CN111950578A - A method and device for determining the state of a vehicle - Google Patents
A method and device for determining the state of a vehicle Download PDFInfo
- Publication number
- CN111950578A CN111950578A CN201910413435.1A CN201910413435A CN111950578A CN 111950578 A CN111950578 A CN 111950578A CN 201910413435 A CN201910413435 A CN 201910413435A CN 111950578 A CN111950578 A CN 111950578A
- Authority
- CN
- China
- Prior art keywords
- monitoring data
- target
- vehicle
- data set
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/08—Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
Landscapes
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Traffic Control Systems (AREA)
Abstract
本发明公开了一种确定车辆状态的方法及装置,涉及数据处理技术领域,以解决无法及时的确定车辆的故障,且维护成本较高的问题。该方法包括:获取待监测车辆的监测数据,其中,所述监测数据包括所述待监测车辆的实时监测数据;将所述监测数据进行分类,获得不同的车辆类型的监测数据集;针对目标车辆类型,根据所述目标车辆类型的目标监测数据集,获取目标相关系数数据集;对所述目标相关系数数据集进行聚类分析,确定具有所述目标车辆类型的目标车辆的状态。本发明实施例可提高车辆的安全性,并降低维护成本。
The invention discloses a method and a device for determining the state of a vehicle, which relates to the technical field of data processing to solve the problems that the fault of the vehicle cannot be determined in time and the maintenance cost is high. The method includes: acquiring monitoring data of a vehicle to be monitored, wherein the monitoring data includes real-time monitoring data of the vehicle to be monitored; classifying the monitoring data to obtain monitoring data sets of different vehicle types; targeting a target vehicle type, obtain a target correlation coefficient data set according to the target monitoring data set of the target vehicle type; perform cluster analysis on the target correlation coefficient data set to determine the state of the target vehicle with the target vehicle type. The embodiment of the present invention can improve the safety of the vehicle and reduce the maintenance cost.
Description
技术领域technical field
本发明涉及数据处理技术领域,尤其涉及一种确定车辆状态的方法及装置。The present invention relates to the technical field of data processing, and in particular, to a method and device for determining vehicle status.
背景技术Background technique
为了保证车辆的安全和可靠性能,通常情况下驾驶员或维护人员会定期对车辆进行检查。但有些实时发生的故障会威胁驾驶安全,事后检查难以改善这种问题。定期检查的方式无法预知车辆的故障周期,会造成资源浪费。常规检查则需要专业知识、设备和场地,成本较高。因此,通过分析车辆的状态数据,可以分析出车辆的故障信息。In order to ensure the safe and reliable performance of the vehicle, usually the driver or maintenance personnel will check the vehicle regularly. But some real-time failures can threaten driving safety, and post-mortem inspections are difficult to correct. The method of regular inspection cannot predict the failure cycle of the vehicle, which will cause waste of resources. Routine inspections require specialized knowledge, equipment and space, and are costly. Therefore, by analyzing the state data of the vehicle, the failure information of the vehicle can be analyzed.
例如,在专利文献US20180315260A1中,利用同一个车型的状态信息和故障记录,来训练故障确定模型,根据该模型和实时状态信息来确定故障。其中车辆故障情形时的状态数据,以及相应的故障记录通过人为制造故障病收集数据来获得,该专利也设计了激励驾驶员上传故障记录的方法。For example, in the patent document US20180315260A1, the status information and fault records of the same vehicle model are used to train a fault determination model, and faults are determined according to the model and real-time status information. Among them, the state data in the case of vehicle failure and the corresponding failure records are obtained by collecting data for artificially manufactured failures. The patent also designs a method to motivate the driver to upload the failure records.
专利文献WO2017/129510A1,CN140214329A,CN 103135515A等,提出了利用车辆专家的专业知识以及某些状态数据的阈值来确定车辆故障的方法。Patent documents WO2017/129510A1, CN140214329A, CN 103135515A, etc., propose methods for determining vehicle faults by utilizing the professional knowledge of vehicle experts and thresholds of certain state data.
然而,专利文献US20180315260A1中所需的故障记录很难获取,或者该故障记录结构复杂难以用计算机处理。同时该发明需要较长时间的数据,实施难度较大。专利文献WO2017/129510A1,CN140214329A,CN 103135515A等需要专业知识和设备,成本较高,同时无法适用于不同车型。However, the fault record required in the patent document US20180315260A1 is difficult to obtain, or the structure of the fault record is complicated and difficult to be processed by a computer. At the same time, the invention requires data for a long time and is difficult to implement. The patent documents WO2017/129510A1, CN140214329A, CN 103135515A, etc. require professional knowledge and equipment, the cost is high, and at the same time, they cannot be applied to different vehicle models.
因此,利用现有技术的上述方式,无法及时的确定车辆的故障,且维护成本较高。Therefore, with the above methods of the prior art, the failure of the vehicle cannot be determined in time, and the maintenance cost is relatively high.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供一种确定车辆状态的方法及装置,以提高车辆的安全性,并降低维护成本。Embodiments of the present invention provide a method and device for determining a vehicle state, so as to improve the safety of the vehicle and reduce maintenance costs.
第一方面,本发明实施例提供了一种确定车辆状态的方法,包括:In a first aspect, an embodiment of the present invention provides a method for determining a state of a vehicle, including:
获取待监测车辆的监测数据,其中,所述监测数据包括所述待监测车辆的实时监测数据;acquiring monitoring data of the vehicle to be monitored, wherein the monitoring data includes real-time monitoring data of the vehicle to be monitored;
将所述监测数据进行分类,获得不同的车辆类型的监测数据集;Classifying the monitoring data to obtain monitoring data sets of different vehicle types;
针对目标车辆类型,根据所述目标车辆类型的目标监测数据集,获取目标相关系数数据集;For the target vehicle type, obtain a target correlation coefficient data set according to the target monitoring data set of the target vehicle type;
对所述目标相关系数数据集进行聚类分析,确定具有所述目标车辆类型的目标车辆的状态。Cluster analysis is performed on the target correlation coefficient data set to determine the state of the target vehicle having the target vehicle type.
其中,所述监测数据还包括所述待监测车辆的历史监测数据,所述监测数据集包括实时监测数据集和历史监测数据集;Wherein, the monitoring data further includes historical monitoring data of the vehicle to be monitored, and the monitoring data set includes a real-time monitoring data set and a historical monitoring data set;
所述将所述监测数据进行分类,获得不同的车辆类型的监测数据集,包括:The said monitoring data are classified to obtain monitoring data sets of different vehicle types, including:
将所述实时监测数据进行分类,获得不同的车辆类型的实时监测数据集;Classifying the real-time monitoring data to obtain real-time monitoring data sets of different vehicle types;
将所述历史监测数据进行分类,获得不同的车辆类型的历史监测数据集。Classify the historical monitoring data to obtain historical monitoring data sets of different vehicle types.
其中,所述根据所述目标车辆类型的目标监测数据集,获取目标相关系数数据集,包括:Wherein, obtaining the target correlation coefficient data set according to the target monitoring data set of the target vehicle type includes:
对于所述目标监测数据集中的数据项,计算每两个数据项之间的相关系数;For the data items in the target monitoring data set, calculate the correlation coefficient between every two data items;
利用计算得到的相关系数,形成所述目标相关系数数据集。Using the calculated correlation coefficients, the target correlation coefficient data set is formed.
其中,所述对于所述目标监测数据集中的数据项,计算每两个数据项之间的相关系数,包括:Wherein, for the data items in the target monitoring data set, calculating the correlation coefficient between every two data items, including:
利用所述目标监测数据集中同一采样时刻的多个数据项组成第一矩阵;A first matrix is formed by using multiple data items at the same sampling time in the target monitoring data set;
将所述第一矩阵拆分成第二矩阵和第三矩阵;splitting the first matrix into a second matrix and a third matrix;
计算所述第二矩阵与第一结果的乘积,获得第四矩阵;Calculate the product of the second matrix and the first result to obtain a fourth matrix;
其中,所述第四矩阵中的每个元素表示一个相关系数;所述第一结果为所述第二矩阵和所述第三矩阵进行矩阵伪逆运算的结果。Wherein, each element in the fourth matrix represents a correlation coefficient; the first result is the result of performing a matrix pseudo-inverse operation on the second matrix and the third matrix.
其中,所述对所述目标相关系数数据集进行聚类分析,确定具有所述目标车辆类型的目标车辆的状态,包括:Wherein, performing cluster analysis on the target correlation coefficient data set to determine the state of the target vehicle with the target vehicle type includes:
对所述目标相关系数数据集进行聚类分析,获得聚类分析结果;Perform cluster analysis on the target correlation coefficient data set to obtain a cluster analysis result;
确定第一类中的目标车辆的状态为正常,确定其他类中的目标车辆的状态为故障;determining that the state of the target vehicle in the first class is normal, and determining that the state of the target vehicle in other classes is faulty;
其中,所述第一类为所述聚类分析结果中包含数据点最多的类,所述其他类为所述聚类分析结果中除所述第一类之外的类。The first category is the category that contains the most data points in the cluster analysis result, and the other categories are categories other than the first category in the cluster analysis result.
其中,在所述确定具有所述目标车辆类型的目标车辆的状态之后,所述方法还包括:Wherein, after the determining the state of the target vehicle having the target vehicle type, the method further includes:
向所述目标车辆发送提示信息,所述提示信息中包括第二类对应的第二故障类型,所述第二类为其他类中的任一类。Sending prompt information to the target vehicle, where the prompt information includes a second fault type corresponding to the second category, and the second category is any one of the other categories.
其中,在所述向所述目标车辆发送提示信息之前,所述方法还包括:Wherein, before the sending prompt information to the target vehicle, the method further includes:
获取所述第二故障类型的物理含义,在所述提示信息中还包括所述第二故障类型的物理含义。The physical meaning of the second fault type is acquired, and the prompt information further includes the physical meaning of the second fault type.
其中,在所述确定具有所述目标车辆类型的目标车辆的状态之后,所述方法还包括:Wherein, after the determining the state of the target vehicle having the target vehicle type, the method further includes:
计算第三类的劣化指标,所述第三类为其他类中的任一类。Calculate the degradation index of the third class, where the third class is any one of the other classes.
其中,所述计算第三类的劣化指标,包括:Wherein, the calculation of the deterioration index of the third category includes:
利用所述第三类中的第一数据点与所述第一类的距离、所述第一数据点对应的采样时刻,形成坐标对;Using the distance between the first data point in the third category and the first category, and the sampling time corresponding to the first data point, a coordinate pair is formed;
对所述第三类中的所有数据点对应的坐标对,进行拟合计算;Perform fitting calculation on the coordinate pairs corresponding to all data points in the third category;
根据拟合计算的结果,计算所述第三类的劣化指标。According to the result of the fitting calculation, the deterioration index of the third category is calculated.
第二方面,本发明实施例提供了一种确定车辆状态的装置,包括:In a second aspect, an embodiment of the present invention provides a device for determining a state of a vehicle, including:
第一获取模块,用于获取待监测车辆的监测数据,其中,所述监测数据包括所述待监测车辆的实时监测数据;a first acquisition module, configured to acquire monitoring data of the vehicle to be monitored, wherein the monitoring data includes real-time monitoring data of the vehicle to be monitored;
第二获取模块,用于将所述监测数据进行分类,获得不同的车辆类型的监测数据集;a second acquisition module, configured to classify the monitoring data to obtain monitoring data sets of different vehicle types;
第三获取模块,用于针对目标车辆类型,根据所述目标车辆类型的目标监测数据集,获取目标相关系数数据集;A third obtaining module, configured to obtain a target correlation coefficient data set according to the target monitoring data set of the target vehicle type for the target vehicle type;
确定模块,用于对所述目标相关系数数据集进行聚类分析,确定具有所述目标车辆类型的目标车辆的状态。A determination module, configured to perform cluster analysis on the target correlation coefficient data set to determine the state of the target vehicle with the target vehicle type.
其中,所述监测数据还包括所述待监测车辆的历史监测数据,所述监测数据集包括实时监测数据集和历史监测数据集;Wherein, the monitoring data further includes historical monitoring data of the vehicle to be monitored, and the monitoring data set includes a real-time monitoring data set and a historical monitoring data set;
所述第二获取模块包括:The second acquisition module includes:
第一获取子模块,用于将所述实时监测数据进行分类,获得不同的车辆类型的实时监测数据集;a first acquisition sub-module for classifying the real-time monitoring data to obtain real-time monitoring data sets of different vehicle types;
第二获取子模块,用于将所述历史监测数据进行分类,获得不同的车辆类型的历史监测数据集。The second obtaining sub-module is configured to classify the historical monitoring data to obtain historical monitoring data sets of different vehicle types.
其中,所述第三获取模块包括:Wherein, the third acquisition module includes:
计算子模块,用于对于所述目标监测数据集中的数据项,计算每两个数据项之间的相关系数;A calculation submodule for calculating the correlation coefficient between every two data items for the data items in the target monitoring data set;
获取子模块,用于利用计算得到的相关系数,形成所述目标相关系数数据集。An acquisition sub-module is used to form the target correlation coefficient data set by using the calculated correlation coefficient.
其中,所述计算子模块包括:Wherein, the calculation submodule includes:
处理单元,用于利用所述目标监测数据集中同一采样时刻的多个数据项组成第一矩阵;a processing unit, configured to form a first matrix by using a plurality of data items at the same sampling time in the target monitoring data set;
拆分单元,用于将所述第一矩阵拆分成第二矩阵和第三矩阵;a splitting unit for splitting the first matrix into a second matrix and a third matrix;
计算单元,用于计算所述第二矩阵与第一结果的乘积,获得第四矩阵;a calculation unit, configured to calculate the product of the second matrix and the first result to obtain a fourth matrix;
其中,所述第四矩阵中的每个元素表示一个相关系数;所述第一结果为所述第二矩阵和所述第三矩阵进行矩阵伪逆运算的结果。Wherein, each element in the fourth matrix represents a correlation coefficient; the first result is the result of performing a matrix pseudo-inverse operation on the second matrix and the third matrix.
其中,所述确定模块包括:Wherein, the determining module includes:
分析子模块,用于对所述目标相关系数数据集进行聚类分析,获得聚类分析结果;an analysis sub-module for performing cluster analysis on the target correlation coefficient data set to obtain a cluster analysis result;
确定子模块,用于确定第一类中的目标车辆的状态为正常,确定其他类中的目标车辆的状态为故障;a determining submodule, used for determining that the state of the target vehicle in the first class is normal, and determining that the state of the target vehicle in other classes is faulty;
其中,所述第一类为所述聚类分析结果中包含数据点最多的类,所述其他类为所述聚类分析结果中除所述第一类之外的类。The first category is the category that contains the most data points in the cluster analysis result, and the other categories are categories other than the first category in the cluster analysis result.
其中,所述装置还包括:Wherein, the device also includes:
计算模块,用于计算第三类的劣化指标,所述第三类为其他类中的任一类。The calculation module is used to calculate the deterioration index of the third category, where the third category is any category among other categories.
其中,所述计算模块包括:Wherein, the computing module includes:
处理子模块,用于利用所述第三类中的第一数据点与所述第一类的距离、所述第一数据点对应的采样时刻,形成坐标对;a processing submodule, configured to form a coordinate pair by using the distance between the first data point in the third category and the first category, and the sampling time corresponding to the first data point;
拟合子模块,用于对所述第三类中的所有数据点对应的坐标对,进行拟合计算;a fitting submodule, used to perform fitting calculation on the coordinate pairs corresponding to all the data points in the third category;
计算子模块,用于根据拟合计算的结果,计算所述第三类的劣化指标。The calculation sub-module is configured to calculate the deterioration index of the third category according to the result of the fitting calculation.
在本发明实施例中,只根据待监测车辆的实时监测数据即可以确定出车辆的状态。与现有技术相比,利用本发明实施例的方案可及时的确定车辆状态,从而提高车辆的安全性,并降低维护成本。In the embodiment of the present invention, the state of the vehicle can be determined only according to the real-time monitoring data of the vehicle to be monitored. Compared with the prior art, the solution of the embodiment of the present invention can determine the vehicle state in time, thereby improving the safety of the vehicle and reducing the maintenance cost.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to illustrate the technical solutions of the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments of the present invention. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained from these drawings without creative labor.
图1是本发明实施例提供的确定车辆状态的方法的流程图之一;1 is one of the flowcharts of a method for determining a vehicle state provided by an embodiment of the present invention;
图2是本发明实施例的系统硬件结构图;2 is a system hardware structure diagram of an embodiment of the present invention;
图3是本发明实施例提供的确定车辆状态的方法的流程图之二;FIG. 3 is the second flow chart of the method for determining the state of the vehicle provided by the embodiment of the present invention;
图4是本发明实施例中聚类分析结果的示意图;4 is a schematic diagram of a cluster analysis result in an embodiment of the present invention;
图5是本发明实施例中劣化指标的预测示意图;Fig. 5 is the prediction schematic diagram of the deterioration index in the embodiment of the present invention;
图6是本发明实施例中确定故障类型的物理含义过程示意图;6 is a schematic diagram of a process of determining the physical meaning of a fault type in an embodiment of the present invention;
图7是本发明实施例确定车辆状态的装置的结构图之一;FIG. 7 is one of the structural diagrams of an apparatus for determining a vehicle state according to an embodiment of the present invention;
图8是本发明实施例中第二获取模块的示意图;8 is a schematic diagram of a second acquisition module in an embodiment of the present invention;
图9是本发明实施例中第三获取模块的示意图;9 is a schematic diagram of a third acquisition module in an embodiment of the present invention;
图10是本发明实施例中计算子模块的示意图;10 is a schematic diagram of a computing submodule in an embodiment of the present invention;
图11是本发明实施例中确定模块的示意图;11 is a schematic diagram of a determination module in an embodiment of the present invention;
图12是本发明实施例确定车辆状态的装置的结构图之二;FIG. 12 is the second structural diagram of the apparatus for determining the state of the vehicle according to the embodiment of the present invention;
图13是本发明实施例确定车辆状态的装置的结构图之三;FIG. 13 is a third structural diagram of an apparatus for determining a vehicle state according to an embodiment of the present invention;
图14是本发明实施例确定车辆状态的装置的结构图之四;FIG. 14 is the fourth structural diagram of the apparatus for determining the state of the vehicle according to the embodiment of the present invention;
图15是本发明实施例中计算模块的示意图;15 is a schematic diagram of a computing module in an embodiment of the present invention;
图16是本发明实施例确定车辆状态的设备的示意图。FIG. 16 is a schematic diagram of a device for determining a state of a vehicle according to an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
参见图1,图1是本发明实施例提供的确定车辆状态的方法的流程图,如图1所示,包括以下步骤:Referring to FIG. 1, FIG. 1 is a flowchart of a method for determining a vehicle state provided by an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps:
步骤101、获取待监测车辆的监测数据,其中,所述监测数据包括所述待监测车辆的实时监测数据。Step 101: Obtain monitoring data of the vehicle to be monitored, wherein the monitoring data includes real-time monitoring data of the vehicle to be monitored.
在本发明实施例中,可在车辆上安装有监测设备,然后,通过该监测设备获得车辆的监测数据。例如,可通过待监测车辆上的OBD(On-Board Diagnostics,车载确定系统)来获取监测数据。In the embodiment of the present invention, a monitoring device may be installed on the vehicle, and then the monitoring data of the vehicle is obtained through the monitoring device. For example, monitoring data can be acquired through OBD (On-Board Diagnostics, on-board determination system) on the vehicle to be monitored.
在此,所述监测数据包括待监测车辆在某个采样时刻的实时监测数据。进一步的,为提高车辆的安全性,在本发明实施例中,所述监测数据还可包括待监测测量的历史监测数据。也即,在当前采样时刻之前的监测数据。其中,所述监测数据例如可以包括发动机状态,油量等。Here, the monitoring data includes real-time monitoring data of the vehicle to be monitored at a certain sampling moment. Further, in order to improve the safety of the vehicle, in the embodiment of the present invention, the monitoring data may further include historical monitoring data of the measurement to be monitored. That is, the monitoring data before the current sampling time. Wherein, the monitoring data may include, for example, engine state, oil quantity, and the like.
步骤102、将所述监测数据进行分类,获得不同的车辆类型的监测数据集。Step 102: Classify the monitoring data to obtain monitoring data sets of different vehicle types.
在本发明实施例中,基于车辆类型,将监测数据进行分类,从而获得不同的车辆类型对应的监测数据集。In the embodiment of the present invention, the monitoring data is classified based on the vehicle type, so as to obtain monitoring data sets corresponding to different vehicle types.
如果监测数据包括实时监测数据,那么,在此步骤中,根据车辆类型,将所述实时监测数据进行分类,获得不同的车辆类型的实时监测数据集。If the monitoring data includes real-time monitoring data, in this step, the real-time monitoring data is classified according to the vehicle type, and real-time monitoring data sets of different vehicle types are obtained.
如果监测数据包括实时监测数据和历史监测数据,那么,在此步骤中,根据车辆类型,将所述实时监测数据进行分类,获得不同的车辆类型的实时监测数据集;以及,根据车辆类型,将所述历史监测数据进行分类,获得不同的车辆类型的历史监测数据集。If the monitoring data includes real-time monitoring data and historical monitoring data, then, in this step, according to the vehicle type, the real-time monitoring data is classified to obtain real-time monitoring data sets of different vehicle types; and, according to the vehicle type, the The historical monitoring data is classified to obtain historical monitoring data sets of different vehicle types.
步骤103、针对目标车辆类型,根据所述目标车辆类型的目标监测数据集,获取目标相关系数数据集。Step 103: For the target vehicle type, obtain a target correlation coefficient data set according to the target monitoring data set of the target vehicle type.
针对每个车辆类型,在此根据其对应的监测数据集,获取相关系数数据集。其中,所述目标车辆类型指的是任意的车辆类型。For each vehicle type, a correlation coefficient data set is obtained here according to its corresponding monitoring data set. Wherein, the target vehicle type refers to any vehicle type.
在此步骤中,以目标车辆类型为例,对于所述目标监测数据集中的数据项,计算每两个数据项之间的相关系数,然后,利用计算得到的相关系数,形成所述目标相关系数数据集。In this step, taking the target vehicle type as an example, for the data items in the target monitoring data set, the correlation coefficient between every two data items is calculated, and then, the target correlation coefficient is formed by using the calculated correlation coefficient data set.
具体的,利用所述目标监测数据集中同一采样时刻的多个数据项组成第一矩阵,之后,将所述第一矩阵拆分成第二矩阵和第三矩阵。然后,计算所述第二矩阵与第一结果的乘积,获得第四矩阵;其中,所述第四矩阵中的每个元素表示一个相关系数;所述第一结果为所述第二矩阵和所述第三矩阵进行矩阵伪逆运算的结果。Specifically, a first matrix is formed by using multiple data items at the same sampling time in the target monitoring data set, and then the first matrix is divided into a second matrix and a third matrix. Then, the product of the second matrix and the first result is calculated to obtain a fourth matrix; wherein, each element in the fourth matrix represents a correlation coefficient; the first result is the second matrix and the The result of performing the matrix pseudo-inverse operation on the third matrix.
对于每个时间段,在同一采样时刻的数据,形成第一矩阵。其中行数代表不同的数据项,列数代表不同采样时刻,或者相反也可。For each time period, the data at the same sampling moment forms a first matrix. The number of rows represents different data items, and the number of columns represents different sampling moments, or vice versa.
将第一矩阵拆分成两个矩阵:X和Y,其中,X=(x(t,1),x(t,2),x(t,3),…x(t,m)),Y=(y(t,1),y(t,2),y(t,3),…,y(t,n))。Split the first matrix into two matrices: X and Y, where X=(x(t,1),x(t,2),x(t,3),...x(t,m)), Y=(y(t,1),y(t,2),y(t,3),...,y(t,n)).
之后,利用以下公式(1)计算相关系数矩阵Tr:After that, the correlation coefficient matrix Tr is calculated using the following formula (1):
Tr=X*pinv((X,Y)),即:Tr=X*pinv((X, Y)), namely:
其中,pinv表示矩阵伪逆运算。其中,t是当前时刻,k+l大于或等于m+n。计算出的矩阵Tr中的每个元素代表当前时刻t的一个相关系数。Among them, pinv represents the matrix pseudo-inverse operation. Among them, t is the current moment, and k+l is greater than or equal to m+n. Each element in the calculated matrix Tr represents a correlation coefficient at the current time t.
在获得了Tr之后,还可将其转化为一维向量,那么,该一维向量中的每个元素都代表一个相关系数。After obtaining Tr, it can also be converted into a one-dimensional vector, then each element in the one-dimensional vector represents a correlation coefficient.
对于实时监测数据集和历史监测数据集,都可按照上述同样的方法,计算出对应的相关系数数据集。For both the real-time monitoring data set and the historical monitoring data set, the corresponding correlation coefficient data set can be calculated according to the same method as above.
步骤104、对所述目标相关系数数据集进行聚类分析,确定具有所述目标车辆类型的目标车辆的状态。Step 104: Perform cluster analysis on the target correlation coefficient data set to determine the state of the target vehicle having the target vehicle type.
在此,可利用任意的方法对所述目标相关系数数据集进行聚类分析,获得聚类分析结果。例如,DBSCAN(Density-Based Spatial Clustering of Applications withNoise,基于密度的噪声应用空间聚类),k均值聚类算法(k-means clustering algorithm)等。Here, any method can be used to perform cluster analysis on the target correlation coefficient data set to obtain a cluster analysis result. For example, DBSCAN (Density-Based Spatial Clustering of Applications with Noise, density-based noise application spatial clustering), k-means clustering algorithm (k-means clustering algorithm) and so on.
在获得的聚类分析结果中,确定第一类中的目标车辆的状态为正常,确定其他类中的目标车辆的状态为故障;其中,所述第一类为所述聚类分析结果中包含数据点最多的类,所述其他类为所述聚类分析结果中除所述第一类之外的类。In the obtained cluster analysis result, it is determined that the state of the target vehicle in the first class is normal, and the state of the target vehicle in other classes is determined to be faulty; The class with the most data points, and the other classes are classes other than the first class in the cluster analysis result.
对于其他类而言,可包括一个或多个类。每个类代表不同的故障类型。那么,在实际应用中,可用不同的数字或者文本来代表不同的故障类型,或者正常的状态。For other classes, one or more classes may be included. Each class represents a different failure type. Then, in practical applications, different numbers or texts can be used to represent different fault types or normal states.
在本发明实施例中,只根据待监测车辆的实时监测数据即可以确定出车辆的状态。与现有技术相比,利用本发明实施例的方案可及时的确定车辆状态,从而提高车辆的安全性,并降低维护成本。In the embodiment of the present invention, the state of the vehicle can be determined only according to the real-time monitoring data of the vehicle to be monitored. Compared with the prior art, the solution of the embodiment of the present invention can determine the vehicle state in time, thereby improving the safety of the vehicle and reducing the maintenance cost.
在上述实施例的基础上,为进一步提高车辆的安全性,还可向所述目标车辆发送提示信息,所述提示信息中包括第二类对应的第二故障类型,所述第二类为其他类中的任一类。若存在第二故障类型的物理含义,在此,还可获取所述第二故障类型的物理含义,在所述提示信息中还包括所述第二故障类型的物理含义。所述物理含义指的是该第二故障类型所表示的含义。例如,第二故障类型可以是某些符号,那么,其物理含义则可以理解为与该符号相对应的文字说明等。On the basis of the above embodiment, in order to further improve the safety of the vehicle, prompt information can also be sent to the target vehicle, and the prompt information includes the second fault type corresponding to the second category, and the second category is other any of the classes. If there is a physical meaning of the second fault type, here, the physical meaning of the second fault type can also be obtained, and the prompt information also includes the physical meaning of the second fault type. The physical meaning refers to the meaning represented by the second fault type. For example, the second fault type can be some symbols, then, its physical meaning can be understood as a text description corresponding to the symbol, etc.
对于各个故障类型,为了使得维护人员或者驾驶人员进一步了解其发展,提高车辆的安全性,在此,还可计算第三类的劣化指标,所述第三类为其他类中的任一类,从而预估第三类的故障类型的变化趋势。具体的,利用所述第三类中的第一数据点与所述第一类的距离、所述第一数据点对应的采样时刻,形成坐标对。然后,对所述第三类中的所有数据点对应的坐标对,进行拟合计算。最后,根据拟合计算的结果,计算所述第三类的劣化指标。For each fault type, in order to make the maintenance personnel or drivers further understand its development and improve the safety of the vehicle, here, the deterioration index of the third type can also be calculated, and the third type is any one of the other types. Thereby, the change trend of the third type of fault types is estimated. Specifically, the coordinate pair is formed by using the distance between the first data point in the third category and the first category, and the sampling time corresponding to the first data point. Then, a fitting calculation is performed on the coordinate pairs corresponding to all the data points in the third category. Finally, according to the result of the fitting calculation, the deterioration index of the third category is calculated.
如图2所示,为本发明实施例的系统硬件结构图。结合图2,该系统包括:As shown in FIG. 2 , it is a system hardware structure diagram of an embodiment of the present invention. In conjunction with Figure 2, the system includes:
多个被监控的车辆201-203上的数据接入设备,可以连接在OBD接口或者其他类型的接口上。The data access devices on the multiple monitored vehicles 201-203 may be connected to the OBD interface or other types of interfaces.
数据存储和分析计算服务器210,该服务器可以是单个设备,还可以是一组设备,或者是虚拟计算云。Data storage and
历史数据库211(可选)。Historical database 211 (optional).
显示设备214,用于显示故障分析结果,实时监测数据;可应用于汽车公司,保险公司,机构等。The
历史数据库211和显示设备214可通过有线或无线连接网络212-213与服务器210通信。
第一移动前端216,由维护人员操作,可以是维护人员的安装有APP的移动终端。The first mobile
第二移动前端218,由驾驶员使用,可以是驾驶员的安装有APP的终端。The second mobile
其中,207-209、215、217代表的是无线通信网络。Among them, 207-209, 215, and 217 represent wireless communication networks.
通过无线网络215向维护人员传输故障分析结果,向服务器220返回维护人员的故障定义;通过无线网络217向驾驶员传输故障分析结果以及向服务器反馈驾驶员对故障的定义。The fault analysis result is transmitted to the maintenance personnel through the
图3是本发明实施例的确定车辆状态的方法的流程。结合图3所示,本发明实施例的方法包括:FIG. 3 is a flowchart of a method for determining a vehicle state according to an embodiment of the present invention. With reference to FIG. 3 , the method of the embodiment of the present invention includes:
步骤301、获取待监测车辆的实时车辆状态数据。Step 301: Acquire real-time vehicle status data of the vehicle to be monitored.
通过待监测车辆的OBD获取其实时车辆状态数据。若有历史车辆状态数据,在此,还可获取历史状态数据。Obtain real-time vehicle status data through the OBD of the vehicle to be monitored. If there is historical vehicle status data, the historical status data can also be obtained here.
步骤302、根据车辆类型,将获得的实时车辆状态数据进行分类,获得实时数据集。Step 302: Classify the obtained real-time vehicle state data according to the vehicle type to obtain a real-time data set.
步骤303、计算每个实时数据集的相关系数。Step 303: Calculate the correlation coefficient of each real-time data set.
对于每个实时数据集,计算每两个数据项之间的相关系数,获得第一相关系数数据集。For each real-time data set, a correlation coefficient between every two data items is calculated to obtain a first correlation coefficient data set.
步骤304、根据车辆类型,将获得的历史车辆状态数据进行分类,获得历史数据集。Step 304: Classify the obtained historical vehicle state data according to the vehicle type to obtain a historical data set.
步骤305、计算每个历史数据集的相关系数。Step 305: Calculate the correlation coefficient of each historical data set.
对于每个历史数据集,计算每两个数据项之间的相关系数,获得第二相关系数数据集。For each historical data set, the correlation coefficient between every two data items is calculated to obtain a second correlation coefficient data set.
其中,计算相关系数数据集的方法,可参照前述方法实施例的描述。For the method for calculating the correlation coefficient data set, reference may be made to the description of the foregoing method embodiments.
步骤306、对于每个车辆类型,基于相关系数数据集进行聚类分析。
在此,以步骤303和步骤305的结果为基础,对每个车辆类型的相关系数数据集进行分类。Here, based on the results of
根据聚类分析结果,包含最多数据点的类代表车辆正常,其他不同类代表不同的故障类型。同时,可用不同的数字或文本来代表不同的故障或者正常类型。According to the cluster analysis results, the class containing the most data points represents the normal vehicle, and other different classes represent different fault types. At the same time, different numbers or texts can be used to represent different fault or normal types.
如图4所示,为聚类分析结果。其中,401代表的类表示车辆正常,402、403代表的类则表示车辆故障。该图仅是示意图,实际应用中,特征数量(或相关系数的坐标维度)可能不是3个,确定出的故障类型也可能不是2个。As shown in Figure 4, it is the result of cluster analysis. Among them, the class represented by 401 indicates that the vehicle is normal, and the classes represented by 402 and 403 indicate that the vehicle is faulty. This figure is only a schematic diagram. In practical applications, the number of features (or the coordinate dimension of the correlation coefficient) may not be 3, and the determined fault types may not be 2.
步骤307、对于每个故障类型,计算故障劣化指标。Step 307: For each fault type, calculate the fault deterioration index.
每个车型的每个故障类型都对应一个劣化状态计算过程。在此,首先计算同一个故障类中的每个数据点与正常类的距离,即该数据点到正常类的中心点或均值点之间的距离。该距离越大,说明故障程度越高。然后,利用该距离以及该数据点的对应时刻,组成一组坐标。基于同一个故障类中的所有坐标,进行拟合计算,得到一个拟合曲线。基于该拟合曲线计算某未来时刻的劣化状态,作为该未来时刻下,该种故障类型的劣化指标。Each fault type of each model corresponds to a deterioration state calculation process. Here, first calculate the distance between each data point in the same fault class and the normal class, that is, the distance between the data point and the center point or the mean point of the normal class. The larger the distance, the higher the degree of failure. Then, use the distance and the corresponding moment of the data point to form a set of coordinates. Based on all the coordinates in the same fault class, the fitting calculation is performed to obtain a fitting curve. Based on the fitting curve, the deterioration state at a certain future time is calculated as the deterioration index of the fault type at the future time.
如图5所示,利用某个故障类中各个数据点的坐标(图中501等),形成的拟合曲线502。那么,根据该拟合曲线的趋势,即可预测出该故障的劣化状态。其中,劣化指标指的是某个时刻,图5中的某个数据点与正常类的中心点或均值点之间的距离。As shown in FIG. 5 , a
步骤308、输出故障分析结果。
在本发明实施例中,将确定的故障类型和其对应的物理含义,分发到各个结果显示终端中。如果某个故障类型的物理含义不存在,那么只将故障类型分发到各结果显示终端中。In this embodiment of the present invention, the determined fault types and their corresponding physical meanings are distributed to each result display terminal. If the physical meaning of a fault type does not exist, then only the fault type is distributed to each result display terminal.
在此,为了使得用户更全的了解故障信息,可收集用户对故障类型的反馈,并根据该反馈定义某个故障类型的物理含义,也即该故障类型所表示的含义。Here, in order to make the user understand the fault information more completely, the user's feedback on the fault type can be collected, and the physical meaning of a certain fault type, that is, the meaning represented by the fault type, can be defined according to the feedback.
如图6所示,可包括如下过程:As shown in Figure 6, the following processes may be included:
向用户输出输出故障分析结果,将其通过显示终端显示给维护人员或者驾驶员。之后,接收维护人员或者驾驶员对故障类型结果的反馈。统计对应每个类型车、每个故障种类的反馈信息,并选择最频繁的反馈信息,或者最频繁的关键词,作为该故障类型的物理含义。当有任一个故障类型被确定出时,检查对应于该故障类型的物理含义是否存在,如果存在,那么将该确定出的故障类型及其物理含义分发到各个结果显示终端中,如果不存在,那么只将确定出的故障类型分发到各个结果显示终端中。Output fault analysis results to users, and display them to maintenance personnel or drivers through the display terminal. Afterwards, feedback from maintenance personnel or drivers on fault type results is received. The feedback information corresponding to each type of vehicle and each fault type is counted, and the most frequent feedback information or the most frequent keyword is selected as the physical meaning of the fault type. When any fault type is determined, check whether the physical meaning corresponding to the fault type exists. If it exists, distribute the determined fault type and its physical meaning to each result display terminal. If it does not exist, Then only the identified fault types are distributed to the respective result display terminals.
通过以上分析可以看出,利用本发明实施例能够根据多个车辆的实时状态进行远程智能故障确定,可以提高车辆的安全性,并降低维护成本。It can be seen from the above analysis that the embodiments of the present invention can perform remote intelligent fault determination according to the real-time status of multiple vehicles, which can improve the safety of vehicles and reduce maintenance costs.
参见图7,图7是本发明实施例提供的确定车辆状态的装置的结构图,如图7所示,确定车辆状态的装置包括:Referring to FIG. 7, FIG. 7 is a structural diagram of an apparatus for determining a vehicle state provided by an embodiment of the present invention. As shown in FIG. 7, the apparatus for determining a vehicle state includes:
第一获取模块701,用于获取待监测车辆的监测数据,其中,所述监测数据包括所述待监测车辆的实时监测数据;The
第二获取模块702,用于将所述监测数据进行分类,获得不同的车辆类型的监测数据集;A second obtaining
第三获取模块703,用于针对目标车辆类型,根据所述目标车辆类型的目标监测数据集,获取目标相关系数数据集;A third obtaining
确定模块704,用于对所述目标相关系数数据集进行聚类分析,确定具有所述目标车辆类型的目标车辆的状态。A
可选的,所述监测数据还包括所述待监测车辆的历史监测数据,所述监测数据集包括实时监测数据集和历史监测数据集;如图8所示,所述第二获取模块702包括:第一获取子模块7021,用于将所述实时监测数据进行分类,获得不同的车辆类型的实时监测数据集;第二获取子模块7022,用于将所述历史监测数据进行分类,获得不同的车辆类型的历史监测数据集。Optionally, the monitoring data further includes historical monitoring data of the vehicle to be monitored, and the monitoring data set includes a real-time monitoring data set and a historical monitoring data set; as shown in FIG. 8 , the
可选的,如图9所示,所述第三获取模块703包括:计算子模块7031,用于对于所述目标监测数据集中的数据项,计算每两个数据项之间的相关系数;获取子模块7032,用于利用计算得到的相关系数,形成所述目标相关系数数据集。Optionally, as shown in FIG. 9 , the
可选的,如图10所示,所述计算子模块7031包括:处理单元70311,用于利用所述目标监测数据集中同一采样时刻的多个数据项组成第一矩阵;拆分单元70312,用于将所述第一矩阵拆分成第二矩阵和第三矩阵;计算单元70313,用于计算所述第二矩阵与第一结果的乘积,获得第四矩阵;其中,所述第四矩阵中的每个元素表示一个相关系数;所述第一结果为所述第二矩阵和所述第三矩阵进行矩阵伪逆运算的结果。Optionally, as shown in FIG. 10 , the
可选的,如图11所示,所述确定模块704包括:分析子模块7041,用于对所述目标相关系数数据集进行聚类分析,获得聚类分析结果;确定子模块7042,用于确定第一类中的目标车辆的状态为正常,确定其他类中的目标车辆的状态为故障;其中,所述第一类为所述聚类分析结果中包含数据点最多的类,所述其他类为所述聚类分析结果中除所述第一类之外的类。Optionally, as shown in FIG. 11 , the
可选的,如图12所示,所述装置还可包括:提示模块705,用于向所述目标车辆发送提示信息,所述提示信息中包括第二类对应的第二故障类型,所述第二类为其他类中的任一类。Optionally, as shown in FIG. 12 , the apparatus may further include: a
可选的,如图13所示,所述装置还可包括:第四获取模块706,用于获取所述第二故障类型的物理含义,在所述提示信息中还包括所述第二故障类型的物理含义。Optionally, as shown in FIG. 13 , the apparatus may further include: a fourth obtaining
可选的,如图14所示,所述装置还可包括:计算模块707,用于计算第三类的劣化指标,所述第三类为其他类中的任一类。Optionally, as shown in FIG. 14 , the apparatus may further include: a
可选的,如图15所示,所述计算模块707包括:Optionally, as shown in FIG. 15 , the
处理子模块7071,用于利用所述第三类中的第一数据点与所述第一类的距离、所述第一数据点对应的采样时刻,形成坐标对;拟合子模块7072,用于对所述第三类中的所有数据点对应的坐标对,进行拟合计算;计算子模块7073,用于根据拟合计算的结果,计算所述第三类的劣化指标。The
本发明实施例装置的工作原理可参照前述方法实施例的描述。For the working principle of the apparatus in the embodiment of the present invention, reference may be made to the description of the foregoing method embodiment.
在本发明实施例中,只根据待监测车辆的实时监测数据即可以确定出车辆的状态。与现有技术相比,利用本发明实施例的方案可及时的确定车辆状态,从而提高车辆的安全性,并降低维护成本。In the embodiment of the present invention, the state of the vehicle can be determined only according to the real-time monitoring data of the vehicle to be monitored. Compared with the prior art, the solution of the embodiment of the present invention can determine the vehicle state in time, thereby improving the safety of the vehicle and reducing the maintenance cost.
如图16所示,本发明实施例的确定车辆状态的设备,包括:处理器1600,用于读取存储器1620中的程序,执行下列过程:As shown in FIG. 16 , the device for determining the state of the vehicle according to the embodiment of the present invention includes: a
获取待监测车辆的监测数据,其中,所述监测数据包括所述待监测车辆的实时监测数据;acquiring monitoring data of the vehicle to be monitored, wherein the monitoring data includes real-time monitoring data of the vehicle to be monitored;
将所述监测数据进行分类,获得不同的车辆类型的监测数据集;Classifying the monitoring data to obtain monitoring data sets of different vehicle types;
针对目标车辆类型,根据所述目标车辆类型的目标监测数据集,获取目标相关系数数据集;For the target vehicle type, obtain a target correlation coefficient data set according to the target monitoring data set of the target vehicle type;
对所述目标相关系数数据集进行聚类分析,确定具有所述目标车辆类型的目标车辆的状态。Cluster analysis is performed on the target correlation coefficient data set to determine the state of the target vehicle having the target vehicle type.
收发机1610,用于在处理器1600的控制下接收和发送数据。The
其中,在图16中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器1600代表的一个或多个处理器和存储器1620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机1610可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器1600负责管理总线架构和通常的处理,存储器1620可以存储处理器1600在执行操作时所使用的数据。16, the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by
处理器1600负责管理总线架构和通常的处理,存储器1620可以存储处理器1600在执行操作时所使用的数据。The
所述监测数据还包括所述待监测车辆的历史监测数据,所述监测数据集包括实时监测数据集和历史监测数据集;处理器1600还用于读取所述计算机程序,执行如下步骤:The monitoring data also includes historical monitoring data of the vehicle to be monitored, and the monitoring data set includes a real-time monitoring data set and a historical monitoring data set; the
将所述实时监测数据进行分类,获得不同的车辆类型的实时监测数据集;将所述历史监测数据进行分类,获得不同的车辆类型的历史监测数据集。Classifying the real-time monitoring data to obtain real-time monitoring data sets of different vehicle types; classifying the historical monitoring data to obtain historical monitoring data sets of different vehicle types.
处理器1600还用于读取所述计算机程序,执行如下步骤:The
对于所述目标监测数据集中的数据项,计算每两个数据项之间的相关系数;For the data items in the target monitoring data set, calculate the correlation coefficient between every two data items;
利用计算得到的相关系数,形成所述目标相关系数数据集。Using the calculated correlation coefficients, the target correlation coefficient data set is formed.
处理器1600还用于读取所述计算机程序,执行如下步骤:The
利用所述目标监测数据集中同一采样时刻的多个数据项组成第一矩阵;A first matrix is formed by using multiple data items at the same sampling time in the target monitoring data set;
将所述第一矩阵拆分成第二矩阵和第三矩阵;splitting the first matrix into a second matrix and a third matrix;
计算所述第二矩阵与第一结果的乘积,获得第四矩阵;Calculate the product of the second matrix and the first result to obtain a fourth matrix;
其中,所述第四矩阵中的每个元素表示一个相关系数;所述第一结果为所述第二矩阵和所述第三矩阵进行矩阵伪逆运算的结果。Wherein, each element in the fourth matrix represents a correlation coefficient; the first result is the result of performing a matrix pseudo-inverse operation on the second matrix and the third matrix.
处理器1600还用于读取所述计算机程序,执行如下步骤:The
对所述目标相关系数数据集进行聚类分析,获得聚类分析结果;Perform cluster analysis on the target correlation coefficient data set to obtain a cluster analysis result;
确定第一类中的目标车辆的状态为正常,确定其他类中的目标车辆的状态为故障;determining that the state of the target vehicle in the first class is normal, and determining that the state of the target vehicle in other classes is faulty;
其中,所述第一类为所述聚类分析结果中包含数据点最多的类,所述其他类为所述聚类分析结果中除所述第一类之外的类。The first category is the category that contains the most data points in the cluster analysis result, and the other categories are categories other than the first category in the cluster analysis result.
处理器1600还用于读取所述计算机程序,执行如下步骤:向所述目标车辆发送提示信息,所述提示信息中包括第二类对应的第二故障类型,所述第二类为其他类中的任一类。The
处理器1600还用于读取所述计算机程序,执行如下步骤:The
获取所述第二故障类型的物理含义,在所述提示信息中还包括所述第二故障类型的物理含义。The physical meaning of the second fault type is acquired, and the prompt information further includes the physical meaning of the second fault type.
处理器1600还用于读取所述计算机程序,执行如下步骤:The
计算第三类的劣化指标,所述第三类为其他类中的任一类。Calculate the degradation index of the third class, where the third class is any one of the other classes.
处理器1600还用于读取所述计算机程序,执行如下步骤:The
利用所述第三类中的第一数据点与所述第一类的距离、所述第一数据点对应的采样时刻,形成坐标对;Using the distance between the first data point in the third category and the first category, and the sampling time corresponding to the first data point, a coordinate pair is formed;
对所述第三类中的所有数据点对应的坐标对,进行拟合计算;Perform fitting calculation on the coordinate pairs corresponding to all data points in the third category;
根据拟合计算的结果,计算所述第三类的劣化指标。According to the result of the fitting calculation, the deterioration index of the third category is calculated.
此外,本发明实施例的计算机可读存储介质,用于存储计算机程序,所述计算机程序可被处理器执行实现以下步骤:In addition, the computer-readable storage medium of the embodiment of the present invention is used to store a computer program, and the computer program can be executed by a processor to implement the following steps:
获取待监测车辆的监测数据,其中,所述监测数据包括所述待监测车辆的实时监测数据;acquiring monitoring data of the vehicle to be monitored, wherein the monitoring data includes real-time monitoring data of the vehicle to be monitored;
将所述监测数据进行分类,获得不同的车辆类型的监测数据集;Classifying the monitoring data to obtain monitoring data sets of different vehicle types;
针对目标车辆类型,根据所述目标车辆类型的目标监测数据集,获取目标相关系数数据集;For the target vehicle type, obtain a target correlation coefficient data set according to the target monitoring data set of the target vehicle type;
对所述目标相关系数数据集进行聚类分析,确定具有所述目标车辆类型的目标车辆的状态。Cluster analysis is performed on the target correlation coefficient data set to determine the state of the target vehicle having the target vehicle type.
其中,所述监测数据还包括所述待监测车辆的历史监测数据,所述监测数据集包括实时监测数据集和历史监测数据集;Wherein, the monitoring data further includes historical monitoring data of the vehicle to be monitored, and the monitoring data set includes a real-time monitoring data set and a historical monitoring data set;
所述将所述监测数据进行分类,获得不同的车辆类型的监测数据集,包括:The said monitoring data are classified to obtain monitoring data sets of different vehicle types, including:
将所述实时监测数据进行分类,获得不同的车辆类型的实时监测数据集;Classifying the real-time monitoring data to obtain real-time monitoring data sets of different vehicle types;
将所述历史监测数据进行分类,获得不同的车辆类型的历史监测数据集。Classify the historical monitoring data to obtain historical monitoring data sets of different vehicle types.
其中,所述根据所述目标车辆类型的目标监测数据集,获取目标相关系数数据集,包括:Wherein, obtaining the target correlation coefficient data set according to the target monitoring data set of the target vehicle type includes:
对于所述目标监测数据集中的数据项,计算每两个数据项之间的相关系数;For the data items in the target monitoring data set, calculate the correlation coefficient between every two data items;
利用计算得到的相关系数,形成所述目标相关系数数据集。Using the calculated correlation coefficients, the target correlation coefficient data set is formed.
其中,所述对于所述目标监测数据集中的数据项,计算每两个数据项之间的相关系数,包括:Wherein, for the data items in the target monitoring data set, calculating the correlation coefficient between every two data items, including:
利用所述目标监测数据集中同一采样时刻的多个数据项组成第一矩阵;A first matrix is formed by using multiple data items at the same sampling time in the target monitoring data set;
将所述第一矩阵拆分成第二矩阵和第三矩阵;splitting the first matrix into a second matrix and a third matrix;
计算所述第二矩阵与第一结果的乘积,获得第四矩阵;Calculate the product of the second matrix and the first result to obtain a fourth matrix;
其中,所述第四矩阵中的每个元素表示一个相关系数;所述第一结果为所述第二矩阵和所述第三矩阵进行矩阵伪逆运算的结果。Wherein, each element in the fourth matrix represents a correlation coefficient; the first result is the result of performing a matrix pseudo-inverse operation on the second matrix and the third matrix.
其中,所述对所述目标相关系数数据集进行聚类分析,确定具有所述目标车辆类型的目标车辆的状态,包括:Wherein, performing cluster analysis on the target correlation coefficient data set to determine the state of the target vehicle with the target vehicle type includes:
对所述目标相关系数数据集进行聚类分析,获得聚类分析结果;Perform cluster analysis on the target correlation coefficient data set to obtain a cluster analysis result;
确定第一类中的目标车辆的状态为正常,确定其他类中的目标车辆的状态为故障;determining that the state of the target vehicle in the first class is normal, and determining that the state of the target vehicle in other classes is faulty;
其中,所述第一类为所述聚类分析结果中包含数据点最多的类,所述其他类为所述聚类分析结果中除所述第一类之外的类。The first category is the category that contains the most data points in the cluster analysis result, and the other categories are categories other than the first category in the cluster analysis result.
其中,在所述确定具有所述目标车辆类型的目标车辆的状态之后,所述方法还包括:Wherein, after the determining the state of the target vehicle having the target vehicle type, the method further includes:
向所述目标车辆发送提示信息,所述提示信息中包括第二类对应的第二故障类型,所述第二类为其他类中的任一类。Sending prompt information to the target vehicle, where the prompt information includes a second fault type corresponding to the second category, and the second category is any one of the other categories.
其中,在所述向所述目标车辆发送提示信息之前,所述方法还包括:Wherein, before the sending prompt information to the target vehicle, the method further includes:
获取所述第二故障类型的物理含义,在所述提示信息中还包括所述第二故障类型的物理含义。The physical meaning of the second fault type is acquired, and the prompt information further includes the physical meaning of the second fault type.
其中,在所述确定具有所述目标车辆类型的目标车辆的状态之后,所述方法还包括:Wherein, after the determining the state of the target vehicle having the target vehicle type, the method further includes:
其中,所述计算第三类的劣化指标,包括:Wherein, the calculation of the deterioration index of the third category includes:
利用所述第三类中的第一数据点与所述第一类的距离、所述第一数据点对应的采样时刻,形成坐标对;Using the distance between the first data point in the third category and the first category, and the sampling time corresponding to the first data point, a coordinate pair is formed;
对所述第三类中的所有数据点对应的坐标对,进行拟合计算;Perform fitting calculation on the coordinate pairs corresponding to all data points in the third category;
根据拟合计算的结果,计算所述第三类的劣化指标。According to the result of the fitting calculation, the deterioration index of the third category is calculated.
在本申请所提供的几个实施例中,应该理解到,所揭露方法和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in this application, it should be understood that the disclosed method and apparatus may be implemented in other manners. For example, the apparatus embodiments described above are only illustrative. For example, the division of the units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be physically included individually, or two or more units may be integrated into one unit. The above-mentioned integrated units can be implemented in the form of hardware, or can be implemented in the form of hardware plus software functional units.
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述收发方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等各种可以存储程序代码的介质。The above-mentioned integrated units implemented in the form of software functional units can be stored in a computer-readable storage medium. The above software functional unit is stored in a storage medium, and includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute part of the steps of the transceiving method described in the various embodiments of the present invention. The aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM for short), Random Access Memory (RAM for short), magnetic disk or CD, etc. that can store program codes medium.
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made. It should be regarded as the protection scope of the present invention.
Claims (16)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910413435.1A CN111950578A (en) | 2019-05-17 | 2019-05-17 | A method and device for determining the state of a vehicle |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910413435.1A CN111950578A (en) | 2019-05-17 | 2019-05-17 | A method and device for determining the state of a vehicle |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN111950578A true CN111950578A (en) | 2020-11-17 |
Family
ID=73336101
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910413435.1A Pending CN111950578A (en) | 2019-05-17 | 2019-05-17 | A method and device for determining the state of a vehicle |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111950578A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112597360A (en) * | 2020-12-15 | 2021-04-02 | 东软睿驰汽车技术(沈阳)有限公司 | Method and device for acquiring vehicle energy analysis data and related products |
Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4260942A (en) * | 1978-04-17 | 1981-04-07 | Trw Inc. | Failure detection and correction system for redundant control elements |
| US20090292511A1 (en) * | 2008-05-22 | 2009-11-26 | Aljosa Vrancic | Controlling or Analyzing a Process by Solving A System of Linear Equations in Real-Time |
| WO2013181222A2 (en) * | 2012-05-29 | 2013-12-05 | Battelle Memorial Institute | Method of analyzing a graph with a covariance-based clustering algorithm using a modified laplacian pseudo-inverse matrix |
| US20150309089A1 (en) * | 2012-12-03 | 2015-10-29 | Mitsubishi Electric Corporation | Fault detection device, fault detection method, and program |
| JP2016170080A (en) * | 2015-03-13 | 2016-09-23 | 公立大学法人大阪市立大学 | Microtomographic visualization method and system |
| WO2016194013A1 (en) * | 2015-06-05 | 2016-12-08 | Agt S.R.L. | Method for determining electrical losses of a power line, due to a malfunctioning or tampering of an electricity meter and/or to an illegal connection to said power line |
| CN106388831A (en) * | 2016-11-04 | 2017-02-15 | 郑州航空工业管理学院 | Method for detecting falling actions based on sample weighting algorithm |
| CN106444666A (en) * | 2016-09-22 | 2017-02-22 | 宁波大学 | Dynamic Process Monitoring Method Based on Weighted Dynamic Distributed PCA Model |
| CN106557541A (en) * | 2015-09-30 | 2017-04-05 | 株式会社日立制作所 | For the apparatus and method for automatically analyzing of the execution data of product bug detection |
| CN106710653A (en) * | 2016-12-05 | 2017-05-24 | 浙江大学 | Real-time data abnormal diagnosis method for monitoring operation of nuclear power unit |
| CN106936627A (en) * | 2016-09-28 | 2017-07-07 | 清华大学 | A kind of thermal power generating equipment performance monitoring method based on big data analysis mining |
| US20180005463A1 (en) * | 2016-06-30 | 2018-01-04 | Massachusetts lnstitute of Technology | System, Device, and Method for Feature Generation, Selection, and Classification for Audio Detection of Anomalous Engine Operation |
| CN108469806A (en) * | 2018-03-26 | 2018-08-31 | 重庆邮电大学 | Alternative expression is man-machine to drive middle driving power transfer method altogether |
| CN108931572A (en) * | 2018-05-29 | 2018-12-04 | 电子科技大学 | Based on the pressure vessel thermal imaging imperfection detection method for becoming row segmentation and region-growing method |
| CN109492663A (en) * | 2018-09-28 | 2019-03-19 | 西安交通大学 | More characteristic of division selection methods based on Non-negative Matrix Factorization and visualization technique |
| CN109507554A (en) * | 2018-12-10 | 2019-03-22 | 国网四川省电力公司电力科学研究院 | A kind of insulation of electrical installation state evaluating method |
| CN109710983A (en) * | 2018-12-04 | 2019-05-03 | 北京大学 | A Cylinder Stratification Fault Diagnosis Method Based on Key Performance Indicators in Diesel Engines |
-
2019
- 2019-05-17 CN CN201910413435.1A patent/CN111950578A/en active Pending
Patent Citations (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4260942A (en) * | 1978-04-17 | 1981-04-07 | Trw Inc. | Failure detection and correction system for redundant control elements |
| US20090292511A1 (en) * | 2008-05-22 | 2009-11-26 | Aljosa Vrancic | Controlling or Analyzing a Process by Solving A System of Linear Equations in Real-Time |
| WO2013181222A2 (en) * | 2012-05-29 | 2013-12-05 | Battelle Memorial Institute | Method of analyzing a graph with a covariance-based clustering algorithm using a modified laplacian pseudo-inverse matrix |
| US20150309089A1 (en) * | 2012-12-03 | 2015-10-29 | Mitsubishi Electric Corporation | Fault detection device, fault detection method, and program |
| JP2016170080A (en) * | 2015-03-13 | 2016-09-23 | 公立大学法人大阪市立大学 | Microtomographic visualization method and system |
| WO2016194013A1 (en) * | 2015-06-05 | 2016-12-08 | Agt S.R.L. | Method for determining electrical losses of a power line, due to a malfunctioning or tampering of an electricity meter and/or to an illegal connection to said power line |
| CN106557541A (en) * | 2015-09-30 | 2017-04-05 | 株式会社日立制作所 | For the apparatus and method for automatically analyzing of the execution data of product bug detection |
| US20180005463A1 (en) * | 2016-06-30 | 2018-01-04 | Massachusetts lnstitute of Technology | System, Device, and Method for Feature Generation, Selection, and Classification for Audio Detection of Anomalous Engine Operation |
| CN106444666A (en) * | 2016-09-22 | 2017-02-22 | 宁波大学 | Dynamic Process Monitoring Method Based on Weighted Dynamic Distributed PCA Model |
| CN106936627A (en) * | 2016-09-28 | 2017-07-07 | 清华大学 | A kind of thermal power generating equipment performance monitoring method based on big data analysis mining |
| CN106388831A (en) * | 2016-11-04 | 2017-02-15 | 郑州航空工业管理学院 | Method for detecting falling actions based on sample weighting algorithm |
| CN106710653A (en) * | 2016-12-05 | 2017-05-24 | 浙江大学 | Real-time data abnormal diagnosis method for monitoring operation of nuclear power unit |
| CN108469806A (en) * | 2018-03-26 | 2018-08-31 | 重庆邮电大学 | Alternative expression is man-machine to drive middle driving power transfer method altogether |
| CN108931572A (en) * | 2018-05-29 | 2018-12-04 | 电子科技大学 | Based on the pressure vessel thermal imaging imperfection detection method for becoming row segmentation and region-growing method |
| CN109492663A (en) * | 2018-09-28 | 2019-03-19 | 西安交通大学 | More characteristic of division selection methods based on Non-negative Matrix Factorization and visualization technique |
| CN109710983A (en) * | 2018-12-04 | 2019-05-03 | 北京大学 | A Cylinder Stratification Fault Diagnosis Method Based on Key Performance Indicators in Diesel Engines |
| CN109507554A (en) * | 2018-12-10 | 2019-03-22 | 国网四川省电力公司电力科学研究院 | A kind of insulation of electrical installation state evaluating method |
Non-Patent Citations (5)
| Title |
|---|
| JOÃO CARLOS ALVES BARATA 等: "The Moore–Penrose Pseudoinverse: A Tutorial Review of the Theory", BRAZILIAN JOURNAL OF PHYSICS, vol. 42, 16 December 2011 (2011-12-16), pages 146 - 165 * |
| M. CAVACECE 等: "Identification of modal damping ratios of four-flue chimney of a thermoelectrical plant using pseudo-inverse matrix method", STRUCTURAL DESIGN OF TALL AND SPECIAL BUILDINGS, vol. 18, no. 2, 9 October 2007 (2007-10-09), pages 203 - 216 * |
| 崔明阳 等: "智能网联汽车架构、功能与应用关键技术", 清华大学学报(自然科学版), vol. 62, no. 3, 6 August 2021 (2021-08-06), pages 493 - 508 * |
| 李明;钟麦英;张桂青;: "基于综合重构的故障辨识方法研究", 华中科技大学学报(自然科学版), no. 1, 15 August 2009 (2009-08-15), pages 54 - 57 * |
| 牛刚 等: "高速列车双通道速度传感器故障检测与隔离研究", 仪表仪器学报, vol. 40, no. 1, 6 March 2019 (2019-03-06), pages 158 - 165 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112597360A (en) * | 2020-12-15 | 2021-04-02 | 东软睿驰汽车技术(沈阳)有限公司 | Method and device for acquiring vehicle energy analysis data and related products |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6918137B2 (en) | Driving behavior evaluation method, device and computer-readable storage medium | |
| CN114815605A (en) | Automatic driving test case generation method and device, electronic equipment and storage medium | |
| CN110633905B (en) | Intelligent vehicle cloud platform reliability calculation method and system | |
| CN102520697A (en) | Onsite information preprocessing method of remote cooperative diagnosis | |
| CN115373369B (en) | Vehicle fault diagnosis system and method | |
| CN113821418B (en) | Fault root cause analysis method and device, storage medium and electronic equipment | |
| CN107403480A (en) | A kind of vehicle trouble method for early warning, system and vehicle | |
| CN114266289A (en) | A method for evaluating the health status of complex equipment | |
| CN109634820A (en) | A kind of fault early warning method, relevant device and the system of the collaboration of cloud mobile terminal | |
| CN114239734A (en) | Distributed vehicle-mounted health management system | |
| CN109117352B (en) | Server performance prediction method and device | |
| CN109711849B (en) | Ether house address portrait generation method and device, electronic equipment and storage medium | |
| CN113487086A (en) | Method and device for predicting remaining service life of equipment, computer equipment and medium | |
| CN115599077B (en) | Vehicle fault delimiting method and device, electronic equipment and storage medium | |
| CN111950578A (en) | A method and device for determining the state of a vehicle | |
| CN112883380B (en) | Big data component security risk analysis method and system of intelligent education platform | |
| CN118691321B (en) | Online car market automobile substation data management and control platform based on edge computing | |
| US20240338980A1 (en) | Dtc rulebook generation system and method | |
| CN117952717B (en) | A method and system for processing air ticket orders based on big data | |
| CN116384502A (en) | Method, device, equipment and medium for calculating contribution of participant value in federal learning | |
| CN117041121B (en) | Internet of Things anomaly monitoring method and system based on data mining | |
| CN114116417A (en) | Training method of capacity prediction model, capacity prediction method, device and equipment | |
| CN113688924B (en) | Abnormal order detection method, device, equipment and medium | |
| CN120780612B (en) | A simulation testing method, apparatus, and electronic device for resource distribution services. | |
| CN118941376B (en) | Financing guarantee risk dynamic monitoring and early warning method and system based on data fusion |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |