[go: up one dir, main page]

CN110458697A - Method and apparatus for assessing risk - Google Patents

Method and apparatus for assessing risk Download PDF

Info

Publication number
CN110458697A
CN110458697A CN201910762788.2A CN201910762788A CN110458697A CN 110458697 A CN110458697 A CN 110458697A CN 201910762788 A CN201910762788 A CN 201910762788A CN 110458697 A CN110458697 A CN 110458697A
Authority
CN
China
Prior art keywords
information
enterprise
risk
model
probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910762788.2A
Other languages
Chinese (zh)
Inventor
冯博豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Baidu Netcom Science and Technology Co Ltd
Original Assignee
Beijing Baidu Netcom Science and Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Baidu Netcom Science and Technology Co Ltd filed Critical Beijing Baidu Netcom Science and Technology Co Ltd
Priority to CN201910762788.2A priority Critical patent/CN110458697A/en
Publication of CN110458697A publication Critical patent/CN110458697A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/901Indexing; Data structures therefor; Storage structures
    • G06F16/9024Graphs; Linked lists
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/067Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/03Credit; Loans; Processing thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Databases & Information Systems (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Technology Law (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本公开实施例涉及云计算领域,公开了用于评估风险的方法和装置。方法包括:基于录入的申请信息,确定企业的基本信息;基于基本信息中的企业标识信息与企业信息库中的企业标识信息的关联关系,生成企业的知识图谱;基于基本信息,查询企业的业务数据和企业的舆情信息;将基本信息、企业的知识图谱、业务数据和舆情信息输入风险控制模型,得到企业的风险评估信息。该方法提高了得到风险评估信息的效率和准确性。

The embodiments of the present disclosure relate to the field of cloud computing, and disclose a method and an apparatus for evaluating risks. The method includes: determining the basic information of the enterprise based on the entered application information; generating a knowledge map of the enterprise based on the association relationship between the enterprise identification information in the basic information and the enterprise identification information in the enterprise information database; querying the business of the enterprise based on the basic information Data and public opinion information of the enterprise; input the basic information, the knowledge map of the enterprise, business data and public opinion information into the risk control model to obtain the risk assessment information of the enterprise. The method improves the efficiency and accuracy of obtaining risk assessment information.

Description

用于评估风险的方法和装置Method and apparatus for assessing risk

技术领域technical field

本公开涉及计算机技术领域,具体涉及风险评估技术领域,尤其涉及用于评估风险的方法和装置。The present disclosure relates to the field of computer technology, in particular to the field of risk assessment technology, and in particular to a method and apparatus for assessing risks.

背景技术Background technique

随着经济的发展,市场上的企业也越来越多。这些企业可以获取外部贷款为企业将来的发展做铺垫,因此对于外部贷款的需求非常大。对于贷款提供方来说,企业申请贷款是贷款提供方业务来源的重要组成部分。随着企业获取外部贷款的业务的增加,贷款提供方对于企业获取贷款的风险控制的要求也越来越高。如何才能够准确地评估向企业提供贷款时的风险情况,成为贷款提供方工作中的难题。With the development of economy, there are more and more enterprises in the market. These enterprises can obtain external loans to pave the way for the future development of the enterprises, so there is a great demand for external loans. For loan providers, corporate loan application is an important part of loan providers' business sources. With the increase in the business of enterprises obtaining external loans, loan providers have higher and higher requirements for risk control of enterprises obtaining loans. How to accurately assess the risk situation when providing loans to enterprises has become a difficult problem in the work of loan providers.

目前,主要通过业务人员人工对企业进行贷款风险评估。At present, the loan risk assessment of enterprises is mainly conducted manually by business personnel.

发明内容SUMMARY OF THE INVENTION

本公开实施例提供了用于评估风险的方法和装置。Embodiments of the present disclosure provide methods and apparatus for assessing risk.

第一方面,本公开实施例提供了一种用于评估风险的方法,包括:基于录入的申请信息,确定企业的基本信息;基于基本信息中的企业标识信息与企业信息库中的企业标识信息的关联关系,生成企业的知识图谱;基于基本信息,查询企业的业务数据和企业的舆情信息;将基本信息、企业的知识图谱、业务数据和舆情信息输入风险控制模型,得到企业的风险评估信息。In a first aspect, an embodiment of the present disclosure provides a method for assessing risks, including: determining basic information of an enterprise based on entered application information; based on enterprise identification information in the basic information and enterprise identification information in an enterprise information database Based on the basic information, query the business data of the enterprise and the public opinion information of the enterprise; input the basic information, the knowledge graph, business data and public opinion information of the enterprise into the risk control model to obtain the risk assessment information of the enterprise .

在一些实施例中,风险控制模型包括:风险关系模型和风险评分模型;风险评估信息包括:与企业建立服务关系的风险概率、企业的风险评分以及服务提示信息;将基本信息、企业的知识图谱以及业务数据输入风险控制模型,得到企业的风险评估信息包括:将基本信息、企业的知识图谱和舆情信息输入风险关系模型,获得与企业建立服务关系的风险概率;将业务数据和舆情信息输入风险评分模型,获得企业的风险评分以及服务提示信息。In some embodiments, the risk control model includes: a risk relationship model and a risk scoring model; the risk assessment information includes: the risk probability of establishing a service relationship with the enterprise, the risk score of the enterprise, and service prompt information; the basic information, the knowledge map of the enterprise And business data is input into the risk control model, and the risk assessment information of the enterprise is obtained, including: input the basic information, the knowledge map of the enterprise and the public opinion information into the risk relationship model to obtain the risk probability of establishing a service relationship with the enterprise; input the business data and public opinion information into the risk Scoring model, get enterprise risk score and service prompt information.

在一些实施例中,方法还包括以下至少一项:风险关系模型为基于RFM、NLP、图挖掘技术得到的关系网络模型;风险评分模型为多元回归模型;风险概率包括欺诈概率、违约概率和逾期概率;以及业务数据包括:招聘人数、招聘时间、经营情况和负债情况。In some embodiments, the method further includes at least one of the following: the risk relationship model is a relationship network model obtained based on RFM, NLP, and graph mining technology; the risk scoring model is a multiple regression model; the risk probability includes fraud probability, default probability and overdue probability Probability; and business data including: number of hires, hiring time, operations and liabilities.

在一些实施例中,基于录入的申请信息,确定企业的基本信息包括:识别录入的纸质版的申请信息,得到识别结果;采用智能修正算法修正识别结果,得到文本序列;识别文本序列中的实体,得到附标签的实体数据;以及基于附标签的命名实体数据,输出结构化的企业的基本信息。In some embodiments, determining the basic information of the enterprise based on the entered application information includes: identifying the entered paper version of the application information to obtain the identification result; using an intelligent correction algorithm to correct the identification result to obtain a text sequence; Entity, get tagged entity data; and based on tagged named entity data, output structured basic information of the enterprise.

在一些实施例中,基于录入的申请信息,确定企业的基本信息包括:基于录入的申请信息,调取与申请信息中的企业对应的基准信息;其中,基准信息包括官方信息和/或历史信息;基于基准信息,校验申请信息;响应于校验的结果指示预设信息未通过校验,呈现退回申请的提示信息;响应于校验的结果指示申请信息中的企业符合黑名单规则,将申请信息中的企业加入黑名单。In some embodiments, determining the basic information of the enterprise based on the entered application information includes: based on the entered application information, retrieving benchmark information corresponding to the enterprise in the application information; wherein the benchmark information includes official information and/or historical information ; Based on the benchmark information, the application information is verified; in response to the result of the verification indicating that the preset information fails the verification, a prompt message for returning the application is presented; in response to the result of the verification indicating that the enterprise in the application information conforms to the blacklist rules, the The companies in the application information are added to the blacklist.

在一些实施例中,校验的结果指示申请信息中的企业符合黑名单包括以下至少一项:申请信息中存在非真实信息的次数超过预定阈值;历史校验次数超出预设阈值。In some embodiments, the verification result indicates that the enterprise in the application information conforms to the blacklist, including at least one of the following: the number of times that there is untrue information in the application information exceeds a predetermined threshold; the number of historical verifications exceeds a preset threshold.

在一些实施例中,方法还包括:将风险评估信息输入风险控制决策模型,得到风险控制决策模型输出的决策结果。In some embodiments, the method further includes: inputting the risk assessment information into the risk control decision model to obtain a decision result output by the risk control decision model.

在一些实施例中,风险控制决策模型为串连或并联多个规则形成的规则模型。In some embodiments, the risk control decision model is a rule model formed by connecting multiple rules in series or in parallel.

在一些实施例中,当风险评估信息包括:与企业建立服务关系的风险概率、企业的风险评分以及服务提示信息时,多个规则至少包括:若风险概率中的欺诈概率或违约概率高于预设概率,则输出的决策结果为退回申请;若风险评分中的信用评分低于预设评分、风险评分中的收入低于收入阈值或风险评分中的负债率高于负债率阈值,则输出的决策结果为退回申请。In some embodiments, when the risk assessment information includes: the risk probability of establishing a service relationship with the enterprise, the risk score of the enterprise, and the service prompt information, the plurality of rules at least include: if the fraud probability or default probability in the risk probability is higher than the expected probability Set the probability, the output decision result is to return the application; if the credit score in the risk score is lower than the preset score, the income in the risk score is lower than the income threshold, or the debt ratio in the risk score is higher than the debt ratio threshold, the output The decision result is to return the application.

在一些实施例中,方法还包括:响应于接收到服务指示,与企业建立服务关系,监控已建立服务关系的企业在接受服务后的业务数据;基于接受服务后的业务数据,优化风险控制模型。In some embodiments, the method further includes: in response to receiving the service indication, establishing a service relationship with the enterprise, monitoring business data of the enterprise that has established the service relationship after receiving the service; optimizing the risk control model based on the business data after receiving the service .

第二方面,本公开实施例提供了一种用于评估企业的风险的装置,包括:信息确定单元,被配置成基于录入的申请信息,确定企业的基本信息;图谱生成单元,被配置成基于基本信息中的企业标识信息与企业信息库中的企业标识信息的关联关系,生成企业的知识图谱;信息查询单元,被配置成基于基本信息,查询企业的业务数据和企业的舆情信息;评估输出单元,被配置成将基本信息、企业的知识图谱、业务数据和舆情信息输入风险控制模型,得到企业的风险评估信息。In a second aspect, an embodiment of the present disclosure provides an apparatus for assessing risks of an enterprise, including: an information determination unit configured to determine basic information of the enterprise based on the entered application information; a graph generation unit configured to The association relationship between the enterprise identification information in the basic information and the enterprise identification information in the enterprise information database generates the knowledge map of the enterprise; the information query unit is configured to query the business data of the enterprise and the public opinion information of the enterprise based on the basic information; the evaluation output The unit is configured to input basic information, enterprise knowledge graph, business data and public opinion information into the risk control model to obtain enterprise risk assessment information.

在一些实施例中,评估输出单元中的风险控制模型包括:风险关系模型和风险评分模型;评估输出单元中的风险评估信息包括:与企业建立服务关系的风险概率、企业的风险评分以及服务提示信息;评估输出单元进一步被配置成:将基本信息、企业的知识图谱和舆情信息输入风险关系模型,获得与企业建立服务关系的风险概率;将业务数据和舆情信息输入风险评分模型,获得企业的风险评分以及服务提示信息。In some embodiments, the risk control model in the assessment output unit includes: a risk relationship model and a risk scoring model; the risk assessment information in the assessment output unit includes: a risk probability of establishing a service relationship with the enterprise, a risk score of the enterprise, and a service prompt information; the evaluation output unit is further configured to: input basic information, enterprise knowledge map and public opinion information into the risk relationship model to obtain the risk probability of establishing a service relationship with the enterprise; input business data and public opinion information into the risk scoring model to obtain the enterprise’s risk probability. Risk score and service reminder information.

在一些实施例中,装置还包括以下至少一项:风险关系模型为基于RFM、NLP、图挖掘技术得到的关系网络模型;风险评分模型为多元回归模型;风险概率包括欺诈概率、违约概率和逾期概率;以及业务数据包括:招聘人数、招聘时间、经营情况和负债情况。In some embodiments, the apparatus further includes at least one of the following: the risk relationship model is a relationship network model obtained based on RFM, NLP, and graph mining technology; the risk scoring model is a multiple regression model; the risk probability includes fraud probability, default probability and overdue probability Probability; and business data including: number of hires, hiring time, operations and liabilities.

在一些实施例中,信息确定单元包括:结果识别子单元,被配置成识别录入的纸质版的申请信息,得到识别结果;结果修正子单元,被配置成采用智能修正算法修正识别结果,得到文本序列;实体识别子单元,被配置成识别文本序列中的实体,得到附标签的实体数据;以及信息输出子单元,被配置成基于附标签的命名实体数据,输出结构化的企业的基本信息。In some embodiments, the information determination unit includes: a result identification subunit, configured to identify the entered paper version of the application information, and obtain the identification result; the result correction subunit, configured to use an intelligent correction algorithm to correct the identification result to obtain a text sequence; an entity identification subunit configured to identify entities in the text sequence to obtain tagged entity data; and an information output subunit configured to output structured basic information of the enterprise based on the tagged named entity data .

在一些实施例中,信息确定单元包括:信息调取子单元,被配置成基于录入的申请信息,调取与申请信息中的企业对应的基准信息;其中,基准信息包括官方信息和/或历史信息;信息校验子单元,被配置成基于基准信息,校验申请信息;提示呈现子单元,被配置成响应于校验的结果指示预设信息未通过校验,呈现退回申请的提示信息;名单加入子单元,被配置成响应于校验的结果指示申请信息中的企业符合黑名单规则,将申请信息中的企业加入黑名单。In some embodiments, the information determination unit includes: an information retrieval subunit, configured to retrieve benchmark information corresponding to the enterprise in the application information based on the entered application information; wherein the benchmark information includes official information and/or history information; an information verification subunit, configured to verify application information based on the reference information; a prompt presentation subunit, configured to present a prompt message for returning the application in response to the verification result indicating that the preset information fails the verification; The list adding subunit is configured to add the enterprise in the application information to the blacklist in response to the verification result indicating that the enterprise in the application information conforms to the blacklist rule.

在一些实施例中,信息确定单元中校验的结果指示申请信息中的企业符合黑名单包括以下至少一项:申请信息中存在非真实信息的次数超过预定阈值;历史校验次数超出预设阈值。In some embodiments, the verification result in the information determination unit indicates that the enterprise in the application information conforms to the blacklist, including at least one of the following: the number of times that there is untrue information in the application information exceeds a predetermined threshold; the number of historical verifications exceeds a predetermined threshold .

在一些实施例中,装置还包括:结果确定单元,被配置成将风险评估信息输入风险控制决策模型,得到风险控制决策模型输出的决策结果。In some embodiments, the apparatus further includes: a result determination unit configured to input the risk assessment information into the risk control decision model to obtain a decision result output by the risk control decision model.

在一些实施例中,结果确定单元中的风险控制决策模型为串连或并联多个规则形成的规则模型。In some embodiments, the risk control decision model in the result determination unit is a rule model formed by connecting a plurality of rules in series or in parallel.

在一些实施例中,当评估输出单元中的风险评估信息包括:与企业建立服务关系的风险概率、企业的风险评分以及服务提示信息时,结果确定单元中的多个规则至少包括:若风险概率中的欺诈概率或违约概率高于预设概率,则输出的决策结果为退回申请;若风险评分中的信用评分低于预设评分、风险评分中的收入低于收入阈值或风险评分中的负债率高于负债率阈值,则输出的决策结果为退回申请。In some embodiments, when the risk assessment information in the assessment output unit includes: a risk probability of establishing a service relationship with an enterprise, a risk score of the enterprise, and service prompt information, the plurality of rules in the result determination unit at least include: if the risk probability If the fraud probability or default probability in the risk score is higher than the preset probability, the output decision result is to return the application; if the credit score in the risk score is lower than the preset score, the income in the risk score is lower than the income threshold or the liability in the risk score If the debt ratio is higher than the debt ratio threshold, the output decision result is to return the application.

在一些实施例中,装置还包括:数据监控单元,被配置成响应于接收到服务指示,与企业建立服务关系,监控已建立服务关系的企业在接受服务后的业务数据;模型优化单元,被配置成基于接受服务后的业务数据,优化风险控制模型。In some embodiments, the apparatus further includes: a data monitoring unit, configured to establish a service relationship with the enterprise in response to receiving the service indication, and monitor the business data of the enterprise that has established the service relationship after receiving the service; a model optimization unit, configured to be It is configured to optimize the risk control model based on the business data after receiving the service.

第三方面,本公开实施例提供了一种电子设备/终端/服务器,包括:一个或多个处理器;存储装置,用于存储一个或多个程序;当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现如上任一所述的用于评估风险的方法。In a third aspect, embodiments of the present disclosure provide an electronic device/terminal/server, including: one or more processors; a storage device for storing one or more programs; The processors execute such that the one or more processors implement a method for assessing risk as described in any of the above.

第四方面,本公开实施例提供了一种计算机可读介质,其上存储有计算机程序,该程序被处理器执行时实现如上任一所述的用于评估风险的方法。In a fourth aspect, an embodiment of the present disclosure provides a computer-readable medium on which a computer program is stored, and when the program is executed by a processor, implements the method for assessing risk as described above.

本公开实施例提供的用于评估风险的方法和装置,首先基于录入的申请信息,确定企业的基本信息;之后,基于基本信息中的企业标识信息与企业信息库中的企业标识信息的关联关系,生成企业的知识图谱;之后,基于基本信息,查询企业的业务数据和企业的舆情信息;最后,将基本信息、企业的知识图谱、业务数据和舆情信息输入风险控制模型,得到企业的风险评估信息。在这一过程中,由于风险控制模型的输入数据采用了基本信息、企业的知识图谱、业务数据和舆情信息等多维度的数据,使得风险控制模型输出的风险评估信息的准确性更高,并且由于采用了风险控制模型来代替人工评测得到风险评估信息,提高了得到风险评估信息的效率和准确性。The method and device for evaluating risks provided by the embodiments of the present disclosure firstly determine the basic information of the enterprise based on the entered application information; then, based on the association relationship between the enterprise identification information in the basic information and the enterprise identification information in the enterprise information database , to generate the knowledge map of the enterprise; then, based on the basic information, query the business data of the enterprise and the public opinion information of the enterprise; finally, input the basic information, the knowledge map of the enterprise, the business data and the public opinion information into the risk control model to obtain the risk assessment of the enterprise information. In this process, since the input data of the risk control model adopts multi-dimensional data such as basic information, enterprise knowledge map, business data and public opinion information, the accuracy of the risk assessment information output by the risk control model is higher, and Since the risk control model is adopted to replace the manual evaluation to obtain the risk assessment information, the efficiency and accuracy of obtaining the risk assessment information are improved.

附图说明Description of drawings

通过阅读参照以下附图所作的对非限制性实施例详细描述,本公开的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present disclosure will become more apparent upon reading the detailed description of non-limiting embodiments with reference to the following drawings:

图1是本公开可以应用于其中的示例性系统架构图;FIG. 1 is an exemplary system architecture diagram to which the present disclosure may be applied;

图2是根据本公开实施例的用于评估风险的方法的一个实施例的流程示意图;FIG. 2 is a schematic flowchart of one embodiment of a method for assessing risk according to an embodiment of the present disclosure;

图3是根据本公开实施例的用于评估风险的方法的一个示例性应用场景;FIG. 3 is an exemplary application scenario of the method for assessing risk according to an embodiment of the present disclosure;

图4是根据本公开实施例的用于评估风险的方法的又一个实施例的流程示意图;FIG. 4 is a schematic flowchart of yet another embodiment of a method for assessing risk according to an embodiment of the present disclosure;

图5是本公开的用于评估风险的装置的一个实施例的示例性结构图;FIG. 5 is an exemplary structural diagram of one embodiment of the apparatus for assessing risk of the present disclosure;

图6是适于用来实现本公开实施例的服务器的计算机系统的结构示意图。FIG. 6 is a schematic structural diagram of a computer system suitable for implementing a server of an embodiment of the present disclosure.

具体实施方式Detailed ways

下面结合附图和实施例对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。The present disclosure will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the related invention, but not to limit the invention. In addition, it should be noted that, for the convenience of description, only the parts related to the related invention are shown in the drawings.

需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。It should be noted that the embodiments of the present disclosure and the features of the embodiments may be combined with each other under the condition of no conflict. The present disclosure will be described in detail below with reference to the accompanying drawings and in conjunction with embodiments.

图1示出了可以应用本公开的用于评估风险的方法或用于评估风险的装置的实施例的示例性系统架构100。FIG. 1 illustrates an exemplary system architecture 100 to which embodiments of a method for assessing risk or an apparatus for assessing risk of the present disclosure may be applied.

如图1所示,系统架构100可以包括终端设备101、102、103,网络104和服务器105。网络104用以在终端设备101、102、103和服务器105之间提供通信链路的介质。网络104可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。As shown in FIG. 1 , the system architecture 100 may include terminal devices 101 , 102 , and 103 , a network 104 and a server 105 . The network 104 is a medium used to provide a communication link between the terminal devices 101 , 102 , 103 and the server 105 . The network 104 may include various connection types, such as wired, wireless communication links, or fiber optic cables, among others.

用户可以使用终端设备101、102、103通过网络104与服务器105交互,以接收或发送消息等。终端设备101、102、103上可以安装有各种通讯客户端应用,例如浏览器应用、购物类应用、搜索类应用、即时通信工具、邮箱客户端、社交平台软件等。The user can use the terminal devices 101, 102, 103 to interact with the server 105 through the network 104 to receive or send messages and the like. Various communication client applications may be installed on the terminal devices 101 , 102 and 103 , such as browser applications, shopping applications, search applications, instant communication tools, email clients, social platform software, and the like.

终端设备101、102、103可以是硬件,也可以是软件。当终端设备101、102、103为硬件时,可以是支持浏览器应用的各种电子设备,包括但不限于平板电脑、膝上型便携计算机和台式计算机等等。当终端设备101、102、103为软件时,可以安装在上述所列举的电子设备中。其可以实现成例如用来提供分布式服务的多个软件或软件模块,也可以实现成单个软件或软件模块。在此不做具体限定。The terminal devices 101, 102, and 103 may be hardware or software. When the terminal devices 101, 102, and 103 are hardware, they can be various electronic devices that support browser applications, including but not limited to tablet computers, laptop computers, desktop computers, and the like. When the terminal devices 101, 102, and 103 are software, they can be installed in the electronic devices listed above. It can be implemented, for example, as multiple software or software modules for providing distributed services, or as a single software or software module. There is no specific limitation here.

服务器105可以是提供各种服务的服务器,例如对终端设备101、102、103上进行的浏览器应用提供支持的后台服务器。后台服务器可以对接收到的请求等数据进行分析等处理,并将处理结果反馈给终端设备。The server 105 may be a server that provides various services, such as a background server that provides support for browser applications performed on the terminal devices 101 , 102 , and 103 . The background server can analyze and process the received request and other data, and feed back the processing result to the terminal device.

需要说明的是,服务器可以是硬件,也可以是软件。当服务器为硬件时,可以实现成多个服务器组成的分布式服务器集群,也可以实现成单个服务器。当服务器为软件时,可以实现成例如用来提供分布式服务的多个软件或软件模块,也可以实现成单个软件或软件模块。在此不做具体限定。It should be noted that the server may be hardware or software. When the server is hardware, it can be implemented as a distributed server cluster composed of multiple servers, or can be implemented as a single server. When the server is software, it may be implemented as multiple software or software modules for providing distributed services, or may be implemented as a single software or software module. There is no specific limitation here.

在实践中,本公开实施例所提供的用于评估风险的方法可以由终端设备101、102、103和/或服务器105、106执行,用于评估风险的装置也可以设置于终端设备101、102、103和/或服务器105、106中。In practice, the method for assessing risks provided by the embodiments of the present disclosure may be executed by terminal devices 101 , 102 , 103 and/or servers 105 , 106 , and the apparatus for assessing risks may also be set on terminal devices 101 , 102 , 103 and/or servers 105 , 106 .

应该理解,图1中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。It should be understood that the numbers of terminal devices, networks and servers in FIG. 1 are merely illustrative. There can be any number of terminal devices, networks and servers according to implementation needs.

继续参考图2,图2示出了根据本公开的用于评估风险的方法的一个实施例的流程200。该用于评估风险的方法包括以下步骤:With continued reference to Figure 2, Figure 2 illustrates a flow 200 of one embodiment of a method for assessing risk in accordance with the present disclosure. The method for assessing risk includes the following steps:

步骤201,基于录入的申请信息,确定企业的基本信息。Step 201, based on the entered application information, determine the basic information of the enterprise.

在本实施例中,用于评估风险的方法的执行主体(例如图1所示的终端或服务器)可以通过本地或远程的人机交互设备接收用户提交的申请信息。In this embodiment, the execution body of the method for risk assessment (for example, the terminal or the server shown in FIG. 1 ) may receive the application information submitted by the user through a local or remote human-computer interaction device.

具体地,上述执行主体可以获取用户从前端录入的电子版申请信息。电子版申请信息包括企业基本信息,企业近期经营情况等。信息录入层提供了前端接口,以供需要申请的企业录入其基本信息。Specifically, the above-mentioned execution body may acquire the electronic version application information entered by the user from the front end. The electronic version of the application information includes the basic information of the enterprise, the recent operation of the enterprise, etc. The information entry layer provides a front-end interface for enterprises that need to apply to enter their basic information.

备选地或附加地,上述执行主体可以获取用户录入的纸质版申请信息。在录入申请信息时,纸质申请信息主要包括:法人有效证件,营业执照,税务登记证,纸质申请表等。Alternatively or additionally, the above-mentioned executive body may obtain the paper version application information entered by the user. When entering the application information, the paper application information mainly includes: legal person valid certificate, business license, tax registration certificate, paper application form, etc.

