CN110795458B - Interactive data analysis method, device, electronic equipment and computer readable storage medium - Google Patents
Interactive data analysis method, device, electronic equipment and computer readable storage medium Download PDFInfo
- Publication number
- CN110795458B CN110795458B CN201910950353.0A CN201910950353A CN110795458B CN 110795458 B CN110795458 B CN 110795458B CN 201910950353 A CN201910950353 A CN 201910950353A CN 110795458 B CN110795458 B CN 110795458B
- Authority
- CN
- China
- Prior art keywords
- data
- chart
- analysis
- aggregation
- index field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2455—Query execution
- G06F16/24553—Query execution of query operations
- G06F16/24554—Unary operations; Data partitioning operations
- G06F16/24556—Aggregation; Duplicate elimination
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/248—Presentation of query results
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/44—Arrangements for executing specific programs
- G06F9/451—Execution arrangements for user interfaces
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Human Computer Interaction (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
Description
技术领域technical field
本申请涉及数据分析技术领域,尤其涉及一种交互式数据分析方法、装置、电子设备和计算机可读存储介质。The present application relates to the technical field of data analysis, and in particular, to an interactive data analysis method, apparatus, electronic device, and computer-readable storage medium.
背景技术Background technique
目前,在基于可视化工具进行数据分析时,由于基于可视化工具创建的图表不具有交互性,导致创建的图表只能看,而不能基于图表进行如数据筛选等数据分析操作,使得数据统计效率低,用户体验差。At present, when performing data analysis based on visualization tools, since the charts created based on the visualization tools are not interactive, the created charts can only be viewed, but data analysis operations such as data filtering cannot be performed based on the charts, resulting in low data statistics efficiency. Poor user experience.
发明内容SUMMARY OF THE INVENTION
第一方面,本申请实施例提供一种交互式数据分析方法,所述方法包括:In a first aspect, an embodiment of the present application provides an interactive data analysis method, the method comprising:
基于用户在所述前端显示的可视化图表上执行的数据分析选择操作,确定用于数据检索的索引字段以及数据聚合类型;Determine the index field for data retrieval and the data aggregation type based on the data analysis selection operation performed by the user on the visual chart displayed on the front end;
从预设的数据库中检索出与所述索引字段对应的待分析数据;Retrieve the data to be analyzed corresponding to the index field from a preset database;
根据所述数据聚合类型对该待分析数据进行数据聚合分析;Perform data aggregation analysis on the data to be analyzed according to the data aggregation type;
将聚合分析结果展示在所述前端。The aggregated analysis results are displayed on the front end.
第二方面,本申请实施例还提供一种交互式数据分析装置,所述装置包括:In a second aspect, an embodiment of the present application further provides an interactive data analysis device, the device comprising:
信息确定模块,用于基于用户在前端显示的可视化图表上执行的数据分析选择操作,确定用于数据检索的索引字段以及数据聚合类型;The information determination module is used to determine the index field and data aggregation type for data retrieval based on the data analysis selection operation performed by the user on the visual chart displayed on the front end;
数据检索模块,用于从预设的数据库中检索出与所述索引字段对应的待分析数据;a data retrieval module for retrieving the data to be analyzed corresponding to the index field from a preset database;
聚合分析模块,用于根据所述数据聚合类型对该待分析数据进行数据聚合分析;an aggregation analysis module, configured to perform data aggregation analysis on the data to be analyzed according to the data aggregation type;
结果展示模块,用于将聚合分析结果展示在所述前端。The result display module is used to display the aggregated analysis result on the front end.
第三方面,本申请实施例还提供一种电子设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如上所述的交互式数据分析方法的步骤。In a third aspect, embodiments of the present application further provide an electronic device, including a processor, a memory, and a computer program stored on the memory and executable on the processor, where the computer program is executed by the processor When implementing the steps of the interactive data analysis method described above.
第四方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上所述的交互式数据分析方法的步骤。In a fourth aspect, embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the above-mentioned interactive data analysis method is implemented. step.
在本申请实施例给出的上述技术方案中,可根据用户在前端显示的可视化图表上进行的数据分析选择操作确定数据索引字段和数据聚合类型,进而根据索引字段以及数据聚合类型进行数据检索、筛选、聚合,并将聚合结果展示在前端,以有效提高数据分析效率,大幅改善用户体验。In the above technical solutions given in the embodiments of the present application, data index fields and data aggregation types can be determined according to data analysis and selection operations performed by the user on the visual chart displayed on the front end, and then data retrieval, Filter, aggregate, and display the aggregated results on the front end to effectively improve data analysis efficiency and greatly improve user experience.
附图说明Description of drawings
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:The drawings described herein are used to provide further understanding of the present application and constitute a part of the present application. The schematic embodiments and descriptions of the present application are used to explain the present application and do not constitute an improper limitation of the present application. In the attached image:
图1为本申请实施例一提供的交互式数据分析方法的流程示意图。FIG. 1 is a schematic flowchart of an interactive data analysis method provided in Embodiment 1 of the present application.
图2为本申请实施例一提供的一种可视化图表示意图。FIG. 2 is a schematic diagram of a visualization chart provided in Embodiment 1 of the present application.
图3为本申请实施例二提供的交互式数据分析方法的流程示意图。FIG. 3 is a schematic flowchart of the interactive data analysis method provided in the second embodiment of the present application.
图4为本申请实施例三提供的交互式数据分析装置的方框结构示意图。FIG. 4 is a schematic block structure diagram of an interactive data analysis apparatus provided in Embodiment 3 of the present application.
图5为本申请实施例四提供的电子设备的方框结构示意图。FIG. 5 is a schematic block structure diagram of an electronic device provided in Embodiment 4 of the present application.
具体实施方式Detailed ways
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。In order to make the objectives, technical solutions and advantages of the present application clearer, the technical solutions of the present application will be clearly and completely described below with reference to the specific embodiments of the present application and the corresponding drawings. Obviously, the described embodiments are only a part of the embodiments of the present application, but not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present application.
以下结合附图,详细说明本申请各实施例提供的技术方案。The technical solutions provided by the embodiments of the present application will be described in detail below with reference to the accompanying drawings.
为了便于数据的查询、检索、统计等,数据库中的数据一般是按照相应存储类型进行存储,且存储在数据库中的数据对应有数据检索表,该数据检索表中可包括多个检索类型,不同的检索类型还可对应多个不同的索引字段,各索引字段下还可包括多个子索引字段等。In order to facilitate data query, retrieval, statistics, etc., the data in the database is generally stored according to the corresponding storage type, and the data stored in the database corresponds to a data retrieval table. The data retrieval table can include multiple retrieval types. The retrieval type of the index can also correspond to multiple different index fields, and each index field can also include multiple sub-index fields.
例如,假设数据库中存储的数据为一个国家的人口数据,那么多个检索类型可以是年龄、性别、居住城市、职业等,而居住城市这一检索类型下的索引字段下可以包括如北京、广州、上海、南京、陕西等索引字段,而陕西这一索引字段下又可以包括如西安、咸阳、渭南、宝鸡等的子索引字段等,也就是说,一个数据索引表中可以包括多级索引字段具体可根据实际情况进行设定。For example, assuming that the data stored in the database is the population data of a country, then multiple search types can be age, gender, city of residence, occupation, etc., and the index field under the search type of city of residence can include, for example, Beijing, Guangzhou , Shanghai, Nanjing, Shaanxi and other index fields, and the Shaanxi index field can include sub-index fields such as Xi'an, Xianyang, Weinan, Baoji, etc., that is to say, a data index table can include multi-level index fields It can be set according to the actual situation.
但目前利用Kibana这一可视化分析工具对存储在ElasticSearch中的数据进可视化分析时,基于Kibana这一可视化分析工具创建的图表不具备交互性,导致数据分析效率低,用户体验差。其中,EIasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。Kibana是一个针对Elasticsearch的开源分析及可视化的可视化分析工具,用来搜索、查看交互存储在Elasticsearch索引中的数据,并通过各种图表进行高级数据分析及展示。However, when using Kibana, a visual analysis tool, to visually analyze data stored in ElasticSearch, the charts created based on Kibana, a visual analysis tool, are not interactive, resulting in low data analysis efficiency and poor user experience. Among them, EIasticSearch is a search server based on Lucene. It provides a distributed multi-user capable full-text search engine based on a RESTful web interface. Developed in Java and released as open source under the terms of the Apache License, Elasticsearch is the current popular enterprise search engine. Kibana is an open source analysis and visualization visual analysis tool for Elasticsearch. It is used to search and view data stored interactively in the Elasticsearch index, and perform advanced data analysis and display through various charts.
鉴于此,本申请实施例给出一种交互式数据分析方法、装置、电子设备和计算机可读存储介质,以实现基于可视化图表的交互式数据分析,提高数据分析效率,改善用户体验。下面结合附图对本申请给出的技术方案进行介绍。In view of this, the embodiments of the present application provide an interactive data analysis method, apparatus, electronic device, and computer-readable storage medium, so as to realize interactive data analysis based on visual charts, improve data analysis efficiency, and improve user experience. The technical solutions provided in the present application will be introduced below with reference to the accompanying drawings.
实施例一Example 1
如图1所示,为本申请实施例一提供的交互式数据分析方法的流程示意图,该交互式数据分析方法可以由,但不限于电子设备执行,该交互式数据分析方法可以包括以下步骤:As shown in FIG. 1, which is a schematic flowchart of the interactive data analysis method provided in the first embodiment of the present application, the interactive data analysis method can be performed by, but is not limited to, an electronic device, and the interactive data analysis method can include the following steps:
步骤102,基于用户在前端显示的可视化图表上执行的数据分析选择操作,确定用于数据检索的索引字段以及数据聚合类型。Step 102: Determine an index field and a data aggregation type for data retrieval based on the data analysis selection operation performed by the user on the visual chart displayed on the front end.
本实施例一中,前端是指用于进行图表等数据信息显示以及供用户执行如数据分析选择操作等操作的用户界面,该前端可以集成在电子设备上,也可以独立于电子设备,但能够与电子设备进行数据交互的终端,本实施例一对此不做限制。In the first embodiment, the front end refers to a user interface for displaying data information such as charts and for users to perform operations such as data analysis and selection operations. The terminal that performs data interaction with the electronic device is not limited in the first embodiment.
作为一种可选的实现方式,步骤102中的索引字段的确定过程可以是:确定用户在前端显示的可视化图表上执行数据分析选择操作时的图表区域;将图表区域中包括的数据信息对应的索引字段作为用于数据检索的索引字段。As an optional implementation manner, the process of determining the index field in step 102 may be: determining the chart area when the user performs the data analysis and selection operation on the visual chart displayed on the front end; Index fields serve as index fields for data retrieval.
例如,请结合参阅图2,该图2为检索类型为居住城市时的人口分布表,那么,假设数据分析选择操作在图2上的图表区域为A,那么,该图表区域A所包括的索引字段为城市1和城市2,进而可以确定用于数据检索的索引字段为城市1和城市2。For example, please refer to FIG. 2, which is the population distribution table when the retrieval type is the city of residence. Then, assuming that the chart area in the data analysis selection operation in FIG. 2 is A, then, the index included in the chart area A The fields are city 1 and city 2, and then it can be determined that the index fields used for data retrieval are city 1 and city 2.
作为另一种可选的实现方式,在存在数据分析选择操作时,可显示用于索引字段选择的选项浮层,使得用户可直接基于该选项浮层选取一个或多个索引字段,作为用于数据检索的索引字段。As another optional implementation manner, when there is a data analysis selection operation, an option floating layer for index field selection can be displayed, so that the user can directly select one or more index fields based on the option floating layer as the Index field for data retrieval.
可以理解的是,本实施例一在进行交互式数据分析时,电子设备中可以预设有但不限于上述两种索引字段的确定方式。It can be understood that, when the interactive data analysis is performed in the first embodiment, the electronic device may be preset with, but not limited to, the above two methods of determining the index field.
进一步,数据聚合类型是用于电子设备对基于索引字段检索到的待分析数据进行数据运算的数据运算规则,如数据聚合类型可以包括但不限于分组聚合、求平均聚合、最大/小值聚合、数据占比聚合、数据集合并操作、数据集求交操作、数据集求补操作、数据集求偏差操作等。Further, the data aggregation type is a data operation rule used by the electronic device to perform data operation on the data to be analyzed retrieved based on the index field. For example, the data aggregation type may include, but is not limited to, grouping aggregation, averaging Data ratio aggregation, data set merge operation, data set intersection operation, data set complement operation, data set deviation operation, etc.
作为一种实现方式,步骤102中给出的数据聚合类型的确定过程可以为:在存在数据分析选择操作时,在前端显示用于数据聚合类型选取的类型选取浮层;基于用户在前端显示的类型选取浮层上执行的聚合类型选择操作确定数据聚合类型。As an implementation manner, the determination process of the data aggregation type given in step 102 may be: when there is a data analysis selection operation, the type selection floating layer used for data aggregation type selection is displayed on the front end; Type Selection The aggregation type selection operation performed on the floating layer determines the data aggregation type.
作为另一种实现方式,步骤102中给出的数据聚合类型的确定过程还可以为:在电子设备中预设有数据分析选择操作与聚合类型之间的对应关系时,根据数据分析选择操作和对应关系确定数据聚合类型。As another implementation manner, the process of determining the data aggregation type given in step 102 may also be: when the corresponding relationship between the data analysis selection operation and the aggregation type is preset in the electronic device, select the operation and the aggregation type according to the data analysis. Correspondence determines the type of data aggregation.
例如,预设的对应关系为一次或多次的点击操作对应的数据聚合类型为分组聚合、按图表区域连续点击操作对应的数据聚合类型为求交集聚合,等等。如,假设数据分析操作为依次点击索引字段A和索引字段B,那么,根据预设的对应关系可以得到数据聚合类型为分组聚合等。For example, the preset correspondence is that the data aggregation type corresponding to one or more click operations is grouping aggregation, the data aggregation type corresponding to continuous clicking operations by the chart area is intersection aggregation, and so on. For example, assuming that the data analysis operation is to click on the index field A and the index field B in sequence, then, according to the preset corresponding relationship, it can be obtained that the data aggregation type is grouping aggregation and the like.
可以理解的是,在进行交互式数据分析时,电子设备中可以具有但不限于上述两种数据聚合类型的确定方式。It can be understood that, when performing interactive data analysis, the electronic device may have, but is not limited to, the determination manners of the above two types of data aggregation.
步骤104,从预设的数据库中检索出与索引字段对应的待分析数据。In step 104, the data to be analyzed corresponding to the index field is retrieved from a preset database.
步骤106,根据数据聚合类型对该待分析数据进行数据聚合分析。Step 106: Perform data aggregation analysis on the data to be analyzed according to the data aggregation type.
本实施例一中,可采用但不限于聚合函数agg()实现对待分析数据的聚合分析,如前述的分组聚合、求平均聚合、最大/小值聚合、数据占比聚合、数据集合并操作、数据集求交操作、数据集求补操作、数据集求偏差操作等。In the first embodiment, the aggregation function agg() can be used to realize the aggregation analysis of the data to be analyzed, such as the aforementioned group aggregation, average aggregation, maximum/small value aggregation, data proportion aggregation, data set merge operation, Data set intersection operation, data set complement operation, data set deviation operation, etc.
步骤108,将聚合分析结果展示在前端。
本实施例一中,在对聚合分析结果进行展示时,可以将聚合分析结果以可视化图表的方式展示在前端,也可以将聚合分析结果以数据集的方式展示在前端。其中,作为一种实现方式,假设需要将聚合分析结果以可视化图表展示在前端时,可基于用户在前端显示的可视化图表上执行的图表类型选择操作确定用于可视化图表展示的图表类型,进而根据聚合分析结果以及图表类型生成可视化图表,并将该可视化图表展示在前端。In the first embodiment, when displaying the aggregated analysis result, the aggregated analysis result may be displayed on the front end in the form of a visual chart, or the aggregated analysis result may be displayed on the front end in the form of a data set. Among them, as an implementation method, it is assumed that when the aggregated analysis results need to be displayed on the front end as a visual chart, the chart type for visual chart display can be determined based on the chart type selection operation performed by the user on the visual chart displayed on the front end, and then according to Aggregate analysis results and chart types to generate a visual chart and display the visual chart on the front end.
或者,根据聚合分析结果的类型确定图表类型,例如,柱状图用于展示整形数据、条形图用于展示字符串类型数据、饼状图用于枚举类型数据、时间轴用于展示时间类型数据等,进而基于根据聚合分析结果以及图表类型生成可视化图表,并将该可视化图表展示在前端。Or, determine the chart type according to the type of aggregate analysis results. For example, a column chart is used to display integer data, a bar chart is used to display string type data, a pie chart is used to display enumeration type data, and a time axis is used to display time type. Data, etc., and then generate a visual chart based on the aggregated analysis results and chart types, and display the visual chart on the front end.
作为另一种实现方式,假设需要将聚合分析结果以数据集展示在前端时,那么,在根据索引字段从数据库中检索到对应的待分析数据时,可直接将该待分析数据以数据集的方式展示在前端,供用户查看。例如,陕西:{x1、x2、x3、x4、......}等。As another implementation, assuming that the aggregated analysis results need to be displayed on the front end as datasets, then when the corresponding data to be analyzed is retrieved from the database according to the index field, the data to be analyzed can be directly displayed as datasets. The method is displayed on the front end for users to view. For example, Shaanxi: {x1, x2, x3, x4, ...} etc.
进一步,作为一种可选的实现方式,本申请实施例一给出的交互式数据分析方法还可包括下述步骤:Further, as an optional implementation manner, the interactive data analysis method provided in Embodiment 1 of the present application may further include the following steps:
步骤1010,在存在基于前端发起的交互式数据分析操作时,查询交互式数据分析操作对应的待分析数据在数据库中的存储类型,以及该存储类型对应的数据索引表。Step 1010, when there is an interactive data analysis operation initiated based on the front end, query the storage type of the data to be analyzed corresponding to the interactive data analysis operation in the database, and the data index table corresponding to the storage type.
步骤1012,统计数据索引表中用于进行数据检索的索引字段的类型以及不同类型的索引字段的数量,将根据统计结果展示在前端。Step 1012 , the types of index fields used for data retrieval and the number of different types of index fields in the statistics data index table will be displayed on the front end according to the statistics results.
本实施例一中,交互式数据分析操作可以与前述的数据分析选择操作相同也可以不同,本实施例一对.此不做限制通过上述步骤1010和步骤1012的设置,能够使得用户更加直观、方便的了解数据库中存储的数据的数据索引表信息,如检索类型、索引字段等,进而基于统计结果实现更加高效、准确的数据分析。In this embodiment 1, the interactive data analysis operation may be the same as or different from the aforementioned data analysis selection operation. This embodiment does not limit this. The settings of the above steps 1010 and 1012 can make the user more intuitive, It is convenient to understand the data index table information of the data stored in the database, such as retrieval type, index fields, etc., and then realize more efficient and accurate data analysis based on the statistical results.
作为一种可选的实现方式,下面以数据库为ElasticSearch、可视化分析工具为Kibana为例对本申请实施例一给出的交互式数据分析方法的实现过程进行说明。As an optional implementation manner, the following describes the implementation process of the interactive data analysis method provided in Embodiment 1 of the present application by taking ElasticSearch as the database and Kibana as the visual analysis tool as an example.
(1)在存在基于前端发起的交互式数据分析操作时,查询待分析数据在ElasticSearch上的存储类型(mapping)、以及该存储类型对应的数据索引表、以及数据索引表包括的索引字段(Field)。(1) When there is an interactive data analysis operation initiated by the front end, query the storage type (mapping) of the data to be analyzed on ElasticSearch, the data index table corresponding to the storage type, and the index field (Field) included in the data index table. ).
(2)可利用Value Count等函数统计用于进行数据检索的索引字段的类型以及不同类型的索引字段的数量,并将统计结果以可视化图表(如list图表等)的方式在前端进行展示,以供用户基于该可视化图表进行数据分析。(2) Functions such as Value Count can be used to count the types of index fields used for data retrieval and the number of different types of index fields, and the statistical results can be displayed on the front end in the form of visual charts (such as list charts, etc.) For users to perform data analysis based on the visual chart.
(3)基于用户在前端显示的可视化图表上执行的数据分析选择操作,确定用于数据检索的索引字段以及数据聚合类型,电子设备可通过如Restful接口将索引字段的属性名称(如Prop_name)以及数据聚合类型传递给电子设备,并根据属性名称从ElasticSearch上保存的数据库中检索出待分析数据,根据数据聚合类型对待分析数据进行聚合分析(如agg聚合函数),聚合分析结果以可视化图表的方式展示前端。(3) Based on the data analysis and selection operation performed by the user on the visual chart displayed on the front end, the index field and data aggregation type for data retrieval are determined. The data aggregation type is passed to the electronic device, and the data to be analyzed is retrieved from the database saved on ElasticSearch according to the attribute name, and the data to be analyzed is aggregated and analyzed according to the data aggregation type (such as agg aggregation function), and the aggregated analysis results are visualized in the form of charts. Show the front end.
例如,可通过如下伪代码在ElasticSearch上进行待分析数据的检索、聚合分析。For example, retrieval and aggregation analysis of the data to be analyzed can be performed on ElasticSearch through the following pseudocode.
在根据数据分析选择操作确定索引字段时,该索引字段可以为一个或多个值,如年龄、姓别、身高等对应的索引字段,根据确定的一个或多个索引字段进行数据检索,例如,可利用ElasticSearch的bool进行条件筛选,再进行agg聚合,生成新的数据集,返回给前端,前端再用图表进行展示,并记录这个检索条件。When the index field is determined according to the data analysis selection operation, the index field can be one or more values, such as the index fields corresponding to age, surname, height, etc., and data retrieval is performed according to the determined one or more index fields, for example, You can use the bool of ElasticSearch for conditional filtering, and then perform agg aggregation to generate a new data set, which is returned to the front-end, and the front-end is displayed with a chart, and the retrieval conditions are recorded.
实际实施时,可通过对前端显示的可视化图表不断执行上述(3)中的索引字段、数据聚合类型的确定、数据检索、聚合、显示操作,来实现基于可视化图表的交互式多级数据筛选。例如,第一级索引字段可以为国家、第二级索引字段在第一级索引字段的基础上进一步确定得到省份,第三级索引字段为在第二级索引字段的基础上进一步确定得到市区等,本实施例在此不再赘述。In actual implementation, interactive multi-level data filtering based on visual charts can be realized by continuously performing the index fields, determination of data aggregation types, data retrieval, aggregation, and display operations in the above (3) on the visual charts displayed on the front end. For example, the first-level index field can be country, the second-level index field can be further determined on the basis of the first-level index field to obtain the province, and the third-level index field can be further determined based on the second-level index field to obtain the urban area etc., this embodiment will not be repeated here.
在本申请实施例一给出的上述交互式数据分析方法中,可根据用户在前端显示的可视化图表上进行的数据分析选择操作确定数据索引字段和数据聚合类型,进而根据索引字段以及数据聚合类型进行数据检索、筛选、聚合,并将聚合结果展示在前端,以实现基于可视化图表的交互式的数据分析,既能有效提高数据分析效率,还能大幅改善用户体验。In the above-mentioned interactive data analysis method provided in the first embodiment of the present application, the data index field and the data aggregation type can be determined according to the data analysis selection operation performed by the user on the visual chart displayed on the front end, and then the data index field and the data aggregation type can be determined according to the index field and the data aggregation type. Perform data retrieval, filtering, aggregation, and display the aggregated results on the front end to realize interactive data analysis based on visual charts, which can not only effectively improve the efficiency of data analysis, but also greatly improve the user experience.
实施例二Embodiment 2
相对于实施例一给出的交互式数据分析方法,本申请实施例二给出的交互式数据分析方法中增加了基于可视化图表发起的图表拖动操作执行对数据集的合、并、差、补等数据分析操作。该交互式数据分析方法可包括如图3所示的步骤,内容如下。Compared with the interactive data analysis method given in the first embodiment, the interactive data analysis method given in the second embodiment of the present application adds a chart drag operation initiated based on a visual chart to perform merging, merging, difference, and data sets. Complementary data analysis operations. The interactive data analysis method may include the steps shown in FIG. 3 , the contents of which are as follows.
步骤202,在数据分析选择操作为图表拖动操作时,根据被拖动的可视化图表所表征的数据信息确定索引字段,以及从预设的数据库中检索出与索引字段对应的待分析数据。Step 202 , when the data analysis selection operation is a chart drag operation, determine an index field according to the data information represented by the dragged visual chart, and retrieve data to be analyzed corresponding to the index field from a preset database.
在本实施例二中,该图表拖动操作可以是针对一个或多个单独的图表执行的拖动操作,也可以是针对可视化图表上的部分图表区域执行的拖动操作,本实施例二对此不做限制。In the second embodiment, the chart drag operation may be a drag operation performed on one or more individual charts, or may be a drag operation performed on a part of the chart area on the visualization chart. This does not limit.
例如,假设显示在前端的可视化图表包括图表T1和图表T2,那么在前端存在图表拖动操作时,如将图表T1拖动至图表T2处、将图表T2拖动至图表T1处、单独拖动图表T1或单独拖动图表T2等,本实施例在此不做限制。For example, assuming that the visual chart displayed on the front end includes chart T1 and chart T2, when there is a chart drag operation on the front end, such as dragging chart T1 to chart T2, dragging chart T2 to chart T1, dragging chart T1 separately, The graph T1 or the graph T2 can be dragged separately, etc., which is not limited in this embodiment.
作为一种可选的实现方式,根据被拖动的可视化图表所表征的数据信息确定索引字段的步骤,包括:将图表拖动操作的起始位置处的图表作为第一子图表、结束位置处的图表作为第二子图表,根据第一子图表所展示的数据信息确定第一索引字段,以及根据第二子图表所展示的数据信息确定第二索引字段。As an optional implementation manner, the step of determining the index field according to the data information represented by the dragged visual chart includes: taking the chart at the start position of the chart drag operation as the first sub-chart, and the chart at the end position As the second sub-diagram, the first index field is determined according to the data information displayed in the first sub-diagram, and the second index field is determined according to the data information displayed in the second sub-diagram.
基于此,从预设的数据库中检索出与索引字段对应的待分析数据的步骤,包括:从预设的数据库中检索得到与第一索引字段对应的第一数据集、以及与第二索引字段对应的第二数据集,将第一数据集合第二数据集作为待分析数据。Based on this, the step of retrieving the data to be analyzed corresponding to the index field from the preset database includes: retrieving from the preset database the first data set corresponding to the first index field and the second index field For the corresponding second data set, the first data set and the second data set are used as the data to be analyzed.
步骤204,显示预设的类型选取浮层在前端,响应基于类型选取浮层发起的聚合类型选择操作。Step 204 , displaying a preset type selection floating layer in the front end, in response to an aggregation type selection operation initiated based on the type selection floating layer.
步骤206,根据聚合类型选择操作对待分析数据进行数据聚合分析,将聚合分析结果展示在前端。Step 206: Perform data aggregation analysis on the data to be analyzed according to the aggregation type selection operation, and display the aggregation analysis result on the front end.
可选的,本实施例二中的聚合类型选择操作可以为数据集合并操作、数据集求交操作、数据集求补操作、数据集求偏差操作中的至少一个。例如,根据索引字段A从数据库中检索到的数据集为A1{x1、x2、x3},根据索引字段B从数据库中检索到的数据集为B1{x2、x5、x8},那么,假设聚合类型选择操作为数据集合并操作,也就是说需要对数据集A1{x1、x2、x3}和B1{x2、x5、x8}进行数据集合并操作,进而可以得到数据集C1{x1、x2、x3、x5、x8}。Optionally, the aggregation type selection operation in the second embodiment may be at least one of a data set merge operation, a data set intersection operation, a data set complement operation, and a data set deviation operation. For example, the dataset retrieved from the database according to the index field A is A1{x1, x2, x3}, and the dataset retrieved from the database according to the index field B is B1{x2, x5, x8}, then, assuming the aggregation The type selection operation is a data set merging operation, that is to say, it is necessary to perform a data set merging operation on the data sets A1{x1, x2, x3} and B1{x2, x5, x8}, and then the data sets C1{x1, x2, x3, x5, x8}.
又例如,假设聚合类型选择操作为数据集求交操作,也就是说需要对数据集A1{x1、x2、x3}和B1{x2、x5、x8}进行数据集求交操作,得到数据集C1{x2}。For another example, suppose that the aggregation type selection operation is a dataset intersection operation, that is to say, the dataset intersection operation needs to be performed on datasets A1{x1, x2, x3} and B1{x2, x5, x8} to obtain dataset C1 {x2}.
本实施例二继续以电子设备中预设的数据库为ElasticSearch、可视化分析工具为Kibana为例,对本申请实施例给出的交互式数据分析方法的实现过程进行说明。In the second embodiment, the implementation process of the interactive data analysis method provided in the embodiment of the present application is described by taking ElasticSearch as the preset database in the electronic device and the visual analysis tool as Kibana as an example.
假设图表拖动操作为将图表T1拖动至图表T2处,那么,将图表T1作为第一子图表,将图表T2作为第二子图表,确定第一子图表T1所展示的数据信息对应的第一索引字段,以及第二子图表所展示的数据信息对应的第二索引字段,另外,反馈类型选取浮层给前端进行显示,供用户基于该类型选取浮层执行聚合类型选择操作,电子设备通过如Restful接口从前端获取第一索引字段、第二索引字段以及聚合类型选择操作,并根据第一索引字段和第二索引字段从ElasticSearch检索出与第一索引字段对应的第一数据集以及与第二索引字段对应的第二数据集。Assuming that the chart drag operation is to drag the chart T1 to the chart T2, then, taking the chart T1 as the first sub-chart and the chart T2 as the second sub-chart, determine the first sub-chart corresponding to the data information displayed in the first sub-chart T1. An index field, and a second index field corresponding to the data information displayed in the second sub-chart. In addition, the feedback type selects the floating layer to display on the front end, for the user to select the floating layer based on the type to perform the aggregation type selection operation. For example, the Restful interface obtains the first index field, the second index field and the aggregation type selection operation from the front end, and retrieves the first data set corresponding to the first index field and the first data set corresponding to the first index field from ElasticSearch according to the first index field and the second index field. The second dataset corresponding to the second index field.
作为一种实现方式,假设聚合类型选择操作为数据集合并操作,那么,可通过,但不限于下述伪代码对第一数据集和第二数据集进行数据集合并运算:As an implementation manner, it is assumed that the aggregation type selection operation is a data set merging operation, then, the data set merging operation can be performed on the first data set and the second data set through, but not limited to, the following pseudocode:
作为又一种实现方式,假设聚合类型选择操作为数据集求交操作,那么,可通过,但不限于下述伪代码对第一数据集和第二数据集进行数据集求交操作:As another implementation manner, assuming that the aggregation type selection operation is a data set intersection operation, then, the data set intersection operation can be performed on the first data set and the second data set through, but not limited to, the following pseudocode:
作为又一种实现方式,假设聚合类型选择操作为数据集求左差集操作,那么,可通过,但不限于下述伪代码对第一数据集和第二数据集进行数据集求左差集操作:As yet another implementation manner, assuming that the aggregation type selection operation is the operation of finding the left difference of the data set, then, the following pseudo code can be used to perform the left difference of the data set on the first data set and the second data set. operate:
作为又一种实现方式,假设聚合类型选择操作为数据集求右差集操作,那么,可通过,但不限于下述伪代码对第一数据集和第二数据集进行数据集求右差集操作:As another implementation manner, assuming that the aggregation type selection operation is the operation of finding the right difference set of the data set, then, the following pseudo code can be used to perform the right difference set of the data set on the first data set and the second data set. operate:
作为又一种实现方式,假设聚合类型选择操作为数据集求补操作,那么,可通过,但不限于下述伪代码对第一数据集和第二数据集进行数据集求补操作:As another implementation manner, assuming that the aggregation type selection operation is a data set complement operation, then, the first data set and the second data set can be subjected to a data set complement operation through, but not limited to, the following pseudocode:
需要注意的是,本实施例在进行交互式数据分析时包括的聚合类型选择操作可以是但不限于上述几种,具体可根据实际需求进行设定。It should be noted that the aggregation type selection operation included in the interactive data analysis in this embodiment may be, but not limited to, the above-mentioned types, and may be specifically set according to actual requirements.
在本实施例二给出的上述技术方案中,可通过图表拖动的方式实现交互式数据分析,能够大幅提高数据统计、分析效率。同时,还有效解决了如Kibana等图形可视化工具不具备对图表的交互式分析能力,导致的需要对每一种查询条件,都必须手工写对应的DSL查询语句,才能生成Kibana图表时存在的数据分析效率低、难度大问题。In the above technical solution given in the second embodiment, interactive data analysis can be realized by dragging the chart, which can greatly improve the efficiency of data statistics and analysis. At the same time, it also effectively solves the problem that graphical visualization tools such as Kibana do not have the ability to interactively analyze charts, resulting in the need to manually write the corresponding DSL query statement for each query condition in order to generate the data that exists in the Kibana chart. Analysis of low efficiency and difficult problems.
实施例三Embodiment 3
图4为本实施例三提供的交互式数据分析装置10的结构示意图。请参考图4,在一种软件实施方式中,交互式数据分析装置10可包括信息确定模块110、数据检索模块120、聚合分析模块130、结果展示模块140。其中:FIG. 4 is a schematic structural diagram of the interactive
信息确定模块110,用于基于用户在前端显示的可视化图表上执行的数据分析选择操作,确定用于数据检索的索引字段以及数据聚合类型;an
数据检索模块120,用于从预设的数据库中检索出与所述索引字段对应的待分析数据;a
聚合分析模块130,用于根据所述数据聚合类型对该待分析数据进行数据聚合分析;an aggregation analysis module 130, configured to perform data aggregation analysis on the data to be analyzed according to the data aggregation type;
结果展示模块140,用于将聚合分析结果展示在所述前端。The result display module 140 is configured to display the aggregated analysis result on the front end.
在本申请实施例一给出的上述交互式数据分析方法中,可根据用户在前端显示的可视化图表上进行的数据分析选择操作确定数据索引字段和数据聚合类型,进而根据索引字段以及数据聚合类型进行数据检索、筛选、聚合,并将聚合结果展示在前端,以有效提高数据分析效率,大幅改善用户体验。In the above-mentioned interactive data analysis method provided in the first embodiment of the present application, the data index field and the data aggregation type can be determined according to the data analysis selection operation performed by the user on the visual chart displayed on the front end, and then the data index field and the data aggregation type can be determined according to the index field and the data aggregation type. Perform data retrieval, filtering, aggregation, and display the aggregated results on the front end to effectively improve data analysis efficiency and greatly improve user experience.
作为一种可选的实施方式,信息确定模块110具体可用于确定用户在前端显示的可视化图表上执行数据分析选择操作时的图表区域;将图表区域中包括的数据信息对应的索引字段作为用于数据检索的索引字段。As an optional implementation manner, the
作为又一种可选的实现方式信息确定模块110还可以具体用于在存在数据分析选择操作时,在前端显示用于数据聚合类型选取的类型选取浮层;As another optional implementation, the
基于用户在前端显示的类型选取浮层上执行的聚合类型选择操作确定数据聚合类型;或/和Determine the data aggregation type based on the aggregation type selection operation performed by the user on the type selection floating layer displayed on the front end; or/and
在预设有数据分析选择操作与聚合类型之间的对应关系时,根据数据分析选择操作和对应关系确定数据聚合类型。When the corresponding relationship between the data analysis selection operation and the aggregation type is preset, the data aggregation type is determined according to the data analysis selection operation and the corresponding relationship.
进一步,交互式数据分析装置还可以包括:Further, the interactive data analysis device may also include:
索引信息查询模块,用于在存在基于前端发起的交互式数据分析操作时,查询交互式数据分析操作对应的待分析数据在数据库中的存储类型,以及该存储类型对应的数据索引表。The index information query module is used to query the storage type of the data to be analyzed corresponding to the interactive data analysis operation in the database and the data index table corresponding to the storage type when there is an interactive data analysis operation initiated by the front end.
索引信息展示模块,用于统计数据索引表中用于进行数据检索的索引字段的类型以及不同类型的索引字段的数量,将根据统计结果展示在前端。The index information display module is used to count the types of index fields used for data retrieval in the data index table and the number of different types of index fields, and will be displayed on the front end according to the statistical results.
进一步,交互式数据分析装置还可以包括:Further, the interactive data analysis device may also include:
待分析数据确定模块,用于在数据分析选择操作为图表拖动操作时,根据被拖动的可视化图表所表征的数据信息确定索引字段,以及从预设的数据库中检索出与索引字段对应的待分析数据。其中,作为一种可选的实现方式,待分析数据确定模块具体可用于将图表拖动操作的起始位置处的图表作为第一子图表、结束位置处的图表作为第二子图表,根据第一子图表所展示的数据信息确定第一索引字段,以及根据第二子图表所展示的数据信息确定第二索引字段;以及从预设的数据库中检索得到与第一索引字段对应的第一数据集、以及与第二索引字段对应的第二数据集,将第一数据集合第二数据集作为待分析数据。The data to be analyzed determination module is used to determine the index field according to the data information represented by the dragged visual chart when the data analysis selection operation is a chart drag operation, and retrieve the corresponding index field from the preset database. data to be analyzed. Wherein, as an optional implementation manner, the data-to-be-analyzed determination module can be specifically configured to use the chart at the starting position of the chart drag operation as the first sub-chart, and the chart at the end position as the second sub-chart. The first index field is determined by the data information displayed in a sub-diagram, and the second index field is determined according to the data information displayed in the second sub-diagram; and the first data corresponding to the first index field is retrieved from a preset database set, and the second data set corresponding to the second index field, the first data set and the second data set are used as the data to be analyzed.
浮层显示模块,用于显示预设的类型选取浮层在前端,响应基于类型选取浮层发起的聚合类型选择操作。The floating layer display module is used to display the preset type selection floating layer in the front end, and respond to the aggregation type selection operation initiated based on the type selection floating layer.
结果展示模块,还用于根据聚合类型选择操作对待分析数据进行数据聚合分析,将聚合分析结果展示在前端。The result display module is also used to select the operation according to the aggregation type to perform data aggregation analysis on the data to be analyzed, and display the aggregated analysis results on the front end.
由于本实施例三给出交互式数据分析装置与前述实施例一或实施例二具有相同或相应的技术特征,因此,关于交互式数据分析装置10的详细描述可参照前述实施例一或实施例二中对交互式数据分析方法的详细描述,本实施例在此不再赘述。例如,信息确定模块110的详细描述可参照前述实施例一中对步骤102的描述、数据检索模块120的详细描述可参照前述实施例一中对步骤104的描述、聚合分析模块130的详细描述可参照前述实施例一中对步骤106的描述等。Since the interactive data analysis device provided in the third embodiment has the same or corresponding technical features as the foregoing first or second embodiment, the detailed description of the interactive
实施例四Embodiment 4
图5是本实施例四中给出一个电子设备的结构示意图。请参考图5,在硬件层面,该电子设备包括处理器,可选的还包括内部总线、网络接口、存储器。其中,存储器可能包含内存,例如高速随机存取存储器(Random-Access Memory,RAM),也可能还包括非易失性存储器(non-Volatile memory),例如至少1个磁盘存储器等。当然,该电子设备还可能包括其他业务所需要的硬件。FIG. 5 is a schematic structural diagram of an electronic device given in the fourth embodiment. Referring to FIG. 5 , at the hardware level, the electronic device includes a processor, and optionally an internal bus, a network interface, and a memory. The memory may include memory, such as high-speed random-access memory (Random-Access Memory, RAM), or may also include non-volatile memory (non-Volatile memory), such as at least one disk memory. Of course, the electronic equipment may also include hardware required for other services.
处理器、网络接口和存储器可以通过内部总线相互连接,该内部总线可以是ISA(Industry Standard Architecture,工业标准体系结构)总线、PCI(PeripheralComponent Interconnect,外设部件互连标准)总线或EISA(Extended lndustry StandardArchitecture,扩展工业标准结构)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一个双向箭头表示,但并不表示仅有一根总线或一种类型的总线。The processor, the network interface, and the memory can be connected to each other through an internal bus, which can be an ISA (Industry Standard Architecture) bus, a PCI (Peripheral Component Interconnect, peripheral component interconnect standard) bus, or an EISA (Extended Industry Standard) bus. StandardArchitecture, extended industry standard structure) bus, etc. The bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one bidirectional arrow is shown in FIG. 5, but it does not mean that there is only one bus or one type of bus.
存储器,用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。存储器可以包括内存和非易失性存储器,并向处理器提供指令和数据。memory for storing programs. Specifically, the program may include program code, and the program code includes computer operation instructions. The memory may include memory and non-volatile memory and provide instructions and data to the processor.
处理器从非易失性存储器中读取对应的计算机程序到内存中然后运行,在逻辑层面上形成共享资源访问控制装置。处理器,执行存储器所存放的程序,并具体用于执行以下操作:The processor reads the corresponding computer program from the non-volatile memory into the memory and runs it, forming a shared resource access control device on a logical level. The processor executes the program stored in the memory, and is specifically used to perform the following operations:
基于用户在前端显示的可视化图表上执行的数据分析选择操作,确定用于数据检索的索引字段以及数据聚合类型;Determine the index field and data aggregation type for data retrieval based on the data analysis selection operation performed by the user on the visual chart displayed on the front end;
从预设的数据库中检索出与索引字段对应的待分析数据;Retrieve the data to be analyzed corresponding to the index field from the preset database;
根据数据聚合类型对该待分析数据进行数据聚合分析;Perform data aggregation analysis on the data to be analyzed according to the data aggregation type;
将聚合分析结果展示在前端。Display the aggregated analysis results on the front end.
上述如本说明书图4所示实施例揭示的交互式数据分析装置10执行的方法可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。The above-mentioned method performed by the interactive
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(Digital SignalProcessor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本说明书实施例中公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本说明书实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。The above-mentioned processor may be a general-purpose processor, including a central processing unit (CPU), a network processor (NP), etc.; it may also be a digital signal processor (Digital Signal Processor, DSP), an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components. The methods, steps and logic block diagrams disclosed in the embodiments of this specification can be implemented or executed. A general purpose processor may be a microprocessor or the processor may be any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of this specification may be directly embodied as being executed by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor. The software modules may be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other storage media mature in the art. The storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
该电子设备还可执行图1中所示的交互式数据分析方法,并实现交互式数据分析装置10在图4所示实施例的功能,本说明书实施例在.此不再赘述。The electronic device can also execute the interactive data analysis method shown in FIG. 1, and realize the functions of the interactive
当然,除了软件实现方式之外,本说明书实施例的电子设备并不排除其他实现方式,比如逻辑器件抑或软硬件结合的方式等等,也就是说以下处理流程的执行主体并不限定于各个逻辑单元,也可以是硬件或逻辑器件。Of course, in addition to software implementations, the electronic devices in the embodiments of this specification do not exclude other implementations, such as logic devices or a combination of software and hardware, etc. That is to say, the execution subjects of the following processing procedures are not limited to each logic A unit can also be a hardware or logic device.
实施例五Embodiment 5
本说明书实施例五还提出了一种计算机可读存储介质,该计算机可读存储介质存储一个或多个程序,该一个或多个程序包括指令,该指令当被包括多个应用程序的便携式电子设备执行时,能够使该便携式电子设备执行图2所示实施例的方法,并具体用于执行以下方法:Embodiment 5 of the present specification also provides a computer-readable storage medium, where the computer-readable storage medium stores one or more programs, and the one or more programs include instructions, and the instructions, when used by a portable electronic device including multiple application programs When the device is executed, the portable electronic device can be made to execute the method of the embodiment shown in FIG. 2 , and is specifically used to execute the following method:
基于用户在前端显示的可视化图表上执行的数据分析选择操作,确定用于数据检索的索引字段以及数据聚合类型;Determine the index field and data aggregation type for data retrieval based on the data analysis selection operation performed by the user on the visual chart displayed on the front end;
从预设的数据库中检索出与索引字段对应的待分析数据;Retrieve the data to be analyzed corresponding to the index field from the preset database;
根据数据聚合类型对该待分析数据进行数据聚合分析;Perform data aggregation analysis on the data to be analyzed according to the data aggregation type;
将聚合分析结果展示在前端。Display the aggregated analysis results on the front end.
在本实施例五给出的上述技术方案中,可根据用户在前端显示的可视化图表上进行的数据分析选择操作确定数据索引字段和数据聚合类型,进而根据索引字段以及数据聚合类型进行数据检索、筛选、聚合,并将聚合结果展示在前端,以有效提高数据分析效率,大幅改善用户体验。In the above technical solution given in the fifth embodiment, the data index field and the data aggregation type can be determined according to the data analysis and selection operation performed by the user on the visual chart displayed on the front end, and then data retrieval, Filter, aggregate, and display the aggregated results on the front end to effectively improve data analysis efficiency and greatly improve user experience.
综上,以上仅为本说明书的较佳实施例而已,并非用于限定本说明书的保护范围。凡在本说明书的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本说明书的保护范围之内。In conclusion, the above are only preferred embodiments of the present specification, and are not intended to limit the protection scope of the present specification. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of this specification shall be included within the protection scope of this specification.
上述实施例阐明的系统、装置、模块或单元,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。一种典型的实现设备为计算机。具体的,计算机例如可以为个人计算机、膝上型计算机、蜂窝电话、相机电话、智能电话、个人数字助理、媒体播放器、导航设备、电子邮件设备、游戏控制台、平板计算机、可穿戴设备或者这些设备中的任何设备的组合。The systems, devices, modules or units described in the above embodiments may be specifically implemented by computer chips or entities, or by products with certain functions. A typical implementation device is a computer. Specifically, the computer can be, for example, a personal computer, a laptop computer, a cellular phone, a camera phone, a smart phone, a personal digital assistant, a media player, a navigation device, an email device, a game console, a tablet computer, a wearable device, or A combination of any of these devices.
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。Computer-readable media includes both persistent and non-permanent, removable and non-removable media, and storage of information may be implemented by any method or technology. Information may be computer readable instructions, data structures, modules of programs, or other data. Examples of computer storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read only memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage, Magnetic tape cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device. As defined herein, computer-readable media does not include transitory computer-readable media, such as modulated data signals and carrier waves.
还需要说明的是,术语″包括″、″包含″或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句″包括一个......″限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。It should also be noted that the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article of manufacture or device comprising a series of elements includes not only those elements but also Other elements not expressly listed, or which are inherent to such a process, method, article of manufacture, or apparatus are also included. Without further limitation, an element qualified by the phrase "comprises a..." does not preclude the presence of additional identical elements in the process, method, article of manufacture or apparatus that includes the element.
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。Each embodiment in this specification is described in a progressive manner, and the same and similar parts between the various embodiments may be referred to each other, and each embodiment focuses on the differences from other embodiments. In particular, as for the system embodiments, since they are basically similar to the method embodiments, the description is relatively simple, and for related parts, please refer to the partial descriptions of the method embodiments.
Claims (8)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910950353.0A CN110795458B (en) | 2019-10-08 | 2019-10-08 | Interactive data analysis method, device, electronic equipment and computer readable storage medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910950353.0A CN110795458B (en) | 2019-10-08 | 2019-10-08 | Interactive data analysis method, device, electronic equipment and computer readable storage medium |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN110795458A CN110795458A (en) | 2020-02-14 |
| CN110795458B true CN110795458B (en) | 2022-04-15 |
Family
ID=69440125
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910950353.0A Active CN110795458B (en) | 2019-10-08 | 2019-10-08 | Interactive data analysis method, device, electronic equipment and computer readable storage medium |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN110795458B (en) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112434048B (en) * | 2021-01-26 | 2021-04-30 | 湖州市大数据运营有限公司 | Data cross analysis method and device, computer equipment and storage medium |
| CN113032436B (en) * | 2021-04-16 | 2022-05-31 | 苏州臻璇数据信息技术有限公司 | Searching method and device based on article content and title |
| CN114238859A (en) * | 2021-12-17 | 2022-03-25 | 北京达佳互联信息技术有限公司 | Data processing system, method, electronic device, and storage medium |
| CN115271902A (en) * | 2022-08-02 | 2022-11-01 | 浪潮通用软件有限公司 | Budget processing method, device, equipment and medium for account statement sheet |
| CN117951186A (en) * | 2022-10-18 | 2024-04-30 | 华为云计算技术有限公司 | Method and device for generating insight data |
| CN116230247A (en) * | 2023-05-10 | 2023-06-06 | 南京品生医疗科技有限公司 | Data analysis method, device, electronic equipment and storage medium |
| CN116911269B (en) * | 2023-06-05 | 2024-02-20 | 杭州观远数据有限公司 | Method for modifying and splitting aggregated data into details |
| CN116578656A (en) * | 2023-07-12 | 2023-08-11 | 河北网新数字技术股份有限公司 | Multi-dimensional data analysis method based on interactive visualization |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7640198B1 (en) * | 2004-05-28 | 2009-12-29 | Vendavo, Inc. | System and method for generating and displaying indexed price modeling data |
| CN104520851A (en) * | 2012-08-10 | 2015-04-15 | 微软公司 | Generating queries based upon data points in a spreadsheet application |
| CN109299044A (en) * | 2018-07-20 | 2019-02-01 | 浙江工业大学 | A security visual analysis system based on company internal logs |
| CN110020333A (en) * | 2017-07-27 | 2019-07-16 | 北京嘀嘀无限科技发展有限公司 | Data analysing method and device, electronic equipment, storage medium |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040003132A1 (en) * | 2000-12-06 | 2004-01-01 | Biosentients, Inc. | Data pool architecture, system, and method for intelligent object data in heterogeneous data environments |
| US10496657B2 (en) * | 2017-03-06 | 2019-12-03 | Salesforce.Com, Inc. | Displaying an interactive communication time series |
| CN110069508A (en) * | 2017-10-11 | 2019-07-30 | 北京奇虎科技有限公司 | Data analysing method, device and terminal device based on big data |
| CN109388791B (en) * | 2018-09-28 | 2024-05-14 | 中国平安财产保险股份有限公司 | Dynamic diagram display method and device, computer equipment and storage medium |
| CN109388462B (en) * | 2018-09-28 | 2024-05-28 | 中国平安财产保险股份有限公司 | Report sharing method, report sharing device, computer equipment and storage medium |
| CN109471900B (en) * | 2018-11-15 | 2021-10-15 | 中译语通科技股份有限公司 | Interaction method and system for chart data custom action data |
-
2019
- 2019-10-08 CN CN201910950353.0A patent/CN110795458B/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7640198B1 (en) * | 2004-05-28 | 2009-12-29 | Vendavo, Inc. | System and method for generating and displaying indexed price modeling data |
| CN104520851A (en) * | 2012-08-10 | 2015-04-15 | 微软公司 | Generating queries based upon data points in a spreadsheet application |
| CN110020333A (en) * | 2017-07-27 | 2019-07-16 | 北京嘀嘀无限科技发展有限公司 | Data analysing method and device, electronic equipment, storage medium |
| CN109299044A (en) * | 2018-07-20 | 2019-02-01 | 浙江工业大学 | A security visual analysis system based on company internal logs |
Non-Patent Citations (2)
| Title |
|---|
| Combining and Visualizing Time-Oriented Data from the Software Engineering Toolset;Johann Grabner等;《2018 IEEE Working Conference on Software Visualization (VISSOFT)》;20181112;第76-86页 * |
| 面向日志大数据分析的业务服务系统的设计与实现;辜家伟;《中国优秀硕士学位论文全文数据库信息科技辑》;20181215(第12期);第I138-821页 * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110795458A (en) | 2020-02-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN110795458B (en) | Interactive data analysis method, device, electronic equipment and computer readable storage medium | |
| CN109325218B (en) | Data screening statistical method and device, electronic equipment and storage medium | |
| CN112527843B (en) | Data query method, device, terminal equipment and storage medium | |
| CN107229730A (en) | Data query method and device | |
| TW201214166A (en) | Processing of categorized product information cross reference to other applications | |
| US20200081610A1 (en) | User interface tools for visual exploration of multi-dimensional data | |
| MX2013014800A (en) | Recommending data enrichments. | |
| CN113268500B (en) | Service processing method and device and electronic equipment | |
| CN110909266B (en) | Deep paging method and device and server | |
| CN107273519A (en) | Data analysis method, device, terminal and storage medium | |
| CN114297258B (en) | A method and device for comprehensively arranging data for obtaining multi-column data | |
| CN112486988B (en) | Data processing method, device, equipment and storage medium | |
| WO2018059298A1 (en) | Pattern mining method, high-utility item-set mining method and relevant device | |
| WO2023035355A1 (en) | Information processing method and apparatus for batch stream fusion, and storage medium | |
| CN108255963A (en) | A control method and device for Internet-based news information retrieval | |
| CN110825953A (en) | Data query method, device and device | |
| CN116821494A (en) | Method, device, equipment and medium for analyzing data | |
| CN103500188A (en) | Method and system for generating data sheet | |
| CN111143546A (en) | Method and device for obtaining recommendation language and electronic equipment | |
| CN114297143A (en) | A method for searching files, a method, device and mobile terminal for displaying files | |
| CN118227470A (en) | Database testing method, device, equipment, medium and computer program product | |
| CN110413665A (en) | A data query method and device | |
| CN113220992B (en) | A method, system and medium for recommending information flow content | |
| CN116303354A (en) | A storage engine determination method, device, electronic equipment and storage medium | |
| CN115687410A (en) | Data perspective processing method and device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB02 | Change of applicant information | ||
| CB02 | Change of applicant information |
Address after: 100096 101 / F, building 14, 27 Jiancai Middle Road, Haidian District, Beijing Applicant after: Beijing PERCENT Technology Group Co.,Ltd. Address before: 100096 101 / F, building 14, 27 Jiancai Middle Road, Haidian District, Beijing Applicant before: BEIJING BAIFENDIAN INFORMATION SCIENCE & TECHNOLOGY Co.,Ltd. |
|
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CP03 | Change of name, title or address | ||
| CP03 | Change of name, title or address |
Address after: 100096 101 / F, building 14, 27 Jiancai Middle Road, Haidian District, Beijing Patentee after: Percentage Technology Group Co.,Ltd. Country or region after: China Address before: 100096 101 / F, building 14, 27 Jiancai Middle Road, Haidian District, Beijing Patentee before: Beijing PERCENT Technology Group Co.,Ltd. Country or region before: China |