CN110688454A - Method, device, equipment and storage medium for processing consultation conversation - Google Patents
Method, device, equipment and storage medium for processing consultation conversation Download PDFInfo
- Publication number
- CN110688454A CN110688454A CN201910849393.6A CN201910849393A CN110688454A CN 110688454 A CN110688454 A CN 110688454A CN 201910849393 A CN201910849393 A CN 201910849393A CN 110688454 A CN110688454 A CN 110688454A
- Authority
- CN
- China
- Prior art keywords
- information
- consultation
- product
- model
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/33—Querying
- G06F16/332—Query formulation
- G06F16/3329—Natural language query formulation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/33—Querying
- G06F16/3331—Query processing
- G06F16/334—Query execution
- G06F16/3344—Query execution using natural language analysis
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/30—Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
- G06F16/35—Clustering; Classification
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/01—Customer relationship services
- G06Q30/015—Providing customer assistance, e.g. assisting a customer within a business location or via helpdesk
- G06Q30/016—After-sales
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Databases & Information Systems (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Evolutionary Computation (AREA)
- Business, Economics & Management (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Finance (AREA)
- Marketing (AREA)
- Strategic Management (AREA)
- General Business, Economics & Management (AREA)
- Evolutionary Biology (AREA)
- Accounting & Taxation (AREA)
- Biophysics (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Software Systems (AREA)
- Human Computer Interaction (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
本申请涉及人工智能领域,提供一种咨询对话处理的方法、装置、设备及存储介质,方法包括:获取对话咨询模型,接收用户输入的目标产品信息,通过所述对话咨询模型,对所述目标产品信息进行分类,获得分类结果;根据所述分类结果构建产品信息库;当接收到用户输入的咨询信息时,将所述咨询信息输入到所述对话咨询模型,获取用户的咨询意图信息;在所述产品知识库中匹配与所述咨询意图信息对应的第二产品信息,并将所述第二产品信息的语义表示形式转换成话术语言,生成并输出咨询返回结果;对历史关键信息和历史咨询返回结果进行统计与分析,生成并输出多维度报表。采用本方案,能够提高企业服务平台对产品咨询的服务效率。
The present application relates to the field of artificial intelligence, and provides a method, device, device and storage medium for processing consultation dialogue. Classify the product information to obtain a classification result; build a product information database according to the classification result; when receiving the consultation information input by the user, input the consultation information into the dialogue consultation model to obtain the consultation intention information of the user; The second product information corresponding to the consultation intention information is matched in the product knowledge base, and the semantic representation of the second product information is converted into a discourse language, and a consultation return result is generated and output; Statistics and analysis are performed on the results returned from historical consultation, and multi-dimensional reports are generated and output. By adopting this solution, the service efficiency of the enterprise service platform for product consultation can be improved.
Description
技术领域technical field
本申请涉及智能决策领域,尤其涉及咨询对话处理的方法、装置、设备及存储介质。The present application relates to the field of intelligent decision-making, and in particular, to a method, apparatus, device and storage medium for consulting dialogue processing.
背景技术Background technique
目前的产品销售管理中,一般是咨询者通过企业服务平台向系统处理中心发送查询请求,系统处理中心分析所述查询请求的信息,获取咨询者的咨询意图信息,根据所述咨询意图信息匹配相应的咨询结果,将所述咨询结果返回到所述企业服务平台,在所述企业服务平台以文本形式显示。In the current product sales management, the consultant generally sends a query request to the system processing center through the enterprise service platform, and the system processing center analyzes the information of the query request, obtains the consulting intention information of the consultant, and matches the corresponding information according to the consulting intention information. The consultation result is returned to the enterprise service platform, and the consultation result is displayed in the form of text on the enterprise service platform.
由于现企业服务平台对咨询者输入的查询请求所获取的咨询意图信息的准确度低,故所获取的咨询结果与所述咨询请求的匹配度低,致使咨询者需进行多次输入咨询信息或者最终无法得到所需的咨询结果。由于现企业服务平台以文本形式显示咨询结果,故显示方式固定而单一,使咨询者对企业服务平台显示的咨询结果的了解耗时相对较长。因此,导致企业服务平台对产品咨询的服务效率低。Because the accuracy of the consultation intention information obtained by the current enterprise service platform for the query request input by the consultant is low, the matching degree between the obtained consultation result and the consultation request is low, so that the consultant needs to input consultation information multiple times or In the end, the desired consultation result could not be obtained. Since the current enterprise service platform displays the consultation results in the form of text, the display method is fixed and single, so that it takes a relatively long time for the consultant to understand the consultation results displayed on the enterprise service platform. Therefore, the service efficiency of the enterprise service platform for product consultation is low.
发明内容SUMMARY OF THE INVENTION
本申请提供了一种咨询对话处理的方法、装置、设备及存储介质,能够解决现有技术中企业服务平台对产品咨询的服务效率低的问题。The present application provides a method, device, device and storage medium for processing consultation dialogue, which can solve the problem of low service efficiency of product consultation by enterprise service platforms in the prior art.
第一方面,本申请提供一种咨询对话处理的方法,所述方法包括:In a first aspect, the present application provides a method for processing a consultation dialogue, the method comprising:
获取训练信息,将所述训练信息输入到模型中,对所述模型进行训练,以获取对话咨询模型,所述对话咨询模型用于对用户输入的目标产品信息进行分析与处理,以构建产品信息库,对用户输入的咨询信息进行分析与处理,以获取与所述咨询信息对应的返回结果,其中,所述训练信息包括多种第一产品信息、咨询对话信息和网络知识信息,所述对话咨询模型包括第一子模型和第二子模型;Obtain training information, input the training information into the model, and train the model to obtain a dialogue consultation model, which is used to analyze and process the target product information input by the user to construct product information database, which analyzes and processes the consultation information input by the user to obtain the returned result corresponding to the consultation information, wherein the training information includes a variety of first product information, consultation dialogue information and network knowledge information. The consulting model includes a first sub-model and a second sub-model;
接收用户输入的目标产品信息,通过所述对话咨询模型对所述目标产品信息进行分类,获取分类结果,其中,所述分类结果包括目标产品的属性、所属领域和生产阶段;Receive the target product information input by the user, classify the target product information through the dialogue consultation model, and obtain a classification result, wherein the classification result includes the attribute, field and production stage of the target product;
根据所述分类结果建立第一对应关系和/或第二对应关系,根据所述第一对应关系或所述第二对应关系构建产品信息库,其中,所述第一对应关系包括目标产品信息与目标信息的对应关系,所述第二对应关系包括归类信息、产品特征信息与推荐信息的对应关系;A first correspondence relationship and/or a second correspondence relationship is established according to the classification result, and a product information database is constructed according to the first correspondence relationship or the second correspondence relationship, wherein the first correspondence relationship includes target product information and The corresponding relationship of target information, the second corresponding relationship includes the corresponding relationship between classification information, product feature information and recommendation information;
当接收到用户输入的咨询信息时,将所述咨询信息输入到所述第一子模型中,通过所述第一子模型从所述咨询信息中获取关键信息;When receiving the consultation information input by the user, input the consultation information into the first sub-model, and obtain key information from the consultation information through the first sub-model;
将所述关键信息输入到所述第二子模型,通过所述第二子模型分析所述关键信息以获取用户的咨询意图信息;inputting the key information into the second sub-model, and analyzing the key information through the second sub-model to obtain the consultation intention information of the user;
在所述产品知识库中匹配与所述咨询意图信息对应的第二产品信息,并将所述第二产品信息的语义表示形式转换成话术语言,生成并输出咨询返回结果;Matching the second product information corresponding to the consultation intention information in the product knowledge base, converting the semantic representation of the second product information into a discourse language, and generating and outputting a consultation return result;
对历史关键信息和历史咨询返回结果进行统计与分析,生成并输出多维度报表,其中,所述历史关键信息包括在预设时间内从接收到的多次咨询信息中获取的关键信息,所述历史咨询返回结果包括在预设时间内根据接收到的多次咨询信息中获取的咨询返回结果。Perform statistics and analysis on historical key information and historical consultation results, and generate and output multi-dimensional reports, wherein the historical key information includes key information obtained from multiple consultation information received within a preset time period, and the The historical consultation return results include consultation return results obtained from multiple consultation information received within a preset time period.
一种可能的设计中,所述获取训练信息,将所述训练信息输入到模型中,对所述模型进行训练,以获取对话咨询模型,包括:In a possible design, the obtaining training information, inputting the training information into a model, and training the model to obtain a dialogue consultation model, include:
获取训练信息,将所述训练信息输入至神经网络模型,按照预设关联规则分别对所述第一产品信息和所述网络知识信息进行分类,分别获取第一关联信息和第二关联信息,以及获取所述咨询对话信息的咨询目的信息;obtaining training information, inputting the training information into a neural network model, classifying the first product information and the network knowledge information according to preset association rules, respectively obtaining the first association information and the second association information, and Obtain the consultation purpose information of the consultation dialogue information;
建立所述咨询目的信息、所述第一关联信息和所述第二关联信息的对应关系,当所述神经网络模型在检测到所述咨询目的信息时,输出所述第一关联信息和所述第二关联信息,将所述咨询目的信息、所述对应关系、所述第一关联信息和所述第二关联信息输入至所述神经网络模型;Establish a correspondence between the consultation purpose information, the first associated information and the second associated information, and when the neural network model detects the consultation purpose information, output the first associated information and the second associated information second associated information, inputting the consultation purpose information, the corresponding relationship, the first associated information and the second associated information into the neural network model;
对所述神经网络模型进行多组参数训练,以获取多组参数下的待训练神经网络模型;Multi-group parameter training is performed on the neural network model to obtain the neural network model to be trained under the multi-group parameters;
评估所述神经网络模型在每一组参数下的误差,以获取多个误差值;evaluating the error of the neural network model under each set of parameters to obtain a plurality of error values;
通过计算多个所述误差值的大小以获取最小误差值,将所述最小误差值对应的一组参数作为所述神经网络模型的参数,获取目标神经网络模型,对所述目标神经网络模型进行部署,获取对话咨询模型,其中,所述部署是指对应用目标神经网络模型的配置文件、用户手册、帮助文档进行打包、安装、配置以及发布。The minimum error value is obtained by calculating the size of a plurality of the error values, a set of parameters corresponding to the minimum error value is used as the parameters of the neural network model, the target neural network model is obtained, and the target neural network model is performed. Deploy, and obtain the dialogue consultation model, wherein the deployment refers to packaging, installing, configuring and publishing the configuration file, user manual, and help document of the application target neural network model.
一种可能的设计中,所述对话咨询模型包括回归分析模型,所述根据所述分类结果建立第一对应关系和/或第二对应关系,根据所述第一对应关系或所述第二对应关系构建产品信息库之前,所述方法还包括:In a possible design, the dialogue consultation model includes a regression analysis model, the first corresponding relationship and/or the second corresponding relationship is established according to the classification result, and the first corresponding relationship or the second corresponding relationship is established according to the classification result. Before the relationship builds the product information base, the method further includes:
向所述对话咨询模型输入分析数据,其中,所述分析数据包括产品使用者的信息与购买信息、产品销售的情况信息、各地的消费水平与消费方向以及对于产品领域各地的购买情况;Input analysis data into the dialogue consultation model, wherein the analysis data includes product user information and purchase information, product sales situation information, consumption levels and consumption directions in various places, and purchases in various places in the product field;
通过所述回归分析模型对所述分析数据进行回归分析,以获取推荐信息,其中,所述推荐信息包括产品的发展趋势、可发展地域、可销售人群和产品所属领域的分析产品之外的产品信息;Regression analysis is performed on the analysis data through the regression analysis model to obtain recommendation information, wherein the recommendation information includes product development trends, developable regions, saleable groups, and products other than the analyzed products in the field to which the product belongs. information;
所述根据所述分类结果建立第一对应关系和/或第二对应关系,根据所述第一对应关系或所述第二对应关系构建产品信息库,包括:The establishing a first corresponding relationship and/or a second corresponding relationship according to the classification result, and constructing a product information database according to the first corresponding relationship or the second corresponding relationship, including:
将所述目标产品信息按照产品功能、产品类型和产品结构的类别进行归类,以获取归类信息;Classify the target product information according to the categories of product functions, product types and product structures to obtain classification information;
获取所述归类信息的第一特征信息;obtaining the first feature information of the classification information;
建立所述归类信息、所述第一特征信息与所述推荐信息的第二对应关系,以获取产品信息库。A second correspondence between the categorization information, the first feature information and the recommendation information is established to obtain a product information database.
一种可能的设计中,所述对话咨询模型包括胶囊网络模型,所述将所述关键信息输入到所述第二子模型,通过所述第二子模型分析所述关键信息以获取用户的咨询意图信息,包括:In a possible design, the dialogue consultation model includes a capsule network model, the key information is input into the second sub-model, and the key information is analyzed by the second sub-model to obtain the user's consultation. Intent information, including:
至少对所述关键信息进行以下文本数据处理方式之一,获取目标咨询信息:领域分析、文本纠错、文本补全、指代消解、词语分解、词性标记、实体识别和文本特征提取;Perform at least one of the following text data processing methods on the key information to obtain target consultation information: domain analysis, text error correction, text completion, metaphor resolution, word decomposition, part-of-speech tagging, entity recognition, and text feature extraction;
通过所述胶囊网络模型对所述目标咨询信息进行意图分类,以获取意图分类信息;Perform intent classification on the target consultation information through the capsule network model to obtain intent classification information;
获取所述意图分类信息中的属性信息,并对所述属性信息进行推理与上下文决策,获取用户的咨询意图信息。Obtain attribute information in the intention classification information, and perform reasoning and contextual decision on the attribute information to obtain the user's consultation intention information.
一种可能的设计中,所述对所述关键信息进行文本数据处理之前,所述方法还包括:In a possible design, before the text data processing is performed on the key information, the method further includes:
获取训练数据,其中,所述训练数据包括陈述查询语言和疑问咨询语言;Obtaining training data, wherein the training data includes a statement query language and a query language;
对所述训练数据进行属性分析,并对经过属性分析的训练数据进行标记,以获取标记属性的词,其中,所述属性分析包括专有名词属性分析、性别属性分析、单复数属性分析、距离属性分析和缩略匹配属性分析;Attribute analysis is performed on the training data, and the attribute-analyzed training data is marked to obtain words with marked attributes, wherein the attribute analysis includes proper noun attribute analysis, gender attribute analysis, singular and plural attribute analysis, distance attribute analysis Attribute analysis and abbreviated matching attribute analysis;
获取所述训练数据的第二特征信息,从所述第二特征信息中选择一个特征作为节点的分裂标准,其中,获取所述分裂标准的计算公式如下:Obtain the second feature information of the training data, and select a feature from the second feature information as the splitting criterion of the node, wherein the calculation formula for obtaining the splitting criterion is as follows:
其中,Info(D)为熵,G(A)是信息增益率,D是所述训练数据,m是所述标记属性的词的个数,pi是所述第二特征信息中选择的一个特征对应的所述标记属性的词,A是所述标记属性中的其中一个属性,v是对应于属性A测试的输出个数以及输出的划分个数;Among them, Info(D) is entropy, G(A) is the information gain rate, D is the training data, m is the number of words of the tag attribute, and p i is a selected one of the second feature information The word of the marked attribute corresponding to the feature, A is one of the attributes in the marked attribute, and v is the number of outputs corresponding to the attribute A test and the number of divisions of the output;
以所述标记属性的词作为根节点,根据预设的分类标准和所述分裂标准,构建决策树;Using the word of the marked attribute as the root node, construct a decision tree according to the preset classification standard and the splitting standard;
所述对所述关键信息进行文本数据处理,包括:The performing text data processing on the key information includes:
对所述关键信息进行属性分析,并对经过属性分析的关键信息进行标记,获取标记属性的目标词;Perform attribute analysis on the key information, and mark the key information subjected to the attribute analysis to obtain the target word of the marked attribute;
通过所述决策树对所述目标词进行数据分析与处理。Perform data analysis and processing on the target word through the decision tree.
一种可能的设计中,所述在所述产品知识库中匹配与所述咨询意图信息对应的第二产品信息之后,所述方法还包括:In a possible design, after the second product information corresponding to the consultation intention information is matched in the product knowledge base, the method further includes:
获取匹配度,其中,所述匹配度为所述产品知识库中的产品信息与所述咨询意图信息的对应程度;obtaining a matching degree, wherein the matching degree is the degree of correspondence between the product information in the product knowledge base and the consulting intent information;
检测所述匹配度是否小于第一预设阈值;detecting whether the matching degree is less than a first preset threshold;
当检测结果为是时,对所述咨询信息进行分析,获取待解决信息,其中,所述待解决信息包括产品的领域、名称、技术问题和问题类型;When the detection result is yes, analyze the consultation information to obtain information to be solved, wherein the information to be solved includes the field, name, technical problem and problem type of the product;
根据所述待解决信息匹配咨询解答人员,将所述咨询信息以及解答时间限制的提示信息发送到信息获取工具中,以使所述信息获取工具根据所述咨询信息和所述提示信息生成解决结果;Match consultation and answering personnel according to the to-be-solved information, and send the consultation information and the prompt information of the answering time limit to the information acquisition tool, so that the information acquisition tool generates a solution result according to the consultation information and the prompt information ;
获取所述信息获取工具接收的所述解决结果,并将所述解决信息与所述解决结果输入到所述对话咨询模型,对所述对话咨询模型进行训练,获取更新后的对话咨询模型。The solution result received by the information acquisition tool is acquired, the solution information and the solution result are input into the dialogue consultation model, the dialogue consultation model is trained, and an updated dialogue consultation model is obtained.
一种可能的设计中,所述在所述产品知识库中匹配与所述咨询意图信息对应的第二产品信息之后,所述方法还包括:In a possible design, after the second product information corresponding to the consultation intention information is matched in the product knowledge base, the method further includes:
获取多个匹配值,其中,所述匹配值为所述产品知识库中的产品信息与所述咨询意图信息的对应程度值;acquiring a plurality of matching values, wherein the matching value is a corresponding degree value between the product information in the product knowledge base and the consulting intention information;
计算多个所述匹配值,比较多个所述匹配值的大小,获取最大匹配值;Calculate a plurality of the matching values, compare the sizes of the multiple matching values, and obtain the maximum matching value;
检测所述最大匹配值是否小于第二预设阈值;detecting whether the maximum matching value is less than a second preset threshold;
若是,则输出目标推荐信息,其中,所述目标推荐信息包括所述最大匹配值对应的产品信息、所述产品信息匹配的推荐信息和与所述产品信息关联的产品信息。If yes, output target recommendation information, wherein the target recommendation information includes product information corresponding to the maximum matching value, recommendation information matched with the product information, and product information associated with the product information.
第二方面,本申请提供一种用于咨询对话处理的装置,具有实现对应于上述第一方面提供的咨询对话处理的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块,所述模块可以是软件和/或硬件。In a second aspect, the present application provides an apparatus for consultation dialogue processing, which has a function of implementing the method corresponding to the consultation dialogue processing provided in the first aspect. The functions can be implemented by hardware, or can be implemented by hardware executing corresponding software. The hardware or software includes one or more modules corresponding to the above functions, and the modules may be software and/or hardware.
一种可能的设计中,所述装置包括:In a possible design, the device includes:
输入输出模块,用于获取训练信息,接收用户输入的目标产品信息,接收到用户输入的咨询信息;The input and output module is used to obtain training information, receive the target product information input by the user, and receive the consultation information input by the user;
处理模块,用于将所述输入输出模块获取的训练信息输入到模型中,对所述模型进行训练,以获取对话咨询模型,所述对话咨询模型用于对用户输入的目标产品信息进行分析与处理,以构建产品信息库,对用户输入的咨询信息进行分析与处理,以获取与所述咨询信息对应的返回结果;通过所述对话咨询模型对所述输入输出模块接收的所述目标产品信息进行分类,获取分类结果;根据所述分类结果建立第一对应关系和/或第二对应关系,根据所述第一对应关系或所述第二对应关系构建产品信息库;将所述输入输出模块接收的所述咨询信息输入到所述第一子模型中,通过所述第一子模型从所述咨询信息中获取关键信息;将所述关键信息输入到所述第二子模型,通过所述第二子模型分析所述关键信息以获取用户的咨询意图信息;在所述产品知识库中匹配与所述咨询意图信息对应的第二产品信息,并将所述第二产品信息的语义表示形式转换成话术语言,生成咨询返回结果并通过所述输入输出模块将所述咨询返回结果输入至显示模块;对历史关键信息和历史咨询返回结果进行统计与分析,生成多维度报表并通过所述输入输出模块将所述多维度报表输入至所述显示模块;The processing module is configured to input the training information obtained by the input and output module into the model, and train the model to obtain a dialogue consultation model, which is used to analyze and analyze the target product information input by the user. processing, to build a product information database, analyze and process the consulting information input by the user, to obtain a return result corresponding to the consulting information; Carry out classification and obtain classification results; establish a first correspondence and/or a second correspondence according to the classification results, and build a product information database according to the first correspondence or the second correspondence; The received consultation information is input into the first sub-model, and key information is obtained from the consultation information through the first sub-model; the key information is input into the second sub-model, through the The second sub-model analyzes the key information to obtain the user's consultation intention information; matches the second product information corresponding to the consultation intention information in the product knowledge base, and converts the semantic representation of the second product information Convert it into a vocabulary language, generate a consultation return result and input the consultation return result to the display module through the input and output module; perform statistics and analysis on historical key information and historical consultation return results, generate a multi-dimensional report and pass the The input and output module inputs the multi-dimensional report to the display module;
所述显示模块,用于从所述输入输出模块中接收并显示所述咨询返回结果和所述多维度报表。The display module is configured to receive and display the return result of the consultation and the multi-dimensional report form from the input and output module.
一种可能的设计中,所述处理模块具体用于:In a possible design, the processing module is specifically used for:
获取训练信息,将所述训练信息输入至神经网络模型,按照预设关联规则分别对所述第一产品信息和所述网络知识信息进行分类,分别获取第一关联信息和第二关联信息,以及获取所述咨询对话信息的咨询目的信息;obtaining training information, inputting the training information into a neural network model, classifying the first product information and the network knowledge information according to preset association rules, respectively obtaining the first association information and the second association information, and Obtain the consultation purpose information of the consultation dialogue information;
建立所述咨询目的信息、所述第一关联信息和所述第二关联信息的对应关系,当所述神经网络模型在检测到所述咨询目的信息时,输出所述第一关联信息和所述第二关联信息,将所述咨询目的信息、所述对应关系、所述第一关联信息和所述第二关联信息输入至所述神经网络模型;Establish a correspondence between the consultation purpose information, the first associated information and the second associated information, and when the neural network model detects the consultation purpose information, output the first associated information and the second associated information second associated information, inputting the consultation purpose information, the corresponding relationship, the first associated information and the second associated information into the neural network model;
对所述神经网络模型进行多组参数训练,以获取多组参数下的待训练神经网络模型;Multi-group parameter training is performed on the neural network model to obtain the neural network model to be trained under the multi-group parameters;
评估所述神经网络模型在每一组参数下的误差,以获取多个误差值;evaluating the error of the neural network model under each set of parameters to obtain a plurality of error values;
通过计算多个所述误差值的大小以获取最小误差值,将所述最小误差值对应的一组参数作为所述神经网络模型的参数,获取目标神经网络模型,对所述目标神经网络模型进行部署,获取对话咨询模型,其中,所述部署是指对应用目标神经网络模型的配置文件、用户手册、帮助文档进行打包、安装、配置以及发布。The minimum error value is obtained by calculating the size of a plurality of the error values, a set of parameters corresponding to the minimum error value is used as the parameters of the neural network model, the target neural network model is obtained, and the target neural network model is performed. Deploy, and obtain the dialogue consultation model, wherein the deployment refers to packaging, installing, configuring and publishing the configuration file, user manual, and help document of the application target neural network model.
一种可能的设计中,所述处理模块在执行所述对话咨询模型包括回归分析模型,所述根据所述分类结果建立第一对应关系和/或第二对应关系,根据所述第一对应关系或所述第二对应关系构建产品信息库之前,还用于:In a possible design, the processing module includes a regression analysis model when executing the dialogue consultation model, and the first corresponding relationship and/or the second corresponding relationship is established according to the classification result, and the first corresponding relationship is established according to the first corresponding relationship. Or the second correspondence is also used for:
向所述对话咨询模型输入分析数据,其中,所述分析数据包括产品使用者的信息与购买信息、产品销售的情况信息、各地的消费水平与消费方向以及对于产品领域各地的购买情况;Input analysis data into the dialogue consultation model, wherein the analysis data includes product user information and purchase information, product sales situation information, consumption levels and consumption directions in various places, and purchases in various places in the product field;
通过所述回归分析模型对所述分析数据进行回归分析,以获取推荐信息,其中,所述推荐信息包括产品的发展趋势、可发展地域、可销售人群和产品所属领域的分析产品之外的产品信息;Regression analysis is performed on the analysis data through the regression analysis model to obtain recommendation information, wherein the recommendation information includes product development trends, developable regions, saleable groups, and products other than the analyzed products in the field to which the product belongs. information;
所述根据所述分类结果建立第一对应关系和/或第二对应关系,根据所述第一对应关系或所述第二对应关系构建产品信息库,包括:The establishing a first corresponding relationship and/or a second corresponding relationship according to the classification result, and constructing a product information database according to the first corresponding relationship or the second corresponding relationship, including:
将所述目标产品信息按照产品功能、产品类型和产品结构的类别进行归类,以获取归类信息;Classify the target product information according to the categories of product functions, product types and product structures to obtain classification information;
获取所述归类信息的第一特征信息;obtaining the first feature information of the classification information;
建立所述归类信息、所述第一特征信息与所述推荐信息的第二对应关系,以获取产品信息库。A second correspondence between the categorization information, the first feature information and the recommendation information is established to obtain a product information database.
一种可能的设计中,所述处理模块具体用于:In a possible design, the processing module is specifically used for:
至少对所述关键信息进行以下文本数据处理方式之一,获取目标咨询信息:领域分析、文本纠错、文本补全、指代消解、词语分解、词性标记、实体识别和文本特征提取;Perform at least one of the following text data processing methods on the key information to obtain target consultation information: domain analysis, text error correction, text completion, metaphor resolution, word decomposition, part-of-speech tagging, entity recognition, and text feature extraction;
通过所述胶囊网络模型对所述目标咨询信息进行意图分类,以获取意图分类信息;Perform intent classification on the target consultation information through the capsule network model to obtain intent classification information;
获取所述意图分类信息中的属性信息,并对所述属性信息进行推理与上下文决策,获取用户的咨询意图信息。Obtain attribute information in the intention classification information, and perform reasoning and contextual decision on the attribute information to obtain the user's consultation intention information.
一种可能的设计中,所述处理模块在执行所述对所述关键信息进行文本数据处理之前,还用于:In a possible design, before executing the text data processing on the key information, the processing module is further configured to:
获取训练数据,其中,所述训练数据包括陈述查询语言和疑问咨询语言;Obtaining training data, wherein the training data includes a statement query language and a query language;
对所述训练数据进行属性分析,并对经过属性分析的训练数据进行标记,以获取标记属性的词,其中,所述属性分析包括专有名词属性分析、性别属性分析、单复数属性分析、距离属性分析和缩略匹配属性分析;Attribute analysis is performed on the training data, and the attribute-analyzed training data is marked to obtain words with marked attributes, wherein the attribute analysis includes proper noun attribute analysis, gender attribute analysis, singular and plural attribute analysis, distance attribute analysis Attribute analysis and abbreviated matching attribute analysis;
获取所述训练数据的第二特征信息,从所述第二特征信息中选择一个特征作为节点的分裂标准,其中,获取所述分裂标准的计算公式如下:Obtain the second feature information of the training data, and select a feature from the second feature information as the splitting criterion of the node, wherein the calculation formula for obtaining the splitting criterion is as follows:
其中,Info(D)为熵,G(A)是信息增益率,D是所述训练数据,m是所述标记属性的词的个数,pi是所述第二特征信息中选择的一个特征对应的所述标记属性的词,A是所述标记属性中的其中一个属性,v是对应于属性A测试的输出个数以及输出的划分个数;Among them, Info(D) is entropy, G(A) is the information gain rate, D is the training data, m is the number of words of the tag attribute, and p i is a selected one of the second feature information The word of the marked attribute corresponding to the feature, A is one of the attributes in the marked attribute, and v is the number of outputs corresponding to the attribute A test and the number of divisions of the output;
以所述标记属性的词作为根节点,根据预设的分类标准和所述分裂标准,构建决策树;Using the word of the marked attribute as the root node, construct a decision tree according to the preset classification standard and the splitting standard;
所述对所述关键信息进行文本数据处理,包括:The performing text data processing on the key information includes:
对所述关键信息进行属性分析,并对经过属性分析的关键信息进行标记,获取标记属性的目标词;Perform attribute analysis on the key information, and mark the key information subjected to the attribute analysis to obtain the target word of the marked attribute;
通过所述决策树对所述目标词进行数据分析与处理。Perform data analysis and processing on the target word through the decision tree.
一种可能的设计中,所述处理模块在执行所述在所述产品知识库中匹配与所述咨询意图信息对应的第二产品信息之后,还用于:In a possible design, after performing the matching of the second product information corresponding to the consultation intention information in the product knowledge base, the processing module is further configured to:
获取匹配度,其中,所述匹配度为所述产品知识库中的产品信息与所述咨询意图信息的对应程度;obtaining a matching degree, wherein the matching degree is the degree of correspondence between the product information in the product knowledge base and the consulting intent information;
检测所述匹配度是否小于第一预设阈值;detecting whether the matching degree is less than a first preset threshold;
当检测结果为是时,对所述咨询信息进行分析,获取待解决信息,其中,所述待解决信息包括产品的领域、名称、技术问题和问题类型;When the detection result is yes, analyze the consultation information to obtain information to be solved, wherein the information to be solved includes the field, name, technical problem and problem type of the product;
根据所述待解决信息匹配咨询解答人员,将所述咨询信息以及解答时间限制的提示信息发送到信息获取工具中,以使所述信息获取工具根据所述咨询信息和所述提示信息生成解决结果;Match consultation and answering personnel according to the to-be-solved information, and send the consultation information and the prompt information of the answering time limit to the information acquisition tool, so that the information acquisition tool generates a solution result according to the consultation information and the prompt information ;
获取所述信息获取工具接收的所述解决结果,并将所述解决信息与所述解决结果输入到所述对话咨询模型,对所述对话咨询模型进行训练,获取更新后的对话咨询模型。The solution result received by the information acquisition tool is acquired, the solution information and the solution result are input into the dialogue consultation model, the dialogue consultation model is trained, and an updated dialogue consultation model is obtained.
一种可能的设计中,所述处理模块在执行所述在所述产品知识库中匹配与所述咨询意图信息对应的第二产品信息之后,还用于:In a possible design, after performing the matching of the second product information corresponding to the consultation intention information in the product knowledge base, the processing module is further configured to:
获取多个匹配值,其中,所述匹配值为所述产品知识库中的产品信息与所述咨询意图信息的对应程度值;acquiring a plurality of matching values, wherein the matching value is a corresponding degree value between the product information in the product knowledge base and the consulting intention information;
计算多个所述匹配值,比较多个所述匹配值的大小,获取最大匹配值;Calculate a plurality of the matching values, compare the sizes of the multiple matching values, and obtain the maximum matching value;
检测所述最大匹配值是否小于第二预设阈值;detecting whether the maximum matching value is less than a second preset threshold;
若是,则通过输出目标推荐信息,其中,所述目标推荐信息包括所述最大匹配值对应的产品信息、所述产品信息匹配的推荐信息和与所述产品信息关联的产品信息。If so, output target recommendation information, wherein the target recommendation information includes product information corresponding to the maximum matching value, recommendation information matched with the product information, and product information associated with the product information.
本申请又一方面提供了一种计算机设备,其包括至少一个连接的处理器、存储器、显示器和输入输出单元,其中,所述存储器用于存储程序代码,所述处理器用于调用所述存储器中的程序代码来执行上述第一方面所述的方法。Yet another aspect of the present application provides a computer device, comprising at least one connected processor, a memory, a display, and an input-output unit, wherein the memory is used to store program codes, and the processor is used to invoke the memory in the memory The program code to execute the method described in the first aspect.
本申请又一方面提供了一种计算机存储介质,其包括指令,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。Yet another aspect of the present application provides a computer storage medium, which includes instructions that, when executed on a computer, cause the computer to perform the method described in the first aspect above.
相较于现有技术,本申请提供的方案中,通过接收用户输入的目标产品信息,通过所述对话咨询模型对所述目标产品信息进行分类,获取分类结果;根据所述分类结果构建产品信息库;当接收到用户输入的咨询信息时,将所述咨询信息输入到所述对话咨询模型,获取用户的咨询意图信息;在所述产品知识库中匹配与所述咨询意图信息对应的第二产品信息,并将所述第二产品信息的语义表示形式转换成话术语言,生成并输出咨询返回结果;对历史关键信息和历史咨询返回结果进行统计与分析,生成并输出多维度报表。由于是通过对产品信息进行整理与分类以构建产品信息库,以便快速而准确地获取所述咨询信息对应的产品信息,且在所述产品信息库中获取与所述咨询信息对应的产品信息关联的产品信息,以多方面、多角度展现所述咨询返回结果,以提高所述咨询返回结果的准确性和多用性;通过以话术语言和多维度报表显示所述咨询返回结果,以便用户多角度理解所述咨询返回结果,从而缩短用户对所述咨询返回结果内容的获取时间。通过提高获取咨询返回结果的准确性和获取速度,和缩短用户对所述咨询返回结果内容的获取时间,以实现用户对企业服务平台的咨询次数和咨询时间的减少,从而,提高企业服务平台对产品咨询的服务效率。Compared with the prior art, in the solution provided by the present application, the target product information input by the user is received, the target product information is classified by the dialogue consultation model, and the classification result is obtained; the product information is constructed according to the classification result. database; when receiving the consultation information input by the user, input the consultation information into the dialogue consultation model to obtain the consultation intention information of the user; match the second consultation intention information corresponding to the consultation intention information in the product knowledge base product information, and convert the semantic representation of the second product information into a vocabulary language, generate and output consultation return results; perform statistics and analysis on historical key information and historical consultation return results, and generate and output multi-dimensional reports. Since the product information is organized and classified to build a product information database, the product information corresponding to the consulting information can be quickly and accurately obtained, and the product information associated with the consulting information can be obtained in the product information database. product information, and present the returned results of the consultation in multiple aspects and angles to improve the accuracy and versatility of the returned results of the consultation; display the returned results of the consultation in terms of language and multi-dimensional Understand the return result of the consultation from an angle, thereby shortening the time for the user to obtain the content of the return result of the consultation. By improving the accuracy and speed of obtaining the returned results of the consultation, and shortening the time for users to obtain the content of the returned results of the consultation, the number of consultation times and consultation time of the user to the enterprise service platform can be reduced, thereby improving the enterprise service platform's response to the consultation. Product consulting service efficiency.
附图说明Description of drawings
图1为本申请实施例中咨询对话处理的方法的一种流程示意图;1 is a schematic flowchart of a method for processing a consultation dialogue in an embodiment of the application;
图2为本申请实施例中咨询返回结果的一种举例说明图;Fig. 2 is a kind of explanatory diagram of an example of the result of consultation return in the embodiment of the application;
图3为本申请实施例中目标产品信息的一种举例说明图;FIG. 3 is an illustrative diagram of target product information in the embodiment of the application;
图4为本申请实施例中第一子模型的一种结构示意图;4 is a schematic structural diagram of a first sub-model in an embodiment of the present application;
图5为本申请实施例中第一子模型的另一种结构示意图;FIG. 5 is another schematic structural diagram of the first sub-model in the embodiment of the present application;
图6为本申请实施例中用于咨询对话处理的装置的一种结构示意图;6 is a schematic structural diagram of an apparatus for processing a consultation dialogue in an embodiment of the present application;
图7为本申请实施例中计算机装置的一种结构示意图。FIG. 7 is a schematic structural diagram of a computer device in an embodiment of the present application.
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization, functional characteristics and advantages of the purpose of the present application will be further described with reference to the accompanying drawings in conjunction with the embodiments.
具体实施方式Detailed ways
应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块,本申请中所出现的模块的划分,仅仅是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个模块可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行。It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application. The terms "first", "second" and the like in the description and claims of the present application and the above drawings are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence. It is to be understood that data so used may be interchanged under appropriate circumstances so that the embodiments described herein can be practiced in sequences other than those illustrated or described herein. Furthermore, the terms "comprising" and "having", and any variations thereof, are intended to cover non-exclusive inclusion, for example, a process, method, system, product or device comprising a series of steps or modules is not necessarily limited to those expressly listed Those steps or modules, but may include other steps or modules not explicitly listed or inherent to these processes, methods, products or devices, the division of modules appearing in this application is only a logical division , in practical applications, there may be other division methods, for example, multiple modules may be combined or integrated in another system, or some features may be ignored or not implemented.
本申请提供一种咨询对话处理的方法、装置、设备及存储介质,可用于企业智能平台对产品的咨询管理。The present application provides a method, device, device and storage medium for consulting dialog processing, which can be used for consulting management of products by an enterprise intelligence platform.
为解决上述技术问题,本申请主要提供以下技术方案:In order to solve the above-mentioned technical problems, the application mainly provides the following technical solutions:
通过接收用户输入的目标产品信息,通过所述对话咨询模型对所述目标产品信息进行分类,获取分类结果;根据所述分类结果构建产品信息库;当接收到用户输入的咨询信息时,将所述咨询信息输入到所述对话咨询模型,获取用户的咨询意图信息;在所述产品知识库中匹配与所述咨询意图信息对应的第二产品信息,并将所述第二产品信息的语义表示形式转换成话术语言,生成并输出咨询返回结果;对历史关键信息和历史咨询返回结果进行统计与分析,生成并输出多维度报表。由于是通过对产品信息进行整理与分类以构建产品信息库,以便快速而准确地获取所述咨询信息对应的产品信息,且在所述产品信息库中获取与所述咨询信息对应的产品信息关联的产品信息,以多方面、多角度展现所述咨询返回结果,以提高所述咨询返回结果的准确性和多用性;通过以话术语言和多维度报表显示所述咨询返回结果,以便用户多角度理解所述咨询返回结果,从而缩短用户对所述咨询返回结果内容的获取时间。通过提高获取咨询返回结果的准确性和获取速度,和缩短用户对所述咨询返回结果内容的获取时间,以实现用户对企业服务平台的咨询次数和咨询时间的减少,从而,提高企业服务平台对产品咨询的服务效率。By receiving the target product information input by the user, classifying the target product information through the dialogue consultation model to obtain a classification result; building a product information database according to the classification result; when receiving the consultation information input by the user, Input the consultation information into the dialogue consultation model to obtain the consultation intention information of the user; match the second product information corresponding to the consultation intention information in the product knowledge base, and express the semantics of the second product information The form is converted into a vocabulary language, and the consultation return results are generated and output; the historical key information and historical consultation return results are counted and analyzed, and multi-dimensional reports are generated and output. Since the product information is organized and classified to build a product information database, the product information corresponding to the consulting information can be quickly and accurately obtained, and the product information associated with the consulting information can be obtained in the product information database. product information, and present the returned results of the consultation in multiple aspects and angles to improve the accuracy and versatility of the returned results of the consultation; display the returned results of the consultation in terms of language and multi-dimensional Understand the return result of the consultation from an angle, thereby shortening the time for the user to obtain the content of the return result of the consultation. By improving the accuracy and speed of obtaining the returned results of the consultation, and shortening the time for users to obtain the content of the returned results of the consultation, the number of consultation times and consultation time of the user to the enterprise service platform can be reduced, thereby improving the enterprise service platform's response to the consultation. Product consulting service efficiency.
请参照图1,以下对本申请提供一种咨询对话处理的方法进行举例说明,所述方法包括:Referring to FIG. 1, the following provides an example of a method for processing a consultation dialogue provided by the present application, and the method includes:
101、获取训练信息,将训练信息输入到模型中,对模型进行训练,以获取对话咨询模型。101. Obtain training information, input the training information into the model, and train the model to obtain a dialogue consultation model.
其中,对话咨询模型用于对用户输入的目标产品信息进行分析与处理,以构建产品信息库,对用户输入的咨询信息进行分析与处理,以获取与咨询信息对应的返回结果;训练信息包括多种第一产品信息、咨询对话信息和网络知识信息;对话咨询模型包括第一子模型和第二子模型。Among them, the dialogue consultation model is used to analyze and process the target product information input by the user to build a product information database, and analyze and process the consultation information input by the user to obtain the return result corresponding to the consultation information; the training information includes multiple A first product information, consultation dialogue information and network knowledge information; the dialogue consultation model includes a first sub-model and a second sub-model.
网络知识信息包括:与所述第一产品信息的产品所属的领域相同和/或相似的除所述第一产品信息外的第一其他产品信息,和与所述产品信息的产品所属的类型相同/或相似的除所述第一产品信息外的第二其他产品信息。The network knowledge information includes: first other product information other than the first product information that is the same and/or similar to the field to which the product of the first product information belongs, and is of the same type as the product of the product information /or similar second product information other than the first product information.
对话咨询模型用于对用户输入的目标产品信息进行分析与处理,以构建产品信息库,对用户输入的咨询信息进行分析与处理,以获取与所述咨询信息对应的咨询返回结果(也可为关联的返回结果)。The dialogue consultation model is used to analyze and process the target product information input by the user to build a product information database, and analyze and process the consultation information input by the user to obtain the consultation return result corresponding to the consultation information. associated return results).
一些实施方式中,咨询返回结果包括被咨询的产品的信息和推荐的与被咨询的产品所属的领域、类型和特定性能相同或相似的产品的信息,如图2所示。图2中内容仅作举例参考,其内容准确性和实际操作与否不作考虑。In some embodiments, the consultation return result includes the information of the product being consulted and the information of the recommended product with the same or similar field, type and specific performance as the product being consulted, as shown in FIG. 2 . The content in Figure 2 is for reference only, and its accuracy and actual operation are not considered.
102、接收用户输入的目标产品信息,通过对话咨询模型对目标产品信息进行分类,获取分类结果。102. Receive the target product information input by the user, classify the target product information through a dialogue consultation model, and obtain a classification result.
其中,分类结果包括目标产品的属性、所属领域和生产阶段。Among them, the classification results include the attributes, fields and production stages of the target product.
目标产品信息包括产品的各类信息、产品的负责人员以及负责人员的工作流程节点信息,所述工作流程节点信息包括产品的项目制定与决策、产品前期各项工作的部署、产品中期各项工作的部署和产品后期各项工作的部署。例如:当用户在终端设备中输入“好福利APP产品”时,对话咨询模型将输出与好福利APP产品相关的功能、结构和性能等产品信息以及产品研发的团队的个人信息和其负责的内容,如图3所示。图3中内容仅作举例参考,其内容准确性和实际操作与否不作考虑。The target product information includes various types of information about the product, the person in charge of the product, and the workflow node information of the person in charge. The workflow node information includes the project formulation and decision-making of the product, the deployment of various work in the early stage of the product, and the work in the mid-term of the product. The deployment of the product and the deployment of various work in the later stage of the product. For example: when the user enters "Haofi APP product" in the terminal device, the dialogue consultation model will output product information such as the function, structure and performance related to the Haofi APP product, as well as the personal information of the product development team and the content it is responsible for ,As shown in Figure 3. The content in FIG. 3 is for reference only, and its accuracy and actual operation are not considered.
103、根据分类结果建立第一对应关系和/或第二对应关系,根据第一对应关系或第二对应关系构建产品信息库。103. Establish a first correspondence relationship and/or a second correspondence relationship according to the classification result, and build a product information database according to the first correspondence relationship or the second correspondence relationship.
其中,第一对应关系包括目标产品信息与目标信息的对应关系,第二对应关系包括归类信息、产品特征信息与推荐信息的对应关系。Wherein, the first corresponding relationship includes the corresponding relationship between target product information and target information, and the second corresponding relationship includes the corresponding relationship between classification information, product feature information and recommendation information.
一些实施方式中,对话咨询模型包括由收集的海量网络数据创建的知识库系统,可用于在知识库系统的基础上构建产品信息库。In some embodiments, the dialogue consultation model includes a knowledge base system created from the collected massive network data, which can be used to build a product information base on the basis of the knowledge base system.
通过构建产品信息库,以便于根据目标产品信息快速而准确地获取与目标产品信息对应的目标信息。By constructing a product information base, the target information corresponding to the target product information can be quickly and accurately obtained according to the target product information.
104、当接收到用户输入的咨询信息时,将所述咨询信息输入到所述第一子模型中,通过所述第一子模型从所述咨询信息中获取关键信息。104. When receiving the consultation information input by the user, input the consultation information into the first sub-model, and obtain key information from the consultation information through the first sub-model.
第一子模型包括图像识别子模型、文本识别子模型和音视频识别子模型,第一子模型还包括分类器。图像识别子模型、文本识别子模型和音视频识别子模型并行连接,图像识别子模型、文本识别子模型和音视频识别子模型分别与分类器串联。The first sub-model includes an image recognition sub-model, a text recognition sub-model and an audio and video recognition sub-model, and the first sub-model further includes a classifier. The image recognition sub-model, the text recognition sub-model and the audio and video recognition sub-model are connected in parallel, and the image recognition sub-model, the text recognition sub-model and the audio and video recognition sub-model are respectively connected in series with the classifier.
例如:用户在APP中输入的咨询信息为一张产品图片,咨询对话模型接收该产品图片,并将产品图片输入到分类器中,分类器对产品图片进行识别,将产品图片输入到图像识别子模型中,由图像识别子模型识别与获取产品图片中产品的形状,根据获取的产品的形状在产品图像数据库中匹配对应的产品图像,并获取产品图像对应的产品名称,以产品名称作为咨询信息的关键信息,如图4所示。For example: the consultation information entered by the user in the APP is a product image, the consultation dialogue model receives the product image, and inputs the product image into the classifier, the classifier identifies the product image, and inputs the product image into the image recognition subclass In the model, the image recognition sub-model identifies and obtains the shape of the product in the product image, matches the corresponding product image in the product image database according to the obtained product shape, and obtains the product name corresponding to the product image, and uses the product name as consulting information. key information, as shown in Figure 4.
一些实施方式中,第一子模型还包括多个过滤器,分别为图像识别子模型中的过滤器1、文本识别子模型中的过滤器2和音视频识别子模型中的过滤器3。图像识别子模型、文本识别子模型和音视频识别子模型并行连接,图像识别子模型、文本识别子模型和所述音视频识别子模型分别与一个过滤器串联。In some embodiments, the first sub-model further includes a plurality of filters, which are filter 1 in the image recognition sub-model, filter 2 in the text recognition sub-model, and filter 3 in the audio-video recognition sub-model. The image recognition sub-model, the text recognition sub-model and the audio and video recognition sub-model are connected in parallel, and the image recognition sub-model, the text recognition sub-model and the audio and video recognition sub-model are respectively connected in series with a filter.
例如:用户在APP中输入的咨询信息为一张产品图片,咨询对话模型接收该产品图片,并将产品图片输入到图像识别子模型、文本识别子模型和音视频识别子模型中,由图像识别子模型、文本识别子模型和音视频识别子模型中各自的过滤器对产品图片进行识别,若图像识别子模型中的过滤器识别到输入的信息为图片,则由图像识别子模型继续进行工作,识别与获取产品图片中的产品的形状,根据获取的产品的形状在产品图像数据库中匹配对应的产品图像,并获取产品图像对应的产品名称,以产品名称作为所述咨询信息的关键信息;若文本识别子模型中的过滤器识别输入的信息为非文本信息,则文本识别子模型不输出;音视频识别子模型同理。如图5所示。For example: the consultation information entered by the user in the APP is a product picture, the consultation dialogue model receives the product picture, and inputs the product picture into the image recognition sub-model, text recognition sub-model and audio and video recognition sub-model, and the image recognition sub-model The respective filters in the model, text recognition sub-model and audio and video recognition sub-model recognize the product image. If the filter in the image recognition sub-model recognizes that the input information is a picture, the image recognition sub-model will continue to work and recognize Obtain the shape of the product in the product image, match the corresponding product image in the product image database according to the obtained product shape, and obtain the product name corresponding to the product image, and use the product name as the key information of the consultation information; if the text The filter in the recognition sub-model recognizes that the input information is non-text information, and the text recognition sub-model does not output; the same is true for the audio and video recognition sub-model. As shown in Figure 5.
本申请可通过在线视频与机器人进行对话咨询、文本输入和图片输入的方式进行产品信息的查阅,由此可见,本申请能够实现多途径输入,以提高用户的体验。In this application, product information can be consulted by means of online video and robot dialogue consultation, text input and picture input. It can be seen that this application can realize multi-channel input to improve user experience.
105、将关键信息输入到第二子模型,通过第二子模型分析关键信息以获取用户的咨询意图信息。105. Input the key information into the second sub-model, and analyze the key information through the second sub-model to obtain the consultation intention information of the user.
第二子模型用于对关键信息进行分析与处理,以获取用户的咨询意图信息。第二子模型对接收到的关键信息进行分析,并获取用户的咨询意图信息,所获取的用户的咨询意图信息可包括多种内容。The second sub-model is used to analyze and process key information to obtain the user's consulting intention information. The second sub-model analyzes the received key information, and obtains the consultation intention information of the user, and the obtained consultation intention information of the user may include various contents.
例如:第二子模型接收的关键信息为“存储卡,使用”,第二子模型则对关键信息“存储卡,使用”进行分析,分析并获取其可能对应的用户的咨询意图信息为“存储卡的存储方式”、“存储卡可匹配其他什么产品一起使用”和“存储卡使用主要事项和在使用过程中遇到的相关问题及其解决方案”。For example, the key information received by the second sub-model is "memory card, use", and the second sub-model analyzes the key information "memory card, use", analyzes and obtains the possible corresponding user's consultation intention information as "storage card, use" How to store the card", "What other products can be used with the memory card" and "The main issues of using the memory card and the related problems encountered during use and their solutions".
106、在产品知识库中匹配与咨询意图信息对应的第二产品信息,并将第二产品信息的语义表示形式转换成话术语言,生成并输出咨询返回结果。106. Match the second product information corresponding to the consultation intention information in the product knowledge base, convert the semantic representation of the second product information into a vocabulary language, and generate and output a consultation return result.
通过将第二产品信息的语义表示形式转换成话术语言,以减少咨询者对第二产品信息的语言的销售表达形式构思的时间,从而便于咨询者对第二产品信息的快速使用。By converting the semantic representation of the second product information into a discourse language, the time required for the consultant to conceive the sales expression in the language of the second product information is reduced, thereby facilitating the rapid use of the second product information by the consultant.
107、对历史关键信息和历史咨询返回结果进行统计与分析,生成并输出多维度报表。107. Perform statistics and analysis on historical key information and historical consultation results, and generate and output multi-dimensional reports.
其中,历史关键信息包括在预设时间内从接收到的多次咨询信息中获取的关键信息,历史咨询返回结果包括在预设时间内根据接收到的多次咨询信息中获取的咨询返回结果。The historical key information includes the key information obtained from the received multiple consultation information within a preset time, and the historical consultation return result includes the consultation return result obtained from the multiple received consultation information within the preset time.
多维度报表至少包括以下的三项:咨询的用户人数、咨询内容类型,咨询次数、被重复咨询的信息、后台人工处理的咨询信息和后台人工已处理与未处理的咨询信息等。The multi-dimensional report includes at least the following three items: the number of users consulted, the type of consultation content, the number of consultations, the information of repeated consultations, the consultation information processed manually in the background, and the consultation information processed and unprocessed manually in the background.
与现有机制相比,本申请实施例中,通过接收用户输入的目标产品信息,通过对话咨询模型对目标产品信息进行分类,获取分类结果;根据分类结果构建产品信息库;当接收到用户输入的咨询信息时,将咨询信息输入到对话咨询模型,获取用户的咨询意图信息;在产品知识库中匹配与咨询意图信息对应的第二产品信息,并将第二产品信息的语义表示形式转换成话术语言,生成并输出咨询返回结果;对历史关键信息和历史咨询返回结果进行统计与分析,生成并输出多维度报表。由于是通过对产品信息进行整理与分类以构建产品信息库,以便快速而准确地获取咨询信息对应的产品信息,且在产品信息库中获取与咨询信息对应的产品信息关联的产品信息,以多方面、多角度展现咨询返回结果,以提高咨询返回结果的准确性和多用性;通过以话术语言和多维度报表显示咨询返回结果,以便用户多角度理解咨询返回结果,从而缩短用户对咨询返回结果内容的获取时间。通过提高获取咨询返回结果的准确性和获取速度,和缩短用户对咨询返回结果内容的获取时间,以实现用户对企业服务平台的咨询次数和咨询时间的减少,从而,提高企业服务平台对产品咨询的服务效率。Compared with the existing mechanism, in the embodiment of the present application, by receiving the target product information input by the user, the target product information is classified through the dialogue consultation model, and the classification result is obtained; the product information database is constructed according to the classification result; When the consultation information is received, the consultation information is input into the dialogue consultation model to obtain the consultation intention information of the user; the second product information corresponding to the consultation intention information is matched in the product knowledge base, and the semantic representation of the second product information is converted into It can generate and output the results of consultations using the terminology language; conduct statistics and analysis on historical key information and historical consultation results, and generate and output multi-dimensional reports. Because the product information is organized and classified to build a product information database, so as to obtain the product information corresponding to the consulting information quickly and accurately, and obtain the product information related to the product information corresponding to the consulting information in the product information database. Display the results of the consultation return from various aspects and multiple angles to improve the accuracy and versatility of the consultation return results; display the consultation return results in terms of language and multi-dimensional reports, so that users can understand the consultation return results from multiple angles, thereby shortening the user's response to consultation returns. The acquisition time of the result content. By improving the accuracy and speed of obtaining the results returned by the consultation, and shortening the time for users to obtain the content of the returned consultation results, users can reduce the number of consultations and consultation time for the enterprise service platform, thereby improving the enterprise service platform's product consultation. service efficiency.
可选的,在本申请的一些实施方式中,上述的获取训练信息,将训练信息输入到模型中,对模型进行训练,以获取对话咨询模型,包括:Optionally, in some embodiments of the present application, the above-mentioned obtaining training information, inputting the training information into the model, and training the model to obtain the dialogue consultation model, include:
获取训练信息,将训练信息输入至神经网络模型,按照预设关联规则分别对第一产品信息和网络知识信息进行分类,分别获取第一关联信息和第二关联信息,以及获取咨询对话信息的咨询目的信息;Obtain training information, input the training information into the neural network model, classify the first product information and network knowledge information respectively according to the preset association rules, obtain the first associated information and the second associated information, and obtain the consultation of consultation dialogue information purpose information;
建立咨询目的信息、第一关联信息和第二关联信息的对应关系,当神经网络模型在检测到咨询目的信息时,输出第一关联信息和第二关联信息,将咨询目的信息、对应关系、第一关联信息和第二关联信息输入至神经网络模型;Establish a corresponding relationship between the consultation purpose information, the first associated information and the second associated information. When the neural network model detects the consultation purpose information, it outputs the first associated information and the second associated information, and the consultation purpose information, the corresponding relationship, the first associated information an association information and a second association information are input into the neural network model;
对神经网络模型进行多组参数训练,以获取多组参数下的待训练神经网络模型;Perform multiple sets of parameter training on the neural network model to obtain the neural network model to be trained under multiple sets of parameters;
评估神经网络模型在每一组参数下的误差,以获取多个误差值;Evaluate the error of the neural network model under each set of parameters to obtain multiple error values;
通过计算多个误差值的大小以获取最小误差值,将最小误差值对应的一组参数作为神经网络模型的参数,获取目标神经网络模型,对目标神经网络模型进行部署,获取对话咨询模型,其中,部署是指对应用目标神经网络模型的配置文件、用户手册、帮助文档进行打包、安装、配置以及发布。The minimum error value is obtained by calculating the size of multiple error values, a set of parameters corresponding to the minimum error value is used as the parameters of the neural network model, the target neural network model is obtained, the target neural network model is deployed, and the dialogue consultation model is obtained, wherein , deployment refers to packaging, installing, configuring and publishing the configuration files, user manuals, and help documents of the application target neural network model.
其中,神经网络模型是由输入节点、输出节点和节点层组成。参数至少包括卷积核的尺寸、学习率η、批batch参数、神经网络层数、激活函数、优化器、批大小以及训练的超参数epoch数量中的至少一项。Among them, the neural network model is composed of input nodes, output nodes and node layers. The parameters include at least one of the size of the convolution kernel, the learning rate η, the batch parameter, the number of neural network layers, the activation function, the optimizer, the batch size, and the number of hyperparameter epochs for training.
通过对多组参数下的待训练神经网络模型进行误差评估,以提高神经网络模型的准确性。通过对经过误差评估的神经网络模型进行部署,以获取功能相对完善和性能相对稳定的对话咨询模型。The accuracy of the neural network model is improved by evaluating the error of the neural network model to be trained under multiple sets of parameters. By deploying the error-evaluated neural network model, a dialogue consultation model with relatively complete functions and relatively stable performance can be obtained.
可选的,在本申请的一些实施方式中,上述的对话咨询模型包括回归分析模型,根据分类结果建立第一对应关系和/或第二对应关系,根据第一对应关系或第二对应关系构建产品信息库之前,方法包括:Optionally, in some embodiments of the present application, the above-mentioned dialogue consultation model includes a regression analysis model, a first corresponding relationship and/or a second corresponding relationship is established according to the classification result, and a first corresponding relationship or a second corresponding relationship is established according to the classification result. Before the product information base, methods include:
向对话咨询模型输入分析数据,其中,分析数据包括产品使用者的信息与购买信息、产品销售的情况信息、各地的消费水平与消费方向以及对于产品领域各地的购买情况;Input analysis data into the dialogue consultation model, wherein the analysis data includes product user information and purchase information, product sales situation information, consumption level and consumption direction of various places, and purchase situation of various places in the product field;
通过回归分析模型对分析数据进行回归分析,以获取推荐信息,其中,推荐信息包括产品的发展趋势、可发展地域、可销售人群和产品所属领域的分析产品之外的产品信息;Perform regression analysis on the analysis data through a regression analysis model to obtain recommendation information, where the recommendation information includes product development trends, developable regions, saleable groups, and product information other than the analysis products in the field to which the product belongs;
根据分类结果建立第一对应关系和/或第二对应关系,根据第一对应关系或第二对应关系构建产品信息库,包括:Establishing a first correspondence and/or a second correspondence according to the classification results, and building a product information database according to the first correspondence or the second correspondence, including:
将目标产品信息按照产品功能、产品类型和产品结构的类别进行归类,以获取归类信息;Classify the target product information according to the categories of product functions, product types and product structures to obtain classification information;
获取归类信息的第一特征信息;obtaining the first feature information of the classification information;
建立归类信息、第一特征信息与推荐信息的第二对应关系,以获取产品信息库。A second correspondence between the classification information, the first feature information and the recommendation information is established to obtain a product information database.
通过对包括产品使用者的信息与购买信息、产品销售的情况信息、各地的消费水平与消费方向以及对于产品领域各地的购买情况的分析数据进行回归分析,获取多类别内容的推荐信息,以增强对话咨询模块的咨询返回结果的内容的多方面性,从而提高对话咨询模块对应的企业服务平台的实用性和服务效率。By performing regression analysis on the analysis data including product user information and purchase information, product sales information, consumption level and consumption direction in various places, and analysis data of the purchase situation in various parts of the product field, the recommendation information of multi-category content is obtained to enhance the The content of the results returned by the consultation of the dialogue consultation module is multifaceted, thereby improving the practicability and service efficiency of the enterprise service platform corresponding to the dialogue consultation module.
通过先对目标产品信息进行分类以获取归类信息,然后建立归类信息的对应关系,来创建产品信息库,以使产品信息库的信息分类细致化,从而提高在产品信息库获取信息的效率和准确性。By first classifying the target product information to obtain the classification information, and then establishing the corresponding relationship of the classification information, the product information database is created, so that the information classification of the product information database is refined, thereby improving the efficiency of obtaining information in the product information database. and accuracy.
可选的,在本申请的一些实施方式中,上述的对话咨询模型包括胶囊网络模型,将关键信息输入到第二子模型,通过第二子模型分析关键信息以获取用户的咨询意图信息,包括:Optionally, in some embodiments of the present application, the above-mentioned dialogue consultation model includes a capsule network model, and the key information is input into the second sub-model, and the key information is analyzed by the second sub-model to obtain the user's consultation intention information, including: :
至少对关键信息进行以下文本数据处理方式之一,获取目标咨询信息:领域分析、文本纠错、文本补全、指代消解、词语分解、词性标记、实体识别和文本特征提取;Perform at least one of the following text data processing methods on key information to obtain target consultation information: domain analysis, text error correction, text completion, metaphor elimination, word decomposition, part-of-speech tagging, entity recognition, and text feature extraction;
通过胶囊网络模型对目标咨询信息进行意图分类,以便于意图分类信息;Intent classification is performed on the target consultation information through the capsule network model, so as to facilitate the intention classification information;
获取意图分类信息中的属性信息,并对属性信息进行推理与上下文决策,获取用户的咨询意图信息。Obtain the attribute information in the intent classification information, and perform reasoning and contextual decision on the attribute information to obtain the user's consulting intent information.
由于胶囊网络模型具有所需训练数据少和较好分类辨识度的特性,以及通过上下文决策以使获取的信息具有连贯性从而使获取的信息更具准确性,因而,通过胶囊网络模型对目标咨询信息进行意图分类,并根据意图分类信息进行推理与上下文决策,以提高获取用户的咨询意图信息的准确性。Because the capsule network model has the characteristics of less training data required and better classification and identification, and through contextual decision-making to make the obtained information coherent, the obtained information is more accurate. Therefore, the capsule network model is used to consult the target. The information is classified into intent, and reasoning and contextual decision-making are performed according to the intent classification information, so as to improve the accuracy of obtaining the user's consulting intent information.
可选的,在本申请的一些实施方式中,上述的对关键信息进行文本数据处理之前,方法还包括:Optionally, in some embodiments of the present application, before the above-mentioned text data processing is performed on the key information, the method further includes:
获取训练数据,其中,训练数据包括陈述查询语言和疑问咨询语言;Obtain training data, wherein the training data includes statement query language and query language;
对训练数据进行属性分析,并对经过属性分析的训练数据进行标记,以获取标记属性的词,其中,属性分析包括专有名词属性分析、性别属性分析、单复数属性分析、距离属性分析和缩略匹配属性分析;Attribute analysis is performed on the training data, and the attribute-analyzed training data is marked to obtain words with marked attributes. The attribute analysis includes proper noun attribute analysis, gender attribute analysis, singular and plural attribute analysis, distance attribute analysis and abbreviation attribute analysis. Slightly matching attribute analysis;
获取训练数据的第二特征信息,从第二特征信息中选择一个特征作为节点的分裂标准,其中,获取分裂标准的计算公式如下:Obtain the second feature information of the training data, and select a feature from the second feature information as the splitting criterion of the node, wherein the calculation formula for obtaining the splitting criterion is as follows:
其中,Info(D)为熵,G(A)是信息增益率,D是训练数据,m是标记属性的词的个数,pi是第二特征信息中选择的一个特征对应的标记属性的词,A是标记属性中的其中一个属性,v是对应于属性A测试的输出个数以及输出的划分个数;Among them, Info(D) is the entropy, G(A) is the information gain rate, D is the training data, m is the number of words with tag attributes, and p i is the tag attribute corresponding to a feature selected in the second feature information. word, A is one of the attributes in the tag attribute, v is the number of outputs corresponding to the attribute A test and the number of output divisions;
以标记属性的词作为根节点,根据预设的分类标准和分裂标准,构建决策树;Using the word that marks the attribute as the root node, build a decision tree according to the preset classification criteria and split criteria;
对关键信息进行文本数据处理,还包括:Text data processing of key information, including:
对关键信息进行属性分析,并对经过属性分析的关键信息进行标记,获取标记属性的目标词;Perform attribute analysis on the key information, mark the key information after the attribute analysis, and obtain the target word of the marked attribute;
通过决策树对目标词进行数据分析与处理。The target word is analyzed and processed through the decision tree.
通过信息增益率来选择属性,克服用信息增益选择属性时偏向选择取值多的属性的不足,以在树构造过程中进行剪枝,以完成对连续属性的离散化处理,以对不完整数据进行处理。Attributes are selected by the information gain rate to overcome the deficiencies of selecting attributes with more values when using information gain to select attributes, so as to perform pruning in the process of tree construction to complete the discretization of continuous attributes, so that incomplete data can be processed by pruning. to be processed.
通过以标记属性的词作为根节点,根据预设的分类标准和分裂标准,构建决策树,以使所构建的决策树的各节点对应目标词的信息多角度、全面,从而提高根据目标词获取对应的用户的咨询意图信息的准确性。A decision tree is constructed by taking the word with marked attributes as the root node and according to the preset classification criteria and splitting criteria, so that the information of each node of the constructed decision tree corresponding to the target word is multi-angle and comprehensive. The accuracy of the corresponding user's consultation intention information.
可选的,在本申请的一些实施方式中,上述的在产品知识库中匹配与咨询意图信息对应的第二产品信息之后,方法还包括:Optionally, in some embodiments of the present application, after the above-mentioned second product information corresponding to the consultation intention information is matched in the product knowledge base, the method further includes:
获取匹配度,其中,匹配度为产品知识库中的产品信息与咨询意图信息的对应程度;Obtain the matching degree, where the matching degree is the degree of correspondence between the product information in the product knowledge base and the consulting intent information;
检测匹配度是否小于第一预设阈值;detecting whether the matching degree is less than a first preset threshold;
当检测结果为是时,对咨询信息进行分析,获取待解决信息,其中,待解决信息包括产品的领域、名称、技术问题和问题类型;When the detection result is yes, analyze the consultation information to obtain the information to be solved, wherein the information to be solved includes the field, name, technical problem and problem type of the product;
根据待解决信息匹配咨询解答人员,将咨询信息以及解答时间限制的提示信息发送到信息获取工具中,以使信息获取工具根据咨询信息和提示信息生成解决结果;Match the consulting and answering personnel according to the information to be solved, and send the consulting information and the prompt information of the answering time limit to the information acquisition tool, so that the information acquisition tool can generate a solution result according to the consulting information and prompt information;
获取信息获取工具接收的解决结果,并将解决信息与解决结果输入到对话咨询模型,对对话咨询模型进行训练,获取更新后的对话咨询模型。Obtain the solution result received by the information acquisition tool, input the solution information and the solution result into the dialogue consultation model, train the dialogue consultation model, and obtain the updated dialogue consultation model.
对产品知识库中的产品信息与咨询意图信息匹配度与第一预设阈值进行比较,以在产品知识库中的产品信息获取的信息的相关性不高的时候返送给相关的工作人员,以获取更为准确的信息,并对获取的工作人员返回的解决结果进行训练,在再识别到相关的待解决信息时,对话咨询模型自动获取并输出相应的咨询返回结果。通过该操作,以提高咨询返回结果的准确性和对话咨询模型的实用性,从而提高对话咨询模型对应的企业服务平台的服务效率。The matching degree between the product information in the product knowledge base and the consultation intention information is compared with the first preset threshold, so as to return it to the relevant staff when the relevance of the information obtained from the product information in the product knowledge base is not high, so as to Obtain more accurate information and train the solution results returned by the obtained staff. When the relevant information to be solved is identified again, the dialogue consultation model automatically obtains and outputs the corresponding consultation return results. Through this operation, the accuracy of the returned result of the consultation and the practicability of the dialogue consultation model are improved, thereby improving the service efficiency of the enterprise service platform corresponding to the dialogue consultation model.
例如:咨询信息为“理财APP无反应”,咨询意图信息为“理财APP对信息的分析处理无反应对应的解决方案”,第一预设阈值为“不小于75%”。根据“理财APP对信息的分析处理无反应对应的解决方案”的咨询意图信息在产品知识库中的产品信息获取的信息的匹配度为40%,40%小于75%,则对咨询信息进行分析,以获取“理财APP对信息的分析处理无反应该如何解决方案”和“服务管理平台-理财APP-故障问题-后台操作无反应-如何进行操作”的待解决信息,将该待解决信息和解答时间限制的提示信息以邮件形式发送给技术部相关负责人,接收到技术部相关负责人返回的解决结果后,将解决信息与解决结果输入到对话咨询模型,对对话咨询模型进行训练,获取更新后的对话咨询模型。当对话咨询模型再次检测到相同或相似的待解决信息时,自动获取并输出解决结果。For example, the consultation information is "No response to the wealth management APP", the consultation intention information is "Solution corresponding to the failure of the wealth management APP to analyze and process the information", and the first preset threshold is "not less than 75%". According to the “solution corresponding to the “financial management APP does not respond to the analysis and processing of information”, the matching degree of the information obtained from the consulting intention information in the product information in the product knowledge base is 40%, and 40% is less than 75%, then the consulting information is analyzed. , in order to obtain the pending information of “How to solve the financial management APP if there is no response to the analysis and processing of information” and “Service management platform-financial management APP-fault problem-no response to the background operation-how to operate”, and the pending information and The prompt information for answering the time limit is sent to the relevant person in charge of the technical department in the form of email. After receiving the solution result returned by the relevant person in charge of the technical department, the solution information and the solution result are input into the dialogue consultation model, and the dialogue consultation model is trained and obtained. Updated conversational consultation model. When the dialogue consultation model detects the same or similar information to be solved again, it automatically obtains and outputs the solution result.
可选的,在本申请的一些实施方式中,上述的在产品知识库中匹配与咨询意图信息对应的第二产品信息之后,方法还包括:Optionally, in some embodiments of the present application, after the above-mentioned second product information corresponding to the consultation intention information is matched in the product knowledge base, the method further includes:
获取多个匹配值,其中,匹配值为产品知识库中的产品信息与咨询意图信息的对应程度值;Obtaining a plurality of matching values, wherein the matching value is the corresponding degree value between the product information in the product knowledge base and the consulting intention information;
计算多个匹配值,比较多个匹配值的大小,获取最大匹配值;Calculate multiple matching values, compare the sizes of multiple matching values, and obtain the largest matching value;
检测最大匹配值是否小于第二预设阈值;detecting whether the maximum matching value is less than a second preset threshold;
若是,则输出目标推荐信息,其中,目标推荐信息包括最大匹配值对应的产品信息、产品信息匹配的推荐信息和与产品信息关联的产品信息。If so, output target recommendation information, wherein the target recommendation information includes product information corresponding to the maximum matching value, recommendation information matched with the product information, and product information associated with the product information.
通过比较根据咨询意图信息在产品知识库中获取的多个与咨询意图信息相关的产品信息中的最大匹配值与第二预设阈值的大小,以根据判断结果相应地输出目标推荐结果,提高咨询返回结果的准确性或相关性,以便于咨询者对咨询返回结果的信息获取和减少对企业服务平台的咨询对话次数,进而,提高对话咨询模型对应的企业服务平台的服务效率。By comparing the maximum matching value among the plurality of product information related to the consultation intention information obtained in the product knowledge base according to the consultation intention information and the size of the second preset threshold, the target recommendation result can be output correspondingly according to the judgment result, and the consultation intention can be improved. The accuracy or relevance of the returned results is convenient for the consultant to obtain the information of the returned results of the consultation and reduce the number of consultation dialogues with the enterprise service platform, thereby improving the service efficiency of the enterprise service platform corresponding to the dialogue consultation model.
可选的,在本申请的一些实施方式中,上述的评估神经网络模型在每一组参数下的误差,以获取多个误差值,包括:Optionally, in some embodiments of the present application, the above-mentioned evaluation of the error of the neural network model under each set of parameters to obtain a plurality of error values, including:
分别获取神经网络模型在每组参数下的测试值和理论值;Obtain the test value and theoretical value of the neural network model under each set of parameters;
计算测试值与理论值,获取神经网络模型在每组参数下的误差,以获取多个误差值,获取多个误差值的计算公式如下:Calculate the test value and theoretical value, and obtain the error of the neural network model under each set of parameters to obtain multiple error values. The calculation formula for obtaining multiple error values is as follows:
其中,H(p,q)为交叉熵代价函数,p(x)是理论值,q(x)是测试值,N是样本个数。Among them, H(p,q) is the cross-entropy cost function, p(x) is the theoretical value, q(x) is the test value, and N is the number of samples.
其中,测试值是指测试集中的输出的与咨询对话信息对应的返回结果的实际准确率,理论值指的是指测试集中的输出的与咨询对话信息对应的返回结果的期望准确率。Wherein, the test value refers to the actual accuracy rate of the returned results corresponding to the consultation dialogue information output in the test set, and the theoretical value refers to the expected accuracy rate of the output results corresponding to the consultation dialogue information in the test set.
通过计算交叉熵代价函数来计算误差值,以衡量神经网络模型模型预测的好坏。The error value is calculated by calculating the cross-entropy cost function to measure how good the prediction of the neural network model is.
可选的,在本申请的一些实施方式中,上述的获取训练信息,将训练信息输入到模型中,对模型进行训练,以获取对话咨询模型,包括:Optionally, in some embodiments of the present application, the above-mentioned obtaining training information, inputting the training information into the model, and training the model to obtain the dialogue consultation model, include:
标记多种第一产品信息的技术领域、产品类型、产品属性和产品描述类型,以及标记网络知识信息的技术领域、产品类型、产品属性和产品描述类型;Mark the technical fields, product types, product attributes and product description types of a variety of first product information, and mark the technical fields, product types, product attributes and product description types of network knowledge information;
根据标记的内容,提取第一产品信息的第一特征信息与网络知识信息的第二特征信息,以及分别将第一特征信息与第二特征信息的语义表示形式转换为按照产品销售话术的语义表示形式,以获取第一特征话术信息与第二特征话术信息;According to the marked content, extract the first feature information of the first product information and the second feature information of the network knowledge information, and respectively convert the semantic representations of the first feature information and the second feature information into semantics according to product sales terms Representation form to obtain the first characteristic speech information and the second characteristic speech information;
获取咨询对话信息的关键词,建立关键词、第一特征话术信息与第二特征话术信息的对应关系,其中,对应关系用于当检测到关键词时,获取将第一特征话术信息与第二特征话术信息;Obtain the keywords of the consultation dialogue information, and establish a corresponding relationship between the keywords, the first characteristic speech information and the second characteristic speech information, wherein the correspondence is used to obtain the first characteristic speech information when the keyword is detected. with the second characteristic discourse information;
通过关键词、第一特征话术信息、第二特征话术信息与对应关系,使得对话咨询模型满足预设规则条件,以获取相应的咨询返回结果,其中,预设规则条件包括对用户输入的目标产品信息进行整理与分析,以构建产品信息库以及通过分析用户输入的咨询信息来获取对应的产品信息。Through the keywords, the first characteristic speech information, the second characteristic speech information and the corresponding relationship, the dialogue consultation model satisfies the preset rule conditions, so as to obtain the corresponding consultation return results, wherein the preset rule conditions include the input of the user. The target product information is sorted and analyzed to build a product information database and obtain corresponding product information by analyzing the consulting information input by the user.
可选的,在本申请的一些实施方式中,对话咨询模型包括已创建的信息库,上述的根据所述分类结果建立第一对应关系和/或第二对应关系,根据所述第一对应关系或所述第二对应关系构建产品信息库,包括:Optionally, in some embodiments of the present application, the dialogue consultation model includes an information base that has been created, and the first correspondence and/or the second correspondence is established according to the classification result, and the first correspondence is established according to the first correspondence. Or the second corresponding relationship builds a product information base, including:
通过对话咨询模型获取目标产品信息的产品类型、产品领域和产品属性;Obtain the product type, product field and product attribute of the target product information through the dialogue consultation model;
从信息库中获取与产品类型对应以及与领域对应的关联产品信息,以关联产品信息作为目标信息;Obtain the related product information corresponding to the product type and the field from the information database, and use the related product information as the target information;
通过对话咨询模型建立目标产品信息与目标信息的第一对应关系,并将目标产品信息根据产品属性进行分类,获取分类信息,根据分类信息和第一对应关系构建产品信息库。The first correspondence between the target product information and the target information is established through the dialogue consultation model, the target product information is classified according to the product attributes, the classification information is obtained, and the product information database is constructed according to the classification information and the first correspondence.
例如:目标产品信息为信托理财信息,则通过对话咨询模型分析信托理财信息,获取到的产品类型为对公理财服务类型,产品领域为金融领域,产品属性包括释义、收益类型和信托理财各类型对应的特征,将信托理财信息根据收益类型进行分类,以获取分类信息。从信息库中获取到具有相当竞争力的具有对公理财服务的中国工商银行的信息以及中国工商银行的对公理财服务产品的信息,并对中国工商银行的对公理财服务产品分类为固定收益类、保本类和非保本浮动收益类,并获取各类型的特征信息(如:产品的内容和适合哪类人群)。建立信托理财信息与中国工商银行的对公理财服务产品信息的第一对应关系。当对话咨询模型接收到所输入“信托理财”时,对话咨询模型输出信托理财的各项信息,并将中国工商银行的对公理财服务产品的各项信息以推荐信息的形式输出。For example, if the target product information is trust wealth management information, the trust wealth management information is analyzed through the dialogue consultation model, and the obtained product type is the corporate wealth management service type, the product field is the financial field, and the product attributes include interpretation, income type and various types of trust wealth management. Corresponding features, the trust financial information is classified according to the income type to obtain classification information. From the information database, we obtained the information of ICBC which is quite competitive with corporate wealth management service and the information of ICBC's corporate wealth management service products, and classified ICBC's corporate wealth management service products as fixed income. Category, Guaranteed Category and Non Guaranteed Floating Income Category, and obtain various types of characteristic information (such as the content of the product and the type of people it is suitable for). Establish the first correspondence between trust wealth management information and ICBC's corporate wealth management service product information. When the dialogue consultation model receives the input "trust wealth management", the dialogue consultation model outputs various information of trust wealth management, and outputs various information of ICBC's corporate wealth management service products in the form of recommended information.
上述图1至图5中任一实施例或实施方式中所提及的技术特征也同样适用于本申请中的图6和图7所对应的实施例,后续类似之处不再赘述。The technical features mentioned in any of the embodiments or implementation manners in the above-mentioned FIGS. 1 to 5 are also applicable to the embodiments corresponding to FIGS. 6 and 7 in the present application, and the similarities will not be repeated hereafter.
以上对本申请中一种咨询对话处理的方法进行说明,以下对执行上述咨询对话处理的方法的装置60进行描述。A method for consultation dialogue processing in the present application is described above, and the
如图6所示的一种用于咨询对话处理的装置60的结构示意图,其可应用于企业智能平台对产品的咨询管理。本申请实施例中的装置60能够实现对应于上述图1至图5中任一实施例或实施方式中所执行的咨询对话处理的方法的步骤。装置60实现的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块,所述模块可以是软件和/或硬件。所述装置60可包括输入输出模块601、处理模块602和显示模块603,所述输入输出模块601、处理模块602和显示模块603的功能实现可参考图1至图5中任一实施例或实施方式中所执行的操作,此处不作赘述。处理模块602可用于控制所述输入输出模块601的输入输出操作,显示模块603可用于显示处理模块602的处理操作。As shown in FIG. 6, a schematic structural diagram of an
一些实施方式中,输入输出模块601可用于获取训练信息,接收用户输入的目标产品信息,接收到用户输入的咨询信息;In some embodiments, the input and
处理模块602,用于将输入输出模块601获取的训练信息输入到模型中,对模型进行训练,以获取对话咨询模型,对话咨询模型用于对用户输入的目标产品信息进行分析与处理,以构建产品信息库,对用户输入的咨询信息进行分析与处理,以获取与咨询信息对应的返回结果;通过对话咨询模型对输入输出模块601接收的目标产品信息进行分类,获取分类结果;根据分类结果建立第一对应关系和/或第二对应关系,根据第一对应关系或第二对应关系构建产品信息库;将输入输出模块601接收的咨询信息输入到第一子模型中,通过第一子模型从咨询信息中获取关键信息;将关键信息输入到第二子模型,通过第二子模型分析关键信息以获取用户的咨询意图信息;在产品知识库中匹配与咨询意图信息对应的第二产品信息,并将第二产品信息的语义表示形式转换成话术语言,生成咨询返回结果并通过输入输出模块601将咨询返回结果输入至显示模块603;对历史关键信息和历史咨询返回结果进行统计与分析,生成多维度报表并通过输入输出模块601将多维度报表输入至显示模块603;The
显示模块603,用于从输入输出模块601中接收并显示咨询返回结果和多维度报表。The
其中,训练信息包括多种第一产品信息、咨询对话信息和网络知识信息。对话咨询模型包括第一子模型和第二子模型。The training information includes a variety of first product information, consultation dialogue information and network knowledge information. The dialogue consultation model includes a first sub-model and a second sub-model.
网络知识信息包括:与所述第一产品信息的产品所属的领域相同和/或相似的除所述第一产品信息外的第一其他产品信息,和与所述产品信息的产品所属的类型相同/或相似的除所述第一产品信息外的第二其他产品信息。The network knowledge information includes: first other product information other than the first product information that is the same and/or similar to the field to which the product of the first product information belongs, and is of the same type as the product of the product information /or similar second product information other than the first product information.
对话咨询模型用于对用户输入的目标产品信息进行分析与处理,以构建产品信息库,对用户输入的咨询信息进行分析与处理,以获取与所述咨询信息对应的咨询返回结果(也可为关联的返回结果)。The dialogue consultation model is used to analyze and process the target product information input by the user to build a product information database, and analyze and process the consultation information input by the user to obtain the consultation return result corresponding to the consultation information. associated return results).
一些实施方式中,咨询返回结果包括被咨询的产品的信息和推荐的与被咨询的产品所属的领域、类型和特定性能相同或相似的产品的信息。In some embodiments, the consultation return result includes the information of the product being consulted and the information of the recommended product with the same or similar field, type and specific performance as the product being consulted.
其中,分类结果包括目标产品的属性、所属领域和生产阶段。Among them, the classification results include the attributes, fields and production stages of the target product.
目标产品信息包括产品的各类信息、产品的负责人员以及负责人员的工作流程节点信息,所述工作流程节点信息包括产品的项目制定与决策、产品前期各项工作的部署、产品中期各项工作的部署和产品后期各项工作的部署。例如:当用户在终端设备中输入“好福利APP产品”时,对话咨询模型将输出与好福利APP产品相关的功能、结构和性能等产品信息以及产品研发的团队的个人信息和其负责的内容。The target product information includes various types of information about the product, the person in charge of the product, and the workflow node information of the person in charge. The workflow node information includes the project formulation and decision-making of the product, the deployment of various work in the early stage of the product, and the work in the mid-term of the product. The deployment of the product and the deployment of various work in the later stage of the product. For example: when the user enters "Haofi APP product" in the terminal device, the dialogue consultation model will output product information such as the function, structure and performance related to the Haofi APP product, as well as the personal information of the product development team and the content it is responsible for .
其中,第一对应关系包括目标产品信息与目标信息的对应关系,第二对应关系包括归类信息、产品特征信息与推荐信息的对应关系。Wherein, the first corresponding relationship includes the corresponding relationship between target product information and target information, and the second corresponding relationship includes the corresponding relationship between classification information, product feature information and recommendation information.
一些实施方式中,对话咨询模型包括由收集的海量网络数据创建的知识库系统,可用于在知识库系统的基础上构建产品信息库。In some embodiments, the dialogue consultation model includes a knowledge base system created from the collected massive network data, which can be used to build a product information base on the basis of the knowledge base system.
通过构建产品信息库,以便于根据目标产品信息快速而准确地获取与目标产品信息对应的目标信息。By constructing a product information base, the target information corresponding to the target product information can be quickly and accurately obtained according to the target product information.
第一子模型包括图像识别子模型、文本识别子模型和音视频识别子模型,第一子模型还包括分类器。图像识别子模型、文本识别子模型和音视频识别子模型并行连接,图像识别子模型、文本识别子模型和音视频识别子模型分别与分类器串联。The first sub-model includes an image recognition sub-model, a text recognition sub-model and an audio and video recognition sub-model, and the first sub-model further includes a classifier. The image recognition sub-model, the text recognition sub-model and the audio and video recognition sub-model are connected in parallel, and the image recognition sub-model, the text recognition sub-model and the audio and video recognition sub-model are respectively connected in series with the classifier.
一些实施方式中,第一子模型还包括多个过滤器,分别为图像识别子模型中的过滤器1、文本识别子模型中的过滤器2和音视频识别子模型中的过滤器3。图像识别子模型、文本识别子模型和音视频识别子模型并行连接,图像识别子模型、文本识别子模型和所述音视频识别子模型分别与一个过滤器串联。In some embodiments, the first sub-model further includes a plurality of filters, which are filter 1 in the image recognition sub-model, filter 2 in the text recognition sub-model, and filter 3 in the audio-video recognition sub-model. The image recognition sub-model, the text recognition sub-model and the audio and video recognition sub-model are connected in parallel, and the image recognition sub-model, the text recognition sub-model and the audio and video recognition sub-model are respectively connected in series with a filter.
第二子模型用于对关键信息进行分析与处理,以获取用户的咨询意图信息。第二子模型对接收到的关键信息进行分析,并获取用户的咨询意图信息,所获取的用户的咨询意图信息可包括多种内容。The second sub-model is used to analyze and process key information to obtain the user's consulting intention information. The second sub-model analyzes the received key information, and obtains the consultation intention information of the user, and the obtained consultation intention information of the user may include various contents.
通过将第二产品信息的语义表示形式转换成话术语言,以减少咨询者对第二产品信息的语言的销售表达形式构思的时间,从而便于咨询者对第二产品信息的快速使用。By converting the semantic representation of the second product information into a discourse language, the time required for the consultant to conceive the sales expression in the language of the second product information is reduced, thereby facilitating the rapid use of the second product information by the consultant.
其中,历史关键信息包括在预设时间内从接收到的多次咨询信息中获取的关键信息,历史咨询返回结果包括在预设时间内根据接收到的多次咨询信息中获取的咨询返回结果。The historical key information includes the key information obtained from the received multiple consultation information within a preset time, and the historical consultation return result includes the consultation return result obtained from the multiple received consultation information within the preset time.
多维度报表至少包括以下的三项:咨询的用户人数、咨询内容类型,咨询次数、被重复咨询的信息、后台人工处理的咨询信息和后台人工已处理与未处理的咨询信息等。The multi-dimensional report includes at least the following three items: the number of users consulted, the type of consultation content, the number of consultations, the information of repeated consultations, the consultation information processed manually in the background, and the consultation information processed and unprocessed manually in the background.
本申请实施例中,处理模块602通过输入输出模块601接收的用户输入的目标产品信息,通过对话咨询模型对目标产品信息进行分类,获取分类结果;根据分类结果构建产品信息库;当接收到输入输出模块601获取的用户输入的咨询信息时,将咨询信息输入到对话咨询模型,获取用户的咨询意图信息;在产品知识库中匹配与咨询意图信息对应的第二产品信息,并将第二产品信息的语义表示形式转换成话术语言,生成并通过显示模块603输出咨询返回结果;对历史关键信息和历史咨询返回结果进行统计与分析,生成并通过显示模块603输出多维度报表。由于是通过对产品信息进行整理与分类以构建产品信息库,以便快速而准确地获取所述咨询信息对应的产品信息,且在产品信息库中获取与咨询信息对应的产品信息关联的产品信息,以多方面、多角度展现咨询返回结果,以提高咨询返回结果的准确性和多用性;通过以话术语言和多维度报表显示咨询返回结果,以便用户多角度理解咨询返回结果,从而缩短用户对咨询返回结果内容的获取时间。通过提高获取咨询返回结果的准确性和获取速度,和缩短用户对所述咨询返回结果内容的获取时间,以实现用户对企业服务平台的咨询次数和咨询时间的减少,从而,提高企业服务平台对产品咨询的服务效率。In the embodiment of the present application, the processing module 602 classifies the target product information through the dialogue consultation model through the target product information input by the user received by the input and output module 601, and obtains the classification result; builds a product information database according to the classification result; When the consultation information input by the user obtained by the output module 601 is input, the consultation information is input into the dialogue consultation model to obtain the consultation intention information of the user; the second product information corresponding to the consultation intention information is matched in the product knowledge base, and the second product The semantic representation of the information is converted into a vocabulary language, and the consultation return result is generated and output through the display module 603 ; Because the product information database is constructed by arranging and classifying the product information, so as to obtain the product information corresponding to the consultation information quickly and accurately, and obtain the product information associated with the product information corresponding to the consultation information in the product information database, Display the results of consultation in multiple aspects and angles to improve the accuracy and versatility of the results of consultation; display the results of consultation in terms of language and multi-dimensional reports, so that users can understand the results of consultation from multiple perspectives, thereby shortening the user's understanding of the results. Inquire about the acquisition time of the returned result content. By improving the accuracy and speed of obtaining the returned results of the consultation, and shortening the time for users to obtain the content of the returned results of the consultation, the number of consultation times and consultation time of the user to the enterprise service platform can be reduced, thereby improving the enterprise service platform's response to the consultation. Product consulting service efficiency.
可选的,在本申请的一些实施方式中,上述咨询对话处理的方法的任一实施例或实施方式中所提及的技术特征也同样适用于本申请中的对执行上述咨询对话处理的方法的装置60,后续类似之处不再赘述。Optionally, in some embodiments of the present application, any embodiment or technical features mentioned in the above-mentioned method for processing a consultation dialogue are also applicable to the method for executing the above-mentioned consultation dialogue processing in this application. The
上面从模块化功能实体的角度分别介绍了本申请实施例中的装置60,以下从硬件角度介绍一种计算机装置,如图7所示,其包括:处理器、存储器、显示器、输入输出单元(也可以是收发器,图7中未标识出)以及存储在所述存储器中并可在所述处理器上运行的计算机程序。例如,该计算机程序可以为图1至图5任一实施例或实施方式中咨询对话处理的方法对应的程序。例如,当计算机装置实现如图6所示的装置60的功能时,所述处理器执行所述计算机程序时实现上述图6所对应的实施例中由装置60执行的咨询对话处理的方法中的各步骤;或者,所述处理器执行所述计算机程序时实现上述图6所对应的实施例的装置60中各模块的功能。又例如,该计算机程序可以为图1至图5中任一实施例或实施方式中咨询对话处理的方法对应的程序。The
所称处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器是所述计算机装置的控制中心,利用各种接口和线路连接整个计算机装置的各个部分。The processor may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), off-the-shelf processors Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc. The general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc. The processor is the control center of the computer device, and uses various interfaces and lines to connect various parts of the entire computer device.
所述存储器可用于存储所述计算机程序和/或模块,所述处理器通过运行或执行存储在所述存储器内的计算机程序和/或模块,以及调用存储在存储器内的数据,实现所述计算机装置的各种功能。所述存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、视频数据等)等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。The memory can be used to store the computer program and/or module, and the processor implements the computer by running or executing the computer program and/or module stored in the memory and calling the data stored in the memory various functions of the device. The memory may mainly include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), etc.; the storage data area may store Data (such as audio data, video data, etc.) created according to the usage of the mobile phone, etc. In addition, the memory may include high-speed random access memory, and may also include non-volatile memory such as hard disk, internal memory, plug-in hard disk, Smart Media Card (SMC), Secure Digital (SD) card , a flash memory card (Flash Card), at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
所述输入输出单元也可以用接收器和发送器代替,可以为相同或者不同的物理实体。为相同的物理实体时,可以统称为输入输出单元。该输入输出单元可以为收发器。The input and output units can also be replaced by receivers and transmitters, which can be the same or different physical entities. When they are the same physical entity, they can be collectively referred to as input and output units. The input-output unit may be a transceiver.
所述存储器可以集成在所述处理器中,也可以与所述处理器分开设置。The memory may be integrated in the processor, or may be provided separately from the processor.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器或者网络设备等)执行本申请各个实施例所述的方法。From the description of the above embodiments, those skilled in the art can clearly understand that the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation. Based on this understanding, the technical solutions of the present application can be embodied in the form of software products in essence or the parts that make contributions to the prior art. The computer software products are stored in a storage medium (such as ROM/RAM), including Several instructions are used to cause a terminal (which may be a mobile phone, a computer, a server, or a network device, etc.) to execute the methods described in the various embodiments of this application.
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,这些均属于本申请的保护之内。The embodiments of the present application have been described above in conjunction with the accompanying drawings, but the present application is not limited to the above-mentioned specific embodiments, which are merely illustrative rather than restrictive. Under the inspiration of this application, without departing from the scope of protection of the purpose of this application and the claims, many forms can be made. Directly or indirectly applied in other related technical fields, these all fall within the protection of this application.
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910849393.6A CN110688454A (en) | 2019-09-09 | 2019-09-09 | Method, device, equipment and storage medium for processing consultation conversation |
PCT/CN2020/087624 WO2021047186A1 (en) | 2019-09-09 | 2020-04-28 | Method, apparatus, device, and storage medium for processing consultation dialogue |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910849393.6A CN110688454A (en) | 2019-09-09 | 2019-09-09 | Method, device, equipment and storage medium for processing consultation conversation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110688454A true CN110688454A (en) | 2020-01-14 |
Family
ID=69107999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910849393.6A Pending CN110688454A (en) | 2019-09-09 | 2019-09-09 | Method, device, equipment and storage medium for processing consultation conversation |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110688454A (en) |
WO (1) | WO2021047186A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111274490A (en) * | 2020-03-26 | 2020-06-12 | 北京百度网讯科技有限公司 | Method and device for processing consultation information |
CN111625699A (en) * | 2020-04-02 | 2020-09-04 | 南京邮电大学 | Internet weak credible data verification method based on intelligent outbound |
CN112241852A (en) * | 2020-12-08 | 2021-01-19 | 深圳市房多多网络科技有限公司 | Instant messaging method and device in house property transaction process and computing equipment |
WO2021047186A1 (en) * | 2019-09-09 | 2021-03-18 | 深圳壹账通智能科技有限公司 | Method, apparatus, device, and storage medium for processing consultation dialogue |
CN113179352A (en) * | 2021-05-25 | 2021-07-27 | 北京捷通华声科技股份有限公司 | Call quality determination method, call quality determination device, and computer-readable storage medium |
CN113407677A (en) * | 2021-06-28 | 2021-09-17 | 北京百度网讯科技有限公司 | Method, apparatus, device and storage medium for evaluating quality of consultation session |
CN113609275A (en) * | 2021-08-24 | 2021-11-05 | 腾讯科技(深圳)有限公司 | Information processing method, device, equipment and storage medium |
CN113901193A (en) * | 2021-11-18 | 2022-01-07 | 平安普惠企业管理有限公司 | Man-machine conversation processing method, device, equipment and medium based on dynamic code |
CN116401355A (en) * | 2023-06-08 | 2023-07-07 | 浙江天正思维信息技术有限公司 | Consultation business decision management method and system based on digital intelligence interaction |
CN118673222A (en) * | 2024-08-23 | 2024-09-20 | 成都明途科技有限公司 | Recommendation method and device, training method and device of model, equipment and medium |
CN119128078A (en) * | 2024-08-20 | 2024-12-13 | 北京人笙智能科技有限公司 | Health education intelligent dialogue method, device, computer equipment and storage medium |
CN119444237A (en) * | 2024-10-21 | 2025-02-14 | 支付宝(杭州)信息技术有限公司 | Community operation method, device, equipment and medium based on big model |
CN119671752A (en) * | 2024-12-03 | 2025-03-21 | 中国平安财产保险股份有限公司 | Insurance information extraction method and device, electronic device, and storage medium |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113076413B (en) * | 2021-04-30 | 2023-12-26 | 平安国际智慧城市科技股份有限公司 | Parameter association service method, system, device and storage medium |
CN113627148B (en) * | 2021-05-19 | 2025-02-21 | 中国银行股份有限公司 | A method and device for automatically associating knowledge in a knowledge base |
CN113704442B (en) * | 2021-09-07 | 2025-02-25 | 北京沃东天骏信息技术有限公司 | A method and device for processing consultation request |
CN113743129B (en) * | 2021-09-30 | 2023-09-26 | 平安科技(深圳)有限公司 | Information pushing method, system, equipment and medium based on neural network |
CN114446298A (en) * | 2022-01-24 | 2022-05-06 | 京东科技信息技术有限公司 | Voice response processing method, device and storage medium |
CN114742610A (en) * | 2022-03-22 | 2022-07-12 | 平安普惠企业管理有限公司 | Product screening method, device, electronic device and storage medium |
CN114781401A (en) * | 2022-05-06 | 2022-07-22 | 马上消费金融股份有限公司 | Data processing method, device, equipment and storage medium |
CN116578682B (en) * | 2023-05-22 | 2024-02-13 | 浙江法之道信息技术有限公司 | Intelligent consultation method and system for legal service |
CN116991994A (en) * | 2023-07-14 | 2023-11-03 | 上海蓬海涞讯数据技术有限公司 | Consultation task instance generation method and device, electronic equipment and storage medium |
CN117216243A (en) * | 2023-09-27 | 2023-12-12 | 杭州观远数据有限公司 | Visual component interaction method and system based on template knowledge base in retail industry |
CN118069820B (en) * | 2024-04-22 | 2024-08-02 | 来未来科技(浙江)有限公司 | Conversational data analysis method, device, equipment and storage medium |
CN118113854B (en) * | 2024-04-29 | 2024-07-12 | 天津中医药大学 | An online consultation method and system based on gynecological nursing knowledge base |
CN118152544A (en) * | 2024-05-08 | 2024-06-07 | 支付宝(杭州)信息技术有限公司 | Medical question answering method and system based on intelligent agent and electronic equipment |
CN119273421B (en) * | 2024-09-19 | 2025-08-22 | 埃睿迪信息技术(北京)有限公司 | A water product recommendation method and device based on large model |
CN119743567A (en) * | 2024-10-14 | 2025-04-01 | 内蒙古电力(集团)有限责任公司电力营销服务与运营管理分公司 | Digital person customer service call method and system based on large model |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015065319A1 (en) * | 2013-10-28 | 2015-05-07 | Hewlett-Packard Development Company, L.P. | Optimizing a consulting engagement |
CN108121824A (en) * | 2018-01-12 | 2018-06-05 | 北京融快线科技有限公司 | A kind of chat robots and system towards financial service |
CN109840323A (en) * | 2018-12-14 | 2019-06-04 | 深圳壹账通智能科技有限公司 | The voice recognition processing method and server of insurance products |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7409335B1 (en) * | 2001-06-29 | 2008-08-05 | Microsoft Corporation | Inferring informational goals and preferred level of detail of answers based on application being employed by the user |
US7966309B2 (en) * | 2007-01-17 | 2011-06-21 | Google Inc. | Providing relevance-ordered categories of information |
CN102033877A (en) * | 2009-09-27 | 2011-04-27 | 阿里巴巴集团控股有限公司 | Search method and device |
CN106557576B (en) * | 2016-11-24 | 2020-02-04 | 百度在线网络技术(北京)有限公司 | Prompt message recommendation method and device based on artificial intelligence |
CN108920467B (en) * | 2018-08-01 | 2021-04-27 | 北京三快在线科技有限公司 | Polysemy word meaning learning method and device, search result display method |
CN110069690B (en) * | 2019-04-24 | 2021-12-07 | 成都映潮科技股份有限公司 | Method, device and medium for topic web crawler |
CN110688454A (en) * | 2019-09-09 | 2020-01-14 | 深圳壹账通智能科技有限公司 | Method, device, equipment and storage medium for processing consultation conversation |
-
2019
- 2019-09-09 CN CN201910849393.6A patent/CN110688454A/en active Pending
-
2020
- 2020-04-28 WO PCT/CN2020/087624 patent/WO2021047186A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015065319A1 (en) * | 2013-10-28 | 2015-05-07 | Hewlett-Packard Development Company, L.P. | Optimizing a consulting engagement |
CN108121824A (en) * | 2018-01-12 | 2018-06-05 | 北京融快线科技有限公司 | A kind of chat robots and system towards financial service |
CN109840323A (en) * | 2018-12-14 | 2019-06-04 | 深圳壹账通智能科技有限公司 | The voice recognition processing method and server of insurance products |
Non-Patent Citations (1)
Title |
---|
唐晓波;王蕊;: "基于数据耕耘的智能咨询服务模型构建研究", 图书馆学研究, no. 09, 11 June 2019 (2019-06-11), pages 67 - 73 * |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021047186A1 (en) * | 2019-09-09 | 2021-03-18 | 深圳壹账通智能科技有限公司 | Method, apparatus, device, and storage medium for processing consultation dialogue |
CN111274490B (en) * | 2020-03-26 | 2024-01-19 | 北京百度网讯科技有限公司 | Method and device for processing consultation information |
CN111274490A (en) * | 2020-03-26 | 2020-06-12 | 北京百度网讯科技有限公司 | Method and device for processing consultation information |
CN111625699A (en) * | 2020-04-02 | 2020-09-04 | 南京邮电大学 | Internet weak credible data verification method based on intelligent outbound |
CN112241852A (en) * | 2020-12-08 | 2021-01-19 | 深圳市房多多网络科技有限公司 | Instant messaging method and device in house property transaction process and computing equipment |
CN113179352A (en) * | 2021-05-25 | 2021-07-27 | 北京捷通华声科技股份有限公司 | Call quality determination method, call quality determination device, and computer-readable storage medium |
CN113179352B (en) * | 2021-05-25 | 2023-04-07 | 北京捷通华声科技股份有限公司 | Call quality determination method, call quality determination device, and computer-readable storage medium |
CN113407677A (en) * | 2021-06-28 | 2021-09-17 | 北京百度网讯科技有限公司 | Method, apparatus, device and storage medium for evaluating quality of consultation session |
CN113407677B (en) * | 2021-06-28 | 2023-11-14 | 北京百度网讯科技有限公司 | Method, apparatus, device and storage medium for evaluating consultation dialogue quality |
CN113609275A (en) * | 2021-08-24 | 2021-11-05 | 腾讯科技(深圳)有限公司 | Information processing method, device, equipment and storage medium |
CN113609275B (en) * | 2021-08-24 | 2024-03-26 | 腾讯科技(深圳)有限公司 | Information processing method, device, equipment and storage medium |
CN113901193A (en) * | 2021-11-18 | 2022-01-07 | 平安普惠企业管理有限公司 | Man-machine conversation processing method, device, equipment and medium based on dynamic code |
CN116401355A (en) * | 2023-06-08 | 2023-07-07 | 浙江天正思维信息技术有限公司 | Consultation business decision management method and system based on digital intelligence interaction |
CN116401355B (en) * | 2023-06-08 | 2023-08-15 | 浙江天正思维信息技术有限公司 | Consultation business decision management method and system based on digital intelligence interaction |
CN119128078A (en) * | 2024-08-20 | 2024-12-13 | 北京人笙智能科技有限公司 | Health education intelligent dialogue method, device, computer equipment and storage medium |
CN118673222A (en) * | 2024-08-23 | 2024-09-20 | 成都明途科技有限公司 | Recommendation method and device, training method and device of model, equipment and medium |
CN119444237A (en) * | 2024-10-21 | 2025-02-14 | 支付宝(杭州)信息技术有限公司 | Community operation method, device, equipment and medium based on big model |
CN119671752A (en) * | 2024-12-03 | 2025-03-21 | 中国平安财产保险股份有限公司 | Insurance information extraction method and device, electronic device, and storage medium |
CN119671752B (en) * | 2024-12-03 | 2025-09-30 | 中国平安财产保险股份有限公司 | Insurance information extraction method and device, electronic device, and storage medium |
Also Published As
Publication number | Publication date |
---|---|
WO2021047186A1 (en) | 2021-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110688454A (en) | Method, device, equipment and storage medium for processing consultation conversation | |
CN109635117B (en) | Method and device for recognizing user intention based on knowledge graph | |
CN112131383B (en) | Sentiment Polarity Classification Methods for Specific Targets | |
WO2020147395A1 (en) | Emotion-based text classification method and device, and computer apparatus | |
CN111353310A (en) | Artificial intelligence-based named entity recognition method, device and electronic device | |
WO2020177230A1 (en) | Medical data classification method and apparatus based on machine learning, and computer device and storage medium | |
CN111182162B (en) | Telephone quality inspection method, device, equipment and storage medium based on artificial intelligence | |
KR20200007969A (en) | Information processing methods, terminals, and computer storage media | |
CN110019838B (en) | Intelligent question-answering system and intelligent terminal | |
CN111159987A (en) | Data chart drawing method, apparatus, device and computer readable storage medium | |
CN112632226A (en) | Semantic search method and device based on legal knowledge graph and electronic equipment | |
CN104598648A (en) | Interactive gender identification method and device for microblog user | |
CN112632248A (en) | Question answering method, device, computer equipment and storage medium | |
US11574491B2 (en) | Automated classification and interpretation of life science documents | |
CN111460114A (en) | Retrieval method, device, equipment and computer readable storage medium | |
KR20230017578A (en) | Techniques for keyword extraction on construction contract document using deep learning-based named entity recognition | |
CN113157895B (en) | Intelligent dialogue analysis method, system, computer equipment and storage medium | |
CN111723192A (en) | Code recommendation method and device | |
CN118861698A (en) | Abnormal bidding behavior identification method and system based on pre-training model | |
US11625630B2 (en) | Identifying intent in dialog data through variant assessment | |
CN119046768A (en) | Data classification and classification system, method and equipment based on big data AI technology | |
CN119621920A (en) | Automatic question-and-answer method and tax knowledge question-and-answer method | |
CN110019730B (en) | Automatic interaction system and intelligent terminal | |
CN115062111A (en) | Fault duplicate report generation method and device and electronic equipment | |
CN117633518B (en) | Industrial chain construction method and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200114 |
|
WD01 | Invention patent application deemed withdrawn after publication |