CN111814904A - A method and system for discriminating driving mode for automatic driving road test - Google Patents
A method and system for discriminating driving mode for automatic driving road test Download PDFInfo
- Publication number
- CN111814904A CN111814904A CN202010708449.9A CN202010708449A CN111814904A CN 111814904 A CN111814904 A CN 111814904A CN 202010708449 A CN202010708449 A CN 202010708449A CN 111814904 A CN111814904 A CN 111814904A
- Authority
- CN
- China
- Prior art keywords
- driving
- data set
- data
- duration threshold
- correct
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/24323—Tree-organised classifiers
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Computational Linguistics (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
技术领域technical field
本发明涉及模式识别技术领域,特别是涉及一种自动驾驶道路测试驾驶模式辨别方法及系统。The invention relates to the technical field of pattern recognition, in particular to a method and system for distinguishing driving patterns for automatic driving road tests.
背景技术Background technique
道路测试是开展自动驾驶技术研发与应用的关键环节;自动驾驶道路测试产生了海量测试数据,记录了测试车辆标识、测试时间、速度、加速度、驾驶模式等字段信息,但自动驾驶车辆的传感器如雷达、激光雷达、摄像头、GPS等会因恶劣天气下的时间累积造成性能下降,可能带来自动驾驶车辆数据检测及传输等问题,影响了道路测试驾驶模式数据的准确度。而自动驾驶车辆测试过程中自动或人工驾驶模式的记录准确与否,将直接影响人工干预率等指标的计算,进而影响自动驾驶车辆驾驶能力评估的准确性。Road testing is a key link in the development and application of autonomous driving technology; autonomous driving road testing generates a large amount of test data, recording field information such as test vehicle identification, test time, speed, acceleration, driving mode, etc., but the sensors of autonomous driving vehicles such as Radar, lidar, camera, GPS, etc. will cause performance degradation due to the accumulation of time in bad weather, which may bring about problems such as data detection and transmission of autonomous driving vehicles, affecting the accuracy of road test driving mode data. The accuracy of the recording of automatic or manual driving modes during the test of an autonomous vehicle will directly affect the calculation of indicators such as the manual intervention rate, which in turn affects the accuracy of the assessment of the driving ability of the autonomous vehicle.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种自动驾驶道路测试驾驶模式辨别方法及系统,以准确辨别自动驾驶测试过程中的驾驶模式。The purpose of the present invention is to provide a driving mode identification method and system for an automatic driving road test, so as to accurately identify the driving mode in the automatic driving test process.
为实现上述目的,本发明提供了如下方案:For achieving the above object, the present invention provides the following scheme:
一种自动驾驶道路测试驾驶模式辨别方法,包括:An automatic driving road test driving mode identification method, comprising:
获取初始数据;get initial data;
确定驾驶持续时长阈值;Determining driving duration thresholds;
根据所述初始数据和所述驾驶持续时长阈值得到正确驾驶数据集和待分类数据集;Obtain a correct driving data set and a data set to be classified according to the initial data and the driving duration threshold;
基于所述正确驾驶数据集确定最终分类模型;determining a final classification model based on the correct driving data set;
基于所述最终分类模型对所述待分类数据集中各待分类数据所对应的驾驶模式进行修正。The driving mode corresponding to each to-be-classified data in the to-be-classified data set is corrected based on the final classification model.
优选地,所述获取初始数据包括:Preferably, the obtaining initial data includes:
获取原始数据;get raw data;
对所述原始数据进行数据填充和数据修正,得到修补数据;performing data filling and data correction on the original data to obtain repaired data;
根据驾驶模式持续时长对所述修补数据进行分割得到自动驾驶数据集和人工驾驶数据集;所述初始数据包括所述自动驾驶数据集和所述人工驾驶数据集。The repaired data is segmented according to the driving mode duration to obtain an automatic driving data set and a manual driving data set; the initial data includes the automatic driving data set and the manual driving data set.
优选地,所述确定驾驶持续时长阈值包括:Preferably, the determining the driving duration threshold includes:
选取待检验参数;Select the parameters to be tested;
判断所述待检验参数是否同时满足正态分布及方差齐次;Determine whether the parameter to be tested satisfies both normal distribution and homogeneous variance;
若是,则采用参数检验方法分别得到自动驾驶持续时长阈值和人工驾驶持续时长阈值;若否,则采用非参数检验方法分别得到自动驾驶持续时长阈值和人工驾驶持续时长阈值;所述驾驶持续时长阈值包括所述自动驾驶持续时长阈值和所述人工驾驶持续时长阈值。If yes, the parameter test method is used to obtain the automatic driving duration threshold and the manual driving duration threshold respectively; if not, the non-parametric test method is used to obtain the automatic driving duration threshold and the manual driving duration threshold respectively; the driving duration threshold Including the automatic driving duration threshold and the manual driving duration threshold.
优选地,所述根据所述初始数据和所述驾驶持续时长阈值得到正确驾驶数据集和待分类数据集,包括:Preferably, the obtaining of the correct driving data set and the data set to be classified according to the initial data and the driving duration threshold includes:
将所述自动驾驶数据集中持续时长大于或等于所述自动驾驶持续时长阈值的自动驾驶数据作为正确自动驾驶数据集,将所述人工驾驶数据集中持续时长大于或等于所述人工驾驶持续时长阈值的人工驾驶数据作为正确人工驾驶数据集;所述正确驾驶数据集包括所述正确自动驾驶数据集和所述正确人工驾驶数据集;Take the automatic driving data whose duration in the automatic driving data set is greater than or equal to the automatic driving duration threshold as the correct automatic driving data set, and use the automatic driving data set whose duration is greater than or equal to the manual driving duration threshold in the manual driving data set. The manual driving data is used as the correct manual driving data set; the correct driving data set includes the correct automatic driving data set and the correct manual driving data set;
将所述自动驾驶数据集中持续时长小于所述自动驾驶持续时长阈值的自动驾驶数据作为待分类自动驾驶数据集,将所述人工驾驶数据集中持续时长小于所述人工驾驶持续时长阈值的人工驾驶数据作为待分类人工驾驶数据集;所述待分类驾驶数据集包括所述待分类自动驾驶数据集和所述待分类人工驾驶数据集。The automatic driving data whose duration in the automatic driving data set is less than the automatic driving duration threshold is regarded as the automatic driving data set to be classified, and the manual driving data whose duration is less than the manual driving duration threshold in the manual driving data set As the to-be-classified manual driving data set; the to-be-classified driving data set includes the to-be-classified automatic driving data set and the to-be-classified manual driving data set.
优选地,所述基于所述正确驾驶数据集确定最终分类模型,包括:Preferably, the determining of the final classification model based on the correct driving data set includes:
在所述正确驾驶数据集中进行特征选取得到特征数据集;Perform feature selection in the correct driving data set to obtain a feature data set;
在所述特征数据集选取设定比例的数据作为训练集,其余的数据作为测试集;In the feature data set, select a set proportion of data as a training set, and the rest of the data as a test set;
构建各分类模型;各所述分类模型分别为K近邻估计模型、支持向量机模型、决策树模型、随机森林模型、BP神经网络模型;Build each classification model; each described classification model is K nearest neighbor estimation model, support vector machine model, decision tree model, random forest model, BP neural network model respectively;
基于所述训练集对各所述分类模型进行训练;得到训练好的各所述分类模型;Train each of the classification models based on the training set; obtain each of the trained classification models;
基于所述测试集对各所述分类模型进行评价,选取评价值最高所对应的训练好的所述分类模型作为最终分类模型。Each of the classification models is evaluated based on the test set, and the trained classification model corresponding to the highest evaluation value is selected as the final classification model.
本发明还提供了一种自动驾驶道路测试驾驶模式辨别系统,包括:The present invention also provides an automatic driving road test driving mode identification system, comprising:
数据获取模块,用于获取初始数据;Data acquisition module for acquiring initial data;
阈值确定模块,用于确定驾驶持续时长阈值;a threshold determination module for determining the driving duration threshold;
数据集确定模块,用于根据所述初始数据和所述驾驶持续时长阈值得到正确驾驶数据集和待分类数据集;a data set determination module, configured to obtain a correct driving data set and a data set to be classified according to the initial data and the driving duration threshold;
模型确定模块,用于基于所述正确驾驶数据集确定最终分类模型;a model determination module for determining a final classification model based on the correct driving data set;
模式修正模块,用于基于所述最终分类模型对所述待分类数据集中各待分类数据所对应的驾驶模式进行修正。A mode correction module, configured to correct the driving mode corresponding to each to-be-classified data in the to-be-classified data set based on the final classification model.
优选地,所述数据获取模块包括:Preferably, the data acquisition module includes:
数据获取单元,用于获取原始数据;A data acquisition unit for acquiring raw data;
数据处理单元,用于对所述原始数据进行数据填充和数据修正,得到修补数据;a data processing unit for performing data filling and data correction on the original data to obtain repaired data;
数据分割单元,用于根据驾驶模式持续时长对所述修补数据进行分割得到自动驾驶数据集和人工驾驶数据集;所述初始数据包括所述自动驾驶数据集和所述人工驾驶数据集。A data segmentation unit, configured to segment the repaired data according to the driving mode duration to obtain an automatic driving data set and a manual driving data set; the initial data includes the automatic driving data set and the manual driving data set.
优选地,所述确定阈值确定模块包括:Preferably, the determination threshold determination module includes:
参数单元,用于选取待检验参数;The parameter unit is used to select the parameters to be tested;
判断单元,用于判断所述待检验参数是否同时满足正态分布及方差齐次;a judging unit for judging whether the parameter to be tested satisfies both normal distribution and homogeneous variance;
阈值确定单元,用于当满足时采用参数检验方法分别得到自动驾驶持续时长阈值和人工驾驶持续时长阈值;当不满足时则采用非参数检验方法分别得到自动驾驶持续时长阈值和人工驾驶持续时长阈值;所述驾驶持续时长阈值包括所述自动驾驶持续时长阈值和所述人工驾驶持续时长阈值。The threshold determination unit is used to obtain the automatic driving duration threshold and the manual driving duration threshold respectively by using the parameter test method when it is satisfied; when it is not satisfied, the non-parametric test method is used to obtain the automatic driving duration threshold and the manual driving duration threshold respectively. ; The driving duration threshold includes the automatic driving duration threshold and the manual driving duration threshold.
优选地,所述数据集确定模块包括:Preferably, the data set determination module includes:
正确驾驶数据集确定单元,用于将所述自动驾驶数据集中持续时长大于或等于所述自动驾驶持续时长阈值的自动驾驶数据作为正确自动驾驶数据集,将所述人工驾驶数据集中持续时长大于或等于所述人工驾驶持续时长阈值的人工驾驶数据作为正确人工驾驶数据集;所述正确驾驶数据集包括所述正确自动驾驶数据集和所述正确人工驾驶数据集;The correct driving data set determination unit is configured to use the automatic driving data in the automatic driving data set with a duration greater than or equal to the automatic driving duration threshold as the correct automatic driving data set, and use the manual driving data set with a duration greater than or equal to the automatic driving duration. The manual driving data equal to the manual driving duration threshold is used as the correct manual driving data set; the correct driving data set includes the correct automatic driving data set and the correct manual driving data set;
待分类数据及确定单元,用于将所述自动驾驶数据集中持续时长小于所述自动驾驶持续时长阈值的自动驾驶数据作为待分类自动驾驶数据集,将所述人工驾驶数据集中持续时长小于所述人工驾驶持续时长阈值的人工驾驶数据作为待分类人工驾驶数据集;所述待分类驾驶数据集包括所述待分类自动驾驶数据集和所述待分类人工驾驶数据集。The data to be classified and the determining unit are used to use the automatic driving data in the automatic driving data set whose duration is less than the automatic driving duration threshold as the automatic driving data set to be classified, and use the manual driving data set whose duration is less than the automatic driving data set. The manual driving data of the manual driving duration threshold is used as the manual driving data set to be classified; the driving data set to be classified includes the automatic driving data set to be classified and the manual driving data set to be classified.
优选地,所述模型确定模块包括:Preferably, the model determination module includes:
特征数据集确定模块,用于在所述正确驾驶数据集中进行特征选取得到特征数据集;a feature data set determination module, used for feature selection in the correct driving data set to obtain a feature data set;
特征数据集分类单元,用于在所述特征数据集选取设定比例的数据作为训练集,其余的数据作为测试集;A feature data set classification unit, used for selecting a set proportion of data in the feature data set as a training set, and the rest of the data as a test set;
模型构建单元,用于构建各分类模型;各所述分类模型分别为K近邻估计模型、支持向量机模型、决策树模型、随机森林模型、BP神经网络模型;a model construction unit, used for constructing each classification model; each described classification model is respectively a K-nearest neighbor estimation model, a support vector machine model, a decision tree model, a random forest model, and a BP neural network model;
训练单元,用于基于所述训练集对各所述分类模型进行训练;得到训练好的各所述分类模型;a training unit for training each of the classification models based on the training set; obtaining each of the trained classification models;
模型确定单元,用于基于所述测试集对各所述分类模型进行评价,选取评价值最高所对应的训练好的所述分类模型作为最终分类模型。A model determining unit, configured to evaluate each of the classification models based on the test set, and select the trained classification model corresponding to the highest evaluation value as the final classification model.
根据本发明提供的具体实施例,本发明公开了以下技术效果:According to the specific embodiments provided by the present invention, the present invention discloses the following technical effects:
本发明涉及一种自动驾驶道路测试驾驶模式辨别方法,其中,所述方法包括:获取初始数据;确定驾驶持续时长阈值;根据所述初始数据和所述驾驶持续时长阈值得到正确驾驶数据集和待分类数据集;基于所述正确驾驶数据集确定最终分类模型;基于所述最终分类模型对所述待分类数据集中各待分类数据所对应的驾驶模式进行修正。本发明针对自动驾驶测试产生的数据能准确辨别驾驶模式,为后续自动驾驶能力评估提供良好的基础。The present invention relates to a driving mode identification method for automatic driving road test, wherein the method includes: acquiring initial data; determining a driving duration threshold; obtaining a correct driving data set and a waiting period according to the initial data and the driving duration threshold classification data set; determining a final classification model based on the correct driving data set; correcting the driving mode corresponding to each to-be-classified data in the to-be-classified data set based on the final classification model. The invention can accurately identify the driving mode according to the data generated by the automatic driving test, and provide a good basis for the subsequent automatic driving capability evaluation.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some of the present invention. In the embodiments, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative labor.
图1为本发明自动驾驶道路测试驾驶模式辨别方法流程图;Fig. 1 is the flow chart of the driving mode identification method for automatic driving road test of the present invention;
图2为本发明自动驾驶道路测试驾驶模式辨别系统结构示意图;FIG. 2 is a schematic structural diagram of the driving mode identification system for automatic driving road test according to the present invention;
图3为城市道路场景自动驾驶模式显著性检验示意图;Figure 3 is a schematic diagram of the saliency test of automatic driving mode in urban road scenes;
图4为城市道路场景人工驾驶模式显著性检验示意图;FIG. 4 is a schematic diagram of the saliency test of the artificial driving mode in the urban road scene;
图5为快速路场景自动驾驶模式显著性检验示意图;Fig. 5 is a schematic diagram of the saliency test of automatic driving mode in expressway scene;
图6为快速路场景人工驾驶模式显著性检验示意图。FIG. 6 is a schematic diagram of the saliency test of the manual driving mode in the expressway scene.
符号说明:1-数据获取模块,2-阈值确定模块,3-数据集确定模块,4-模型确定模块,5-模式修正模块。Symbol description: 1-data acquisition module, 2-threshold determination module, 3-data set determination module, 4-model determination module, 5-mode correction module.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
本发明的目的是提供一种自动驾驶道路测试驾驶模式辨别方法及系统,以准确辨别自动驾驶测试过程中的驾驶模式。The purpose of the present invention is to provide a driving mode identification method and system for an automatic driving road test, so as to accurately identify the driving mode in the automatic driving test process.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the present invention will be described in further detail below with reference to the accompanying drawings and specific embodiments.
图1为本发明自动驾驶道路测试驾驶模式辨别方法流程图,如图1所示,本发明提供了一种自动驾驶道路测试驾驶模式辨别方法,包括:FIG. 1 is a flowchart of the method for discriminating driving modes for automatic driving road tests according to the present invention. As shown in FIG. 1 , the present invention provides a method for discriminating driving modes for automatic driving road tests, including:
步骤S1,获取初始数据。Step S1, obtaining initial data.
步骤S2,确定驾驶持续时长阈值。Step S2, determining the driving duration threshold.
步骤S3,根据所述初始数据和所述驾驶持续时长阈值得到正确驾驶数据集和待分类数据集。Step S3, obtaining a correct driving data set and a data set to be classified according to the initial data and the driving duration threshold.
步骤S4,基于所述正确驾驶数据集确定最终分类模型。Step S4, determining a final classification model based on the correct driving data set.
步骤S5,基于所述最终分类模型对所述待分类数据集中各待分类数据所对应的驾驶模式进行修正。Step S5, correcting the driving mode corresponding to each to-be-classified data in the to-be-classified data set based on the final classification model.
其中,所述初始数据包括自动驾驶数据集和人工驾驶数据集。Wherein, the initial data includes an automatic driving data set and a manual driving data set.
具体地,所述步骤S1包括:Specifically, the step S1 includes:
步骤S11,获取原始数据。所述原始数据为自动驾驶道路测试阶段产生的测试数据。优选地,所述原始数据包括车辆编号、经度、纬度、定位时间、车速、驾驶模式。具体示例如表1。Step S11, acquiring original data. The raw data is the test data generated in the road test phase of automatic driving. Preferably, the raw data includes vehicle number, longitude, latitude, positioning time, vehicle speed, and driving mode. Specific examples are shown in Table 1.
表1原始数据示例Table 1 Raw data example
步骤S12,对所述原始数据进行数据填充和数据修正,得到修补数据。例如将异常的定位时间格式数据转换为YYYY-MM-DDHH:MM:SS(年-月-日时-分-秒)格式。Step S12, performing data filling and data correction on the original data to obtain repaired data. For example, the abnormal positioning time format data is converted into YYYY-MM-DDHH:MM:SS (year-month-day-hour-minute-second) format.
步骤S13,根据驾驶模式持续时长对所述修补数据进行分割得到自动驾驶数据集和人工驾驶数据集;所述初始数据包括所述自动驾驶数据集和所述人工驾驶数据集。Step S13, segment the repaired data according to the driving mode duration to obtain an automatic driving data set and a manual driving data set; the initial data includes the automatic driving data set and the manual driving data set.
作为一种可选的实施方式,本发明所述步骤S2包括:As an optional implementation manner, the step S2 of the present invention includes:
步骤S21,选取待检验参数;所述待检验参数需结合原始数据的字段、质量和显著性差异检验的可行性与便利性进行选取。Step S21, select the parameter to be tested; the parameter to be tested needs to be selected in combination with the field, quality and feasibility and convenience of the significant difference test of the original data.
步骤S22,判断所述待检验参数是否同时满足正态分布及方差齐次。Step S22, it is judged whether the parameter to be tested satisfies both normal distribution and homogeneous variance.
优选地,检验所述待检验参数是否满足正态分布的方法包括:正态概率纸法、夏皮罗维尔克检验法、科尔莫戈罗夫检验法和偏度-峰度检验法。检验所述待检验参数是否满足方差齐次的方法包括:Hartley检验、Bartlett检验和修正的Bartlett检验。Preferably, the method for testing whether the parameter to be tested satisfies the normal distribution includes: normal probability paper method, Shapiro-Wilk test method, Kolmogorov test method and skewness-kurtosis test method. Methods for testing whether the parameters to be tested satisfy the homogeneity of variance include: Hartley test, Bartlett test and modified Bartlett test.
步骤S23,若是,则采用参数检验方法分别得到自动驾驶持续时长阈值和人工驾驶持续时长阈值;若否,则采用非参数检验方法分别得到自动驾驶持续时长阈值和人工驾驶持续时长阈值;所述驾驶持续时长阈值包括所述自动驾驶持续时长阈值和所述人工驾驶持续时长阈值。Step S23, if yes, then adopt the parameter checking method to obtain the automatic driving duration threshold and the manual driving duration threshold respectively; if not, adopt the non-parametric checking method to obtain the automatic driving duration threshold and the manual driving duration threshold respectively; the driving The duration threshold includes the automatic driving duration threshold and the manual driving duration threshold.
进一步地,本发明所述正确驾驶数据集包括正确自动驾驶数据集和正确人工驾驶数据集;所述待分类驾驶数据集包括待分类自动驾驶数据集和待分类人工驾驶数据集。Further, the correct driving data set of the present invention includes a correct automatic driving data set and a correct manual driving data set; the to-be-classified driving data set includes a to-be-classified automatic driving data set and a to-be-classified manual driving data set.
具体地,所述步骤S3包括:Specifically, the step S3 includes:
步骤S31,将所述自动驾驶数据集中持续时长大于或等于所述自动驾驶持续时长阈值的自动驾驶数据作为正确自动驾驶数据集,将所述人工驾驶数据集中持续时长大于或等于所述人工驾驶持续时长阈值的人工驾驶数据作为正确人工驾驶数据集。Step S31, take the automatic driving data whose duration is greater than or equal to the automatic driving duration threshold in the automatic driving data set as the correct automatic driving data set, and set the duration in the manual driving data set is greater than or equal to the manual driving duration. The manual driving data of the duration threshold is used as the correct manual driving data set.
步骤S32,将所述自动驾驶数据集中持续时长小于所述自动驾驶持续时长阈值的自动驾驶数据作为待分类自动驾驶数据集,将所述人工驾驶数据集中持续时长小于所述人工驾驶持续时长阈值的人工驾驶数据作为待分类人工驾驶数据集。Step S32, taking the automatic driving data in the automatic driving data set whose duration is less than the automatic driving duration threshold as the automatic driving data set to be classified, and taking the automatic driving data in the manual driving data set whose duration is less than the manual driving duration threshold. The manual driving data is used as the manual driving data set to be classified.
为了对所述待分类驾驶数据集中的数据对应的驾驶模式进行准确辨别,并进行修正,本发明需从构建的众多模型选择一个最优分类模型,具体地,本发明所述步骤S4包括:In order to accurately identify and correct the driving mode corresponding to the data in the driving data set to be classified, the present invention needs to select an optimal classification model from the constructed models. Specifically, the step S4 of the present invention includes:
步骤S41,在所述正确驾驶数据集中进行特征选取得到特征数据集。选取最有效的特征以达到降低特征空间维数的目的,选取的特征需满足可较好地区别自动驾驶模式和人工驾驶模式。Step S41, perform feature selection in the correct driving data set to obtain a feature data set. The most effective features are selected to achieve the purpose of reducing the dimension of the feature space, and the selected features should be able to better distinguish the automatic driving mode from the manual driving mode.
步骤S42,在所述特征数据集选取设定比例的数据作为训练集,其余的数据作为测试集。本实施例中,所述设定比例为70%。In step S42, a set proportion of data is selected from the feature data set as a training set, and the rest of the data is used as a test set. In this embodiment, the set ratio is 70%.
步骤S43,基于机器学习的模式识别方法,根据选择的特征构建各分类模型;各所述分类模型分别为K近邻估计模型、支持向量机模型、决策树模型、随机森林模型、BP神经网络模型。Step S43, based on the pattern recognition method of machine learning, construct each classification model according to the selected features; each described classification model is respectively a K-nearest neighbor estimation model, a support vector machine model, a decision tree model, a random forest model, and a BP neural network model.
步骤S44,基于所述训练集对各所述分类模型进行训练,得到训练好的各所述分类模型。In step S44, each of the classification models is trained based on the training set to obtain each of the trained classification models.
步骤S45,基于所述测试集对各所述分类模型进行评价,选取评价值最高所对应的训练好的所述分类模型作为最终分类模型。具体应用准确率、精确率、召回率三个量来进行评价。Step S45: Evaluate each of the classification models based on the test set, and select the trained classification model corresponding to the highest evaluation value as the final classification model. Specifically, three quantities of accuracy, precision, and recall are used for evaluation.
具体地,以上海市自动驾驶道路测试数据为例对上述方法进行进一步说明。Specifically, the above method will be further described by taking the test data of autonomous driving roads in Shanghai as an example.
获取的原始数据包括车辆编号、经度、纬度、定位时间、车速和驾驶模式;采集频率为1Hz,涉及的驾驶模式包括自动驾驶和人工驾驶,涉及的场景包括城市道路场景和快速路场景。其中城市道路场景测试数据为3.3万条,快速路场景为40.3万条。The acquired raw data includes vehicle number, longitude, latitude, positioning time, vehicle speed and driving mode; the collection frequency is 1Hz, the driving modes involved include automatic driving and manual driving, and the scenarios involved include urban road scenes and expressway scenes. Among them, the test data for urban road scenes is 33,000, and the expressway scene is 403,000.
将获得的原始数据进行数据填充和数据修正,得到修补数据。Perform data filling and data correction on the obtained original data to obtain repaired data.
将所述修补数据进行分割得到自动驾驶城市道路数据集、自动驾驶快速路数据集、人工驾驶城市道路数据集和人工驾驶快速路数据集。The patched data is segmented to obtain an automatic driving urban road dataset, an automatic driving expressway dataset, a manual driving urban road dataset and a manual driving expressway dataset.
选用车速作为待检验参数。经计算,上海市的车速参数不满足正态分布及方差齐次。The vehicle speed is selected as the parameter to be tested. After calculation, the speed parameters in Shanghai do not satisfy the normal distribution and homogeneous variance.
选用非参数检验中的秩和检验进行5-20秒特定持续时长前后车速的显著性检验,其中快速路场景中5秒、6秒特定持续时长下的数据量过少,不符合最小样本量的要求,故选取7-20秒特定时长前后车速进行显著性检验。为保证特定时长前后车速样本量相当,随机选取相同样本量的车速数据进行显著性检验。具体的显著性检验结果如图3、图4、图5和图6所示,其中,图3为城市道路场景自动驾驶模式显著性检验示意图;图4为城市道路场景人工驾驶模式显著性检验示意图;图5为快速路场景自动驾驶模式显著性检验示意图;图6为快速路场景人工驾驶模式显著性检验示意图。The rank sum test in the non-parametric test is used to perform the significance test of the vehicle speed before and after a specific duration of 5-20 seconds. Among them, the amount of data under the specific duration of 5 seconds and 6 seconds in the expressway scene is too small and does not meet the minimum sample size. Therefore, the vehicle speed before and after a specific period of 7-20 seconds is selected for significance test. In order to ensure that the sample size of the vehicle speed before and after a certain period of time is the same, the vehicle speed data of the same sample size are randomly selected for significance testing. The specific significance test results are shown in Figure 3, Figure 4, Figure 5 and Figure 6, wherein Figure 3 is a schematic diagram of the significance test of the automatic driving mode in the urban road scene; Figure 4 is a schematic diagram of the significance test of the manual driving mode in the urban road scene ; Figure 5 is a schematic diagram of the saliency test of the automatic driving mode in the expressway scene; Figure 6 is a schematic diagram of the saliency test of the manual driving mode in the expressway scene.
根据秩和检验原理,P值越小表示显著性差异越大,对比所有显著性检验结果,故最终确定城市道路场景、快速路场景下自动驾驶模式、人工驾驶模式持续时长阈值如表2所示。According to the principle of rank sum test, the smaller the P value is, the greater the significant difference is. Compare all the significance test results. Therefore, the thresholds for the duration of automatic driving mode and manual driving mode in urban road scenarios and expressway scenarios are finally determined as shown in Table 2. .
表2持续时长阈值Table 2 Duration thresholds
根据表2得到的阈值信息对所述自动驾驶城市道路数据集、所述自动驾驶快速路数据集、所述人工驾驶城市道路数据集和所述人工驾驶快速路数据集中的数据进行分类得到正确驾驶数据集和待分类数据集。Correct driving is obtained by classifying the data in the automatic driving urban road dataset, the automatic driving expressway dataset, the manual driving urban road dataset and the manual driving expressway dataset according to the threshold information obtained in Table 2 datasets and datasets to be classified.
选择平均车速、车速标准差、速度差绝对值平均值、速度差绝对值85分位值、速度差绝对值15分位值为特征值,基于选取的特征值对正确驾驶数据集进行特征提取得到特征数据集。Select the average speed, the standard deviation of the speed, the average value of the absolute value of the speed difference, the 85th percentile value of the absolute value of the speed difference, and the 15th percentile value of the absolute value of the speed difference as the feature values, and the correct driving data set is extracted based on the selected feature values. Feature dataset.
从特征数据集中选取70%作为训练集、30%作为测试集。Select 70% from the feature dataset as the training set and 30% as the test set.
构建K近邻估计、支持向量机、决策树、随机森林和BP神经网络5中分类模型。用训练集对各分类模型进行训练,用测试集各分类模型进行评价,评价结果如表3和表4所示。Build K-nearest neighbor estimation, support vector machines, decision trees, random forests and BP
表3城市道路场景模型评价结果Table 3 Evaluation results of urban road scene model
表4快速路场景模型评价结果Table 4 Evaluation results of expressway scene model
在城市道路场景及快速路场景中,随机森林分类模型的识别准确率和精确率在五个分类模型中均为最高,支持向量机的召回率更高,综合考虑三个指标,随机森林分类模型表现最佳,故选择随机森林分类模型作为最终的分类模型对待分类数据集中数据对应的架势模式进行辨别及修正。In the urban road scene and expressway scene, the recognition accuracy and precision rate of the random forest classification model are the highest among the five classification models, and the recall rate of the support vector machine is higher. Considering three indicators, the random forest classification model The performance is the best, so the random forest classification model is selected as the final classification model to identify and correct the posture pattern corresponding to the data in the data set to be classified.
具体的修正数据见表5、表6和表7。See Table 5, Table 6 and Table 7 for the specific correction data.
表5原自动驾驶模式数据辨别结果Table 5 Identification results of original automatic driving mode data
表6原人工驾驶模式数据辨别结果Table 6 Discrimination results of original manual driving mode data
表7测试数据驾驶模式辨别结果汇总Table 7 Summary of driving mode discrimination results in test data
从表7中的数据可以看出,待分类数据对应的驾驶模式有4成都是错误的,因此,在自动驾驶道路测试中对架势模式的修正是很有必要的。It can be seen from the data in Table 7 that 40% of the driving modes corresponding to the data to be classified are wrong. Therefore, it is necessary to correct the posture mode in the road test of automatic driving.
图2为本发明自动驾驶道路测试驾驶模式辨别系统结构示意图,如图2所示,本发明还提供了一种自动驾驶道路测试驾驶模式辨别系统,包括:数据获取模块1、阈值确定模块2、数据集确定模块3、模型确定模块4和模式修正模块5。FIG. 2 is a schematic structural diagram of the driving mode identification system for an automatic driving road test according to the present invention. As shown in FIG. 2 , the present invention also provides a driving mode identification system for an automatic driving road test, including: a
所述数据获取模块1用于获取初始数据。The
所述阈值确定模块2用于确定驾驶持续时长阈值。The
所述数据集确定模块3用于根据所述初始数据和所述驾驶持续时长阈值得到正确驾驶数据集和待分类数据集。The data
所述模型确定模块4用于基于所述正确驾驶数据集确定最终分类模型。The model determination module 4 is used to determine a final classification model based on the correct driving data set.
所述模式修正模块5用于基于所述最终分类模型对所述待分类数据集中各待分类数据所对应的驾驶模式进行修正。The
作为一种可选的实施方式,本发明所述数据获取模块1包括:数据获取单元、数据处理单元和数据分割单元。As an optional implementation manner, the
所述数据获取单元用于获取原始数据。The data acquisition unit is used to acquire original data.
所述数据处理单元用于对所述原始数据进行数据填充和数据修正,得到修补数据。The data processing unit is configured to perform data filling and data correction on the original data to obtain repaired data.
所述数据分割单元用于根据驾驶模式持续时长对所述修补数据进行分割得到自动驾驶数据集和人工驾驶数据集;所述初始数据包括所述自动驾驶数据集和所述人工驾驶数据集。The data segmentation unit is configured to segment the repaired data according to the driving mode duration to obtain an automatic driving data set and a manual driving data set; the initial data includes the automatic driving data set and the manual driving data set.
作为一种可选的实施方式,本发明所述确定阈值确定模块2包括:参数单元、判断单元和阈值确定单元。As an optional implementation manner, the
所述参数单元用于选取待检验参数。The parameter unit is used for selecting parameters to be checked.
所述判断单元用于判断所述待检验参数是否同时满足正态分布及方差齐次。The judging unit is used for judging whether the parameter to be tested satisfies both normal distribution and homogeneous variance.
所述阈值确定单元用于当满足时采用参数检验方法分别得到自动驾驶持续时长阈值和人工驾驶持续时长阈值;当不满足时则采用非参数检验方法分别得到自动驾驶持续时长阈值和人工驾驶持续时长阈值;所述驾驶持续时长阈值包括所述自动驾驶持续时长阈值和所述人工驾驶持续时长阈值。The threshold determination unit is used to obtain the automatic driving duration threshold and the manual driving duration threshold respectively by adopting a parameter inspection method when it is satisfied; when not satisfied, adopting a non-parametric inspection method to obtain the automatic driving duration threshold and the manual driving duration respectively. Threshold; the driving duration threshold includes the automatic driving duration threshold and the manual driving duration threshold.
作为一种可选的实施方式,本发明所述数据集确定模块3包括:正确驾驶数据集确定单元和待分类数据及确定单元。As an optional implementation manner, the data set
所述正确驾驶数据集确定单元用于将所述自动驾驶数据集中持续时长大于或等于所述自动驾驶持续时长阈值的自动驾驶数据作为正确自动驾驶数据集,将所述人工驾驶数据集中持续时长大于或等于所述人工驾驶持续时长阈值的人工驾驶数据作为正确人工驾驶数据集;所述正确驾驶数据集包括所述正确自动驾驶数据集和所述正确人工驾驶数据集。The correct driving data set determination unit is configured to use the automatic driving data in the automatic driving data set with a duration greater than or equal to the automatic driving duration threshold as a correct automatic driving data set, and set the manual driving data set with a duration greater than or equal to the automatic driving duration threshold. Or the manual driving data equal to the manual driving duration threshold is used as the correct manual driving data set; the correct driving data set includes the correct automatic driving data set and the correct manual driving data set.
所述待分类数据及确定单元用于将所述自动驾驶数据集中持续时长小于所述自动驾驶持续时长阈值的自动驾驶数据作为待分类自动驾驶数据集,将所述人工驾驶数据集中持续时长小于所述人工驾驶持续时长阈值的人工驾驶数据作为待分类人工驾驶数据集;所述待分类驾驶数据集包括所述待分类自动驾驶数据集和所述待分类人工驾驶数据集。The data to be classified and the determination unit are used to use the automatic driving data in the automatic driving data set whose duration is less than the automatic driving duration threshold as the automatic driving data set to be classified, and the manual driving data set whose duration is less than all the automatic driving data sets. The manual driving data of the manual driving duration threshold is used as the manual driving data set to be classified; the driving data set to be classified includes the automatic driving data set to be classified and the manual driving data set to be classified.
作为一种可选的实施方式,本发明所述模型确定模块4包括:特征数据集确定模块、特征数据集分类单元、模型构建单元、训练单元和模型确定单元。As an optional implementation manner, the model determination module 4 of the present invention includes: a feature data set determination module, a feature data set classification unit, a model construction unit, a training unit, and a model determination unit.
所述特征数据集确定模块用于在所述正确驾驶数据集中进行特征选取得到特征数据集。The feature data set determination module is configured to perform feature selection in the correct driving data set to obtain a feature data set.
所述特征数据集分类单元用于在所述特征数据集选取设定比例的数据作为训练集,其余的数据作为测试集。The feature data set classification unit is configured to select a set proportion of data in the feature data set as a training set, and the rest of the data as a test set.
所述模型构建单元用于构建各所述分类模型;各所述分类模型分别为K近邻估计模型、支持向量机模型、决策树模型、随机森林模型、BP神经网络模型。The model construction unit is used to construct each of the classification models; each of the classification models is respectively a K-nearest neighbor estimation model, a support vector machine model, a decision tree model, a random forest model, and a BP neural network model.
所述训练单元用于基于所述训练集对各所述分类模型进行训练;得到训练好的各所述分类模型。The training unit is configured to train each of the classification models based on the training set, and obtain each of the trained classification models.
所述模型确定单元用于基于所述测试集对各所述分类模型进行评价,选取评价值最高所对应的训练好的所述分类模型作为最终分类模型。The model determining unit is configured to evaluate each of the classification models based on the test set, and select the trained classification model corresponding to the highest evaluation value as the final classification model.
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other. For the system disclosed in the embodiment, since it corresponds to the method disclosed in the embodiment, the description is relatively simple, and the relevant part can be referred to the description of the method.
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。In this paper, specific examples are used to illustrate the principles and implementations of the present invention. The descriptions of the above embodiments are only used to help understand the methods and core ideas of the present invention; meanwhile, for those skilled in the art, according to the present invention There will be changes in the specific implementation and application scope. In conclusion, the contents of this specification should not be construed as limiting the present invention.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010708449.9A CN111814904B (en) | 2020-07-22 | 2020-07-22 | A method and system for discriminating driving mode for automatic driving road test |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010708449.9A CN111814904B (en) | 2020-07-22 | 2020-07-22 | A method and system for discriminating driving mode for automatic driving road test |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN111814904A true CN111814904A (en) | 2020-10-23 |
| CN111814904B CN111814904B (en) | 2021-05-28 |
Family
ID=72861659
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010708449.9A Active CN111814904B (en) | 2020-07-22 | 2020-07-22 | A method and system for discriminating driving mode for automatic driving road test |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN111814904B (en) |
Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105730450A (en) * | 2016-01-29 | 2016-07-06 | 北京荣之联科技股份有限公司 | Driving behavior analyzing method and evaluation system based on vehicle-mounted data |
| CN106515578A (en) * | 2016-12-22 | 2017-03-22 | 百度在线网络技术(北京)有限公司 | Recognition device and method for driving state of unmanned vehicle, and unmanned vehicle |
| CN107782564A (en) * | 2017-10-30 | 2018-03-09 | 青岛慧拓智能机器有限公司 | A kind of automatic driving vehicle evaluation system and method |
| US20180232585A1 (en) * | 2017-02-16 | 2018-08-16 | Samsung Electronics Co., Ltd. | Autonomous vehicle control method and apparatus |
| CN109543710A (en) * | 2018-10-12 | 2019-03-29 | 深圳市元征科技股份有限公司 | A kind of model training method and relevant device |
| CN110276985A (en) * | 2018-03-16 | 2019-09-24 | 华为技术有限公司 | Automatic Pilot safety evaluation method, device and system |
| CN110775069A (en) * | 2019-10-29 | 2020-02-11 | 长安大学 | Vehicle driving mode recognition device and method in mixed driving mode |
| US20200074492A1 (en) * | 2018-09-05 | 2020-03-05 | Mastercard International Incorporated | Systems and methods for detecting and scoring driver activity |
| CN110941901A (en) * | 2019-11-26 | 2020-03-31 | 北方工业大学 | An autonomous driving method and system therefor |
| US20200134946A1 (en) * | 2018-10-30 | 2020-04-30 | Baidu Online Network Technology (Beijing) Co., Ltd. | Method and apparatus for evaluating vehicle, device and computer readable storage medium |
| CN111178735A (en) * | 2019-12-24 | 2020-05-19 | 国汽(北京)智能网联汽车研究院有限公司 | Test evaluation method, device and system for automatic driving function |
-
2020
- 2020-07-22 CN CN202010708449.9A patent/CN111814904B/en active Active
Patent Citations (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105730450A (en) * | 2016-01-29 | 2016-07-06 | 北京荣之联科技股份有限公司 | Driving behavior analyzing method and evaluation system based on vehicle-mounted data |
| CN106515578A (en) * | 2016-12-22 | 2017-03-22 | 百度在线网络技术(北京)有限公司 | Recognition device and method for driving state of unmanned vehicle, and unmanned vehicle |
| US20180232585A1 (en) * | 2017-02-16 | 2018-08-16 | Samsung Electronics Co., Ltd. | Autonomous vehicle control method and apparatus |
| CN107782564A (en) * | 2017-10-30 | 2018-03-09 | 青岛慧拓智能机器有限公司 | A kind of automatic driving vehicle evaluation system and method |
| CN110276985A (en) * | 2018-03-16 | 2019-09-24 | 华为技术有限公司 | Automatic Pilot safety evaluation method, device and system |
| US20200074492A1 (en) * | 2018-09-05 | 2020-03-05 | Mastercard International Incorporated | Systems and methods for detecting and scoring driver activity |
| CN109543710A (en) * | 2018-10-12 | 2019-03-29 | 深圳市元征科技股份有限公司 | A kind of model training method and relevant device |
| US20200134946A1 (en) * | 2018-10-30 | 2020-04-30 | Baidu Online Network Technology (Beijing) Co., Ltd. | Method and apparatus for evaluating vehicle, device and computer readable storage medium |
| CN110775069A (en) * | 2019-10-29 | 2020-02-11 | 长安大学 | Vehicle driving mode recognition device and method in mixed driving mode |
| CN110941901A (en) * | 2019-11-26 | 2020-03-31 | 北方工业大学 | An autonomous driving method and system therefor |
| CN111178735A (en) * | 2019-12-24 | 2020-05-19 | 国汽(北京)智能网联汽车研究院有限公司 | Test evaluation method, device and system for automatic driving function |
Non-Patent Citations (5)
| Title |
|---|
| TIMO MELMAN等: "How do driving modes affect the vehicle’s dynamic behaviour? Comparing Renault’s Multi-Sense sport and comfort modes during on-road naturalistic driving", 《INTERNATIONAL JOURNAL OF VEHICLE MECHANICS AND MOBILITY》 * |
| 严利鑫: "智能辅助驾驶系统模式决策建模与安全性评价研究", 《中国博士学位论文全文数据库_工程科技Ⅱ辑》 * |
| 吴琼: "北京自动驾驶车辆道路测试报告(2019)", 《智能网联汽车》 * |
| 徐鹏等: "基于反向传播算法的驾驶行为识别研究", 《贵州大学学报( 自然科学版)》 * |
| 李升波等: "深度神经网络的关键技术及其在自动驾驶领域的应用", 《汽车安全与节能学报》 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN111814904B (en) | 2021-05-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20250209831A1 (en) | Road disease recognition method, system, device, and storage medium | |
| US20230065825A1 (en) | Systems and Methods for Automated Trade-In With Limited Human Interaction | |
| CN111126393A (en) | Vehicle appearance refitting judgment method and device, computer equipment and storage medium | |
| CN111967368B (en) | Traffic light identification method and device | |
| CN112733864B (en) | Model training method, target detection method, device, equipment and storage medium | |
| CN112329886A (en) | Double-license plate recognition method, model training method, device, equipment and storage medium | |
| CN112529109A (en) | Unsupervised multi-model-based anomaly detection method and system | |
| CN114563014B (en) | Opendrive map automatic detection method based on simulation image | |
| CN115018787A (en) | Anomaly detection method and system based on gradient enhancement | |
| CN114550129B (en) | Machine learning model processing method and system based on data set | |
| CN111444911A (en) | Training method and device of license plate recognition model and license plate recognition method and device | |
| CN115249107A (en) | Evaluation method and system of environmental usability | |
| CN112819565A (en) | Method and system for detecting surrounding mark string mark and storage medium | |
| CN118781471A (en) | Model training method, object recognition method, device and electronic equipment | |
| CN115526859A (en) | Method for identifying production defects, distributed processing platform, equipment, and storage medium | |
| CN112686155B (en) | Image recognition method, device, computer readable storage medium and processor | |
| CN113435427B (en) | Method and device for aggregating lane lines | |
| CN111814904A (en) | A method and system for discriminating driving mode for automatic driving road test | |
| CN118037719B (en) | Product defect detection method, device and storage medium | |
| CN113987751A (en) | Scheme screening method and device, electronic equipment and storage medium | |
| CN114155522A (en) | Point cloud data quality inspection repairing method and system | |
| CN113554645A (en) | Industrial Anomaly Detection Method and Device Based on WGAN | |
| CN115410054B (en) | Scene generation methods, model testing methods, and model training methods | |
| CN115171060A (en) | Vehicle type determination method and device, storage medium and electronic device | |
| CN117036227B (en) | Data processing method, device, electronic device, medium and program product |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |