量。特别是在无线传输系统中,由于多径衰落的影响,这一问题变得更加突出。Burst errors often occur during data storage and transmission. Causes of this error include linear noise, loss of synchronization during demodulation, multipath fading in wireless transmission, and track defects in magnetic storage. Such burst errors generally appear periodically and last for a long time. Due to the existence of such long burst errors, the information transmission rate under a certain bandwidth and the storage capacity of a memory under a certain area are greatly limited. Especially in wireless transmission systems, due to the influence of multipath fading, this problem becomes more prominent.

里德-索洛门码(RS码)具有较强的纠正突发错误的能力,被广泛用于数据传输和存储系统中。Reed-Solomon code (RS code) has a strong ability to correct burst errors, and is widely used in data transmission and storage systems.

采用RS码纠正长突发错误的译码方法原理为:The principle of decoding method using RS code to correct long burst errors is as follows:

RS码的定义和参数:RS码是一种多进制BCH码,其定义为:设f(x)为伽罗华域GF(q)(q为任一素数的任意次幂)上小于n阶的多项式,α为GF(q)的本原元素,则当且仅当α,α2,…,αd-1(d为不小于2的整数)皆为f(x)的根时,集合{f(x)}是一个RS码,或者说该RS码是以g(x)=(x-α)(x-α2)…(x-αd-1)为生成多项式且码多项式的根域和符号域一致(都在GF(q)上)的多元BCH码。纠t个符号错误的RS码的参数有:码长n=q-1,信息符号数目k,校验符号数目n-k=2t,以及码的最小距离d=2t+1。Definition and parameters of RS code: RS code is a multi-ary BCH code, which is defined as: Let f(x) be Galois field GF(q) (q is any power of any prime number) less than n polynomial of degree , and α is the original element of GF(q), then if and only if α, α 2 ,..., α d-1 (d is an integer not less than 2) are all roots of f(x), The set {f(x)} is an RS code, or the RS code is based on g(x)=(x-α)(x-α 2 )…(x-α d-1 ) as the generator polynomial and the code polynomial The multivariate BCH code whose root domain and symbol domain are consistent (both on GF(q)). The parameters of the RS code for correcting t symbol errors include: code length n=q-1, number of information symbols k, number of check symbols nk=2t, and minimum code distance d=2t+1.

常规的纠错译码方法:Conventional error correction decoding method:

设码元符号在传输或存储过程中发生错误,错误多项式可以表示为: E ( x ) = e i 1 x i 1 + e i 2 x i 2 + · · · + e i v x i v - - - ( 1 ) 式中,ν是实际发生的错误个数,0≤ν≤t;

Figure C0111013400042
表示第r个错误的值;ir表示第r个错误的位置。在发送端(n,k)RS码多项式为C(x)=cn-1xn-1+ch-2xn-2+…+c1x+c0,该多项式经过调制后在噪声信道中传输。在接收端,经过解调后得到接收多项式。因此接收多项式可表示为:Assuming that an error occurs in the process of transmission or storage of the code symbol, the error polynomial can be expressed as: E. ( x ) = e i 1 x i 1 + e i 2 x i 2 + &Center Dot; · &Center Dot; + e i v x i v - - - ( 1 ) In the formula, ν is the actual number of errors, 0≤ν≤t;
Figure C0111013400042
Indicates the value of the rth error; i r indicates the position of the rth error. At the transmitting end (n, k) the RS code polynomial is C(x)=c n-1 x n-1 +c h-2 x n-2 +…+c 1 x+c 0 , the polynomial is modulated in transmission in noisy channels. At the receiving end, the receiving polynomial is obtained after demodulation. So the reception polynomial can be expressed as:

R(x)=C(x)+E(x)    (2)根据接收多项式得到伴随式为:Sj=R(αj)(1≤j≤2t)。根据RS码的定义知αj(1≤j≤2t)为生成多项式g(x)的根,而码多项式C(x)为g(x)的倍式,因此C(αj)=0,(1≤j≤2t)。从而可以得到伴随式与错误多项式的关系为:R(x)=C(x)+E(x) (2) Obtain the adjoint formula according to the receiving polynomial: S j =R(α j )(1≤j≤2t). According to the definition of the RS code, α j (1≤j≤2t) is the root of the generator polynomial g(x), and the code polynomial C(x) is a multiple of g(x), so C(α j )=0, (1≤j≤2t). Thus, the relationship between the adjoint and the error polynomial can be obtained as:

Sj=R(αj)=C(αj)+E(αj)=E(αj)(1≤j≤2t)    (3)S j =R(α j )=C(α j )+E(α j )=E(α j )(1≤j≤2t) (3)

为了方便起见,定义 Y r = e i r (r=1,2,…,ν)为错误值; X r = α i r (r=1,2,…,ν)为错误位置,则: E ( α j ) = e i 1 ( α j ) i 1 + e i 2 ( α j ) i 2 + · · · + e i v ( α j ) i v = e i 1 ( α i 1 ) j + e i 2 ( α i 2 ) j + · · · + e i v ( α i v ) j - - - ( 4 ) = Y 1 X 1 j + Y 2 X 2 j + · · · + Y v X v j 将(4)式代入(3)式并将所得的式子展开,得到2t个方程式:

Figure C0111013400056
For convenience, define Y r = e i r (r=1, 2, ..., ν) is an error value; x r = α i r (r=1, 2, ..., ν) is the wrong position, then: E. ( α j ) = e i 1 ( α j ) i 1 + e i 2 ( α j ) i 2 + &Center Dot; &Center Dot; &Center Dot; + e i v ( α j ) i v = e i 1 ( α i 1 ) j + e i 2 ( α i 2 ) j + · · · + e i v ( α i v ) j - - - ( 4 ) = Y 1 x 1 j + Y 2 x 2 j + · · · + Y v x v j Substitute equation (4) into equation (3) and expand the resulting equation to obtain 2t equations:
Figure C0111013400056

上面方程组中有2t个方程,只有不到2t个未知数,而且X1,X2,…,Xν在方程式中构成一个始终可逆的范德蒙矩阵,因此方程有解。常规译码方法采用比如Berlekamp迭代方法来解这个方程组首先得到错误位置然后再代入(5)式求得错误图样值,最后进行纠错。这类方法对于纠正随机错误以及随机和短突发的混合错误非常有效。但是它只能够纠正最大长度为t的突发,而且方程组(5)还是一个非线性方程,译码方法复杂度很大,因此不适合于纠正长突发错误。There are 2t equations in the above equations, and there are less than 2t unknowns, and X 1 , X 2 ,..., X ν constitute a always invertible Vandermonde matrix in the equations, so the equations have solutions. Conventional decoding methods, such as Berlekamp iterative method, are used to solve this system of equations to first obtain the error position, then substitute it into (5) to obtain the error pattern value, and finally perform error correction. Such methods are very effective for correcting random errors and a mixture of random and short bursts of errors. But it can only correct bursts with a maximum length of t, and the equation group (5) is still a nonlinear equation, and the decoding method is very complicated, so it is not suitable for correcting long burst errors.

现有的采用RS码纠正长突发错误的方法主要有两种:方法一是采用编码交织技术,它主要是通过交织把多个短码组成一个长码。例如,对(n,k)线性码进行j级交织,可以得到(jn,jk)码。假如原来的(n,k)码纠突发错误的能力为t,则交织后得到的(jn,jk)码纠突发错误的能力为jt。这种做法实际上是把突发错误打散成随机错误并使之均匀分布到各个短码中去。其优点是在保持信息率不变的情况下提高了RS码纠长突发错误的能力。但是,由于在码矢量编码后和解码前要分别进行交织和解交织,因此会带来比较大的传输延时,并且增加系统实现的复杂度。方法二是采用降低信息率的方法来提高码矢量的纠错能力。比如在保持码长不变的前提下通过减少信息位的长度来增加监督位的长度,或者在保持信息位长度不变的前提下通过增加码长来增加监督位的长度。这种方法在保证不增加传输延时的前提下通过牺牲信息传输速率使得码矢量空间的最小距离加大,从而提高了纠错能力。There are mainly two existing methods for correcting long burst errors using RS codes: The first method is to use code interleaving technology, which mainly combines multiple short codes into one long code through interleaving. For example, (jn, jk) codes can be obtained by performing j-level interleaving on (n, k) linear codes. If the ability of the original (n, k) code to correct burst errors is t, then the ability of the interleaved (jn, jk) code to correct burst errors is jt. This approach actually breaks up burst errors into random errors and distributes them evenly to each short code. Its advantage is that it improves the ability of RS codes to correct long burst errors while keeping the information rate constant. However, since interleaving and deinterleaving are respectively performed after code vector encoding and before decoding, relatively large transmission delay will be brought, and the complexity of system implementation will be increased. The second method is to improve the error correction capability of the code vector by reducing the information rate. For example, the length of the supervisory bit is increased by reducing the length of the information bit under the premise of keeping the code length constant, or the length of the supervisory bit is increased by increasing the code length while keeping the length of the information bit constant. This method increases the minimum distance of the code vector space by sacrificing the information transmission rate without increasing the transmission delay, thereby improving the error correction capability.

发明内容Contents of the invention

本发明的目的在于克服已有技术的不足之处,提出一种采用里德-索洛门码的长突发纠错译码方法,通过利用突发错误的特性,以相对于上述方法一小得多的译码延时和以相对于上述方法二高得多的信息传输速率,实现适合于长突发错误的纠错译码。The purpose of the present invention is to overcome the weak point of prior art, propose a kind of long burst error correction decoding method that adopts Reed-Solomon code, by utilizing the characteristic of burst error, with respect to above-mentioned method a little Compared with the above-mentioned method two, the error correction decoding suitable for long burst errors is realized with a much higher decoding delay and a much higher information transmission rate than the above-mentioned method two.

本发明提出的一种采用里德-索洛门码的长突发纠错译码方法,包括以下步骤:1)进行初始化:设置当前最大可能的错误图样的突发长度νm的值为2t,突发图样Ym的值为0,最低突发位置Nm的值为0;同时移位计数变量Nc的值设置为0;2)开始接收传输信息系列,得到接收多项式R(x)为: R ( x ) = C ( x ) + E ( x ) = c n - 1 x n - 1 + &CenterDot; &CenterDot; &CenterDot; + ( c i 1 + v + e v ) x i 1 + v + &CenterDot; &CenterDot; &CenterDot; + ( c i 1 + e 1 ) x i 1 + &CenterDot; &CenterDot; &CenterDot; + c 0 , 式中,C(x)为(n,k)RS码多项式:C(x)=cn-1xn-1+cn-2xn-2+…+c1x+c0,E(x)为错误多项式: E ( x ) = e i 1 x i 1 + e i 2 x i 1 + 1 + &CenterDot; &CenterDot; &CenterDot; + e i v x i 1 + v - 1 , 其中i1为长突发错误在码矢量中的最低位置,ν为突发长度;并计算其相应的伴随式Sj=R(αj)(1≤j≤2t),α为伽罗华域GF(q)的本原元素;3)对上一步所得的伴随式进行判断:如果伴随式不等于零,则下一步转移到步骤4,否则下一步跳转到步骤9;4)计算突发图样Yc Y 1 Y 2 . . . Y 2 t = &alpha; 0 &alpha; . . . &alpha; ( 2 t - 1 ) &alpha; 0 &alpha; 2 . . . &alpha; 2 ( 2 t - 1 ) . . . . . . . . . &alpha; 0 &alpha; 2 t . . . &alpha; 2 t ( 2 t - 1 ) - 1 S 1 &prime; S 2 &prime; . . . S 2 t &prime; , 这里S j=Sj(1≤j≤2t)并计算相应的突发长度νc,这里νc为突发图样Yc中最大的非零元素距离;5)比较νc与νm的大小:如果νc<νm,下一步转移到步骤6,否则下一步跳转到步骤7;6)Yc、νc、Nc是当前最大可能的突发图样的参数,分别用它们的值覆盖掉Ym、νm、Nm的值;7)判断Nc的值是否大于码长n:如果是,则下一步转移到步骤9;否则转移到步骤8;8)接收多项式循环右移2t-νmax+1个码字长度并计算对应的伴随式,即计算 S j &prime; = S j ( &alpha; j ) 2 t - v max + 1 (在译码过程中也可以采用循环左移为的方法,每次将接收多项式循环左移2t-νmax+1个码字长度,即计算 S j &prime; = S j &CenterDot; ( &alpha; j ) 2 t - v max + 1 ) , 同时将移位计数变量Nc的值增加2t-νmax+1,然后下一步返回到步骤4;9)根据错误图样Ym和错误位置Nm的值进行纠错,同时输出纠错后的信息系列;该步骤完成后,转移到步骤10;10)判断译码过程是否结束:如果是,结束译码过程;否则下一步跳回到步骤1,重新开始下一个码矢量的译码。A kind of long burst error correction decoding method that adopts Reed-Solomon code that the present invention proposes, comprises the following steps: 1) carry out initialization: the value of the burst length ν m of setting current maximum possible error pattern is 2t , the value of the burst pattern Y m is 0, the value of the lowest burst position N m is 0; at the same time, the value of the shift count variable N c is set to 0; 2) Start receiving the transmission information series, and get the receiving polynomial R(x) for: R ( x ) = C ( x ) + E. ( x ) = c no - 1 x no - 1 + &CenterDot; &CenterDot; &CenterDot; + ( c i 1 + v + e v ) x i 1 + v + &Center Dot; &Center Dot; &Center Dot; + ( c i 1 + e 1 ) x i 1 + &CenterDot; &CenterDot; &CenterDot; + c 0 , In the formula, C(x) is the (n, k) RS code polynomial: C(x)=c n-1 x n-1 +c n-2 x n-2 +…+c 1 x+c 0 , E (x) is the error polynomial: E. ( x ) = e i 1 x i 1 + e i 2 x i 1 + 1 + &CenterDot; &CenterDot; &CenterDot; + e i v x i 1 + v - 1 , Where i 1 is the lowest position of the long burst error in the code vector, ν is the burst length; and calculate its corresponding adjoint formula S j =R(α j )(1≤j≤2t), α is Galois The original elements of the field GF(q); 3) Judging the syndrome obtained in the previous step: if the syndrome is not equal to zero, then the next step is transferred to step 4, otherwise the next step is skipped to step 9; 4) Calculate the burst Pattern Y c : Y 1 Y 2 . . . Y 2 t = &alpha; 0 &alpha; . . . &alpha; ( 2 t - 1 ) &alpha; 0 &alpha; 2 . . . &alpha; 2 ( 2 t - 1 ) . . . . . . . . . &alpha; 0 &alpha; 2 t . . . &alpha; 2 t ( 2 t - 1 ) - 1 S 1 &prime; S 2 &prime; . . . S 2 t &prime; , Here S j =S j (1≤j≤2t) and calculate the corresponding burst length ν c , where ν c is the maximum non-zero element distance in the burst pattern Y c ; 5) compare ν c with ν m Size: if ν c < ν m , the next step is transferred to step 6, otherwise the next step is skipped to step 7; 6) Y c , ν c , N c are the parameters of the current maximum possible burst pattern, and their 7) judge whether the value of N c is greater than the code length n : if yes, then move to step 9 in the next step ; otherwise, move to step 8 ; 8) receive the polynomial loop right Shift 2t-ν max +1 codeword length and calculate the corresponding syndrome, that is, calculate S j &prime; = S j ( &alpha; j ) 2 t - v max + 1 (The method of cyclic left shift can also be used in the decoding process, each time the receiving polynomial is cyclically shifted to the left by 2t-ν max +1 codeword length, that is, the calculation S j &prime; = S j &CenterDot; ( &alpha; j ) 2 t - v max + 1 ) , At the same time, increase the value of the shift count variable N c by 2t-ν max +1, and then return to step 4 in the next step; 9) perform error correction according to the value of the error pattern Y m and the error position N m , and output the corrected value at the same time Information series; after this step is completed, transfer to step 10; 10) judge whether the decoding process ends: if yes, end the decoding process; otherwise the next step jumps back to step 1, and restarts the decoding of the next code vector.

本发明所述方法的原理及采用的算法说明如下:The principle of the method of the present invention and the algorithm adopted are described as follows:

首先考虑长突发错误,其多项式可以表示为: E ( x ) = e i 1 x i 1 + e i 2 x i 1 + 1 + &CenterDot; &CenterDot; &CenterDot; + e i v x i 1 + v - 1 - - - ( 6 ) First consider the long burst error, whose polynomial can be expressed as: E. ( x ) = e i 1 x i 1 + e i 2 x i 1 + 1 + &Center Dot; &Center Dot; &Center Dot; + e i v x i 1 + v - 1 - - - ( 6 )

其中i1为长突发错误在码矢量中的最低位置,ν为突发长度。由于RS码具有循环码的性质,即将编码后得到的码矢量循环移位,得到的新矢量仍然是一个码矢量。因此接收矢量 R ( x ) = C ( x ) + E ( x ) = c n - 1 x n - 1 + &CenterDot; &CenterDot; &CenterDot; + ( c i 1 + v + e v ) x i 1 + v + &CenterDot; &CenterDot; &CenterDot; + ( c i 1 + e 1 ) x i 1 + &CenterDot; &CenterDot; &CenterDot; + c 0 - - - ( 7 ) Among them, i 1 is the lowest position of the long burst error in the code vector, and ν is the burst length. Since the RS code has the property of a cyclic code, that is, the code vector obtained after encoding is cyclically shifted, and the obtained new vector is still a code vector. So the receiving vector R ( x ) = C ( x ) + E. ( x ) = c no - 1 x no - 1 + &Center Dot; &Center Dot; &Center Dot; + ( c i 1 + v + e v ) x i 1 + v + &CenterDot; &CenterDot; &CenterDot; + ( c i 1 + e 1 ) x i 1 + &Center Dot; &Center Dot; &Center Dot; + c 0 - - - ( 7 )

经过向左移位n-i1个码元长度(也可以向右循环移位i1个码元长度),可以得到突发最低位为x0=1的接收多项式: R &prime; ( x ) = R ( x ) &CenterDot; x n - i 1 = C ( x ) &CenterDot; x n - i 1 + E ( x ) &CenterDot; x n - i 1 = C &prime; ( x ) + E &prime; ( x ) - - - ( 8 ) 由于C′(x)仍然是一个码矢量,因此可以用(3)、(8)式计算R′(x)的伴随式。通过计算得到R′(x)对应的伴随式为:After shifting to the left by ni 1 symbol length (or cyclically shifting to the right by i 1 symbol length), the receiving polynomial with the lowest bit of the burst being x 0 =1 can be obtained: R &prime; ( x ) = R ( x ) &CenterDot; x no - i 1 = C ( x ) &CenterDot; x no - i 1 + E. ( x ) &Center Dot; x no - i 1 = C &prime; ( x ) + E. &prime; ( x ) - - - ( 8 ) Since C'(x) is still a code vector, formulas (3) and (8) can be used to calculate the adjoint formula of R'(x). The adjoint formula corresponding to R'(x) is obtained by calculation:

S j=Sj·(αj)n-i(1≤j≤2t)    (9)。S j =S j ·(α j ) ni (1≤j≤2t) (9).

将上述的ν扩展到2t,如果实际的突发长度ν小于2t,则其余2t-ν个突发单元的值为0。这样结合(6)式,(9)式可以写成:其中突发图样的最低位为x0,即X1=α0=1。由此(10)式可以改写为: S 1 &prime; S 2 &prime; . . . S 2 t &prime; = &alpha; 0 &alpha; . . . &alpha; ( 2 t - 1 ) &alpha; 0 &alpha; 2 . . . &alpha; 2 ( 2 t - 1 ) . . . . . . . . . &alpha; 0 &alpha; 2 t . . . &alpha; 2 t ( 2 t - 1 ) Y 1 Y 2 . . . Y 2 t - - - ( 11 ) 式中的系数矩阵是一个非奇异范德蒙矩阵且α0,α1,…,α(2t-1)为互不相同的根,该系数矩阵可逆。因而,有: Y 1 Y 2 . . . Y 2 t = &alpha; 0 &alpha; . . . &alpha; ( 2 t - 1 ) &alpha; 0 &alpha; 2 . . . &alpha; 2 ( 2 t - 1 ) . . . . . . . . . &alpha; 0 &alpha; 2 t . . . &alpha; 2 t ( 2 t - 1 ) - 1 S 1 &prime; S 2 &prime; . . . S 2 t &prime; - - - ( 12 ) Extend the above ν to 2t, if the actual burst length ν is less than 2t, the values of the remaining 2t-ν burst units are 0. In this way, combined with formula (6), formula (9) can be written as: The lowest bit of the burst pattern is x 0 , that is, X 10 =1. So (10) can be rewritten as: S 1 &prime; S 2 &prime; . . . S 2 t &prime; = &alpha; 0 &alpha; . . . &alpha; ( 2 t - 1 ) &alpha; 0 &alpha; 2 . . . &alpha; 2 ( 2 t - 1 ) . . . . . . . . . &alpha; 0 &alpha; 2 t . . . &alpha; 2 t ( 2 t - 1 ) Y 1 Y 2 . . . Y 2 t - - - ( 11 ) The coefficient matrix in the formula is a non-singular Vandermonde matrix and α 0 , α 1 ,…, α (2t-1) are mutually different roots, and the coefficient matrix is invertible. Thus, there are: Y 1 Y 2 . . . Y 2 t = &alpha; 0 &alpha; . . . &alpha; ( 2 t - 1 ) &alpha; 0 &alpha; 2 . . . &alpha; 2 ( 2 t - 1 ) . . . . . . . . . &alpha; 0 &alpha; 2 t . . . &alpha; 2 t ( 2 t - 1 ) - 1 S 1 &prime; S 2 &prime; . . . S 2 t &prime; - - - ( 12 )

注意,上式中的方程组中突发图样的长度由常规译码方程的t增加到了2t;求解方程由非线性方程(5)变为线性方程(12)且系数矩阵为满秩矩阵,伴随式和突发图样之间一一对应。这意味着如果接收多项式中包含有突发错误,则经过适当的循环移位后突发错误的最低位一定可以移到x0,此时突发图样可以用(12)式算出。Note that the length of the burst pattern in the above equation is increased from t in the conventional decoding equation to 2t; the solution equation is changed from nonlinear equation (5) to linear equation (12) and the coefficient matrix is a full-rank matrix, with There is a one-to-one correspondence between formulas and burst patterns. This means that if the receiving polynomial contains a burst error, the lowest bit of the burst error must be shifted to x 0 after a proper cyclic shift, and the burst pattern can be calculated by formula (12).

假设在实际应用中出现的最大突发长度为νmax,在伴随式不等于零时,循环移动2t-νmax+1个符号位然后计算相应的突发图样,如此重复 [ n + 2 t - v max 2 t - v max + 1 ] 次,则实际发生的突发图样一定包含在所得到的 [ n + 2 t - v max 2 t - v max + 1 ] 个突发图样中。根据最大似然译码准则,可以选取这些突发图样中突发长度最短的作为译码所求得的突发图样,并用它来对信息系列进行纠错。Assuming that the maximum burst length that appears in practical applications is ν max , when the adjoint formula is not equal to zero, move 2t-ν max + 1 symbol bits in a cycle and then calculate the corresponding burst pattern, and repeat [ no + 2 t - v max 2 t - v max + 1 ] times, the actual burst pattern must be included in the obtained [ no + 2 t - v max 2 t - v max + 1 ] in a burst pattern. According to the maximum likelihood decoding criterion, the burst pattern with the shortest burst length among these burst patterns can be selected as the burst pattern obtained by decoding, and used to correct the information series.

由于(n,k)RS码的码间最小距离为d=n-k+1=2t+1,因此在突发长度小于或等于t时采用本译码方法不存在译码错误,当突发长度大于t而小于或等于2t时,则在译码过程中有可能找到比实际突发长度更短的突发,此时将发生译码错误。但是采用本发明的译码方法其错误概率仍然是很低的。作为一个例子,(255,223)RS码的特定突发下的错误译码概率如表1所示,其中νmax=2t=32。这里需要说明的是当实际突发长度等于2t时,由于译码过程中所算得的突发图样都不大于2t,因此无法正确译码,错误译码概率为1。由表1可见,在突发长度为28个符号(等于224比特)时,本译码方法的错误概率可以低至10-8量级。Since the minimum distance between codes of (n, k) RS codes is d=n-k+1=2t+1, there is no decoding error in this decoding method when the burst length is less than or equal to t. When the length is greater than t but less than or equal to 2t, it is possible to find a burst shorter than the actual burst length in the decoding process, and a decoding error will occur at this time. However, the error probability of the decoding method of the present invention is still very low. As an example, the error decoding probability under a specific burst of the (255, 223) RS code is shown in Table 1, where ν max =2t=32. What needs to be explained here is that when the actual burst length is equal to 2t, since none of the burst patterns calculated in the decoding process is greater than 2t, it cannot be decoded correctly, and the error decoding probability is 1. It can be seen from Table 1 that when the burst length is 28 symbols (equal to 224 bits), the error probability of this decoding method can be as low as 10 −8 .

          表1(255,223)RS码在不同突发长度下的错误译码概率。 突发长度(符号) 错误译码概率 突发长度(符号)  错误译码概率 17  8.4×10-35  25  1.4×10-15 18  2.1×10-32  26  3.4×10-13 19  5.3×10-30  27  8.6×10-11 20  1.3×10-27  28  2.2×10-8 21  3.4×10-25  29  5.4×10-6 22  8.5×10-23  30  1.4×10-3 23  2.1×10-20  31  0.34 24  5.4×10-18  32  1.0 Table 1 Error decoding probabilities of (255, 223) RS codes under different burst lengths. Burst length (symbols) misdecoding probability Burst length (symbols) misdecoding probability 17 8.4× 10-35 25 1.4× 10-15 18 2.1× 10-32 26 3.4×10 -13 19 5.3× 10-30 27 8.6× 10-11 20 1.3×10 -27 28 2.2×10 -8 twenty one 3.4× 10-25 29 5.4×10 -6 twenty two 8.5×10 -23 30 1.4×10 -3 twenty three 2.1× 10-20 31 0.34 twenty four 5.4× 10-18 32 1.0

可见,采用本方法能够以很高的准确性纠正长度接近2t的长突发错误,因此大大提高了RS码纠正长突发错误的能力。It can be seen that using this method can correct long burst errors with a length close to 2t with high accuracy, thus greatly improving the ability of RS codes to correct long burst errors.

本发明的效果是,通过利用突发错误的特点,使得RS码能够纠正的长突发错误的长度由传统译码方法的t增加到接近2t,其纠错能力提高了将近一倍。同时,与已有的方法一相比,它减少了交织和解交织所带来的延时,与已有的方法二相比,它没有损失信息传输速率;此外该方法还把传统方法所采用的解非线性方程组的复杂方法简化成了解线性方程组的译码方法,既降低了译码方法的复杂度,使之便于硬件实现,又有利于采用提高电路工作频率的办法进一步降低译码延时。因此,在RS码应用于纠正长突发错误时,本译码方法的性能明显优于其他方法。The effect of the present invention is that by utilizing the characteristics of burst errors, the length of long burst errors that can be corrected by the RS code is increased from t in the traditional decoding method to nearly 2t, and its error correction capability is nearly doubled. At the same time, compared with the existing method 1, it reduces the delay caused by interleaving and deinterleaving, and compared with the existing method 2, it does not lose the information transmission rate; The complex method of solving nonlinear equations is simplified to the decoding method of linear equations, which not only reduces the complexity of the decoding method, makes it easy for hardware implementation, but also helps to further reduce the decoding delay by increasing the operating frequency of the circuit. hour. Therefore, when the RS code is applied to correct long burst errors, the performance of this decoding method is obviously better than other methods.

附图说明Description of drawings

图1为本发明的软件实现流程框图。Fig. 1 is a flow chart of the software implementation of the present invention.

图2为按照本发明方法设计的译码器的方框图。Fig. 2 is a block diagram of a decoder designed according to the method of the present invention.

图3为应用本发明方法的纠正长突发错误的通信系统图。Fig. 3 is a diagram of a communication system for correcting long burst errors using the method of the present invention.

图4为采用本译码方法的RS码作为外码和采用卷积码作为内码组成的级联码应用于复合信道的通信系统框图。FIG. 4 is a block diagram of a communication system in which a concatenated code composed of RS codes using the decoding method as the outer code and convolutional codes as the inner code is applied to a composite channel.

具体实施方式Detailed ways

下面,根据附图和两个实施例更加详细地解释本发明:Below, explain the present invention in more detail according to accompanying drawing and two embodiments:

实施例一:本实施例为采用软件实现本发明提出的纠错译码方法,如图1所示。本实施例采用(255,223)RS码,最大可纠正突发长度为28个码字的译码算法,译码过程包括以下步骤:译码开始后,译码器从步骤1a转移到步骤1b,进行初始化:设置当前最大可能的错误图样的突发长度νm的值为32,突发图样Ym的值为0,最低突发位置Nm的值为0;同时移位计数变量Nc的值设置为0;然后译码器转移到步骤1c,开始接收传输信息系列R(x),并用(3)式计算其相应的伴随式Sj(1≤j≤32);做完这一步以后译码器转到步骤1d,对上一步所得的伴随式进行判断:如果伴随式不等于零,则下一步转移到步骤1e,否则下一步跳转到步骤1j。在步骤1e,用(12)式计算突发图样Yc(这里S′j=Sj(1≤j≤32))并计算相应的突发长度νc。然后译码器由步骤1e转移到步骤1f,比较νc与νm的大小:如果νc<νm,下一步转移到步骤1g,否则下一步跳转到步骤1h。在步骤1g中,Yc、νc、Nc是当前最大可能的突发图样的参数,分别用它们的值覆盖掉Ym、νm、Nm的值。随后,译码器转移到步骤1h,判断Nc的值是否大于255:如果是,则下一步转移到步骤1j;否则转移到步骤1i。在步骤1i,译码器将接收多项式循环右移5个码字长度并计算对应的伴随式,即计算 S j &prime; = S j ( &alpha; j ) 5 (1≤j≤32)(在译码过程中也可以采用循环左移为的方法,每次将接收多项式循环左移5个码字长度,即计算S′j=Sj·(αj)5(1≤j≤32)),同时将移位计数变量的值增加5,然后下一步返回到步骤1e。在步骤1j,译码器根据错误图样Ym和错误位置Nm的值进行纠错,同时输出纠错后的信息系列。完成步骤1j的操作以后,译码器转移到步骤1k,判断译码过程是否结束:如果是,则下一步转移到步骤1l,结束译码过程;否则下一步跳回到步骤1b,重新开始下一个码矢量的译码。Embodiment 1: This embodiment uses software to implement the error correction decoding method proposed by the present invention, as shown in FIG. 1 . This embodiment adopts (255, 223) RS code, the maximum correctable burst length is the decoding algorithm of 28 codewords, and the decoding process includes the following steps: after the decoding starts, the decoder transfers from step 1a to step 1b , to initialize: set the value of the burst length ν m of the current maximum possible error pattern to 32, the value of the burst pattern Y m to 0, and the value of the lowest burst position N m to 0; at the same time, shift the count variable N c The value of is set to 0; then the decoder shifts to step 1c, starts to receive the transmission information series R(x), and uses (3) to calculate its corresponding adjoint formula S j (1≤j≤32); complete this step Afterwards, the decoder goes to step 1d to judge the syndrome obtained in the previous step: if the syndrome is not equal to zero, then the next step is transferred to step 1e, otherwise the next step is skipped to step 1j. In step 1e, the burst pattern Y c (here S' j =S j (1≤j≤32)) is calculated by formula (12) and the corresponding burst length ν c is calculated. Then the decoder transfers from step 1e to step 1f, and compares ν c and ν m : if ν c < ν m , the next step transfers to step 1g, otherwise the next step jumps to step 1h. In step 1g, Y c , ν c , and N c are the parameters of the current maximum possible burst pattern, and their values are used to cover the values of Y m , ν m , and N m respectively. Subsequently, the decoder moves to step 1h to judge whether the value of N c is greater than 255: if yes, then move to step 1j; otherwise, move to step 1i. In step 1i, the decoder cyclically shifts the received polynomial to the right by 5 codeword lengths and calculates the corresponding syndrome, that is, calculates S j &prime; = S j ( &alpha; j ) 5 (1≤j≤32) (The method of cyclic left shift can also be used in the decoding process, each time the receiving polynomial is cyclically shifted to the left by 5 codeword lengths, that is, calculate S′ j =S j ·(α j ) 5 (1≤j≤32)), and increase the value of the shift count variable by 5, and then return to step 1e in the next step. In step 1j, the decoder performs error correction according to the values of the error pattern Y m and the error position N m , and at the same time outputs the corrected information series. After completing the operation of step 1j, the decoder transfers to step 1k to judge whether the decoding process ends: if yes, then the next step transfers to step 11 to end the decoding process; otherwise, the next step jumps back to step 1b and restarts the next step. Decoding of a code vector.

实施例二:本实施例为采用硬件的方法实现本发明的译码方法。本实施例仍然采用(255,223)RS码、最大可纠正突发长度为28个码字的译码算法,该硬件电路的组成及译码工作过程:如图2所示,在码流21的输入过程中,32个伴随式计算及移位寄存电路22-24处于计算伴随式状态,输入码流的信息部分被同步地暂存到容量为223个码字的存储器25中。在这个期间内右边部分的译码电路完成初始化:突发图样寄存器29置0值,突发长度计算及比较电路2a中的寄存器置初值为32,突发最低位存储器2b的值置为0,移位计数器2c复位为0状态。当一个码多项式被接收完毕,译码器切换成计算突发图样状态。此时32个伴随式计算及移位电路22-24工作在移位状态,每到来一个时钟脉冲伴随式电路完成一次移位运算,同时移位计数器加5,所得新伴随式的值通过由组合逻辑电路构成的矩阵乘法电路26完成(12)式的运算而得到相应的突发图样27、28。其中突发图样28输出到突发长度计算及比较电路2a进行突发长度计算,并与这部分电路中的寄存器值进行比较。如果算得的突发长度小于寄存器值,则将突发长度值取代寄存器值的同时使比较结果输出高电平,使得突发图样寄存器用突发图样27覆盖掉原来的图样值,同时突发最低位置存储器载入移位计数器2c的当前值作为相应的突发最低位置。如此循环工作直到移位计数器2c的值大于码长255,随后译码电路左边部分21-25转入接收状态;同时右边电路25-2d转入纠错输出状态:信息队列依时钟节拍从存储器25输出,突发最低位置存储器2b在突发位置上使能突发图样寄存器29和二选一选择器2d,使突发图样输出与信息系列相加完成纠错。Embodiment 2: This embodiment implements the decoding method of the present invention by using hardware. Present embodiment still adopts (255,223) RS code, the decoding algorithm that the maximum correctable burst length is 28 codewords, the composition of this hardware circuit and decoding work process: as shown in Figure 2, in code stream 21 During the input process, the 32 syndrome calculation and shift register circuits 22-24 are in the calculation syndrome state, and the information part of the input code stream is temporarily stored in the memory 25 with a capacity of 223 codewords. During this period, the decoding circuit on the right side completes the initialization: the burst pattern register 29 is set to 0, the burst length calculation and register in the comparison circuit 2a is set to an initial value of 32, and the value of the burst lowest bit memory 2b is set to 0 , the shift counter 2c is reset to 0 state. When a code polynomial has been received, the decoder switches to the state of calculating burst patterns. Now 32 adjoint calculations and shift circuits 22-24 work in the shift state, and every clock pulse adjoint circuit completes a shift operation, and the shift counter adds 5 at the same time, and the value of the new adjoint formula is passed by the combination The matrix multiplication circuit 26 composed of logic circuits completes the operation of formula (12) to obtain corresponding burst patterns 27 and 28 . The burst pattern 28 is output to the burst length calculation and comparison circuit 2a for burst length calculation, and compared with the register value in this part of the circuit. If the calculated burst length is less than the register value, replace the burst length value with the register value and at the same time make the comparison result output a high level, so that the burst pattern register overwrites the original pattern value with burst pattern 27, and the burst minimum The position memory is loaded with the current value of the shift counter 2c as the corresponding burst lowest position. Work like this until the value of the shift counter 2c is greater than the code length 255, then the left part 21-25 of the decoding circuit turns into the receiving state; simultaneously the right side circuit 25-2d turns into the error correction output state: the information queue is transferred from the memory 25 according to the clock beat Output, the burst lowest position memory 2b enables the burst pattern register 29 and the one-of-two selector 2d at the burst position, so that the burst pattern output is added to the information series to complete error correction.

从上面的实施例可见,本译码方法与前面介绍过的两种方法所采用的常规纠错译码方法相比不但纠错能力强、延时小,而且实现也简单。下面再通过两个例子来说明本发明在通信系统中的应用。It can be seen from the above embodiments that, compared with the conventional error correction decoding method adopted by the two methods introduced above, this decoding method not only has stronger error correction capability, less time delay, but also is simple to implement. The application of the present invention in a communication system will be described below through two examples.

例一,参照图3,纠正长突发错误的通信系统包括一个产生数字信息流的信源31,RS编码器33,突发信道35,以及如图2所示的纠正突发错误译码器37。在本例中,信源31产生的携带信息的数据符号流32被送往RS码编码器33,RS码编码器33对信息进行信道编码。编码后的RS码流34在长突发信道35传输过程中受到干扰而产生长突发错误,包含长突发错误的码流36被纠正长突发错误的RS码译码器37所接收。经过纠正长突发错误的RS码译码器37的纠错译码,输出的码流38为正确的数字信息流。Example one, with reference to Fig. 3, the communication system that corrects long burst error includes a source 31 that produces digital information flow, RS coder 33, burst channel 35, and correct burst error decoder as shown in Fig. 2 37. In this example, the data symbol stream 32 carrying information generated by the information source 31 is sent to the RS code encoder 33, and the RS code encoder 33 performs channel encoding on the information. The coded RS code stream 34 is interfered in the transmission process of the long burst channel 35 to generate a long burst error, and the code stream 36 containing the long burst error is received by the RS code decoder 37 which corrects the long burst error. After error correction and decoding by the RS code decoder 37 for correcting long burst errors, the output code stream 38 is a correct digital information stream.

本译码方法不仅适用于纯突发信道,还可以和其他码一起组成级联码用于纠正复合信道中出现的既有随机错误又有长突发错误的混合错误。下面给出一个例子。This decoding method is not only suitable for pure burst channels, but also can be combined with other codes to form concatenated codes to correct the mixed errors of both random errors and long burst errors in composite channels. An example is given below.

例二:如图4所示,数字信源41产生的数据流依次被送到RS码编码器43和卷积码编码器45进行外码和内码的编码,随后输出的级联码流46通过复合信道47传输。由于在传输过程中受到多种因素的影响,接收到的级联码流48将包含随机错误和突发错误的复合错误,这些包含复合错误的信息流首先被送到卷积码译码器进行主要针对随机错误的纠错译码。当一段码流中只含有在卷积码纠错能力范围内的随机错误时,通过卷积码的译码可以把这些随机错误纠正过来,它的输出4a是一段正确的信息系列;当这一段码流中包含了长突发串或者随机错误的个数已经大于卷积码的纠错范围,则卷积码译码失败,它的输出4a可以认为是一个长突发错误。通过RS码的纠突发错误译码器4b进行纠错译码后,长突发错误得到纠正。显然,根据信道特性合适选取内、外码的长度及纠错能力并采用本方法作为外码的译码方法,可以得到纠错能力更强的级联码,从而在相同的信息传输速率下得到更低差错率的数据,或者在同一差错率的条件下可以采用更高的数据率进行传输。Example 2: As shown in Figure 4, the data stream generated by the digital source 41 is sent to the RS code encoder 43 and the convolutional code encoder 45 in turn to encode the outer code and the inner code, and then the output concatenated code stream 46 Transmission via composite channel 47. Due to the influence of various factors in the transmission process, the received concatenated code stream 48 will contain random errors and composite errors of burst errors, and these information streams containing composite errors are first sent to the convolutional code decoder for further processing. It is mainly aimed at error correction decoding of random errors. When a piece of code stream only contains random errors within the error correction capability of the convolutional code, these random errors can be corrected by decoding the convolutional code, and its output 4a is a correct information series; when this piece If the code stream contains long bursts or the number of random errors is greater than the error correction range of the convolutional code, the convolutional code fails to decode, and its output 4a can be considered as a long burst error. After the error correction decoding is performed by the burst error correction decoder 4b of the RS code, the long burst error is corrected. Obviously, by properly selecting the length of the inner and outer codes and the error correction ability according to the channel characteristics and using this method as the decoding method of the outer code, a concatenated code with stronger error correction ability can be obtained, so that at the same information transmission rate, Data with a lower error rate, or a higher data rate can be used for transmission under the same error rate.

由于RS码是BCH码的一个子类,本发明的方法完全适用于BCH码,而且还可以推广到一切循环码中去。Since the RS code is a subclass of the BCH code, the method of the invention is fully applicable to the BCH code, and can also be extended to all cyclic codes.

Claims (1)

1、一种采用里德-索洛门码的长突发纠错译码方法,包括以下步骤:1)进行初始化:设置当前最大可能的错误图样的突发长度νm的值为2t,突发图样Ym的值为0,最低突发位置Nm的值为0;同时移位计数变量Nc的值设置为0;2)开始接收传输信息系列,得到接收多项式R(x)为: R ( x ) = C ( x ) + E ( x ) = c n - 1 x n - 1 + &CenterDot; &CenterDot; &CenterDot; + ( c i 1 + v + e v ) x i 1 + v + &CenterDot; &CenterDot; &CenterDot; + ( c i 1 + e i ) x i 1 + &CenterDot; &CenterDot; &CenterDot; + c 0 , 式中,C(x)为(n,k)RS码多项式:C(x)=cn-1xn-1+cn-2xn-2+…+c1x+c0,E(x)为错误多项式: E ( x ) = e i 1 x i 1 + e i 2 x i 1 + 1 + &CenterDot; &CenterDot; &CenterDot; + e i v x i 1 + v - 1 , 其中i1为长突发错误在码矢量中的最低位置,ν为突发长度;并计算其相应的伴随式Sj=R(αj)(1≤j≤2t),α为伽罗华域DF(q)的本原元素;3)对上一步所得的伴随式进行判断:如果伴随式不等于零,则下一步转移到步骤4,否则下一步跳转到步骤9;4)计算突发图样Yc Y 1 Y 2 . . . Y 2 t = &alpha; 0 &alpha; . . . &alpha; ( 2 t - 1 ) &alpha; 0 &alpha; 2 . . . &alpha; 2 ( 2 t - 1 ) . . . . . . . . . &alpha; 0 &alpha; 2 t . . . &alpha; 2 t ( 2 t - 1 ) - 1 S 1 &prime; S 2 &prime; . . . S 2 t &prime; , 这里S j=Sj(1≤j≤2t)并计算相应的突发长度νc,这里νc为突发图样Yc中最大的非零元素距离;5)比较νc与νm的大小:如果νc<νm,下一步转移到步骤6,否则下一步跳转到步骤7;6)Yc、νc、Nc是当前最大可能的突发图样的参数,分别用它们的值覆盖掉Ym、νm、Nm的值;7)判断Nc的值是否大于码长n:如果是,则下一步转移到步骤9;否则转移到步骤8;8)接收多项式循环右移2t-νmax+1个码字长度并计算对应的伴随式,即计算 S j &prime; = S j ( a j ) 2 t - v max + 1 或在译码过程中采用循环左移为的方法,每次将接收多项式循环左移2t-νmax+1个码字长度,即计算 S j &prime; = S j &CenterDot; ( a j ) 2 t - v max + 1 , 同时将移位计数变量Nc的值增加2t-νmax+1,然后下一步返回到步骤4;9)根据错误图样Ym和错误位置Nm的值进行纠错,同时输出纠错后的信息系列;该步骤完成后,转移到步骤10;10)判断译码过程是否结束:如果是,结束译码过程;否则下一步跳回到步骤1,重新开始下一个码矢量的译码。1, a kind of long burst error correction decoding method that adopts Reed-Solomon code, comprises the following steps: 1) carry out initialization: the value of the burst length ν m of setting current maximum possible error pattern is 2t, burst The value of the transmission pattern Y m is 0, the value of the lowest burst position N m is 0; at the same time, the value of the shift count variable N c is set to 0; 2) start receiving the transmission information series, and the receiving polynomial R(x) is obtained as: R ( x ) = C ( x ) + E. ( x ) = c no - 1 x no - 1 + &Center Dot; &Center Dot; &Center Dot; + ( c i 1 + v + e v ) x i 1 + v + &Center Dot; &Center Dot; &Center Dot; + ( c i 1 + e i ) x i 1 + &Center Dot; &Center Dot; &CenterDot; + c 0 , In the formula, C(x) is the (n, k) RS code polynomial: C(x)=c n-1 x n-1 +c n-2 x n-2 +…+c 1 x+c 0 , E (x) is the error polynomial: E. ( x ) = e i 1 x i 1 + e i 2 x i 1 + 1 + &CenterDot; &CenterDot; &CenterDot; + e i v x i 1 + v - 1 , Where i 1 is the lowest position of the long burst error in the code vector, ν is the burst length; and calculate its corresponding adjoint formula S j =R(α j )(1≤j≤2t), α is Galois The original elements of the field DF(q); 3) Judging the syndrome obtained in the previous step: if the syndrome is not equal to zero, then the next step is transferred to step 4, otherwise the next step is skipped to step 9; 4) Calculate the burst Pattern Y c : Y 1 Y 2 . . . Y 2 t = &alpha; 0 &alpha; . . . &alpha; ( 2 t - 1 ) &alpha; 0 &alpha; 2 . . . &alpha; 2 ( 2 t - 1 ) . . . . . . . . . &alpha; 0 &alpha; 2 t . . . &alpha; 2 t ( 2 t - 1 ) - 1 S 1 &prime; S 2 &prime; . . . S 2 t &prime; , Here S j =S j (1≤j≤2t) and calculate the corresponding burst length ν c , where ν c is the maximum non-zero element distance in the burst pattern Y c ; 5) compare ν c with ν m Size: if ν c < ν m , the next step is transferred to step 6, otherwise the next step is skipped to step 7; 6) Y c , ν c , N c are the parameters of the current maximum possible burst pattern, and their 7) judge whether the value of N c is greater than the code length n : if yes, then move to step 9 in the next step ; otherwise, move to step 8 ; 8) receive the polynomial loop right Shift 2t-ν max +1 codeword length and calculate the corresponding syndrome, that is, calculate S j &prime; = S j ( a j ) 2 t - v max + 1 Or use the method of cyclic left shift in the decoding process, each time the receiving polynomial is cyclically shifted to the left by 2t-ν max +1 codeword length, that is, calculate S j &prime; = S j &Center Dot; ( a j ) 2 t - v max + 1 , At the same time, increase the value of the shift count variable N c by 2t-ν max +1, and then return to step 4 in the next step; 9) perform error correction according to the value of the error pattern Y m and the error position N m , and output the corrected value at the same time Information series; after this step is completed, transfer to step 10; 10) judge whether the decoding process ends: if yes, end the decoding process; otherwise the next step jumps back to step 1, and restarts the decoding of the next code vector.
CN01110134A 2001-03-30 2001-03-30 Long burst error-correcting decoding method adopting Reed-solomon code Expired - Fee Related CN1119869C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN01110134A CN1119869C (en) 2001-03-30 2001-03-30 Long burst error-correcting decoding method adopting Reed-solomon code

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN01110134A CN1119869C (en) 2001-03-30 2001-03-30 Long burst error-correcting decoding method adopting Reed-solomon code

Publications (2)

Publication Number Publication Date
CN1322063A CN1322063A (en) 2001-11-14
CN1119869C true CN1119869C (en) 2003-08-27

Family

ID=4658362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN01110134A Expired - Fee Related CN1119869C (en) 2001-03-30 2001-03-30 Long burst error-correcting decoding method adopting Reed-solomon code

Country Status (1)

Country Link
CN (1) CN1119869C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI320666B (en) 2002-04-12 2010-02-11 Interdigital Tech Corp An access burst detector for use in a node b/base station
CN101409565B (en) * 2008-09-04 2012-02-01 上海华为技术有限公司 Method and apparatus for decoding, and encoding/decoding system
CN101834615B (en) * 2009-03-12 2012-12-26 高通创锐讯通讯科技(上海)有限公司 Implementation method of Reed-Solomon encoder
CN103929209A (en) * 2014-04-09 2014-07-16 西安电子科技大学 FPGA-Based High-Performance Combined RS Processor
US9379739B2 (en) 2014-08-11 2016-06-28 Qualcomm Incorporated Devices and methods for data recovery of control channels in wireless communications
CN114513213A (en) * 2022-01-13 2022-05-17 南京理工大学 Error capturing circuit and decoding method based on asymmetric quantum cycle burst error code

Also Published As

Publication number Publication date
CN1322063A (en) 2001-11-14

Similar Documents

Publication Publication Date Title
CN101785189B (en) Encoding device and decoding device
CN101459431B (en) Decoding method for channel error correcting BCH code and RS code
US8423876B2 (en) Low-density parity check convolution code (LDPC-CC) encoder and LDPC-CC decoder
US10992416B2 (en) Forward error correction with compression coding
WO2004068715A2 (en) Systems and processes for fast encoding of hamming codes
Alwan et al. Performance comparison of turbo codes with LDPC codes and with BCH codes for forward error correcting codes
CN1119869C (en) Long burst error-correcting decoding method adopting Reed-solomon code
Potey et al. Error detection and correction capability for BCH encoder using VHDL
Tiwari et al. Design and implementation of Reed Solomon Decoder for 802.16 network using FPGA
Bate et al. Error control techniques applicable to HF channels
CN105680882A (en) Hard decision decoding method for quadratic residue codes
CN114050835B (en) A RS code encoding method based on parity check precoding
Pandey Comparative performance analysis of block and convolution codes
Sonawane et al. Implementation of RS-CC Encoder and Decoder using MATLAB
Meghana et al. Comparitive analysis of channel coding using BPSK modulation
KR102611828B1 (en) Reed-solomon decoder for error correction
US7734991B1 (en) Method of encoding signals with binary codes
KR101279283B1 (en) Apparatus and method for transmitting/receiving signal in a communication system using a block code
Ibrahim et al. SER performance of Reed-Solomon codes with QAM modulation scheme in AWGN channel
Changuel et al. Iterative decoding of block turbo codes over the binary erasure channel
Smadi PERFORMANCE ANALYSIS OF BPSK SYSTEM WITH HARD DECISION (63, 36) BCH CODE.
Honary et al. Adaptive coding for 2-200 MHz multiple-mechanism radio paths
Iliev et al. Analysis of Reed-Solomon Codes: Application to Digital Video Broadcasting Systems
Sodhi et al. Performance Evaluation of 8 PSK and 16 PSK using Reed—Solomon Codes
Feng Performance and iterative decoding of turbo product codes

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030827

Termination date: 20100330