在本实施例的一些可选实现方式中,基于录入的申请信息,确定企业的基本信息包括:识别录入的纸质版的申请信息,得到识别结果;采用智能修正算法修正识别结果,得到文本序列;识别文本序列中的实体,得到附标签的实体数据;以及基于附标签的命名实体数据,输出结构化的企业的基本信息。In some optional implementations of this embodiment, determining the basic information of the enterprise based on the entered application information includes: identifying the entered application information in paper version, and obtaining the identification result; using an intelligent correction algorithm to correct the identification result to obtain a text sequence ; Recognize entities in text sequences to obtain tagged entity data; and output structured basic information of enterprises based on tagged named entity data.

在本实现方式中,对于纸质版的申请信息,可以采用现有技术或未来发展的技术中用于识别图片中文字的方法进行识别,本申请对此不做限定,例如,可以采用OCR识别技术识别纸质版的申请信息。In this implementation manner, the application information in the paper version can be identified by the method used to identify the text in the picture in the existing technology or the technology developed in the future, which is not limited in this application. For example, OCR identification can be used. The technical identification paper version of the application information.

识别得到的识别结果,通常存在较多的错别字。因此,需要对识别结果进行数据处理,以得到文本序列。这里的数据处理,可以采用智能修正算法修正识别结果中的文字,为进一步分析做准备。智能修正算法可以采用现有技术或未来发展的技术中用于修正语句错误的方法,本申请对此不做限定。例如,可以采用中文错别字纠正工具(pycorrector)或循环神经网络(RNNLM)语言模型来修正文字中的错误。The recognition result obtained by the recognition usually has many typos. Therefore, it is necessary to perform data processing on the recognition results to obtain text sequences. In the data processing here, the intelligent correction algorithm can be used to correct the text in the recognition result to prepare for further analysis. The intelligent correction algorithm may adopt the method for correcting sentence errors in the existing technology or the technology developed in the future, which is not limited in this application. For example, a Chinese typo correction tool (pycorrector) or a recurrent neural network (RNNLM) language model can be used to correct errors in text.

另外,针对修正后的文本序列,可以结合实体识别算法,确保实体识别的正确性。这里的实体识别算法,可以为现有技术或未来发展的技术中用于识别实体的算法,本申请对此不做限定。例如,可以采用命名实体识别(NER)任务进行文本序列中实体的识别。In addition, for the revised text sequence, entity recognition algorithms can be combined to ensure the correctness of entity recognition. The entity identification algorithm here may be an algorithm used to identify an entity in the existing technology or a technology developed in the future, which is not limited in this application. For example, Named Entity Recognition (NER) task can be employed to identify entities in text sequences.

具体地,识别的命名实体可以包括:Specifically, the identified named entities may include:

(1)申请公司相关实体,如申请名称,名称预先核准文号,住所,生产经营地,邮政编码,公司类型等等;(1) Relevant entities applying for the company, such as the application name, pre-approved document number for the name, domicile, place of production and operation, postal code, company type, etc.;

(2)人员相关实体,如法定代表人,监理,董事,经理,财务负责人,股东发起人,联络员等;(2) Personnel related entities, such as legal representatives, supervisors, directors, managers, financial directors, shareholder promoters, liaisons, etc.;

(3)人员信息相关属性实体,如姓名,固定电话,移动电话,身份证类型,身份证号码等等;以及其他相关实体。这些实体可以为后续建立审批提供相关领域术语。(3) Personnel information related attribute entities, such as name, fixed phone, mobile phone, ID card type, ID card number, etc.; and other related entities. These entities can provide relevant domain terminology for subsequent establishment approvals.

本实现方式中的确定企业的基本信息的方法,由于采用了智能修正算法来修正对纸质版的申请信息的识别结果,可以提高根据识别结果得到的文本序列的准确率;根据实体识别结果得到企业的基本信息,提高了得到企业的基本信息的准确率和效率。In the method for determining the basic information of an enterprise in this implementation manner, since an intelligent correction algorithm is used to correct the recognition result of the paper version of the application information, the accuracy of the text sequence obtained according to the recognition result can be improved; The basic information of the enterprise improves the accuracy and efficiency of obtaining the basic information of the enterprise.

在本实施例的一些可选实现方式中,基于录入的申请信息,确定企业的基本信息包括:基于录入的申请信息,调取与申请信息中的企业对应的基准信息;其中,基准信息包括官方信息和/或历史信息;基于基准信息,校验申请信息;响应于校验的结果指示预设信息未通过校验,呈现退回申请的提示信息;响应于校验的结果指示申请信息中的企业符合黑名单规则,将申请信息中的企业加入黑名单。In some optional implementations of this embodiment, determining the basic information of the enterprise based on the entered application information includes: retrieving benchmark information corresponding to the enterprise in the application information based on the entered application information; wherein the benchmark information includes official information and/or historical information; based on the benchmark information, verify the application information; in response to the result of the verification indicating that the preset information fails the verification, a prompt message for returning the application is presented; in response to the result of the verification, the enterprise in the application information is indicated In line with the blacklist rules, the companies in the application information will be added to the blacklist.

在本实现方式中,为了核查申请信息中的数据是否正确,可以对录入的申请信息进行校验。例如,对申请信息中的公司地址做一个校验,一旦发现公司实际经营地址与官方信息中的公司注册地址不一致,直接退回申请。这一步会自动调取申请企业的历史信息数据,并与申请材料中的信息进行详细的比对,包括企业法人,企业注册资本等等信息。In this implementation manner, in order to check whether the data in the application information is correct, the entered application information may be checked. For example, do a check on the company address in the application information. Once it is found that the company's actual business address is inconsistent with the company's registered address in the official information, the application will be returned directly. This step will automatically retrieve the historical information data of the applicant company, and compare it with the information in the application materials in detail, including the corporate legal person, corporate registered capital and other information.

此外,对录入的申请信息进行校验可以避免恶意提交。可以将校验的结果与预先设定的黑名单进行比较,若比较的结果指示校验的结果命中黑名单规则,则将申请信息中的企业加入黑名单。In addition, verifying the entered application information can avoid malicious submission. The verification result may be compared with a preset blacklist, and if the comparison result indicates that the verification result hits the blacklist rule, the enterprise in the application information will be added to the blacklist.

示例性地,校验的结果指示申请信息中的企业符合黑名单可以包括:申请信息中存在非真实信息的次数超过预定阈值;历史校验次数超出预设阈值。Exemplarily, the verification result indicating that the enterprise in the application information conforms to the blacklist may include: the number of times that there is untrue information in the application information exceeds a predetermined threshold; the number of historical verifications exceeds a predetermined threshold.

具体地,上述执行主体可以获取申请者的历史校验次数,并将历史校验次数与预设阈值比较。如果历史校验次数超过预设阈值,则将申请的企业用户加入黑名单,并输出黑名单增员提示信息。Specifically, the above-mentioned execution body may obtain the historical verification times of the applicant, and compare the historical verification times with a preset threshold. If the number of historical verification exceeds the preset threshold, the applied enterprise user will be added to the blacklist, and the blacklist addition prompt message will be output.

备选地或附加地,上述执行主体可以校验出申请者提供的基本信息不为真实信息的次数,并将非真实信息的次数与预定阈值比较,如果非真实信息的次数超过预定阈值,则将申请的企业用户加入黑名单,并输出黑名单增员提示信息。Alternatively or additionally, the above-mentioned executive body can check the number of times that the basic information provided by the applicant is not real information, and compare the number of times of non-real information with a predetermined threshold, if the number of times of non-real information exceeds the predetermined threshold, then Add the applied enterprise users to the blacklist, and output the blacklist addition prompt information.

本实现方式中的确定企业的基本信息的方法,由于对申请信息中的数据进行了校验,可以提高所确定的企业的基本信息的真实性和准确性,避免不良申请和恶意申请。In the method for determining the basic information of the enterprise in this implementation manner, since the data in the application information is verified, the authenticity and accuracy of the determined basic information of the enterprise can be improved, and bad applications and malicious applications can be avoided.

步骤202,基于基本信息中的企业标识信息与企业信息库中的企业标识信息的关联关系,生成企业的知识图谱。Step 202: Generate a knowledge map of the enterprise based on the association relationship between the enterprise identification information in the basic information and the enterprise identification information in the enterprise information database.

在本实施例中,上述执行主体可以根据企业的基本信息中的企业标识信息,查询企业信息库中与基本信息中的企业标识信息具有关联关系的企业标识信息。之后,上述执行主体可以根据基本信息中的企业标识信息、与基本信息中的企业标识信息具有关联关系的企业标识信息以及两者之间的关联关系,生成企业的知识图谱。In this embodiment, the above-mentioned execution subject may query the enterprise identification information in the enterprise information database for the enterprise identification information in the basic information that has an associated relationship with the enterprise identification information in the basic information according to the enterprise identification information in the basic information of the enterprise. Afterwards, the above-mentioned executive body may generate a knowledge graph of the enterprise according to the enterprise identification information in the basic information, the enterprise identification information having an associated relationship with the enterprise identification information in the basic information, and the association between the two.

这里的企业标识信息,可以对企业进行标识,以便外界识别该企业。具体地,企业标识信息可以包括以下至少一项:企业名称、企业法人以及企业商标等。The enterprise identification information here can identify the enterprise so that the outside world can identify the enterprise. Specifically, the enterprise identification information may include at least one of the following: an enterprise name, an enterprise legal person, an enterprise trademark, and the like.

在一个具体的示例中,可以根据基本信息中的企业名称,查询企业信息库中与该企业名称相关联的企业名称,以及这些企业之间的关联关系。同时,可以从企业信息库中查询基本信息中的法人及其控股的其它公司。In a specific example, according to the enterprise name in the basic information, the enterprise name associated with the enterprise name in the enterprise information database and the association relationship between these enterprises can be queried. At the same time, the legal person in the basic information and other companies controlled by it can be queried from the enterprise information database.

上述执行主体在获取基本信息中的企业标识信息与企业信息库中的企业标识信息的关联关系之后,可以将获取的数据整理成直观的企业知识图谱。例如,可以将各个企业的基本信息以及各个法人的基本信息整理成企业知识图谱。After acquiring the association relationship between the enterprise identification information in the basic information and the enterprise identification information in the enterprise information database, the above-mentioned execution body can organize the acquired data into an intuitive enterprise knowledge graph. For example, the basic information of each enterprise and the basic information of each legal person can be organized into an enterprise knowledge map.

应当理解,在得到企业知识图谱之后,可以将企业知识图谱呈现在交互界面上,并将企业知识图谱中的信息输出。It should be understood that after obtaining the enterprise knowledge graph, the enterprise knowledge graph can be presented on the interactive interface, and the information in the enterprise knowledge graph can be output.

步骤203,基于基本信息,查询企业的业务数据和企业的舆情信息。Step 203 , based on the basic information, query the business data of the enterprise and the public opinion information of the enterprise.

在本实施例中,可以从各种途径获取企业的业务数据和企业的舆情信息。例如,可以从网络平台、数据库、第三方等途径获取企业的业务数据和企业的舆情信息。In this embodiment, the business data of the enterprise and the public opinion information of the enterprise can be obtained from various channels. For example, the business data of the enterprise and the public opinion information of the enterprise can be obtained from a network platform, a database, a third party, etc.

企业的业务数据,是指可以指示企业的业务运行状况的数据。例如,企业的业务数据至少可以包括:招聘人数、招聘时间、经营情况、负债情况等。The business data of an enterprise refers to data that can indicate the business operation status of the enterprise. For example, the business data of an enterprise may at least include: number of recruits, recruiting time, operating conditions, liabilities, and the like.

企业的舆情信息,是指针对企业的舆情的反映形式。例如,针对企业的媒体信息、政府信息等。The public opinion information of the enterprise refers to the reflection form of the public opinion of the enterprise. For example, media information for enterprises, government information, etc.

步骤204,将基本信息、企业的知识图谱、业务数据和舆情信息输入风险控制模型,得到企业的风险评估信息。Step 204: Input the basic information, the knowledge graph of the enterprise, the business data and the public opinion information into the risk control model to obtain the risk assessment information of the enterprise.

在本实施例中,风险控制模型主要是对企业的情况进行评估,给其评分输出至交互界面或供下一步决策使用。In this embodiment, the risk control model mainly evaluates the situation of the enterprise, and outputs the score to the interactive interface or for use in the next decision.

这里的风险控制模型,可以为基于规则的模型,其中的规则为根据历史数据统计得到的规则。备选地或附加地,风险控制模型可以为基于机器学习算法的模型,该基于机器学习算法的模型基于对历史数据的学习得到。本申请对此不做限定。The risk control model here may be a rule-based model, wherein the rules are rules obtained according to historical data statistics. Alternatively or additionally, the risk control model may be a model based on a machine learning algorithm obtained based on learning from historical data. This application does not limit this.

在将基本信息、企业的知识图谱、业务数据和舆情信息输入风险控制模型后,风险控制模型可以对输入的数据进行分析,并基于输入的数据预估输入的数据对应的风险评估信息。After the basic information, enterprise knowledge map, business data and public opinion information are input into the risk control model, the risk control model can analyze the input data and estimate the risk assessment information corresponding to the input data based on the input data.

在本实施例的一些可选实现方式中,风险控制模型包括:风险关系模型和风险评分模型;风险评估信息包括:与企业建立服务关系的风险概率、企业的风险评分以及服务提示信息;将基本信息、企业的知识图谱以及业务数据输入风险控制模型,得到企业的风险评估信息包括:将基本信息、企业的知识图谱和舆情信息输入风险关系模型,获得与企业建立服务关系的风险概率;将业务数据和舆情信息输入风险评分模型,获得企业的风险评分以及服务提示信息。In some optional implementations of this embodiment, the risk control model includes: a risk relationship model and a risk scoring model; the risk assessment information includes: a risk probability of establishing a service relationship with an enterprise, a risk score of the enterprise, and service prompt information; Information, the knowledge map of the enterprise and the business data are input into the risk control model, and the risk assessment information of the enterprise is obtained, including: input the basic information, the knowledge map of the enterprise and the public opinion information into the risk relationship model to obtain the risk probability of establishing a service relationship with the enterprise; Data and public opinion information are input into the risk scoring model to obtain the enterprise's risk score and service prompt information.

在本实现方式中,风险关系模型用于基于输入的基本信息、企业的知识图谱和舆情信息,预估与企业建立服务关系的风险概率。风险概率可以指示与企业建立服务关系的风险。In this implementation manner, the risk relationship model is used to estimate the risk probability of establishing a service relationship with the enterprise based on the input basic information, the enterprise's knowledge map and public opinion information. Risk probability may indicate the risk of establishing a service relationship with a business.

在这里,风险关系模型可以为关系网络模型。关系网络是一种基于图的数据结构,由节点和边组成。每个节点代表一个个体,每条边为个体与个体之间的关系。关系网络将不同的个体按照其关系连接在一起,从而提供了从“关系”的角度分析问题的能力。关系网络有利于从正常行为中识别出到异常的团伙欺诈行为。Here, the risk relationship model may be a relationship network model. A relational network is a graph-based data structure consisting of nodes and edges. Each node represents an individual, and each edge is a relationship between individuals. Relational networks connect different individuals according to their relationships, thereby providing the ability to analyze problems from the perspective of "relationships". A network of relationships facilitates the identification of abnormal gang fraud from normal behavior.

关系网络在反欺诈中的应用场景,主要分为监督模型和无监督模型两种情况。所谓的监督模型,指的是在已知“好”和“坏”标签的前提下,尝试从历史数据中,挖掘出欺诈团伙的典型特征和行为模式,从而能够有效的识别出欺诈团伙。监督模型虽然在预测准确性上有不错的表现,但是,实际情况中,“好”和“坏”的标签往往很难得到。因此,在没有标签信息时,无监督模型分析也变得尤为重要。The application scenarios of relational network in anti-fraud are mainly divided into two cases: supervised model and unsupervised model. The so-called supervised model refers to trying to dig out the typical characteristics and behavior patterns of fraudulent gangs from historical data under the premise of known “good” and “bad” labels, so as to effectively identify fraudulent gangs. Although supervised models have good performance in prediction accuracy, in practice, "good" and "bad" labels are often difficult to obtain. Therefore, unsupervised model analysis also becomes particularly important when there is no label information.

风险评分模型用于基于企业的业务数据,预估企业的风险评分以及输出服务提示信息。其中,风险评分可以指示企业的整体评分,服务提示信息可以指示向企业提供的服务的等级。The risk scoring model is used to estimate the risk score of the enterprise and output service prompt information based on the business data of the enterprise. The risk score may indicate the overall score of the enterprise, and the service prompt information may indicate the level of the service provided to the enterprise.

在这里,风险评分模型可以是简单的多元回归模型也可以是神经网络回归模型。在一个具体的示例中,风险评分模型可以为训练得到的线形回归模型。线性回归模型中的因变量的值为风险评分。自变量为业务数据和舆情信息。具体地,业务数据可以包括:利润增长率,招聘人数增长率,招聘人数,公司负债率等。模型可以是简单的多元回归模型也可以是神经网络回归模型Here, the risk scoring model can be a simple multiple regression model or a neural network regression model. In a specific example, the risk scoring model may be a linear regression model obtained by training. The value of the dependent variable in the linear regression model is the risk score. The independent variables are business data and public opinion information. Specifically, the business data may include: profit growth rate, recruiting number growth rate, recruiting number, company debt ratio, and the like. The model can be a simple multiple regression model or a neural network regression model

本实现方式中的风险控制模型,通过在风险控制模型中设置风险关系模型和风险评分模型,可以采用风险关系模型确定与企业建立服务关系的风险概率,并采用风险评分模型获得企业的风险评分以及服务提示信息,从而针对不同的输入数据,采用不同的模型进行专项处理,提高了输出的结果的准确率。In the risk control model in this implementation, by setting a risk relationship model and a risk scoring model in the risk control model, the risk relationship model can be used to determine the risk probability of establishing a service relationship with the enterprise, and the risk scoring model can be used to obtain the enterprise's risk score and Service prompt information, so that for different input data, different models are used for special processing, which improves the accuracy of the output results.

在本实施例的一些可选实现方式中,本公开的用于评估风险的方法还包括以下至少一项:风险关系模型为基于RFM、NLP、图挖掘技术得到的关系网络模型;风险评分模型为多元回归模型;风险概率包括欺诈概率、违约概率和逾期概率;以及业务数据包括:招聘人数、招聘时间、经营情况和负债情况。In some optional implementations of this embodiment, the method for evaluating risks of the present disclosure further includes at least one of the following: the risk relationship model is a relationship network model obtained based on RFM, NLP, and graph mining technology; the risk scoring model is Multiple regression model; risk probability includes fraud probability, default probability and overdue probability; and business data includes: number of recruits, recruitment time, operating conditions and liabilities.

在本实现方式中,RFM模型为客户关系管理模型,NLP为自然语言处理模型,图挖掘技术是指利用图模型从海量数据中发现和提起有用知识和信息的过程。在基于RFM、NLP、图挖掘技术构建关系网络模型之后,可以将基本信息、企业的知识图谱以及业务数据输入关系网络模型,以得到关系网络模型输出的与企业建立服务关系的欺诈概率、违约概率和逾期概率。In this implementation, the RFM model is a customer relationship management model, the NLP is a natural language processing model, and the graph mining technology refers to the process of using graph models to discover and extract useful knowledge and information from massive data. After building a relational network model based on RFM, NLP, and graph mining technology, basic information, enterprise knowledge graphs and business data can be input into the relational network model to obtain the fraud probability and default probability of establishing a service relationship with the enterprise output by the relational network model. and overdue probability.

多元回归模型,可以将业务数据中的招聘人数、招聘时间、经营情况和负债情况作为自变量,将企业的风险评分作为因变量,并基于因变量生成服务提示信息。The multiple regression model can use the number of recruits, recruiting time, operating conditions and liabilities in the business data as independent variables, and the risk score of the enterprise as the dependent variable, and generate service prompt information based on the dependent variable.

本公开上述实施例的用于评估风险的方法,使得风险控制模型输出的风险评估信息的准确性更高,并且提高了得到风险评估信息的效率和准确性。The method for assessing risk in the above embodiments of the present disclosure makes the risk assessment information output by the risk control model more accurate, and improves the efficiency and accuracy of obtaining the risk assessment information.

以下结合图3,描述本公开的用于评估风险的方法的示例性应用场景。An exemplary application scenario of the method for assessing risk of the present disclosure is described below with reference to FIG. 3 .

如图3所示,图3示出了根据本公开的用于评估风险的方法的一个示例性应用场景。As shown in FIG. 3 , FIG. 3 shows an exemplary application scenario of the method for assessing risk according to the present disclosure.

如图3所示,用于评估风险的方法300运行于电子设备310中,可以包括:As shown in FIG. 3 , the method 300 for assessing risk runs in the electronic device 310 and may include:

首先,基于录入的申请信息301,确定企业的基本信息302;First, based on the entered application information 301, determine the basic information 302 of the enterprise;

基于基本信息302中的实体303和企业信息库中的实体304的关联关系305,生成企业的知识图谱306;Based on the association relationship 305 between the entity 303 in the basic information 302 and the entity 304 in the enterprise information base, a knowledge graph 306 of the enterprise is generated;

基于基本信息302,查询企业的业务数据307和企业的舆情信息308;Based on the basic information 302, query the business data 307 of the enterprise and the public opinion information 308 of the enterprise;

将基本信息302、企业的知识图谱306、业务数据307以及舆情信息308输入风险控制模型309,得到企业的风险评估信息310。The basic information 302 , the knowledge map 306 of the enterprise, the business data 307 and the public opinion information 308 are input into the risk control model 309 to obtain the risk assessment information 310 of the enterprise.

应当理解,上述图3中所示出的用于评估风险的方法的应用场景,仅为对于用于评估风险的方法的示例性描述,并不代表对该方法的限定。例如,上述图3中示出的各个步骤,可以进一步采用更为细节的实现方法。也可以在上述图3的基础上,进一步增加其它用于评估风险的步骤。It should be understood that the application scenario of the method for assessing risk shown in FIG. 3 above is only an exemplary description of the method for assessing risk, and does not represent a limitation to the method. For example, each step shown in FIG. 3 above may further adopt a more detailed implementation method. It is also possible to further add other steps for assessing risks on the basis of FIG. 3 above.

进一步参考图4,图4示出了根据本公开的用于评估风险的方法的又一个实施例的示意性流程图。With further reference to FIG. 4, FIG. 4 shows a schematic flow diagram of yet another embodiment of a method for assessing risk according to the present disclosure.

如图4所示,本实施例的用于评估风险的方法400,可以包括以下步骤:As shown in FIG. 4 , the method 400 for assessing risk in this embodiment may include the following steps:

步骤401,基于录入的申请信息,确定企业的基本信息。Step 401, based on the entered application information, determine the basic information of the enterprise.

在本实施例中,用于评估风险的方法的执行主体(例如图1所示的终端或服务器)可以通过本地或远程的人机交互设备接收用户提交的申请信息。In this embodiment, the execution body of the method for risk assessment (for example, the terminal or server shown in FIG. 1 ) may receive the application information submitted by the user through a local or remote human-computer interaction device.

步骤402,基于基本信息中的实体和企业信息库中的实体的关联关系,生成企业的知识图谱。Step 402 , based on the association relationship between the entities in the basic information and the entities in the enterprise information base, generate a knowledge graph of the enterprise.

在本实施例中,上述执行主体可以根据企业的基本信息中的企业标识信息,查询企业信息库中与基本信息中的企业标识信息具有关联关系的企业标识信息。之后,上述执行主体可以根据基本信息中的企业标识信息、与基本信息中的企业标识信息具有关联关系的企业标识信息以及两者之间的关联关系,生成企业的知识图谱。In this embodiment, the above-mentioned execution subject may, according to the enterprise identification information in the basic information of the enterprise, query the enterprise identification information in the enterprise information database that has an associated relationship with the enterprise identification information in the basic information. Afterwards, the above-mentioned executive body may generate a knowledge graph of the enterprise according to the enterprise identification information in the basic information, the enterprise identification information having an associated relationship with the enterprise identification information in the basic information, and the association between the two.

步骤403,基于基本信息,查询企业的业务数据和企业的舆情信息。Step 403 , based on the basic information, query the business data of the enterprise and the public opinion information of the enterprise.

在本实施例中,可以从各种途径获取企业的业务数据和企业的舆情信息。例如,可以从网络平台、数据库、第三方等途径获取企业的业务数据和企业的舆情信息。In this embodiment, the business data of the enterprise and the public opinion information of the enterprise can be obtained from various channels. For example, the business data of the enterprise and the public opinion information of the enterprise can be obtained from a network platform, a database, a third party, etc.

步骤404,将基本信息、企业的知识图谱、业务数据和舆情信息输入风险控制模型,得到企业的风险评估信息。Step 404: Input the basic information, the knowledge graph of the enterprise, the business data and the public opinion information into the risk control model to obtain the risk assessment information of the enterprise.

在本实施例中,风险控制模型主要是对企业的情况进行评估,给其评分输出至交互界面或供下一步决策使用。In this embodiment, the risk control model mainly evaluates the situation of the enterprise, and outputs the score to the interactive interface or for use in the next decision.

这里的风险控制模型,可以为基于规则的模型,其中的规则为根据历史数据统计得到的规则。备选地或附加地,风险控制模型可以为基于机器学习算法的模型,该基于机器学习算法的模型基于对历史数据的学习得到。本申请对此不做限定。The risk control model here may be a rule-based model, wherein the rules are rules obtained according to historical data statistics. Alternatively or additionally, the risk control model may be a model based on a machine learning algorithm obtained based on learning from historical data. This application does not limit this.

在将基本信息、企业的知识图谱、业务数据和舆情信息输入风险控制模型后,风险控制模型可以对输入的数据进行分析,并基于输入的数据预估输入的数据对应的风险评估信息。After the basic information, enterprise knowledge map, business data and public opinion information are input into the risk control model, the risk control model can analyze the input data and estimate the risk assessment information corresponding to the input data based on the input data.

应当理解,上述步骤401至步骤404分别与图2所示的实施例中的步骤201至步骤204相对应。因此,上述图2所示的实施例中针对步骤201至步骤204所描述的操作和特征同样适用于步骤401至步骤404,在此不再赘述。It should be understood that the above steps 401 to 404 correspond to the steps 201 to 204 in the embodiment shown in FIG. 2 respectively. Therefore, the operations and features described for steps 201 to 204 in the above embodiment shown in FIG. 2 are also applicable to steps 401 to 404, and are not repeated here.

步骤405,将风险评估信息输入风险控制决策模型,得到风险控制决策模型输出的决策结果。Step 405: Input the risk assessment information into the risk control decision model to obtain the decision result output by the risk control decision model.

在本实施例中,风险控制决策模型可以根据风险评估信息来进行智能决策,并输出决策结果。风险控制决策模型的整个决策过程由模型来完成,无需人工参与。决策完成后,风险控制决策模型会将决策结果输出到交互界面,以供人工参考。In this embodiment, the risk control decision model can make intelligent decisions according to the risk assessment information, and output decision results. The entire decision-making process of the risk control decision-making model is completed by the model without manual participation. After the decision is completed, the risk control decision model will output the decision result to the interactive interface for manual reference.

风险控制决策模型是由多个规则通过串联或者并联的方式形成的规则模型。The risk control decision model is a rule model formed by multiple rules in series or parallel.

例如,风险控制决策模型包含的规则,可以为风险关系模型得到的企业欺诈概率或者违约概率不能高于预设概率。风险控制决策模型在风险关系模型得到的企业欺诈概率或者违约概率的高于预设概率时,认为企业具有较强的欺诈倾向,输出的决策结果为:建议退回申请。For example, the rules included in the risk control decision model may be that the enterprise fraud probability or default probability obtained by the risk relationship model cannot be higher than the preset probability. The risk control decision model considers that the enterprise has a strong fraud tendency when the enterprise fraud probability or default probability obtained by the risk relationship model is higher than the preset probability, and the output decision result is: it is recommended to return the application.

又例如,风险控制决策模型包含的其它规则还可以包括针对风险评分中的信用评分、收入情况、负债率等情况的限定。当信用评分低于预设评分,收入低于收入阈值或者负债率高于负债率阈值时,输出的决策结果为:建议退回申请。For another example, other rules included in the risk control decision model may also include limitations on credit score, income situation, debt ratio and other situations in the risk score. When the credit score is lower than the preset score, the income is lower than the income threshold, or the debt ratio is higher than the debt ratio threshold, the output decision result is: It is recommended to return the application.

可以理解的是,这些规则可以由人工经由交互界面设定。It will be appreciated that these rules may be set manually via the interactive interface.

风险控制决策模型在生成决策结果之后,可以将决策结果呈现于交互界面。进一步地,还可以将生成决策结果的申请信息或中间数据呈现于交互界面。After the risk control decision model generates the decision results, the decision results can be presented on the interactive interface. Further, the application information or intermediate data for generating the decision result can also be presented on the interactive interface.

可选步骤406,响应于接收到服务指示,与企业建立服务关系,监控已建立服务关系的企业在接受服务后的业务数据。In optional step 406, in response to receiving the service indication, establish a service relationship with the enterprise, and monitor business data of the enterprise that has established the service relationship after receiving the service.

在本实施例中,上述执行主体可以直接在决策结果为建议与企业建立服务关系时,直接将决策结果作为服务指示,与企业建立服务关系。备选地,上述执行主体可以将决策结果呈现给用户,接收用户基于决策结果输入的与企业建立服务关系的服务指示,与企业建立服务关系。In this embodiment, the above-mentioned executive body may directly use the decision result as a service instruction to establish a service relationship with the enterprise when the decision result is to suggest establishing a service relationship with the enterprise. Alternatively, the above-mentioned executive body may present the decision result to the user, receive a service instruction to establish a service relationship with the enterprise input by the user based on the decision result, and establish a service relationship with the enterprise.

上述执行主体在与企业建立服务关系之后,可以监控已建立服务关系的企业在接受服务后的业务数据,以备后续针对接受服务后的业务数据调整向企业提供的服务。After establishing a service relationship with the enterprise, the above-mentioned executive body can monitor the business data of the enterprise that has established the service relationship after receiving the service, so as to adjust the service provided to the enterprise according to the business data after receiving the service.

可选步骤407,基于接受服务后的业务数据,优化风险控制模型。In optional step 407, the risk control model is optimized based on the business data after receiving the service.

在本实施例中,上述执行主体在监控已建立服务关系的企业在接受服务后的业务数据之后,可以对监控的业务数据进行分析,以便调整优化风险控制模型。In this embodiment, after monitoring the business data of the enterprise that has established the service relationship after receiving the service, the execution body may analyze the monitored business data, so as to adjust and optimize the risk control model.

本公开图4中的实施例中的用于评估风险的方法,在图2中所示的用于评估风险的方法的基础上,可以将风险评估信息输入风险控制决策模型,得到风险控制决策模型输出的决策结果,与现有技术中人工审核相比,减少了审核人员的重复性冗余劳动,提高了评估风险的工作效率,并且可以缩短审批流程,避免由于审核人员水平的差异而导致审核标准不同、审批结果差异较大等现象的发生。在一些实施例中,由于增加了可选步骤406和可选步骤407,可以监控企业的业务数据,降低为企业提供服务但无法收回服务收益的风险。The method for assessing risk in the embodiment in FIG. 4 of the present disclosure, on the basis of the method for assessing risk shown in FIG. 2 , the risk assessment information can be input into a risk control decision model to obtain a risk control decision model The output decision result, compared with the manual review in the prior art, reduces the repetitive and redundant work of the reviewers, improves the work efficiency of risk assessment, and can shorten the approval process to avoid the audit caused by the difference in the level of the reviewers. The occurrence of phenomena such as different standards and large differences in approval results. In some embodiments, due to the addition of optional step 406 and optional step 407, the business data of the enterprise can be monitored, and the risk of providing services to the enterprise but failing to recover the service benefits can be reduced.

进一步参考图5,作为对上述各图所示方法的实现,本公开实施例提供了一种用于评估风险的装置的一个实施例,该装置实施例与图2-图4中所示的方法实施例相对应,该装置具体可以应用于包括发布端与服务端的装置中。With further reference to FIG. 5 , as an implementation of the methods shown in the above figures, an embodiment of the present disclosure provides an embodiment of an apparatus for assessing risks, which is similar to the methods shown in FIGS. 2 to 4 . Corresponding to the embodiment, the apparatus may be specifically applied to an apparatus including a publishing end and a server.

如图5所示,本实施例的用于评估风险的装置500可以包括:信息确定单元510,被配置成基于录入的申请信息,确定企业的基本信息;图谱生成单元520,被配置成基于基本信息中的企业标识信息与企业信息库中的企业标识信息的关联关系,生成企业的知识图谱;信息查询单元530,被配置成基于基本信息,查询企业的业务数据和企业的舆情信息;评估输出单元540,被配置成将基本信息、企业的知识图谱、业务数据和舆情信息输入风险控制模型,得到企业的风险评估信息。As shown in FIG. 5 , the apparatus 500 for evaluating risks in this embodiment may include: an information determination unit 510 configured to determine basic information of an enterprise based on the entered application information; a graph generation unit 520 configured to The association relationship between the enterprise identification information in the information and the enterprise identification information in the enterprise information database, to generate the knowledge map of the enterprise; the information query unit 530 is configured to query the business data of the enterprise and the public opinion information of the enterprise based on the basic information; evaluation output The unit 540 is configured to input the basic information, the knowledge graph of the enterprise, the business data and the public opinion information into the risk control model to obtain the risk assessment information of the enterprise.

在本实施例的一些可选实现方式中,评估输出单元540中的风险控制模型包括:风险关系模型和风险评分模型;评估输出单元540中的风险评估信息包括:与企业建立服务关系的风险概率、企业的风险评分以及服务提示信息;评估输出单元540进一步被配置成:将基本信息、企业的知识图谱和舆情信息输入风险关系模型,获得与企业建立服务关系的风险概率;将业务数据和舆情信息输入风险评分模型,获得企业的风险评分以及服务提示信息。In some optional implementations of this embodiment, the risk control model in the evaluation output unit 540 includes: a risk relationship model and a risk scoring model; the risk evaluation information in the evaluation output unit 540 includes: a risk probability of establishing a service relationship with an enterprise , the enterprise's risk score and service prompt information; the evaluation output unit 540 is further configured to: input the basic information, the enterprise's knowledge map and public opinion information into the risk relationship model to obtain the risk probability of establishing a service relationship with the enterprise; Enter the information into the risk scoring model to obtain the enterprise's risk score and service prompt information.

在本实施例的一些可选实现方式中,装置500还包括以下至少一项:风险关系模型为基于RFM、NLP、图挖掘技术得到的关系网络模型;风险评分模型为多元回归模型;风险概率包括欺诈概率、违约概率和逾期概率;以及业务数据包括:招聘人数、招聘时间、经营情况和负债情况。In some optional implementations of this embodiment, the apparatus 500 further includes at least one of the following: the risk relationship model is a relationship network model obtained based on RFM, NLP, and graph mining technology; the risk scoring model is a multiple regression model; the risk probability includes Fraud probability, default probability and overdue probability; and business data including: number of hires, hiring time, operations and liabilities.

在本实施例的一些可选实现方式中,信息确定单元510包括(图中未示出):结果识别子单元,被配置成识别录入的纸质版的申请信息,得到识别结果;结果修正子单元,被配置成采用智能修正算法修正识别结果,得到文本序列;实体识别子单元,被配置成识别文本序列中的实体,得到附标签的实体数据;以及信息输出子单元,被配置成基于附标签的命名实体数据,输出结构化的企业的基本信息。In some optional implementations of this embodiment, the information determination unit 510 includes (not shown in the figure): a result identification subunit, configured to identify the entered application information in paper version, and obtain the identification result; a unit configured to use an intelligent correction algorithm to correct the recognition result to obtain a text sequence; an entity identification subunit configured to identify entities in the text sequence to obtain tagged entity data; and an information output subunit configured to Label named entity data, output structured basic information of the enterprise.

在本实施例的一些可选实现方式中,信息确定单元510包括(图中未示出):信息调取子单元,被配置成基于录入的申请信息,调取与申请信息中的企业对应的基准信息;其中,基准信息包括官方信息和/或历史信息;信息校验子单元,被配置成基于基准信息,校验申请信息;提示呈现子单元,被配置成响应于校验的结果指示预设信息未通过校验,呈现退回申请的提示信息;名单加入子单元,被配置成响应于校验的结果指示申请信息中的企业符合黑名单规则,将申请信息中的企业加入黑名单。In some optional implementations of this embodiment, the information determination unit 510 includes (not shown in the figure): an information retrieval subunit, configured to retrieve an information corresponding to the enterprise in the application information based on the entered application information. Reference information; wherein the reference information includes official information and/or historical information; an information verification sub-unit is configured to verify application information based on the benchmark information; a prompt presentation sub-unit is configured to indicate a predetermined If the information fails the verification, a prompt message for returning the application is presented; the list adding subunit is configured to add the enterprise in the application information to the blacklist in response to the verification result indicating that the enterprise in the application information conforms to the blacklist rule.

在本实施例的一些可选实现方式中,信息确定单元510中校验的结果指示申请信息中的企业符合黑名单包括以下至少一项:申请信息中存在非真实信息的次数超过预定阈值;历史校验次数超出预设阈值。In some optional implementations of this embodiment, the result of verification in the information determining unit 510 indicates that the enterprises in the application information conform to the blacklist, including at least one of the following: the number of times that there is untrue information in the application information exceeds a predetermined threshold; the history The number of verifications exceeds the preset threshold.

在本实施例的一些可选实现方式中,装置还包括:结果确定单元550,被配置成将风险评估信息输入风险控制决策模型,得到风险控制决策模型输出的决策结果。In some optional implementations of this embodiment, the apparatus further includes: a result determination unit 550 configured to input the risk assessment information into the risk control decision model to obtain a decision result output by the risk control decision model.

在本实施例的一些可选实现方式中,结果确定单元550中的风险控制决策模型为串连或并联多个规则形成的规则模型。In some optional implementations of this embodiment, the risk control decision model in the result determination unit 550 is a rule model formed by connecting multiple rules in series or in parallel.

在本实施例的一些可选实现方式中,当评估输出单元540中的风险评估信息包括:与企业建立服务关系的风险概率、企业的风险评分以及服务提示信息时,结果确定单元550中的多个规则至少包括:若风险概率中的欺诈概率或违约概率高于预设概率,则输出的决策结果为退回申请;若风险评分中的信用评分低于预设评分、风险评分中的收入低于收入阈值或风险评分中的负债率高于负债率阈值,则输出的决策结果为退回申请。In some optional implementations of this embodiment, when the risk assessment information in the assessment output unit 540 includes: the risk probability of establishing a service relationship with the enterprise, the risk score of the enterprise, and the service prompt information, the result determination unit 550 contains multiple risk assessment information. Each rule includes at least: if the fraud probability or default probability in the risk probability is higher than the preset probability, the output decision result is to return the application; if the credit score in the risk score is lower than the preset score, and the income in the risk score is lower than If the debt ratio in the income threshold or risk score is higher than the debt ratio threshold, the output decision result is to return the application.

在本实施例的一些可选实现方式中,装置还包括:数据监控单元560,被配置成响应于接收到服务指示,与企业建立服务关系,监控已建立服务关系的企业在接受服务后的业务数据;模型优化单元570,被配置成基于接受服务后的业务数据,优化风险控制模型。In some optional implementations of this embodiment, the apparatus further includes: a data monitoring unit 560, configured to, in response to receiving the service indication, establish a service relationship with the enterprise, and monitor the business of the enterprise that has established the service relationship after receiving the service Data; the model optimization unit 570 is configured to optimize the risk control model based on the service data after receiving the service.

应当理解,装置500中记载的各个单元与参考图2-图4描述的方法中记载的各个步骤相对应。由此,上文针对方法描述的操作和特征同样适用于装置500及其中包含的各个单元,在此不再赘述。It should be understood that each unit recorded in the apparatus 500 corresponds to each step recorded in the method described with reference to FIGS. 2-4 . Therefore, the operations and features described above with respect to the method are also applicable to the apparatus 500 and each unit included therein, and details are not described herein again.

下面参考图6,其示出了适于用来实现本公开的实施例的电子设备(例如图1中的服务器或终端设备)600的结构示意图。本公开的实施例中的终端设备可以包括但不限于诸如笔记本电脑、台式计算机等。图6示出的终端设备/服务器仅仅是一个示例,不应对本公开的实施例的功能和使用范围带来任何限制。Referring next to FIG. 6 , it shows a schematic structural diagram of an electronic device (eg, the server or terminal device in FIG. 1 ) 600 suitable for implementing the embodiments of the present disclosure. Terminal devices in the embodiments of the present disclosure may include, but are not limited to, notebook computers, desktop computers, and the like. The terminal device/server shown in FIG. 6 is only an example, and should not impose any limitation on the function and scope of use of the embodiments of the present disclosure.

如图6所示,电子设备600可以包括处理装置(例如中央处理器、图形处理器等)601,其可以根据存储在只读存储器(ROM)602中的程序或者从存储装置608加载到随机访问存储器(RAM)603中的程序而执行各种适当的动作和处理。在RAM 603中,还存储有电子设备600操作所需的各种程序和数据。处理装置601、ROM 602以及RAM 603通过总线604彼此相连。输入/输出(I/O)接口605也连接至总线604。As shown in FIG. 6, an electronic device 600 may include a processing device (eg, a central processing unit, a graphics processor, etc.) 601 that may be loaded into random access according to a program stored in a read only memory (ROM) 602 or from a storage device 608 Various appropriate actions and processes are executed by the programs in the memory (RAM) 603 . In the RAM 603, various programs and data necessary for the operation of the electronic device 600 are also stored. The processing device 601 , the ROM 602 , and the RAM 603 are connected to each other through a bus 604 . An input/output (I/O) interface 605 is also connected to bus 604 .

通常,以下装置可以连接至I/O接口605:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置606;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置607;包括例如磁带、硬盘等的存储装置608;以及通信装置609。通信装置609可以允许电子设备600与其他设备进行无线或有线通信以交换数据。虽然图6示出了具有各种装置的电子设备600,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。图6中示出的每个方框可以代表一个装置,也可以根据需要代表多个装置。Typically, the following devices can be connected to the I/O interface 605: input devices 606 including, for example, a touch screen, touchpad, keyboard, mouse, camera, microphone, accelerometer, gyroscope, etc.; including, for example, a liquid crystal display (LCD), speakers, vibration An output device 607 of a computer, etc.; a storage device 608 including, for example, a magnetic tape, a hard disk, etc.; and a communication device 609. Communication means 609 may allow electronic device 600 to communicate wirelessly or by wire with other devices to exchange data. While FIG. 6 shows electronic device 600 having various means, it should be understood that not all of the illustrated means are required to be implemented or provided. More or fewer devices may alternatively be implemented or provided. Each block shown in FIG. 6 may represent one device, or may represent multiple devices as required.

特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置609从网络上被下载和安装,或者从存储装置608被安装,或者从ROM 602被安装。在该计算机程序被处理装置601执行时,执行本公开的实施例的方法中限定的上述功能。需要说明的是,本公开的实施例所述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开的实施例中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开的实施例中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。In particular, according to embodiments of the present disclosure, the processes described above with reference to the flowcharts may be implemented as computer software programs. For example, embodiments of the present disclosure include a computer program product comprising a computer program carried on a computer-readable medium, the computer program containing program code for performing the method illustrated in the flowchart. In such an embodiment, the computer program may be downloaded and installed from the network via the communication device 609 , or from the storage device 608 , or from the ROM 602 . When the computer program is executed by the processing apparatus 601, the above-described functions defined in the methods of the embodiments of the present disclosure are executed. It should be noted that the computer-readable medium described in the embodiments of the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two. The computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples of computer readable storage media may include, but are not limited to, electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable Programmable read only memory (EPROM or flash memory), fiber optics, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing. In embodiments of the present disclosure, a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device. Rather, in embodiments of the present disclosure, a computer-readable signal medium may include a data signal in baseband or propagated as part of a carrier wave, carrying computer-readable program code therein. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing. A computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device . Program code embodied on a computer readable medium may be transmitted using any suitable medium including, but not limited to, electrical wire, optical fiber cable, RF (radio frequency), etc., or any suitable combination of the foregoing.

上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:基于录入的申请信息,确定企业的基本信息;基于基本信息中的企业标识信息与企业信息库中的企业标识信息的关联关系,生成企业的知识图谱;基于基本信息,查询企业的业务数据和企业的舆情信息;将基本信息、企业的知识图谱、业务数据和舆情信息输入风险控制模型,得到企业的风险评估信息。The above-mentioned computer-readable medium may be included in the above-mentioned electronic device; or may exist alone without being assembled into the electronic device. The above-mentioned computer-readable medium carries one or more programs, and when the above-mentioned one or more programs are executed by the electronic device, the electronic device: determines the basic information of the enterprise based on the entered application information; The relationship between the identification information and the enterprise identification information in the enterprise information database, and the knowledge map of the enterprise is generated; based on the basic information, the business data of the enterprise and the public opinion information of the enterprise are inquired; the basic information, the knowledge map of the enterprise, business data and public opinion information Enter the risk control model to get the risk assessment information of the enterprise.

可以以一种或多种程序设计语言或其组合来编写用于执行本公开的实施例的操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)——连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for carrying out operations of embodiments of the present disclosure may be written in one or more programming languages, including object-oriented programming languages—such as Java, Smalltalk, C++, or a combination thereof, Also included are conventional procedural programming languages - such as the "C" language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server. In the case of a remote computer, the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider to via Internet connection).

附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present disclosure. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more logical functions for implementing the specified functions executable instructions. It should also be noted that, in some alternative implementations, the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It is also noted that each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can be implemented in dedicated hardware-based systems that perform the specified functions or operations , or can be implemented in a combination of dedicated hardware and computer instructions.

描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元也可以设置在处理器中,例如,可以描述为:一种处理器包括信息确定单元、图谱生成单元、信息查询单元和评估输出单元。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定,例如,信息确定单元还可以被描述为“基于录入的申请信息,确定企业的基本信息的单元”。The units involved in the embodiments of the present disclosure may be implemented in a software manner, and may also be implemented in a hardware manner. The described unit can also be provided in the processor, for example, it can be described as: a processor includes an information determination unit, a map generation unit, an information query unit and an evaluation output unit. Wherein, the names of these units do not constitute a limitation on the unit itself under certain circumstances. For example, the information determination unit may also be described as "a unit for determining the basic information of an enterprise based on the entered application information".

以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above description is merely a preferred embodiment of the present disclosure and an illustration of the technical principles employed. Those skilled in the art should understand that the scope of the invention involved in the present disclosure is not limited to the technical solution formed by the specific combination of the above-mentioned technical features, and should also cover, without departing from the above-mentioned inventive concept, the above-mentioned technical features or Other technical solutions formed by any combination of its equivalent features. For example, a technical solution is formed by replacing the above features with the technical features disclosed in the present disclosure (but not limited to) with similar functions.

Claims (22)

1.一种用于评估企业的风险的方法,包括:1. A method for assessing the risk of an enterprise, comprising: 基于录入的申请信息,确定企业的基本信息;Based on the entered application information, determine the basic information of the enterprise; 基于所述基本信息中的企业标识信息与企业信息库中的企业标识信息的关联关系,生成企业的知识图谱;Generate a knowledge map of the enterprise based on the association relationship between the enterprise identification information in the basic information and the enterprise identification information in the enterprise information database; 基于所述基本信息,查询所述企业的业务数据和所述企业的舆情信息;Based on the basic information, query the business data of the enterprise and the public opinion information of the enterprise; 将所述基本信息、所述企业的知识图谱、所述业务数据和所述舆情信息输入风险控制模型,得到企业的风险评估信息。The basic information, the knowledge graph of the enterprise, the business data and the public opinion information are input into the risk control model to obtain the risk assessment information of the enterprise. 2.根据权利要求1所述的方法,其中,所述风险控制模型包括:风险关系模型和风险评分模型;2. The method according to claim 1, wherein the risk control model comprises: a risk relationship model and a risk scoring model; 所述风险评估信息包括:与所述企业建立服务关系的风险概率、企业的风险评分以及服务提示信息;The risk assessment information includes: the risk probability of establishing a service relationship with the enterprise, the enterprise's risk score and service prompt information; 所述将所述基本信息、企业的知识图谱以及所述业务数据输入风险控制模型,得到企业的风险评估信息包括:将所述基本信息、所述企业的知识图谱和所述舆情信息输入风险关系模型,获得与所述企业建立服务关系的风险概率;将所述业务数据和所述舆情信息输入风险评分模型,获得所述企业的风险评分以及服务提示信息。The inputting the basic information, the knowledge graph of the enterprise and the business data into the risk control model to obtain the risk assessment information of the enterprise includes: inputting the basic information, the knowledge graph of the enterprise and the public opinion information into a risk relationship model to obtain the risk probability of establishing a service relationship with the enterprise; input the business data and the public opinion information into a risk scoring model to obtain the enterprise's risk score and service prompt information. 3.根据权利要求2所述的方法,其中,所述方法还包括以下至少一项:3. The method of claim 2, wherein the method further comprises at least one of the following: 所述风险关系模型为基于RFM、NLP、图挖掘技术得到的关系网络模型;The risk relationship model is a relationship network model obtained based on RFM, NLP, and graph mining technology; 所述风险评分模型为多元回归模型;The risk scoring model is a multiple regression model; 所述风险概率包括欺诈概率、违约概率和逾期概率;以及The probability of risk includes probability of fraud, probability of default and probability of overdue; and 所述业务数据包括:招聘人数、招聘时间、经营情况和负债情况。The business data includes: number of recruits, recruiting time, operating conditions and liabilities. 4.根据权利要求1所述的方法,其中,所述基于录入的申请信息,确定企业的基本信息包括:4. The method according to claim 1, wherein, determining the basic information of the enterprise based on the entered application information comprises: 识别录入的纸质版的申请信息,得到识别结果;Identify the application information entered in the paper version, and obtain the identification result; 采用智能修正算法修正识别结果,得到文本序列;Adopt intelligent correction algorithm to correct the recognition result and get the text sequence; 识别所述文本序列中的实体,得到附标签的实体数据;以及identifying entities in the text sequence to obtain tagged entity data; and 基于所述附标签的命名实体数据,输出结构化的企业的基本信息。Based on the tagged named entity data, structured basic information of the enterprise is output. 5.根据权利要求1-4任意一项所述的方法,其中,所述基于录入的申请信息,确定企业的基本信息包括:5. The method according to any one of claims 1-4, wherein the determining the basic information of the enterprise based on the entered application information comprises: 基于录入的申请信息,调取与申请信息中的企业对应的基准信息;其中,所述基准信息包括官方信息和/或历史信息;Based on the entered application information, retrieve the benchmark information corresponding to the enterprise in the application information; wherein, the benchmark information includes official information and/or historical information; 基于所述基准信息,校验所述申请信息;based on the reference information, verifying the application information; 响应于校验的结果指示预设信息未通过校验,呈现退回申请的提示信息;In response to the result of the verification indicating that the preset information fails the verification, a prompt message for returning the application is presented; 响应于校验的结果指示所述申请信息中的企业符合黑名单规则,将所述申请信息中的企业加入黑名单。In response to the verification result indicating that the enterprise in the application information complies with the blacklist rule, the enterprise in the application information is added to the blacklist. 6.根据权利要求5所述的方法,其中,所述校验的结果指示所述申请信息中的企业符合黑名单包括以下至少一项:6. The method according to claim 5, wherein the result of the verification indicates that the enterprise in the application information conforms to the blacklist including at least one of the following: 申请信息中存在非真实信息的次数超过预定阈值;The number of times that there is untrue information in the application information exceeds a predetermined threshold; 历史校验次数超出预设阈值。The number of historical verifications exceeds the preset threshold. 7.根据权利要求1-6任意一项所述的方法,其中,所述方法还包括:7. The method according to any one of claims 1-6, wherein the method further comprises: 将所述风险评估信息输入风险控制决策模型,得到风险控制决策模型输出的决策结果。The risk assessment information is input into the risk control decision-making model, and the decision-making result output by the risk control decision-making model is obtained. 8.根据权利要求7所述的方法,其中,所述风险控制决策模型为串连或并联多个规则形成的规则模型。8. The method according to claim 7, wherein the risk control decision model is a rule model formed by connecting a plurality of rules in series or in parallel. 9.根据权利要求8所述的方法,其中,当所述风险评估信息包括:与所述企业建立服务关系的风险概率、企业的风险评分以及服务提示信息时,所述多个规则至少包括:9. The method according to claim 8, wherein, when the risk assessment information includes: a risk probability of establishing a service relationship with the enterprise, a risk score of the enterprise, and service prompt information, the plurality of rules at least include: 若所述风险概率中的欺诈概率或违约概率高于预设概率,则输出的决策结果为退回申请;If the probability of fraud or the probability of default in the risk probability is higher than the preset probability, the output decision result is to return the application; 若所述风险评分中的信用评分低于预设评分、所述风险评分中的收入低于收入阈值或所述风险评分中的负债率高于负债率阈值,则输出的决策结果为退回申请。If the credit score in the risk score is lower than the preset score, the income in the risk score is lower than the income threshold, or the debt ratio in the risk score is higher than the debt ratio threshold, the output decision result is to return the application. 10.根据权利要求1-9任意一项所述的方法,其中,所述方法还包括:10. The method according to any one of claims 1-9, wherein the method further comprises: 响应于接收到服务指示,与所述企业建立服务关系,监控已建立服务关系的企业在接受服务后的业务数据;In response to receiving the service indication, establish a service relationship with the enterprise, and monitor the business data of the enterprise that has established the service relationship after receiving the service; 基于所述接受服务后的业务数据,优化所述风险控制模型。Based on the service data after receiving the service, the risk control model is optimized. 11.一种用于评估企业的风险的装置,包括:11. An apparatus for assessing risk to an enterprise, comprising: 信息确定单元,被配置成基于录入的申请信息,确定企业的基本信息;an information determination unit, configured to determine the basic information of the enterprise based on the entered application information; 图谱生成单元,被配置成基于所述基本信息中的企业标识信息与企业信息库中的企业标识信息的关联关系,生成企业的知识图谱;a graph generation unit, configured to generate a knowledge graph of an enterprise based on the association relationship between the enterprise identification information in the basic information and the enterprise identification information in the enterprise information database; 信息查询单元,被配置成基于所述基本信息,查询所述企业的业务数据和所述企业的舆情信息;an information query unit, configured to query the business data of the enterprise and the public opinion information of the enterprise based on the basic information; 评估输出单元,被配置成将所述基本信息、所述企业的知识图谱、所述业务数据和所述舆情信息输入风险控制模型,得到企业的风险评估信息。The evaluation output unit is configured to input the basic information, the knowledge graph of the enterprise, the business data and the public opinion information into a risk control model to obtain risk evaluation information of the enterprise. 12.根据权利要求11所述的装置,其中,所述评估输出单元中的所述风险控制模型包括:风险关系模型和风险评分模型;所述评估输出单元中的所述风险评估信息包括:与所述企业建立服务关系的风险概率、企业的风险评分以及服务提示信息;12. The apparatus according to claim 11, wherein the risk control model in the evaluation output unit includes: a risk relationship model and a risk scoring model; the risk evaluation information in the evaluation output unit includes: with The risk probability of the enterprise establishing a service relationship, the enterprise's risk score, and service prompt information; 所述评估输出单元进一步被配置成:将所述基本信息、所述企业的知识图谱和所述舆情信息输入风险关系模型,获得与所述企业建立服务关系的风险概率;将所述业务数据和所述舆情信息输入风险评分模型,获得所述企业的风险评分以及服务提示信息。The evaluation output unit is further configured to: input the basic information, the knowledge graph of the enterprise and the public opinion information into a risk relationship model to obtain a risk probability of establishing a service relationship with the enterprise; The public opinion information is input into a risk scoring model to obtain the enterprise's risk score and service prompt information. 13.根据权利要求12所述的装置,其中,所述装置还包括以下至少一项:13. The apparatus of claim 12, wherein the apparatus further comprises at least one of: 所述风险关系模型为基于RFM、NLP、图挖掘技术得到的关系网络模型;The risk relationship model is a relationship network model obtained based on RFM, NLP, and graph mining technology; 所述风险评分模型为多元回归模型;The risk scoring model is a multiple regression model; 所述风险概率包括欺诈概率、违约概率和逾期概率;以及The probability of risk includes probability of fraud, probability of default and probability of overdue; and 所述业务数据包括:招聘人数、招聘时间、经营情况和负债情况。The business data includes: number of recruits, recruiting time, operating conditions and liabilities. 14.根据权利要求11所述的装置,其中,所述信息确定单元包括:14. The apparatus of claim 11, wherein the information determination unit comprises: 结果识别子单元,被配置成识别录入的纸质版的申请信息,得到识别结果;The result identification subunit is configured to identify the application information entered in the paper version, and obtain the identification result; 结果修正子单元,被配置成采用智能修正算法修正识别结果,得到文本序列;The result correction subunit is configured to use an intelligent correction algorithm to correct the recognition result to obtain a text sequence; 实体识别子单元,被配置成识别所述文本序列中的实体,得到附标签的实体数据;以及an entity identification subunit configured to identify entities in the text sequence to obtain tagged entity data; and 信息输出子单元,被配置成基于所述附标签的命名实体数据,输出结构化的企业的基本信息。The information output subunit is configured to output the structured basic information of the enterprise based on the tagged named entity data. 15.根据权利要求11-14任意一项所述的装置,其中,所述信息确定单元包括:15. The apparatus according to any one of claims 11-14, wherein the information determination unit comprises: 信息调取子单元,被配置成基于录入的申请信息,调取与申请信息中的企业对应的基准信息;其中,所述基准信息包括官方信息和/或历史信息;an information retrieval subunit, configured to retrieve benchmark information corresponding to the enterprise in the application information based on the entered application information; wherein the benchmark information includes official information and/or historical information; 信息校验子单元,被配置成基于所述基准信息,校验所述申请信息;an information verification subunit, configured to verify the application information based on the reference information; 提示呈现子单元,被配置成响应于校验的结果指示预设信息未通过校验,呈现退回申请的提示信息;a prompt presentation subunit, configured to present prompt information for returning the application in response to the result of the verification indicating that the preset information fails the verification; 名单加入子单元,被配置成响应于校验的结果指示所述申请信息中的企业符合黑名单规则,将所述申请信息中的企业加入黑名单。The list adding subunit is configured to add the enterprise in the application information to the blacklist in response to the verification result indicating that the enterprise in the application information complies with the blacklist rule. 16.根据权利要求15所述的装置,其中,所述信息确定单元中所述校验的结果指示所述申请信息中的企业符合黑名单包括以下至少一项:16. The apparatus according to claim 15, wherein the result of the verification in the information determination unit indicates that the enterprise in the application information complies with the blacklist including at least one of the following: 申请信息中存在非真实信息的次数超过预定阈值;The number of times that there is untrue information in the application information exceeds a predetermined threshold; 历史校验次数超出预设阈值。The number of historical verifications exceeds the preset threshold. 17.根据权利要求11-16任意一项所述的装置,其中,所述装置还包括:17. The apparatus of any one of claims 11-16, wherein the apparatus further comprises: 结果确定单元,被配置成将所述风险评估信息输入风险控制决策模型,得到风险控制决策模型输出的决策结果。The result determination unit is configured to input the risk assessment information into the risk control decision model to obtain the decision result output by the risk control decision model. 18.根据权利要求17所述的装置,其中,所述结果确定单元中的风险控制决策模型为串连或并联多个规则形成的规则模型。18. The apparatus according to claim 17, wherein the risk control decision model in the result determination unit is a rule model formed by connecting a plurality of rules in series or in parallel. 19.根据权利要求18所述的装置,其中,当所述评估输出单元中的所述风险评估信息包括:与所述企业建立服务关系的风险概率、企业的风险评分以及服务提示信息时,所述结果确定单元中的多个规则至少包括:19. The apparatus according to claim 18, wherein when the risk assessment information in the assessment output unit includes: a risk probability of establishing a service relationship with the enterprise, a risk score of the enterprise, and service prompt information, the The multiple rules in the result determination unit include at least: 若所述风险概率中的欺诈概率或违约概率高于预设概率,则输出的决策结果为退回申请;If the probability of fraud or the probability of default in the risk probability is higher than the preset probability, the output decision result is to return the application; 若所述风险评分中的信用评分低于预设评分、所述风险评分中的收入低于收入阈值或所述风险评分中的负债率高于负债率阈值,则输出的决策结果为退回申请。If the credit score in the risk score is lower than the preset score, the income in the risk score is lower than the income threshold, or the debt ratio in the risk score is higher than the debt ratio threshold, the output decision result is to return the application. 20.根据权利要求11-19任意一项所述的装置,其中,所述装置还包括:20. The apparatus of any one of claims 11-19, wherein the apparatus further comprises: 数据监控单元,被配置成响应于接收到服务指示,与所述企业建立服务关系,监控已建立服务关系的企业在接受服务后的业务数据;a data monitoring unit, configured to, in response to receiving the service indication, establish a service relationship with the enterprise, and monitor the business data of the enterprise that has established the service relationship after receiving the service; 模型优化单元,被配置成基于所述接受服务后的业务数据,优化所述风险控制模型。The model optimization unit is configured to optimize the risk control model based on the service data after receiving the service. 21.一种电子设备/终端/服务器,包括:21. An electronic device/terminal/server, comprising: 一个或多个处理器;one or more processors; 存储装置,用于存储一个或多个程序;a storage device for storing one or more programs; 当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-10中任一所述的方法。The one or more programs, when executed by the one or more processors, cause the one or more processors to implement the method of any one of claims 1-10. 22.一种计算机可读介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1-10中任一所述的方法。22. A computer-readable medium having stored thereon a computer program which, when executed by a processor, implements the method of any one of claims 1-10.
CN201910762788.2A 2019-08-19 2019-08-19 Method and apparatus for assessing risk Pending CN110458697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910762788.2A CN110458697A (en) 2019-08-19 2019-08-19 Method and apparatus for assessing risk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910762788.2A CN110458697A (en) 2019-08-19 2019-08-19 Method and apparatus for assessing risk

Publications (1)

Publication Number Publication Date
CN110458697A true CN110458697A (en) 2019-11-15

Family

ID=68487545

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910762788.2A Pending CN110458697A (en) 2019-08-19 2019-08-19 Method and apparatus for assessing risk

Country Status (1)

Country Link
CN (1) CN110458697A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111080178A (en) * 2020-01-22 2020-04-28 中国建设银行股份有限公司 Risk monitoring method and device
CN111105215A (en) * 2019-12-24 2020-05-05 广州华熙汇控小额贷款有限公司 Supply chain financial intelligent approval method and system
CN111178615A (en) * 2019-12-24 2020-05-19 成都数联铭品科技有限公司 Construction method and system of enterprise risk identification model
CN111241300A (en) * 2020-01-09 2020-06-05 中信银行股份有限公司 Public opinion early warning and risk propagation analysis method, system, equipment and storage medium
CN111429255A (en) * 2020-03-19 2020-07-17 中国建设银行股份有限公司 Risk assessment method, device, equipment and storage medium
CN111553563A (en) * 2020-04-07 2020-08-18 国网电子商务有限公司 Method and device for determining enterprise fraud risk
CN111582643A (en) * 2020-04-08 2020-08-25 北京明略软件系统有限公司 Method, device and equipment for collecting enterprise risk information
CN111625437A (en) * 2020-05-27 2020-09-04 北京互金新融科技有限公司 Monitoring method and device of wind control model
CN111738331A (en) * 2020-06-19 2020-10-02 北京同邦卓益科技有限公司 User classification method and device, computer-readable storage medium and electronic device
CN111798151A (en) * 2020-07-10 2020-10-20 深圳前海微众银行股份有限公司 Enterprise fraud risk assessment method, apparatus, device and readable storage medium
CN111815439A (en) * 2020-07-23 2020-10-23 睿智合创(北京)科技有限公司 Credit scoring system based on cloud platform
CN111966905A (en) * 2020-08-19 2020-11-20 中航信托股份有限公司 Project early warning method and device
CN112016850A (en) * 2020-09-14 2020-12-01 支付宝(杭州)信息技术有限公司 Service evaluation method and device
CN112288279A (en) * 2020-10-30 2021-01-29 平安医疗健康管理股份有限公司 Business risk assessment method and device based on natural language processing and linear regression
CN112330438A (en) * 2020-11-05 2021-02-05 上海京滴信用管理有限公司 Credit credit management system based on cloud computing
CN112396352A (en) * 2020-12-14 2021-02-23 深圳中兴网信科技有限公司 Enterprise emergency environment event risk level acquisition method, equipment and storage medium
CN112668944A (en) * 2021-01-26 2021-04-16 天元大数据信用管理有限公司 Enterprise wind control method, device, equipment and medium based on big data credit investigation
CN112749742A (en) * 2020-12-30 2021-05-04 北京知因智慧科技有限公司 Source risk score quantification method and device and electronic equipment
CN112818003A (en) * 2021-01-14 2021-05-18 内蒙古蒙商消费金融股份有限公司 Execution risk estimation method and device for query task
CN112989067A (en) * 2021-03-26 2021-06-18 杭州有数金融信息服务有限公司 Method for effectively identifying company with fake-licensed behavior
CN113609407A (en) * 2021-07-30 2021-11-05 盐城金堤科技有限公司 Region consistency checking method and device
CN113722433A (en) * 2021-08-30 2021-11-30 中国建设银行股份有限公司 Information pushing method and device, electronic equipment and computer readable medium
CN113850085A (en) * 2021-12-01 2021-12-28 北京明略昭辉科技有限公司 Enterprise grade evaluation method and device, electronic equipment and readable storage medium
CN113902553A (en) * 2021-10-28 2022-01-07 平安银行股份有限公司 Risk identification method and device based on knowledge graph, computer equipment and medium
CN114021990A (en) * 2021-11-08 2022-02-08 支付宝(杭州)信息技术有限公司 Method, system, apparatus and medium for assessing risk of vehicle accident
CN114219378A (en) * 2022-02-22 2022-03-22 武汉和悦数字科技有限公司 Wind control method and system for digital commodities
US20220147817A1 (en) * 2020-11-10 2022-05-12 Equifax Inc. Machine-learning techniques involving monotonic recurrent neural networks
CN114580916A (en) * 2022-03-07 2022-06-03 上海安硕企业征信服务有限公司 Enterprise risk assessment method and device, electronic equipment and storage medium
CN115269879A (en) * 2022-09-05 2022-11-01 北京百度网讯科技有限公司 Knowledge structure data generation method, data search method and risk warning method
CN115293903A (en) * 2022-08-18 2022-11-04 国泰新点软件股份有限公司 A guarantee risk prediction method, device, equipment and storage medium
CN115619238A (en) * 2022-12-20 2023-01-17 万联易达物流科技有限公司 Method for establishing inter-enterprise cooperation relationship for non-specific B2B platform
CN118861303A (en) * 2024-09-13 2024-10-29 成都神鸟数据咨询有限公司 A method and device for risk assessment of public opinion large model
CN119205296A (en) * 2024-08-06 2024-12-27 上海倍通企业信用征信有限公司 A database authentication management system and method for enterprise credit supervision

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150066575A1 (en) * 2013-08-28 2015-03-05 Bank Of America Corporation Enterprise risk assessment
CN107392451A (en) * 2017-07-11 2017-11-24 重庆卡西匚匚科技有限公司 A kind of risk control system
CN107945024A (en) * 2017-12-12 2018-04-20 厦门市美亚柏科信息股份有限公司 Identify that internet finance borrowing enterprise manages abnormal method, terminal device and storage medium
CN108629686A (en) * 2018-05-09 2018-10-09 国家计算机网络与信息安全管理中心 Internet financial company reference risk analysis method based on big data and system
CN108763507A (en) * 2018-05-30 2018-11-06 北京百度网讯科技有限公司 Enterprise's incidence relation method for digging and device
CN108846547A (en) * 2018-05-06 2018-11-20 成都信息工程大学 A kind of Enterprise Credit Risk Evaluation method of dynamic adjustment
CN109584048A (en) * 2018-11-30 2019-04-05 上海点融信息科技有限责任公司 The method and apparatus that risk rating is carried out to applicant based on artificial intelligence
CN109636584A (en) * 2018-11-19 2019-04-16 平安科技(深圳)有限公司 Default Probability methods of exhibiting, device, computer equipment and storage medium
CN109657918A (en) * 2018-11-19 2019-04-19 平安科技(深圳)有限公司 Method for prewarning risk, device and the computer equipment of association assessment object
CN109918511A (en) * 2019-01-29 2019-06-21 华融融通(北京)科技有限公司 A kind of knowledge mapping based on BFS and LPA is counter to cheat feature extracting method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150066575A1 (en) * 2013-08-28 2015-03-05 Bank Of America Corporation Enterprise risk assessment
CN107392451A (en) * 2017-07-11 2017-11-24 重庆卡西匚匚科技有限公司 A kind of risk control system
CN107945024A (en) * 2017-12-12 2018-04-20 厦门市美亚柏科信息股份有限公司 Identify that internet finance borrowing enterprise manages abnormal method, terminal device and storage medium
CN108846547A (en) * 2018-05-06 2018-11-20 成都信息工程大学 A kind of Enterprise Credit Risk Evaluation method of dynamic adjustment
CN108629686A (en) * 2018-05-09 2018-10-09 国家计算机网络与信息安全管理中心 Internet financial company reference risk analysis method based on big data and system
CN108763507A (en) * 2018-05-30 2018-11-06 北京百度网讯科技有限公司 Enterprise's incidence relation method for digging and device
CN109636584A (en) * 2018-11-19 2019-04-16 平安科技(深圳)有限公司 Default Probability methods of exhibiting, device, computer equipment and storage medium
CN109657918A (en) * 2018-11-19 2019-04-19 平安科技(深圳)有限公司 Method for prewarning risk, device and the computer equipment of association assessment object
CN109584048A (en) * 2018-11-30 2019-04-05 上海点融信息科技有限责任公司 The method and apparatus that risk rating is carried out to applicant based on artificial intelligence
CN109918511A (en) * 2019-01-29 2019-06-21 华融融通(北京)科技有限公司 A kind of knowledge mapping based on BFS and LPA is counter to cheat feature extracting method

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111178615B (en) * 2019-12-24 2023-10-27 成都数联铭品科技有限公司 Method and system for constructing enterprise risk identification model
CN111105215A (en) * 2019-12-24 2020-05-05 广州华熙汇控小额贷款有限公司 Supply chain financial intelligent approval method and system
CN111178615A (en) * 2019-12-24 2020-05-19 成都数联铭品科技有限公司 Construction method and system of enterprise risk identification model
CN111241300A (en) * 2020-01-09 2020-06-05 中信银行股份有限公司 Public opinion early warning and risk propagation analysis method, system, equipment and storage medium
CN111080178A (en) * 2020-01-22 2020-04-28 中国建设银行股份有限公司 Risk monitoring method and device
CN111429255A (en) * 2020-03-19 2020-07-17 中国建设银行股份有限公司 Risk assessment method, device, equipment and storage medium
CN111429255B (en) * 2020-03-19 2024-02-20 中国建设银行股份有限公司 Risk assessment method, apparatus, device and storage medium
CN111553563A (en) * 2020-04-07 2020-08-18 国网电子商务有限公司 Method and device for determining enterprise fraud risk
CN111582643A (en) * 2020-04-08 2020-08-25 北京明略软件系统有限公司 Method, device and equipment for collecting enterprise risk information
CN111625437A (en) * 2020-05-27 2020-09-04 北京互金新融科技有限公司 Monitoring method and device of wind control model
CN111625437B (en) * 2020-05-27 2024-01-05 北京互金新融科技有限公司 Monitoring method and device for wind control model
CN111738331A (en) * 2020-06-19 2020-10-02 北京同邦卓益科技有限公司 User classification method and device, computer-readable storage medium and electronic device
CN111798151A (en) * 2020-07-10 2020-10-20 深圳前海微众银行股份有限公司 Enterprise fraud risk assessment method, apparatus, device and readable storage medium
CN111798151B (en) * 2020-07-10 2024-06-11 深圳前海微众银行股份有限公司 Enterprise fraud risk assessment method, device, equipment and readable storage medium
CN111815439A (en) * 2020-07-23 2020-10-23 睿智合创(北京)科技有限公司 Credit scoring system based on cloud platform
CN111966905A (en) * 2020-08-19 2020-11-20 中航信托股份有限公司 Project early warning method and device
CN112016850A (en) * 2020-09-14 2020-12-01 支付宝(杭州)信息技术有限公司 Service evaluation method and device
CN112288279A (en) * 2020-10-30 2021-01-29 平安医疗健康管理股份有限公司 Business risk assessment method and device based on natural language processing and linear regression
CN112330438A (en) * 2020-11-05 2021-02-05 上海京滴信用管理有限公司 Credit credit management system based on cloud computing
US11960993B2 (en) * 2020-11-10 2024-04-16 Equifax Inc. Machine-learning techniques involving monotonic recurrent neural networks
US20220147817A1 (en) * 2020-11-10 2022-05-12 Equifax Inc. Machine-learning techniques involving monotonic recurrent neural networks
CN112396352A (en) * 2020-12-14 2021-02-23 深圳中兴网信科技有限公司 Enterprise emergency environment event risk level acquisition method, equipment and storage medium
CN112749742A (en) * 2020-12-30 2021-05-04 北京知因智慧科技有限公司 Source risk score quantification method and device and electronic equipment
CN112818003A (en) * 2021-01-14 2021-05-18 内蒙古蒙商消费金融股份有限公司 Execution risk estimation method and device for query task
CN112818003B (en) * 2021-01-14 2023-03-31 内蒙古蒙商消费金融股份有限公司 Execution risk estimation method and device for query task
CN112668944A (en) * 2021-01-26 2021-04-16 天元大数据信用管理有限公司 Enterprise wind control method, device, equipment and medium based on big data credit investigation
CN112989067A (en) * 2021-03-26 2021-06-18 杭州有数金融信息服务有限公司 Method for effectively identifying company with fake-licensed behavior
CN113609407A (en) * 2021-07-30 2021-11-05 盐城金堤科技有限公司 Region consistency checking method and device
CN113609407B (en) * 2021-07-30 2024-04-05 盐城天眼察微科技有限公司 Regional consistency verification method and device
CN113722433A (en) * 2021-08-30 2021-11-30 中国建设银行股份有限公司 Information pushing method and device, electronic equipment and computer readable medium
CN113902553A (en) * 2021-10-28 2022-01-07 平安银行股份有限公司 Risk identification method and device based on knowledge graph, computer equipment and medium
CN114021990A (en) * 2021-11-08 2022-02-08 支付宝(杭州)信息技术有限公司 Method, system, apparatus and medium for assessing risk of vehicle accident
CN113850085A (en) * 2021-12-01 2021-12-28 北京明略昭辉科技有限公司 Enterprise grade evaluation method and device, electronic equipment and readable storage medium
CN114219378A (en) * 2022-02-22 2022-03-22 武汉和悦数字科技有限公司 Wind control method and system for digital commodities
CN114580916A (en) * 2022-03-07 2022-06-03 上海安硕企业征信服务有限公司 Enterprise risk assessment method and device, electronic equipment and storage medium
CN115293903A (en) * 2022-08-18 2022-11-04 国泰新点软件股份有限公司 A guarantee risk prediction method, device, equipment and storage medium
CN115269879A (en) * 2022-09-05 2022-11-01 北京百度网讯科技有限公司 Knowledge structure data generation method, data search method and risk warning method
CN115619238A (en) * 2022-12-20 2023-01-17 万联易达物流科技有限公司 Method for establishing inter-enterprise cooperation relationship for non-specific B2B platform
CN119205296A (en) * 2024-08-06 2024-12-27 上海倍通企业信用征信有限公司 A database authentication management system and method for enterprise credit supervision
CN118861303A (en) * 2024-09-13 2024-10-29 成都神鸟数据咨询有限公司 A method and device for risk assessment of public opinion large model
CN118861303B (en) * 2024-09-13 2024-11-22 成都神鸟数据咨询有限公司 Public opinion big model risk assessment method and device

Similar Documents

Publication Publication Date Title
CN110458697A (en) Method and apparatus for assessing risk
US10698795B2 (en) Virtual payments environment
US20210112101A1 (en) Data set and algorithm validation, bias characterization, and valuation
US10621664B2 (en) Using automated data validation in loan origination to evaluate credit worthiness and data reliability
CN107862425B (en) Wind control data acquisition method, device and system and readable storage medium
CN114358147A (en) Training method, identification method, device and equipment of abnormal account identification model
CN118211832A (en) Financial tax data risk monitoring method, system, electronic equipment and storage medium
US20140019295A1 (en) Automated Technique For Generating Recommendations Of Potential Supplier Candidates
US20230195759A1 (en) Data processing systems and methods for automatically detecting and documenting privacy-related aspects of computer software
US12050568B2 (en) System and method for implementing a data quality framework and engine
US20240106851A1 (en) System and method for performing an information technology security risk assessment
CN115713248A (en) Method for scoring and evaluating data for exchange
EP4258193A1 (en) Method and apparatus for predicting risk, electronic device, computer readable storage medium
CN118429076A (en) Method, device, electronic equipment and medium for investigating due diligence
US11783206B1 (en) Method and system for making binary predictions for a subject using historical data obtained from multiple subjects
US20130013475A1 (en) Issue Resolution
CN117421311A (en) Data verification method, device, equipment and storage medium based on artificial intelligence
CN113392014A (en) Test case generation method and device, electronic equipment and medium
CN113254944A (en) Vulnerability processing method, system, electronic device, storage medium and program product
CN119128260A (en) Content recommendation method, device, equipment and medium based on Gaussian mixture model
CN114925608B (en) Intelligent data modeling method, device, equipment and medium
CN114066603A (en) Post-loan risk early warning method and device, electronic equipment and computer readable medium
US20250139594A1 (en) Mixed technique transaction classification
CN120450384B (en) Post matching method, device, equipment, medium and product
US11631018B2 (en) Performing enhanced exception processing using cognitive automation tools

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination