CN111476373B - An artificial intelligence data service system - Google Patents
An artificial intelligence data service system Download PDFInfo
- Publication number
- CN111476373B CN111476373B CN202010286466.8A CN202010286466A CN111476373B CN 111476373 B CN111476373 B CN 111476373B CN 202010286466 A CN202010286466 A CN 202010286466A CN 111476373 B CN111476373 B CN 111476373B
- Authority
- CN
- China
- Prior art keywords
- data
- platform
- users
- artificial intelligence
- service module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/903—Querying
- G06F16/9032—Query formulation
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Computing Systems (AREA)
- Information Transfer Between Computers (AREA)
Abstract
Description
技术领域technical field
本发明属于人工智能领域,尤其涉及一种人工智能数据服务系统。The invention belongs to the field of artificial intelligence, and in particular relates to an artificial intelligence data service system.
背景技术Background technique
在研究机器学习的过程中,需要大量的数据资源配合高效的计算能力来进行反复的模型训练。数据集的搜集需要花费大量的时间同时也具有一定的难度再加上计算资源的不足也就变相的加大了机器学习研究的成本。并且由于数据集的质量参差不齐而导致的模型训练结果差异太大的情况也在研究过程中屡见不鲜。人工智能数据平台系统的出现解决了找数据难,训练资源匮乏等关键性问题。In the process of studying machine learning, a large amount of data resources and efficient computing power are required for repeated model training. The collection of data sets takes a lot of time and also has certain difficulties. In addition, the lack of computing resources increases the cost of machine learning research in disguise. And it is not uncommon in the research process that the model training results are too different due to the uneven quality of the dataset. The emergence of the artificial intelligence data platform system solves key problems such as difficulty in finding data and lack of training resources.
同时,机器学习或人工智能的大多数算法或者应用模型对于数据的标注、数据的质量都有一定的要求,数据的可用性无法通过简短的介绍或者少数示例数据进行体现。系统提供数据试用功能等一系列方法,为算法的验证或构建更优的模型,提供一个良好的起点。At the same time, most algorithms or application models of machine learning or artificial intelligence have certain requirements for data annotation and data quality, and the availability of data cannot be reflected through a brief introduction or a few sample data. The system provides a series of methods such as data trial function, which provides a good starting point for algorithm verification or building a better model.
发明内容SUMMARY OF THE INVENTION
本发明目的在于,克服现有人工智能领域大多数算法或者应用模型开发所需要的数据集难于收集,适用性差的问题。The purpose of the present invention is to overcome the problems of difficulty in collecting and poor applicability of data sets required for the development of most algorithms or application models in the existing artificial intelligence field.
为实现上述目的,本发明提供了一种人工智能数据服务系统,包括前端交互平台和人工智能数据平台;其中,前端交互平台包括:To achieve the above purpose, the present invention provides an artificial intelligence data service system, including a front-end interactive platform and an artificial intelligence data platform; wherein, the front-end interactive platform includes:
数据检索服务模块,用于用户通过输入关键字或者根据数据领域划分来快速的检索并定位到自己所需的数据;所述数据包括数据集、API接口、数据模型;The data retrieval service module is used for users to quickly retrieve and locate the data they need by entering keywords or according to the division of data fields; the data includes data sets, API interfaces, and data models;
数据集服务模块,用于提供数据集的在线使用和下载功能,用户可以通过检索服务模块定位到所需数据集,通过数据集中的数据试用来进行在线的数据模型训练,也可通过申请将原始数据或者训练所产生的数据通过平台下载到本地;The data set service module is used to provide the online use and download functions of the data set. Users can locate the required data set through the retrieval service module, conduct online data model training through the data trial in the data set, or apply for the original data set. The data or data generated by training are downloaded locally through the platform;
数据接口服务模块,用于用户申请获取密钥然后再进行参数填写加传递的形式来在线获取对应的数据;The data interface service module is used for users to apply for obtaining keys and then fill in and transfer parameters to obtain the corresponding data online;
模型/算力服务模块,用于用户进行在线的便捷式的模型训练。The model/computing service module is used for users to conduct online and convenient model training.
进一步地,前端交互平台还包括:数据共享模块,用于用户将产生的包括数据集、API接口、数据模型,上传到人工智能数据平台,人工智能数据平台通过相应地过滤算法,筛选数据。Further, the front-end interactive platform also includes: a data sharing module, which is used by the user to upload the generated data sets, API interfaces, and data models to the artificial intelligence data platform, and the artificial intelligence data platform filters the data through corresponding filtering algorithms.
进一步地,数据共享模块的数据共享步骤包括:Further, the data sharing step of the data sharing module includes:
步骤一,数据提供方上传发布数据集至人工智能数据平台数据中心;Step 1, the data provider uploads and publishes the data set to the artificial intelligence data platform data center;
步骤二,数据提供方发布数据集信息并保存,生成用于展示的页面;Step 2, the data provider publishes and saves the data set information, and generates a page for display;
步骤三,数据获取方查询/浏览数据集信息。Step 3: The data acquirer queries/brows the data set information.
进一步地,在所述步骤三的基础上,当数据获取方需要进行数据验证时,包括以下步骤;Further, on the basis of the third step, when the data acquirer needs to perform data verification, the following steps are included;
步骤四,选定典型的算法或应用模型;Step 4: Select a typical algorithm or application model;
步骤五,选定运行软/硬件环境;Step 5, select the running software/hardware environment;
步骤六,对数据进行验证,观察算法或模型的输出,验证数据的适用性。Step 6: Validate the data, observe the output of the algorithm or model, and verify the applicability of the data.
进一步地,在所述步骤三的基础上,当数据获取方不需要进行数据验证时,包括以下步骤;Further, on the basis of the third step, when the data acquirer does not need to perform data verification, the following steps are included;
步骤七,数据获取方提出下载申请;Step 7: The data acquirer submits a download application;
步骤八,系统后台审核后,根据申请提供的方式,反馈给数据获取方相关数据的访问方式;Step 8: After the system background review, according to the method provided by the application, feedback to the data acquirer the access method of the relevant data;
步骤九,数据获取方依据系统提供的下载地址获取数据。Step 9: The data acquirer acquires data according to the download address provided by the system.
进一步地,在所述步骤三的基础上,当数据获取方不需要进行数据验证,并进行数据定制请求时,包括以下步骤;Further, on the basis of the third step, when the data acquirer does not need to perform data verification and performs a data customization request, the following steps are included;
步骤十,数据获取方提交数据定制需求,说明数据的进一步要求;Step 10: The data acquirer submits data customization requirements, explaining further data requirements;
步骤十,系统根据数据处理的进度,反馈用户,提供服务。In step ten, the system feeds back users and provides services according to the progress of data processing.
进一步地,所述数据接口服务模块,具体用于用户通过API接口进行密钥的申请,以及参数设置,通过参数传递的方式来获取对应的结果,用户可定义数据的返回格式为XML或者JSON。Further, the data interface service module is specifically used for the user to apply for a key through the API interface, and to set parameters, and to obtain the corresponding result by means of parameter transmission, and the return format of the user-definable data is XML or JSON.
本发明为人工智能,尤其是强化学习研究者提供领域内相关数据集的信息,以及常见的算法、应用模型库。同时,系统提供一定范围的数据及算法的试用,便于使用者观察数据集或者算法在特定场景的表现,更轻松的构建人工智能系统。The invention provides artificial intelligence, especially reinforcement learning researchers, with information of relevant data sets in the field, as well as common algorithms and application model libraries. At the same time, the system provides a certain range of data and algorithm trials, which is convenient for users to observe the performance of data sets or algorithms in specific scenarios, and to build artificial intelligence systems more easily.
附图说明Description of drawings
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
图1为本发明实施例提供的一种人工智能数据服务系统结构示意图;1 is a schematic structural diagram of an artificial intelligence data service system according to an embodiment of the present invention;
图2为数据共享方法步骤示意图;Fig. 2 is a schematic diagram of data sharing method steps;
图3为错误码参照表和示例代码表界面。Figure 3 shows the interface of the error code reference table and the sample code table.
具体实施方式Detailed ways
本发明实施例提供的人工智能数据服务系统主要是汇聚人工智能领域相关数据集,并将其按照不同维度,进行分类显示,方便用户进行快速检索;用户上传或申请相关的数据集、算法以及应用模型。应用方向包括计算机视觉、自然语言等;存储媒介包括图像、视频、语音、图表等。系统汇聚包括机器学习、统计分析、数据处理等方面的算法和模型,形成人工智能算法库和模型库。算法库包括BP神经网络、ART1神经网络、移动平均模型、单位根检验等常用的算法和模型。The artificial intelligence data service system provided by the embodiment of the present invention mainly gathers relevant data sets in the field of artificial intelligence, and categorizes and displays them according to different dimensions, which is convenient for users to quickly search; users upload or apply for relevant data sets, algorithms and applications. Model. Application directions include computer vision, natural language, etc.; storage media include images, videos, voices, charts, etc. The system gathers algorithms and models including machine learning, statistical analysis, data processing, etc. to form an artificial intelligence algorithm library and model library. The algorithm library includes commonly used algorithms and models such as BP neural network, ART1 neural network, moving average model, and unit root test.
系统维护人员对数据、算法进行适配,提供试运行服务。系统提供的试运行服务是为用户提供一种针对特定数据集、算法或者应用模型的在线体验。用户根据网页的提示,按照向导所示,选择数据源,相关变量设置完成之后,启动运行。运行结束后,界面上显示输出结果,包括目标变量训练表(目标变量训练结果)以及目标变量预测表(目标变量预测结果)。System maintenance personnel adapt data and algorithms to provide trial operation services. The trial operation service provided by the system is to provide users with an online experience for a specific data set, algorithm or application model. The user selects the data source according to the prompts on the webpage and as shown in the wizard, and starts the operation after the relevant variables are set. After the operation is completed, the output results are displayed on the interface, including the target variable training table (target variable training results) and the target variable prediction table (target variable prediction results).
本发明实施例提供的人工智能数据服务系统主要是通过JAVA语言+Spring框架搭配前端的Vue+JavaScript+Html来搭建前端展示网站。后端试运行平台采用Docker容器,封装相关运行环境。网站根据用户的操作,通过任务调度系统,通过Web访问Docker内的程序。该系统基于B/S架构以及云的概念,仅通过浏览器便可在线获取想要数据资源。用户也可以通过API接口的方式快速获得自己想要的数据。平台同时也配置了高效的GPU计算集群,用户可以通过数据+模型的方式在平台进行相关的模型训练工作。用户可以将自己训练过程中产生的优秀数据集通过上传功能传到平台进行数据分享,平台通过高效的过滤算法,不断的筛选、重生数据,从而形成一个可循环的数据生态系统。The artificial intelligence data service system provided by the embodiment of the present invention mainly constructs a front-end display website through JAVA language + Spring framework and front-end Vue + JavaScript + Html. The back-end trial operation platform uses Docker containers to encapsulate the relevant operating environment. The website accesses the programs in Docker through the Web through the task scheduling system according to the user's operation. The system is based on the B/S architecture and the concept of cloud, and the desired data resources can be obtained online only through a browser. Users can also quickly obtain the data they want through the API interface. The platform is also equipped with an efficient GPU computing cluster, and users can perform related model training work on the platform through data + models. Users can upload the excellent data sets generated during their training to the platform for data sharing. The platform continuously filters and regenerates data through efficient filtering algorithms, thus forming a recyclable data ecosystem.
图1为本发明实施例提供的一种人工智能数据服务系统结构示意图。如图1所示,人工智能数据服务系统,包括前端交互平台和人工智能数据平台;其中,前端交互平台包括:数据检索服务模块、数据集服务模块、数据接口服务模块和数据接口服务模块。FIG. 1 is a schematic structural diagram of an artificial intelligence data service system according to an embodiment of the present invention. As shown in Figure 1, the artificial intelligence data service system includes a front-end interactive platform and an artificial intelligence data platform; wherein, the front-end interactive platform includes: a data retrieval service module, a data set service module, a data interface service module and a data interface service module.
数据检索服务模块用于用户通过输入关键字或者根据数据领域划分来快速的检索并定位到自己所需的数据;所述数据包括数据集、API接口、数据模型;The data retrieval service module is used by users to quickly retrieve and locate the data they need by inputting keywords or according to the division of data fields; the data includes data sets, API interfaces, and data models;
具体地,当用户登陆人工智能数据服务系统后,通过数据检索服务模块进行检索,如在首页的API检索框进行数据的检索,或输入用户想要搜的内容来检索相应的API。Specifically, after the user logs into the artificial intelligence data service system, the user searches through the data retrieval service module, such as retrieving data in the API retrieval box on the home page, or entering the content the user wants to search to retrieve the corresponding API.
数据集服务模块用于提供数据集的在线使用和下载功能,用户可以通过检索服务模块定位到所需数据集,通过数据集中的数据试用来进行在线的数据模型训练,也可通过申请将原始数据或者训练所产生的数据通过平台下载到本地;The data set service module is used to provide the online use and download function of the data set. Users can locate the required data set through the retrieval service module, conduct online data model training through the data trial in the data set, or apply for the original data. Or the data generated by training can be downloaded locally through the platform;
具体地,数据集页面展示的是现有的全部数据集以及数据领域分类,用户可以通过此页面申请和使用数据。Specifically, the dataset page displays all existing datasets and data field categories, and users can apply for and use data through this page.
数据接口服务模块用于用户申请获取密钥然后再进行参数填写加传递的形式来在线获取对应的数据;The data interface service module is used by the user to apply for obtaining the key and then fill in and transfer the parameters to obtain the corresponding data online;
具体地,数据接口服务模块可用于用户通过API接口进行密钥的申请,以及参数设置,通过参数传递的方式来获取对应的结果,用户可定义数据的返回格式为XML或者JSON,同时页面包含错误码参照表和示例代码表(如图3所示)。Specifically, the data interface service module can be used for users to apply for keys through the API interface, and to set parameters. The corresponding results are obtained by passing parameters. The user can define the return format of the data as XML or JSON, and the page contains errors. Code reference table and example code table (as shown in Figure 3).
模型/算力服务模块用于用户进行在线的便捷式的模型训练。The model/computing service module is used for users to conduct online and convenient model training.
具体地,在模型/算力服务模块页面,用户可以通过选择数据夹配置计算参数的形式业进行模型训练,结果会在页面CMD窗口展示给用户查看。Specifically, on the model/computing service module page, the user can perform model training by selecting the data folder to configure the computing parameters, and the result will be displayed to the user in the CMD window of the page.
在模型运行页面,用户可以先选择适合的数据集,这里我们选择Googlenet数据集;接着用户可以选择设置参数,这里的设置参数是选择对应参数的运行主机,默认选择第一种配置的主机运行。参数选择完成了,有三种按钮可以点击,分别为:提供全部结果、训练和验证三种按钮,点击后运行训练集模型,用户可以关闭,稍后通过个人中心查看。点击验证运行按钮,点击后运行验证集模型,用户可以关闭,稍后通过个人中心查看。On the model running page, the user can first select a suitable data set, here we select the Googlenet data set; then the user can choose to set the parameters, the setting parameters here are to select the running host of the corresponding parameters, and the host of the first configuration is selected to run by default. After the parameter selection is completed, there are three buttons that can be clicked, namely: provide all results, training and validation. After clicking, the training set model is run, and the user can close it and view it through the personal center later. Click the Validation Run button, click to run the validation set model, the user can close it and view it through the personal center later.
用户可以将运行的比较完善的模型进行发布,将训练、验证通过的模型发布出去,提供一个接口供其他用户使用。比如说图像识别是否为鸟的模型,发布出去后,系统生成一个用于访问的API URL(例如http://159.226.226.111/model/bird/)。用户通过发送post请求,参数附带一个文件(压缩包、图片等)来进行验证,并返回结果。用户可以上传一张图片,并点击测试按钮,就能通过模型自动判断该图片是否为一只鸟。Users can publish the model that is running relatively well, publish the model that has passed the training and verification, and provide an interface for other users to use. For example, whether the image recognition is a bird model, after publishing, the system generates an API URL for access (for example, http://159.226.226.111/model/bird/). The user authenticates by sending a post request with a file (compressed package, image, etc.) attached to the parameters, and returns the result. Users can upload a picture and click the test button, and the model can automatically determine whether the picture is a bird.
进一步地,前端交互平台还包括:数据共享模块,用于用户将产生的包括数据集、API接口、数据模型,上传到人工智能数据平台,人工智能数据平台通过相应地过滤算法,筛选、重生数据,提高数据集对于数据获取者的适用性。该数据共享的方法步骤如图2所示:Further, the front-end interactive platform also includes: a data sharing module, which is used by users to upload data sets, API interfaces, and data models to the artificial intelligence data platform, and the artificial intelligence data platform filters and regenerates data through corresponding filtering algorithms. , to improve the applicability of the dataset to data acquirers. The data sharing method steps are shown in Figure 2:
步骤一,数据提供方上传发布数据集至人工智能数据平台数据中心;Step 1, the data provider uploads and publishes the data set to the artificial intelligence data platform data center;
步骤二,数据提供方发布数据集信息并保存,生成用于展示的页面;Step 2, the data provider publishes and saves the data set information, and generates a page for display;
步骤三,数据获取方查询/浏览数据集信息。Step 3: The data acquirer queries/brows the data set information.
在步骤三的基础上,当数据获取方需要进行数据验证时,包括以下子步骤1:On the basis of step 3, when the data acquirer needs to perform data verification, the following sub-step 1 is included:
步骤四,选定典型的算法或应用模型;Step 4: Select a typical algorithm or application model;
步骤五,选定运行软/硬件环境;Step 5, select the running software/hardware environment;
步骤六,对数据进行验证,观察算法或模型的输出,验证数据的适用性。Step 6: Validate the data, observe the output of the algorithm or model, and verify the applicability of the data.
在步骤三的基础上,当数据获取方不需要进行数据验证时,包括以下子步骤2:On the basis of step 3, when the data acquirer does not need to perform data verification, the following sub-step 2 is included:
步骤七,数据获取方提出下载申请;Step 7: The data acquirer submits a download application;
步骤八,系统后台审核后,根据申请提供的方式,反馈给数据获取方相关数据的访问方式;Step 8: After the system background review, according to the method provided by the application, feedback to the data acquirer the access method of the relevant data;
步骤九,数据获取方依据系统提供的下载地址获取数据。Step 9: The data acquirer acquires data according to the download address provided by the system.
在步骤三的基础上,当数据获取方不需要进行数据验证,并进行数据定制请求时,包括以下子步骤3:On the basis of step 3, when the data acquirer does not need to perform data verification and requests for data customization, the following sub-step 3 is included:
步骤十,数据获取方提交数据定制需求,说明数据的进一步要求;Step 10: The data acquirer submits data customization requirements, explaining further data requirements;
步骤十,系统根据数据处理的进度,反馈用户,提供服务。In step ten, the system feeds back users and provides services according to the progress of data processing.
本发明实施例将大量优质的数据资源搭配高效的GPU计算集群,用户可通过在网站上简单的操作来完成一次完整的机器学习的模型训练任务。用户不仅可以试运行、申请下载平台上现有算法、数据,还可将自行研发的算法上传,将自己的知识产品分享给别人,共创可循环的数据生态系统。In the embodiment of the present invention, a large number of high-quality data resources are matched with an efficient GPU computing cluster, and a user can complete a complete model training task of machine learning through simple operations on the website. Users can not only test run, apply to download existing algorithms and data on the platform, but also upload self-developed algorithms and share their knowledge products with others to create a recyclable data ecosystem.
显而易见,在不偏离本发明的真实精神和范围的前提下,在此描述的本发明可以有许多变化。因此,所有对于本领域技术人员来说显而易见的改变,都应包括在本权利要求书所涵盖的范围之内。本发明所要求保护的范围仅由所述的权利要求书进行限定。Obviously, many variations of the invention described herein are possible without departing from the true spirit and scope of the invention. Therefore, all changes obvious to those skilled in the art should be included within the scope covered by the present claims. The scope of the claimed invention is limited only by the appended claims.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010286466.8A CN111476373B (en) | 2020-04-13 | 2020-04-13 | An artificial intelligence data service system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010286466.8A CN111476373B (en) | 2020-04-13 | 2020-04-13 | An artificial intelligence data service system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111476373A CN111476373A (en) | 2020-07-31 |
CN111476373B true CN111476373B (en) | 2022-04-22 |
Family
ID=71752285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010286466.8A Active CN111476373B (en) | 2020-04-13 | 2020-04-13 | An artificial intelligence data service system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111476373B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113110311A (en) * | 2021-03-05 | 2021-07-13 | 中海创科技(福建)集团有限公司 | Industrial big data online modeling and model sharing method, device, equipment and medium |
CN114461348A (en) * | 2022-02-14 | 2022-05-10 | 中冶赛迪重庆信息技术有限公司 | Interactive management platform for algorithmic services |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110378463A (en) * | 2019-07-15 | 2019-10-25 | 北京智能工场科技有限公司 | A kind of artificial intelligence model standardized training platform and automated system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108763210A (en) * | 2018-05-22 | 2018-11-06 | 华中科技大学 | A kind of sentiment analysis and forecasting system based on automated data collection |
CN109344853A (en) * | 2018-08-06 | 2019-02-15 | 杭州雄迈集成电路技术有限公司 | A kind of the intelligent cloud plateform system and operating method of customizable algorithm of target detection |
CN109325740A (en) * | 2018-09-19 | 2019-02-12 | 中国电力科学研究院有限公司 | An artificial intelligence sharing platform and management method for power system |
-
2020
- 2020-04-13 CN CN202010286466.8A patent/CN111476373B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110378463A (en) * | 2019-07-15 | 2019-10-25 | 北京智能工场科技有限公司 | A kind of artificial intelligence model standardized training platform and automated system |
Also Published As
Publication number | Publication date |
---|---|
CN111476373A (en) | 2020-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11886402B2 (en) | Systems, methods, and media for dynamically generating informational content | |
US10235602B1 (en) | Machine learning artificial intelligence system for identifying vehicles | |
CN112148784B (en) | Systems and methods for aggregating and guiding multi-user collaborative data analysis | |
US9928526B2 (en) | Methods and systems that predict future actions from instrumentation-generated events | |
US20180196857A1 (en) | Automated presentation of information using infographics | |
WO2019047790A1 (en) | Method and system for generating combined features of machine learning samples | |
JP2023515556A (en) | Enhanced processing for communication workflows using machine learning techniques | |
US10607271B1 (en) | Search platform with data driven search relevancy management | |
CN109661662A (en) | Query result is subjected to ranking for correlation using external context | |
WO2025001486A1 (en) | Recommendation method and apparatus | |
CN111476373B (en) | An artificial intelligence data service system | |
CN111125145A (en) | Automatic system for acquiring database information through natural language | |
Roy Chowdhury et al. | Recommendation and weaving of reusable mashup model patterns for assisted development | |
US10891351B2 (en) | Systems and methods for automatically generating and optimizing web pages | |
WO2024236515A1 (en) | System and method for enhanced model interaction integration within a website building system | |
US11790892B1 (en) | Voice-driven application prototyping using machine-learning techniques | |
CN117851685A (en) | User multi-behavior recommendation method and device based on large language model | |
US20220171874A1 (en) | Apparatuses, methods, and computer program products for privacy-preserving personalized data searching and privacy-preserving personalized data search training | |
CN108073582A (en) | A kind of Computational frame selection method and device | |
KR101282975B1 (en) | A webpage crop server system of reconstructing a web page from tree structure of document elements | |
CN118568297B (en) | Construction method and application of cognitive warfare system based on Wensheng video | |
CN118734950A (en) | Home customization intelligent interactive processing method and system based on artificial intelligence | |
CN110235121A (en) | For the enhanced system and method investigated online | |
CN116956183A (en) | Multimedia resource recommendation method, model training method, device and storage medium | |
CN116186413A (en) | A method and system for multimodal feature recommendation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |