[go: up one dir, main page]

CN118504002A - Data security protection method and device for identity security - Google Patents

Data security protection method and device for identity security Download PDF

Info

Publication number
CN118504002A
CN118504002A CN202410673004.XA CN202410673004A CN118504002A CN 118504002 A CN118504002 A CN 118504002A CN 202410673004 A CN202410673004 A CN 202410673004A CN 118504002 A CN118504002 A CN 118504002A
Authority
CN
China
Prior art keywords
target
user
data
login
access
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410673004.XA
Other languages
Chinese (zh)
Inventor
钱立佩
王旭
孙逢宁
刘迎宾
索良晨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jianheng Xin'an Technology Co ltd
Original Assignee
Beijing Jianheng Xin'an Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jianheng Xin'an Technology Co ltd filed Critical Beijing Jianheng Xin'an Technology Co ltd
Priority to CN202410673004.XA priority Critical patent/CN118504002A/en
Publication of CN118504002A publication Critical patent/CN118504002A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/604Tools and structures for managing or administering access control systems
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6218Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2141Access rights, e.g. capability lists, access control lists, access tables, access matrices

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Bioethics (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Automation & Control Theory (AREA)
  • Storage Device Security (AREA)

Abstract

一种用于身份安全的数据安全保护方法和装置,涉及数据管理领域。在该方法中,响应于目标用户访问目标数据的操作,获取目标用户的身份信息,并判断身份信息是否能够匹配数据库中的内部用户;当身份信息不能匹配数据库中的内部用户时,从虚拟外部用户中选择目标虚拟外部用户绑定目标用户,根据目标虚拟外部用户的操作计算第一风险级别,当第一风险级别高于第一预设阈值时,关闭目标虚拟外部用户的访问权限;当身份信息匹配到数据库中的目标内部用户时,根据目标内部用户的操作和目标内部用户的预设行为模式计算第二风险级别,当第二风险级别高于第二预设阈值时,降低目标内部用户的权限。实施本申请提供的技术方案,提高了数据的安全性。

A data security protection method and device for identity security, relating to the field of data management. In this method, in response to the operation of the target user accessing the target data, the identity information of the target user is obtained, and it is determined whether the identity information can match the internal user in the database; when the identity information cannot match the internal user in the database, a target virtual external user is selected from the virtual external users to bind the target user, and a first risk level is calculated according to the operation of the target virtual external user. When the first risk level is higher than a first preset threshold, the access rights of the target virtual external user are closed; when the identity information matches the target internal user in the database, a second risk level is calculated according to the operation of the target internal user and the preset behavior pattern of the target internal user. When the second risk level is higher than a second preset threshold, the rights of the target internal user are reduced. The implementation of the technical solution provided by the present application improves the security of data.

Description

一种用于身份安全的数据安全保护方法和装置A data security protection method and device for identity security

技术领域Technical Field

本申请涉及数据管理的技术领域,具体涉及一种用于身份安全的数据安全保护方法、系统、电子设备及存储介质。The present application relates to the technical field of data management, and in particular to a data security protection method, system, electronic device and storage medium for identity security.

背景技术Background Art

随着信息技术的飞速发展,数据安全问题日益凸显,尤其是企业内部的敏感数据保护,已成为业界亟待解决的重要难题。数据管理平台作为企业数据管理的核心,承载着数据的存储、处理和访问等多重功能,因此其安全性至关重要。然而,传统的数据保护方法往往只注重数据的加密和访问控制,而忽视了用户身份安全这一关键环节。With the rapid development of information technology, data security issues have become increasingly prominent, especially the protection of sensitive data within enterprises, which has become an important problem that the industry needs to solve urgently. As the core of enterprise data management, the data management platform carries multiple functions such as data storage, processing and access, so its security is of vital importance. However, traditional data protection methods often only focus on data encryption and access control, while ignoring the key link of user identity security.

目前,大多数企业在数据管理平台中,会设立一定的用户身份验证机制,如用户名密码验证、动态令牌等,以确保只有合法用户能够访问敏感数据。然而,这些方法在面对高级威胁,如内部人员恶意操作、外部黑客伪装成合法用户等攻击时,往往显得力不从心。At present, most enterprises have set up certain user authentication mechanisms in their data management platforms, such as username and password verification, dynamic tokens, etc., to ensure that only legitimate users can access sensitive data. However, these methods are often inadequate in the face of advanced threats, such as malicious operations by insiders and external hackers disguised as legitimate users.

因此,在数据管理平台中,如何构建更安全的保护机制,成为了当前数据安全领域亟待解决的技术问题。Therefore, how to build a more secure protection mechanism in the data management platform has become a technical problem that needs to be urgently solved in the current data security field.

发明内容Summary of the invention

本申请提供一种用于身份安全的数据安全保护方法、系统、电子设备及存储介质,既能有效识别用户身份,又能根据用户行为动态调整数据访问权限,提高了数据的安全性。The present application provides a data security protection method, system, electronic device and storage medium for identity security, which can not only effectively identify the user identity, but also dynamically adjust data access rights according to user behavior, thereby improving data security.

在本申请的第一方面提供了一种用于身份安全的数据安全保护方法,应用于数据管理平台,所述方法包括:In a first aspect of the present application, a data security protection method for identity security is provided, which is applied to a data management platform, and the method comprises:

建立数据库,所述数据库包含目标企业的内部用户、所述目标企业的虚拟外部用户、所述目标企业不同重要等级的数据以及不同用户与数据对应的访问权限关系;Establishing a database, the database including internal users of the target enterprise, virtual external users of the target enterprise, data of different importance levels of the target enterprise, and access rights relationships between different users and data;

响应于目标用户访问目标数据的操作,获取所述目标用户的身份信息,并判断所述身份信息是否能够匹配所述数据库中的内部用户;In response to an operation of a target user accessing target data, obtaining identity information of the target user, and determining whether the identity information can match an internal user in the database;

当所述身份信息不能匹配所述数据库中的内部用户时,从所述虚拟外部用户中选择目标虚拟外部用户绑定所述目标用户,根据所述目标虚拟外部用户的操作计算第一风险级别,当所述第一风险级别高于第一预设阈值时,关闭所述目标虚拟外部用户的访问权限;When the identity information cannot match the internal user in the database, selecting a target virtual external user from the virtual external users to bind the target user, calculating a first risk level according to an operation of the target virtual external user, and closing the access right of the target virtual external user when the first risk level is higher than a first preset threshold;

当所述身份信息匹配到所述数据库中的目标内部用户时,根据所述目标内部用户的操作和所述目标内部用户的预设行为模式计算第二风险级别,当所述第二风险级别高于第二预设阈值时,降低所述目标内部用户的权限。When the identity information matches the target internal user in the database, a second risk level is calculated according to the operation of the target internal user and the preset behavior pattern of the target internal user. When the second risk level is higher than a second preset threshold, the authority of the target internal user is reduced.

通过采用上述技术方案,建立包含内部用户、虚拟外部用户、不同重要等级的数据以及访问权限关系的数据库,能够确保只有经过授权的用户才能访问相应的数据。这大大降低了数据被未经授权访问的风险,从而增强了数据的安全性。当目标用户的身份信息不能匹配数据库中的内部用户时,选择一个虚拟外部用户进行绑定,并计算其操作风险。如果风险级别超过预设阈值,将关闭其访问权限。这种机制有效地防止了外部未经授权的用户通过非法手段获取数据,降低了外部风险。当目标用户的身份信息匹配到数据库中的内部用户时,会根据其操作和预设行为模式计算风险级别。如果风险级别超过预设阈值,将降低其权限。这有助于监控和识别内部潜在的风险行为,如数据泄露、滥用权限等,从而及时采取措施进行防范。通过虚拟外部用户的概念,可以在不增加实际内部用户数量的情况下,灵活地扩展访问权限。这为企业提供了更大的灵活性和便利性,同时降低了管理成本。结合了身份验证、权限管理、风险评估等多种技术手段,形成了一个全面的数据保护策略。这种策略能够有效地应对各种数据安全威胁,确保企业数据的安全性和机密性。By adopting the above technical solution, a database containing internal users, virtual external users, data of different importance levels and access rights relationships is established, which can ensure that only authorized users can access the corresponding data. This greatly reduces the risk of unauthorized access to data, thereby enhancing data security. When the identity information of the target user cannot match the internal user in the database, a virtual external user is selected for binding and its operation risk is calculated. If the risk level exceeds the preset threshold, its access rights will be closed. This mechanism effectively prevents external unauthorized users from obtaining data through illegal means and reduces external risks. When the identity information of the target user matches the internal user in the database, the risk level is calculated based on its operation and preset behavior pattern. If the risk level exceeds the preset threshold, its permissions will be reduced. This helps to monitor and identify potential internal risk behaviors, such as data leakage, abuse of permissions, etc., so as to take timely measures to prevent them. Through the concept of virtual external users, access rights can be flexibly expanded without increasing the number of actual internal users. This provides enterprises with greater flexibility and convenience while reducing management costs. Combining multiple technical means such as identity authentication, permission management, and risk assessment, a comprehensive data protection strategy is formed. This strategy can effectively respond to various data security threats and ensure the security and confidentiality of enterprise data.

可选的,所述根据所述目标虚拟外部用户的操作计算第一风险级别包括:Optionally, calculating the first risk level according to the operation of the target virtual external user includes:

通过预设规则识别所述目标虚拟外部用户的异常行为,所述异常行为包括登录时间异常、登录地点异常、访问数据的类型异常、访问数据的时间异常;Identify abnormal behaviors of the target virtual external user through preset rules, wherein the abnormal behaviors include abnormal login time, abnormal login location, abnormal type of accessed data, and abnormal time of accessed data;

确定每个异常行为对应的第一分数,根据所述第一分数计算所述目标虚拟外部用户的第一风险总分,并将所述第一风险总分映射到预定风险等级中。A first score corresponding to each abnormal behavior is determined, a first total risk score of the target virtual external user is calculated according to the first score, and the first total risk score is mapped to a predetermined risk level.

通过采用上述技术方案,实时监控目标虚拟外部用户的登录时间、地点、访问数据的类型和时间,数据管理平台能够迅速识别出任何潜在的异常行为。这种实时性对于保护数据安全至关重要,因为它允许系统在最短时间内作出反应。为每个异常行为分配特定的分数,使得数据管理平台能够对风险进行细粒度的评估。不同的异常行为可能具有不同的风险级别,因此,通过为每种行为分配不同的分数,数据管理平台能够更准确地反映用户操作的风险水平。通过计算目标虚拟外部用户的第一风险总分,并将该分数映射到预定的风险等级中,数据管理平台能够将风险量化,使得管理者能够更直观地了解当前的安全状况。这种风险量化机制有助于管理者制定更有效的安全策略和措施。预设规则可以根据企业的实际需求进行定制和调整,以适应不同的安全环境和业务需求。这使得该方法具有很高的灵活性和适应性,能够满足不同企业的多样化需求。当第一风险级别高于预设阈值时,数据管理平台可以自动关闭目标虚拟外部用户的访问权限,从而阻止潜在的安全威胁。这种提前预警机制能够防止损失进一步扩大,保护企业的数据安全。By adopting the above technical solution, the data management platform can quickly identify any potential abnormal behavior by monitoring the login time, location, type and time of access data of the target virtual external user in real time. This real-time performance is crucial to protecting data security because it allows the system to respond in the shortest possible time. Assigning a specific score to each abnormal behavior enables the data management platform to conduct a fine-grained assessment of risks. Different abnormal behaviors may have different risk levels. Therefore, by assigning different scores to each behavior, the data management platform can more accurately reflect the risk level of user operations. By calculating the total first risk score of the target virtual external user and mapping the score to the predetermined risk level, the data management platform can quantify the risk so that managers can understand the current security situation more intuitively. This risk quantification mechanism helps managers formulate more effective security strategies and measures. The preset rules can be customized and adjusted according to the actual needs of the enterprise to adapt to different security environments and business needs. This makes the method highly flexible and adaptable, and can meet the diverse needs of different enterprises. When the first risk level is higher than the preset threshold, the data management platform can automatically close the access rights of the target virtual external user, thereby preventing potential security threats. This early warning mechanism can prevent further losses and protect the data security of the enterprise.

可选的,所述根据所述目标内部用户的操作和所述目标内部用户的预设行为模式计算第二风险级别包括:Optionally, calculating the second risk level according to the operation of the target internal user and a preset behavior pattern of the target internal user includes:

根据所述目标内部用户的历史行为确定预设行为模式,将所述目标内部用户的操作与所述预设行为模式进行比对以确定区别点;Determine a preset behavior pattern according to the historical behavior of the target internal user, and compare the operation of the target internal user with the preset behavior pattern to determine the difference;

确定每个区别点对应的第二分数,并根据所述第二分数计算所述目标内部用户的第二风险总分,并将所述第二风险总分映射到预定风险等级中。A second score corresponding to each distinguishing point is determined, and a second total risk score of the target internal user is calculated according to the second score, and the second total risk score is mapped to a predetermined risk level.

通过采用上述技术方案,基于目标内部用户的历史行为确定预设行为模式,能够为每个用户生成个性化的风险评估标准。这种个性化评估更加贴合用户的实际行为,提高了风险评估的准确性。将目标内部用户的当前操作与预设行为模式进行比对,可以迅速识别出与常规行为模式不符的区别点。这些区别点可能是潜在的安全风险点,为数据管理平台提供了重要的安全信息。为每个区别点分配特定的第二分数,使得数据管理平台能够对内部用户的行为风险进行细粒度的量化。这种量化机制有助于管理者更准确地了解用户操作的风险水平,为制定安全策略提供了有力支持。通过实时监控目标内部用户的操作并与预设行为模式进行比对,数据管理平台能够实时评估用户行为的风险级别。这种实时性使得数据管理平台能够迅速响应潜在的安全威胁,及时采取措施保护数据安全。当第二风险级别高于预设阈值时,数据管理平台可以降低目标内部用户的权限,从而防止潜在的安全风险进一步扩大。这种预防性安全策略有助于保护企业数据免受内部威胁,提高数据的安全性。通过向用户反馈其操作的风险级别,可以提高用户对安全问题的关注度和自我保护意识。这有助于培养用户的安全行为习惯,进一步降低数据安全风险。By adopting the above technical solution, a preset behavior pattern is determined based on the historical behavior of the target internal user, and a personalized risk assessment standard can be generated for each user. This personalized assessment is more in line with the actual behavior of the user and improves the accuracy of the risk assessment. By comparing the current operation of the target internal user with the preset behavior pattern, the difference points that do not conform to the conventional behavior pattern can be quickly identified. These difference points may be potential security risk points, providing important security information for the data management platform. Assigning a specific second score to each difference point enables the data management platform to quantify the behavioral risk of internal users in a fine-grained manner. This quantification mechanism helps managers to understand the risk level of user operations more accurately and provides strong support for the formulation of security policies. By monitoring the operations of the target internal user in real time and comparing them with the preset behavior pattern, the data management platform can evaluate the risk level of user behavior in real time. This real-time performance enables the data management platform to respond quickly to potential security threats and take timely measures to protect data security. When the second risk level is higher than the preset threshold, the data management platform can reduce the permissions of the target internal user, thereby preventing the potential security risk from further expanding. This preventive security strategy helps protect enterprise data from internal threats and improve data security. By providing users with feedback on the risk level of their operations, users can be more aware of security issues and have a stronger sense of self-protection. This helps to cultivate users’ safe behavior habits and further reduce data security risks.

可选的,所述根据所述目标内部用户的历史行为确定预设行为模式包括:Optionally, determining a preset behavior pattern according to the historical behavior of the target internal user includes:

统计所述目标内部用户的历史登录时间、历史登录地点、历史访问数据类型、历史访问数据时间;Collect statistics on the historical login time, historical login location, historical access data type, and historical access data time of the target internal users;

根据所述历史登录时间将每个登录时间划分到对应的时间段,确定每个时间段的第一登录权重,并根据所述历史登录地点确定每个登录地点的第二登录权重;Divide each login time into corresponding time periods according to the historical login time, determine a first login weight for each time period, and determine a second login weight for each login location according to the historical login location;

根据所述历史访问数据类型和所述历史访问数据时间确定每种数据类型在不同时间段的访问权重;Determine the access weight of each data type in different time periods according to the historical access data type and the historical access data time;

根据所述第一登录权重、第二登录权重和访问权重确定预设行为模式。A preset behavior mode is determined according to the first login weight, the second login weight and the access weight.

通过采用上述技术方案,基于目标内部用户的实际历史行为数据,确定的预设行为模式更加个性化,能够更准确地反映用户的日常操作习惯。这有助于提高后续风险评估的准确性和有效性。通过对历史登录时间的统计和权重分配,数据管理平台能够识别用户在不同时间段的活跃程度,从而更准确地判断用户操作的合理性和安全性。例如,在非工作时间段内的高频登录可能被视为异常行为。结合历史登录地点的权重,数据管理平台能够识别用户的常规工作场所或常用设备,进一步判断用户操作的合理性。异常地点的登录可能触发安全警报。通过对历史访问数据类型和时间的分析,数据管理平台能够了解用户对各类数据的访问偏好和习惯。这有助于识别异常的数据访问行为,如频繁访问非工作相关数据或在非工作时间段内大量访问数据。结合登录权重、地理位置权重和数据访问权重,数据管理平台能够为用户的行为模式建立一个多维度的评估体系。这种全面性分析能够更准确地捕捉用户行为的异常点,为风险评估提供有力支持。随着用户行为的变化,数据管理平台可以定期更新预设行为模式,以适应新的操作习惯。这种自适应性确保了风险评估的时效性和准确性。在保障数据安全的同时,通过个性化预设行为模式,数据管理平台能够减少对正常用户操作的干扰,提升用户体验。By adopting the above technical solution, based on the actual historical behavior data of the target internal users, the preset behavior pattern determined is more personalized and can more accurately reflect the daily operation habits of users. This helps to improve the accuracy and effectiveness of subsequent risk assessments. By counting and weighting the historical login time, the data management platform can identify the user's activity level in different time periods, so as to more accurately judge the rationality and safety of user operations. For example, high-frequency logins during non-working hours may be regarded as abnormal behavior. Combined with the weights of historical login locations, the data management platform can identify the user's regular workplace or commonly used equipment to further judge the rationality of user operations. Logins at abnormal locations may trigger security alerts. By analyzing the types and times of historical access data, the data management platform can understand the user's access preferences and habits for various types of data. This helps to identify abnormal data access behaviors, such as frequent access to non-work-related data or large-scale access to data during non-working hours. Combined with login weights, geographic location weights, and data access weights, the data management platform can establish a multi-dimensional evaluation system for user behavior patterns. This comprehensive analysis can more accurately capture the abnormal points of user behavior and provide strong support for risk assessment. As user behavior changes, the data management platform can regularly update the preset behavior pattern to adapt to new operating habits. This adaptability ensures the timeliness and accuracy of risk assessment. While ensuring data security, the data management platform can reduce interference with normal user operations and improve user experience through personalized preset behavior patterns.

可选的,所述根据所述历史登录时间将每个登录时间划分到对应的时间段,确定每个时间段的第一登录权重,并根据所述历史登录地点确定每个登录地点的第二登录权重包括:Optionally, dividing each login time into corresponding time periods according to the historical login time, determining a first login weight for each time period, and determining a second login weight for each login location according to the historical login location includes:

将每天平均划分为预设数量个时间段,确定所述目标用户在第一目标时间段内的第一登录次数,根据所述第一登录次数与总登录次数的比值确定所述第一目标时间段内的第一登录权重;Divide each day into a preset number of time periods on average, determine the first login times of the target user in a first target time period, and determine the first login weight in the first target time period according to the ratio of the first login times to the total login times;

确定所述目标用户在目标地点的第二登录次数,根据所述第二登录次数与总登录次数的比值确定所述目标地点的第二登录权重。A second login number of the target user at the target location is determined, and a second login weight of the target location is determined according to a ratio of the second login number to the total login number.

通过采用上述技术方案,将每天划分为预设数量的时间段,并基于目标用户在不同时间段的登录次数来确定第一登录权重,数据管理平台能够更准确地捕捉到用户的登录习惯。这种时间敏感性的分析有助于数据管理平台识别出非常规时间段的异常登录行为,从而提前预警潜在的安全风险。根据目标用户在特定地点的登录次数来确定第二登录权重,数据管理平台能够识别出用户的常用登录地点。这对于识别异常地点登录特别有效,因为异常地点的登录可能意味着用户的账户已被盗用或存在其他安全风险。通过结合时间段权重和地点权重,数据管理平台能够为用户提供一个个性化的风险评估模型。这种模型能够更准确地反映用户的实际行为模式,从而提高风险评估的准确性和有效性。一旦数据管理平台检测到用户的登录行为与预设的行为模式存在显著偏差,可以立即触发安全警报,通知管理员或用户本人。这种实时监控与预警机制有助于及时应对潜在的安全威胁,保护数据的安全性。随着用户行为的变化,数据管理平台可以定期更新时间段和地点的权重设置,以适应新的行为模式。这种自适应性确保了风险评估的时效性和准确性。在保障数据安全的同时,通过个性化的风险评估模型,数据管理平台能够减少对正常用户操作的干扰,提高用户体验。例如,对于常用地点和常规时间段的登录行为,数据管理平台可以自动降低安全验证的频率或级别。By adopting the above technical solution, each day is divided into a preset number of time periods, and the first login weight is determined based on the number of logins of the target user in different time periods, so that the data management platform can more accurately capture the user's login habits. This time-sensitive analysis helps the data management platform identify abnormal login behaviors in unconventional time periods, thereby warning of potential security risks in advance. The second login weight is determined based on the number of logins of the target user at a specific location, and the data management platform can identify the user's common login locations. This is particularly effective for identifying logins at abnormal locations, because logins at abnormal locations may mean that the user's account has been stolen or there are other security risks. By combining the time period weight and the location weight, the data management platform can provide users with a personalized risk assessment model. This model can more accurately reflect the user's actual behavior pattern, thereby improving the accuracy and effectiveness of risk assessment. Once the data management platform detects that the user's login behavior is significantly deviated from the preset behavior pattern, it can immediately trigger a security alarm to notify the administrator or the user himself. This real-time monitoring and early warning mechanism helps to respond to potential security threats in a timely manner and protect the security of data. As user behavior changes, the data management platform can regularly update the weight settings of time periods and locations to adapt to new behavior patterns. This adaptability ensures the timeliness and accuracy of risk assessment. While ensuring data security, the data management platform can reduce interference with normal user operations and improve user experience through personalized risk assessment models. For example, for login behaviors in common locations and regular time periods, the data management platform can automatically reduce the frequency or level of security verification.

可选的,所述根据所述历史访问数据类型和所述历史访问数据时间确定每种数据类型在不同时间段的访问权重包括:Optionally, determining the access weight of each data type in different time periods according to the historical access data type and the historical access data time includes:

将每天平均划分为预设数量个时间段,确定第二目标时间段内目标数据类型的访问次数及访问时长,Divide each day into a preset number of time periods, determine the number of visits and the duration of visits to the target data type in the second target time period,

根据所述目标数据类型在所述第二目标时间段内的访问次数与所述目标数据类型的总访问次数的比值确定第一访问权重;Determine a first access weight according to a ratio of the number of accesses to the target data type within the second target time period to the total number of accesses to the target data type;

根据所述目标数据类型在所述第二目标时间段内的访问时长与所述目标数据类型的总访问时长的比值确定第二访问权重;Determine a second access weight according to a ratio of the access duration of the target data type in the second target time period to the total access duration of the target data type;

根据所述的第一访问权重和所述第二访问权重确定所述目标数据类型在所述第二目标时间段内的访问权重。An access weight of the target data type within the second target time period is determined according to the first access weight and the second access weight.

通过采用上述技术方案,将每天划分为预设数量的时间段,并对每个时间段内特定数据类型的访问次数和访问时长进行统计,数据管理平台能够对用户的数据访问行为进行精细化分析。这种分析有助于更准确地理解用户在不同时间段内的数据使用习惯,为后续的风险评估和安全策略制定提供有力依据。基于目标数据类型在特定时间段内的访问次数和访问时长,数据管理平台能够计算出该数据类型在该时间段内的第一访问权重和第二访问权重。这种动态权重调整机制能够反映出用户行为的变化,使得风险评估结果更加贴近实际情况。结合不同时间段和不同数据类型的访问权重,数据管理平台能够为用户提供一个个性化的风险评估模型。这种模型能够更准确地反映用户的实际行为模式,提高风险评估的准确性和有效性。通过对用户数据访问行为的持续监控和分析,数据管理平台能够及时发现与常规行为模式不符的异常行为。例如,用户在非工作时间段内大量访问敏感数据,或者在短时间内频繁访问大量数据等,这些异常行为可能预示着潜在的安全风险。基于对用户数据访问行为的深入分析,数据管理平台能够为用户提供更加精准的安全策略建议。例如,对于频繁访问敏感数据的用户,数据管理平台可以建议加强身份验证或限制访问权限;对于在非工作时间段内活跃的用户,数据管理平台可以提醒管理员关注其账户安全等。在保障数据安全的同时,通过个性化的风险评估模型和安全策略建议,数据管理平台能够减少对正常用户操作的干扰,提高用户体验。例如,对于常用数据类型和常规时间段的访问行为,数据管理平台可以自动降低安全验证的频率或级别。By adopting the above technical solution, each day is divided into a preset number of time periods, and the number of accesses and access duration of a specific data type in each time period are counted, so that the data management platform can conduct a refined analysis of the user's data access behavior. This analysis helps to more accurately understand the user's data usage habits in different time periods, and provide a strong basis for subsequent risk assessment and security strategy formulation. Based on the number of accesses and access duration of the target data type in a specific time period, the data management platform can calculate the first access weight and second access weight of the data type in the time period. This dynamic weight adjustment mechanism can reflect the changes in user behavior, making the risk assessment results closer to the actual situation. Combining the access weights of different time periods and different data types, the data management platform can provide users with a personalized risk assessment model. This model can more accurately reflect the user's actual behavior pattern and improve the accuracy and effectiveness of risk assessment. Through continuous monitoring and analysis of user data access behavior, the data management platform can promptly discover abnormal behaviors that do not conform to the normal behavior pattern. For example, users access a large amount of sensitive data during non-working hours, or frequently access a large amount of data in a short period of time, etc. These abnormal behaviors may indicate potential security risks. Based on in-depth analysis of user data access behavior, the data management platform can provide users with more accurate security policy recommendations. For example, for users who frequently access sensitive data, the data management platform can recommend strengthening identity authentication or restricting access rights; for users who are active during non-working hours, the data management platform can remind administrators to pay attention to their account security, etc. While ensuring data security, the data management platform can reduce interference with normal user operations and improve user experience through personalized risk assessment models and security policy recommendations. For example, for access behaviors of commonly used data types and regular time periods, the data management platform can automatically reduce the frequency or level of security verification.

可选的,所述将所述目标内部用户的操作与所述预设行为模式进行比对以确定区别点包括:Optionally, comparing the operation of the target internal user with the preset behavior pattern to determine the difference includes:

确定所述目标内部用户的当前登录时间对应的第一登录权重,并确定所述目标内部用户的当前登录地点对应的第二登录权重,根据所述目标内部用户当前访问的数据类型和访问时长确定访问权重;Determine a first login weight corresponding to the current login time of the target internal user, and determine a second login weight corresponding to the current login location of the target internal user, and determine an access weight according to the type of data currently accessed by the target internal user and the access duration;

当所述第一登录权重小于第三预设阈值时,将当前登录时间作为区别点;When the first login weight is less than a third preset threshold, the current login time is used as a distinguishing point;

当所述第二登录权重小于第四预设阈值时,将当前登录地点作为区别点;When the second login weight is less than a fourth preset threshold, the current login location is used as a distinguishing point;

当所述访问权重小于第五预设阈值时,将当前访问的数据类型和访问时长作为区别点。When the access weight is less than the fifth preset threshold, the data type and access duration of the current access are used as distinguishing points.

通过采用上述技术方案,实时比对用户当前操作与预设行为模式,数据管理平台能够立即发现任何偏离常规的行为。这种实时性对于及时响应安全威胁至关重要。不仅考虑了登录时间和地点,还结合了用户访问的数据类型和访问时长,形成了一个多维度的分析框架。这有助于更全面地评估用户行为的正常性。通过第三、第四和第五预设阈值的设置,数据管理平台可以根据实际需求调整对异常行为的敏感度。这种灵活性使得数据管理平台能够适应不同用户或不同安全等级的需求。数据管理平台检测到某个或多个维度上的行为权重低于预设阈值时,就能精确地将当前登录时间、地点或访问行为作为区别点识别出来。这为后续的安全策略制定和响应提供了明确的指导。通过实时检测异常行为并精确识别区别点,数据管理平台能够更有效地预防潜在的安全风险。例如,对于非法登录或异常数据访问,数据管理平台可以及时采取阻止措施或触发警报。虽然安全性是首要目标,但该方法也考虑到了用户体验。通过精准识别异常行为并避免对正常操作造成干扰,数据管理平台能够在保障安全的同时提升用户体验。区别点的确定不仅为数据管理平台提供了自动响应的依据,还为安全管理人员提供了决策支持。通过分析区别点,管理人员可以更深入地了解用户行为模式并制定相应的安全策略。By adopting the above technical solution, the data management platform can immediately detect any deviation from the normal behavior by comparing the user's current operation with the preset behavior pattern in real time. This real-time performance is crucial for timely response to security threats. Not only the login time and location are taken into account, but also the type of data accessed by the user and the duration of the access are combined to form a multi-dimensional analysis framework. This helps to more comprehensively evaluate the normality of user behavior. By setting the third, fourth and fifth preset thresholds, the data management platform can adjust the sensitivity to abnormal behavior according to actual needs. This flexibility enables the data management platform to adapt to the needs of different users or different security levels. When the data management platform detects that the behavior weight on one or more dimensions is lower than the preset threshold, it can accurately identify the current login time, location or access behavior as a distinguishing point. This provides clear guidance for subsequent security policy formulation and response. By detecting abnormal behavior in real time and accurately identifying the distinguishing points, the data management platform can more effectively prevent potential security risks. For example, for illegal logins or abnormal data access, the data management platform can take timely blocking measures or trigger alarms. Although security is the primary goal, this method also takes into account the user experience. By accurately identifying abnormal behavior and avoiding interference with normal operations, the data management platform can improve the user experience while ensuring security. The determination of the distinguishing points not only provides a basis for the data management platform to automatically respond, but also provides decision support for security managers. By analyzing the distinguishing points, managers can have a deeper understanding of user behavior patterns and formulate corresponding security policies.

在本申请的第二方面提供了一种用于身份安全的数据安全保护系统,包括数据模块、身份模块、第一执行模块以及第二执行模块,其中:In a second aspect of the present application, a data security protection system for identity security is provided, comprising a data module, an identity module, a first execution module and a second execution module, wherein:

数据模块,配置用于建立数据库,所述数据库包含目标企业的内部用户、所述目标企业的虚拟外部用户、所述目标企业不同重要等级的数据以及不同用户与数据对应的访问权限关系;A data module configured to establish a database, wherein the database includes internal users of a target enterprise, virtual external users of the target enterprise, data of different importance levels of the target enterprise, and access permission relationships between different users and data;

身份模块,配置用于响应于目标用户访问目标数据的操作,获取所述目标用户的身份信息,并判断所述身份信息是否能够匹配所述数据库中的内部用户;an identity module configured to obtain identity information of the target user in response to an operation of the target user accessing the target data, and determine whether the identity information can match an internal user in the database;

第一执行模块,配置用于当所述身份信息不能匹配所述数据库中的内部用户时,从所述虚拟外部用户中选择目标虚拟外部用户绑定所述目标用户,根据所述目标虚拟外部用户的操作计算第一风险级别,当所述第一风险级别高于第一预设阈值时,关闭所述目标虚拟外部用户的访问权限;A first execution module is configured to select a target virtual external user from the virtual external users to bind the target user when the identity information cannot match the internal user in the database, calculate a first risk level according to the operation of the target virtual external user, and close the access right of the target virtual external user when the first risk level is higher than a first preset threshold;

第二执行模块,配置用于当所述身份信息匹配到所述数据库中的目标内部用户时,根据所述目标内部用户的操作和所述目标内部用户的预设行为模式计算第二风险级别,当所述第二风险级别高于第二预设阈值时,降低所述目标内部用户的权限。The second execution module is configured to calculate a second risk level according to the operation of the target internal user and the preset behavior pattern of the target internal user when the identity information matches the target internal user in the database, and reduce the authority of the target internal user when the second risk level is higher than a second preset threshold.

在本申请的第三方面提供了一种电子设备,包括处理器、存储器、用户接口以及网络接口,所述存储器用于存储指令,所述用户接口和所述网络接口均用于与其他设备通信,所述处理器用于执行所述存储器中存储的指令,以使所述电子设备执行如上述任意一项所述的方法。In the third aspect of the present application, an electronic device is provided, including a processor, a memory, a user interface and a network interface, the memory is used to store instructions, the user interface and the network interface are both used to communicate with other devices, and the processor is used to execute the instructions stored in the memory so that the electronic device executes any one of the methods described above.

在本申请的第四方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有指令,当所述指令被执行时,执行如上述任意一项所述的方法。In a fourth aspect of the present application, a computer-readable storage medium is provided, wherein the computer-readable storage medium stores instructions, and when the instructions are executed, any of the methods described above is executed.

综上所述,本申请实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:In summary, one or more technical solutions provided in the embodiments of the present application have at least the following technical effects or advantages:

1、通过判断目标用户的身份信息是否能匹配到数据库中的内部用户,实施了一种双重身份验证机制,这确保了只有经过验证的内部用户才可以访问目标数据,从而有效防止了未经授权的外部用户访问敏感数据;1. A two-factor authentication mechanism is implemented by determining whether the target user's identity information can match the internal user in the database. This ensures that only verified internal users can access the target data, thereby effectively preventing unauthorized external users from accessing sensitive data;

2、当目标用户的身份信息不能匹配到内部用户时,提供了虚拟外部用户绑定的解决方案,这种机制允许外部用户以受控的方式访问数据,同时保持了数据的安全性,通过为虚拟外部用户设置访问权限和操作风险级别,数据管理平台能够对外部访问进行精细化的管理;2. When the identity information of the target user cannot be matched to an internal user, a virtual external user binding solution is provided. This mechanism allows external users to access data in a controlled manner while maintaining data security. By setting access rights and operation risk levels for virtual external users, the data management platform can manage external access in a refined manner.

3、无论是针对虚拟外部用户还是内部用户,都实施了实时的风险评估。通过计算第一风险级别和第二风险级别,数据管理平台能够迅速识别出潜在的安全威胁,并采取相应的措施来降低风险,这种及时的响应有助于防止数据泄露和其他安全事件的发生;3. Real-time risk assessment is implemented for both virtual external users and internal users. By calculating the first risk level and the second risk level, the data management platform can quickly identify potential security threats and take appropriate measures to reduce risks. This timely response helps prevent data leaks and other security incidents;

4、当检测到高风险行为时,数据管理平台会动态地调整用户的访问权限。对于虚拟外部用户,数据管理平台可以关闭其访问权限;对于内部用户,数据管理平台可以降低其权限级别,这种动态调整机制能够确保数据访问的灵活性和安全性之间的平衡;4. When high-risk behaviors are detected, the data management platform will dynamically adjust the user's access rights. For virtual external users, the data management platform can close their access rights; for internal users, the data management platform can lower their permission level. This dynamic adjustment mechanism can ensure a balance between the flexibility and security of data access;

5、通过实施严格的身份验证、虚拟外部用户管理、实时风险评估和动态权限调整等机制,显著提高了数据管理平台的数据安全性。这有助于保护企业敏感信息不受未经授权的访问和泄露。5. The data security of the data management platform is significantly improved by implementing strict identity authentication, virtual external user management, real-time risk assessment, and dynamic permission adjustment mechanisms. This helps protect sensitive enterprise information from unauthorized access and leakage.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是本申请实施例公开的用于身份安全的数据安全保护方法的流程示意图;FIG1 is a flow chart of a data security protection method for identity security disclosed in an embodiment of the present application;

图2是本申请实施例公开的用于身份安全的数据安全保护系统的模块示意图;FIG2 is a schematic diagram of a module of a data security protection system for identity security disclosed in an embodiment of the present application;

图3是本申请实施例公开的一种电子设备的结构示意图。FIG. 3 is a schematic diagram of the structure of an electronic device disclosed in an embodiment of the present application.

附图标记说明:201、数据模块;202、身份模块;203、第一执行模块;204、第二执行模块;301、处理器;302、通信总线;303、用户接口;304、网络接口;305、存储器。Explanation of the reference numerals: 201, data module; 202, identity module; 203, first execution module; 204, second execution module; 301, processor; 302, communication bus; 303, user interface; 304, network interface; 305, memory.

具体实施方式DETAILED DESCRIPTION

为了使本领域的技术人员更好地理解本说明书中的技术方案,下面将结合本说明书实施例中的附图,对本说明书实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。In order to enable those skilled in the art to better understand the technical solutions in this specification, the technical solutions in the embodiments of this specification will be clearly and completely described below in conjunction with the drawings in the embodiments of this specification. Obviously, the described embodiments are only part of the embodiments of this application, not all of the embodiments.

在本申请实施例的描述中,“例如”或者“举例来说”等词用于表示作例子、例证或说明。本申请实施例中被描述为“例如”或者“举例来说”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“例如”或者“举例来说”等词旨在以具体方式呈现相关概念。In the description of the embodiments of the present application, words such as "for example" or "for example" are used to indicate examples, illustrations or explanations. Any embodiment or design described as "for example" or "for example" in the embodiments of the present application should not be interpreted as being more preferred or more advantageous than other embodiments or designs. Specifically, the use of words such as "for example" or "for example" is intended to present related concepts in a specific way.

在本申请实施例的描述中,术语“多个”的含义是指两个或两个以上。例如,多个系统是指两个或两个以上的系统,多个屏幕终端是指两个或两个以上的屏幕终端。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。In the description of the embodiments of the present application, the meaning of the term "multiple" refers to two or more. For example, multiple systems refer to two or more systems, and multiple screen terminals refer to two or more screen terminals. In addition, the terms "first" and "second" are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the indicated technical features. Thus, the features defined as "first" and "second" may explicitly or implicitly include one or more of the features. The terms "include", "comprise", "have" and their variations all mean "including but not limited to", unless otherwise specifically emphasized.

本实施例公开了一种用于身份安全的数据安全保护方法,图1是本申请实施例公开的用于身份安全的数据安全保护方法的流程示意图,如图1所示,数据安全保护方法包括如下步骤:This embodiment discloses a data security protection method for identity security. FIG1 is a flow chart of the data security protection method for identity security disclosed in the embodiment of the present application. As shown in FIG1 , the data security protection method includes the following steps:

S110、建立数据库,所述数据库包含目标企业的内部用户、所述目标企业的虚拟外部用户、所述目标企业不同重要等级的数据以及不同用户与数据对应的访问权限关系;S110, establishing a database, wherein the database includes internal users of the target enterprise, virtual external users of the target enterprise, data of different importance levels of the target enterprise, and access rights relationships between different users and data;

数据库是一个用于存储、检索、管理和处理数据的集合。在本申请实施例中,数据库被用来存储和管理与目标企业用户、数据以及访问权限相关的信息。目标企业指的是需要建立数据保护措施的特定公司或组织。内部用户:指属于目标企业,并享有访问企业内部资源(如数据、系统、文件等)权限的员工、员工团队或部门。他们通常经过身份验证和授权,可以根据权限直接访问和使用企业内部的敏感信息。目标企业的虚拟外部用户:设置的虚拟账号,可以让合作伙伴、第三方供应商等外部人员访问目标企业有限数据。根据数据的敏感性和潜在价值,数据被划分为不同的重要等级。例如,一些数据可能包含敏感的商业机密或客户信息,因此具有较高的重要等级,需要更加严格的访问控制和保护措施。访问权限:定义了用户能够访问的数据,以及他们可以对这些数据执行的操作(如读取、写入、修改、删除等)。访问权限关系指的是在数据库中存储的用户与数据之间的权限对应关系。这种关系决定了每个用户可以访问的具体数据,以及他们可以使用这些数据的方式。通过设置适当的访问权限关系,可以确保只有经过授权的用户才能访问对应权限的数据,从而保护数据的完整性和安全性。A database is a collection for storing, retrieving, managing and processing data. In an embodiment of the present application, a database is used to store and manage information related to target enterprise users, data and access rights. The target enterprise refers to a specific company or organization that needs to establish data protection measures. Internal users: refers to employees, employee teams or departments that belong to the target enterprise and have access to internal enterprise resources (such as data, systems, files, etc.). They are usually authenticated and authorized, and can directly access and use sensitive information within the enterprise according to their permissions. Virtual external users of the target enterprise: virtual accounts set up to allow external personnel such as partners and third-party suppliers to access limited data of the target enterprise. According to the sensitivity and potential value of the data, the data is divided into different levels of importance. For example, some data may contain sensitive business secrets or customer information, so it has a higher level of importance and requires more stringent access control and protection measures. Access rights: defines the data that users can access and the operations they can perform on these data (such as read, write, modify, delete, etc.). Access rights relationship refers to the permission correspondence between users and data stored in the database. This relationship determines the specific data that each user can access and how they can use this data. By setting appropriate access permission relationships, you can ensure that only authorized users can access data with corresponding permissions, thereby protecting the integrity and security of the data.

S120、响应于目标用户访问目标数据的操作,获取所述目标用户的身份信息,并判断所述身份信息是否能够匹配所述数据库中的内部用户;S120, in response to the target user's operation of accessing the target data, obtaining the identity information of the target user, and determining whether the identity information can match an internal user in the database;

目标用户可能是企业的内部员工、合作伙伴或任何其他需要访问企业数据的实体。当目标用户试图访问特定的数据(如文件、数据库记录、应用程序功能等)时,数据管理平台会启动一个身份验证和授权流程。数据管理平台首先会展示一个登录界面,要求用户输入其身份凭据,如用户名和密码。用户输入其用户名和密码后,数据管理平台会将这些信息收集起来。除了用户名和密码外,数据管理平台还可能采用多因素认证来增加安全性。这可能包括生物识别(如指纹或面部识别)、手机验证码、硬件令牌等。为了确保传输过程中数据的安全性,用户的身份信息在发送到服务器进行验证之前会被加密。服务器会连接到存储用户信息的数据库。服务器会检索数据库中与输入用户名相对应的用户记录,并比较存储的密码哈希值与从用户输入中生成的哈希值。如果两者匹配,则认为用户名和密码验证成功。除了用户名和密码外,数据管理平台可能还会验证用户提供的多因素认证信息是否正确。用户身份验证成功后,数据管理平台会检查用户的类型是否为内部用户。这通常是通过检查用户记录中的属性(如“员工ID”、“部门”或“用户类型”字段)来实现的。The target user may be an internal employee, partner, or any other entity that needs to access corporate data. When the target user attempts to access specific data (such as files, database records, application functions, etc.), the data management platform initiates an authentication and authorization process. The data management platform will first display a login interface, requiring the user to enter their identity credentials, such as username and password. After the user enters their username and password, the data management platform will collect this information. In addition to username and password, the data management platform may also use multi-factor authentication to increase security. This may include biometrics (such as fingerprint or facial recognition), mobile phone verification codes, hardware tokens, etc. To ensure the security of data during transmission, the user's identity information is encrypted before being sent to the server for verification. The server connects to the database that stores user information. The server retrieves the user record corresponding to the entered username in the database and compares the stored password hash value with the hash value generated from the user input. If the two match, the username and password are considered to be successfully authenticated. In addition to the username and password, the data management platform may also verify whether the multi-factor authentication information provided by the user is correct. After the user's authentication is successful, the data management platform will check whether the user's type is an internal user. This is typically accomplished by examining attributes in the user record, such as the EmployeeID, Department, or UserType fields.

S130、当所述身份信息不能匹配所述数据库中的内部用户时,从所述虚拟外部用户中选择目标虚拟外部用户绑定所述目标用户,根据所述目标虚拟外部用户的操作计算第一风险级别,当所述第一风险级别高于第一预设阈值时,关闭所述目标虚拟外部用户的访问权限;S130, when the identity information cannot match the internal user in the database, selecting a target virtual external user from the virtual external users to bind the target user, calculating a first risk level according to an operation of the target virtual external user, and closing the access right of the target virtual external user when the first risk level is higher than a first preset threshold;

为了管理外部用户的访问权限,数据管理平台可以预先定义一系列虚拟外部用户。每个虚拟外部用户代表一类外部访问者的身份,例如合作伙伴、供应商、临时访客等。不同类型的虚拟外部用户具有不同的访问权限。例如,合作伙伴可能能够访问某些共享的数据或功能,而临时访客则可能只有非常有限的访问权限。当系统确定用户为外部用户时,它会根据用户的身份信息(如电子邮件地址、公司名称等)分配一个合适的虚拟外部用户身份。这通常是通过匹配用户输入的信息与预定义的虚拟外部用户类型来实现的。当用户被绑定到某个虚拟外部用户时,数据管理平台会根据该用户的操作计算第一风险级别。这可以通过分析用户的访问模式、行为模式、访问时间等因素来实现。例如,如果用户试图访问敏感数据或执行异常操作,其风险级别可能会升高。如果计算出的第一风险级别高于第一预设阈值,数据管理平台会立即关闭该用户的访问权限,以防止潜在的安全风险。To manage the access rights of external users, the data management platform can pre-define a series of virtual external users. Each virtual external user represents the identity of a class of external visitors, such as partners, suppliers, temporary visitors, etc. Different types of virtual external users have different access rights. For example, partners may be able to access certain shared data or functions, while temporary visitors may have very limited access rights. When the system determines that a user is an external user, it assigns a suitable virtual external user identity based on the user's identity information (such as email address, company name, etc.). This is usually achieved by matching the information entered by the user with the predefined virtual external user type. When a user is bound to a virtual external user, the data management platform calculates the first risk level based on the user's operations. This can be achieved by analyzing factors such as the user's access pattern, behavior pattern, access time, etc. For example, if a user attempts to access sensitive data or performs abnormal operations, his risk level may increase. If the calculated first risk level is higher than the first preset threshold, the data management platform immediately closes the user's access rights to prevent potential security risks.

可选的,所述根据所述目标虚拟外部用户的操作计算第一风险级别包括:Optionally, calculating the first risk level according to the operation of the target virtual external user includes:

通过预设规则识别所述目标虚拟外部用户的异常行为,所述异常行为包括登录时间异常、登录地点异常、访问数据的类型异常、访问数据的时间异常;Identify abnormal behaviors of the target virtual external user through preset rules, wherein the abnormal behaviors include abnormal login time, abnormal login location, abnormal type of accessed data, and abnormal time of accessed data;

确定每个异常行为对应的第一分数,根据所述第一分数计算所述目标虚拟外部用户的第一风险总分,并将所述第一风险总分映射到预定风险等级中。A first score corresponding to each abnormal behavior is determined, a first total risk score of the target virtual external user is calculated according to the first score, and the first total risk score is mapped to a predetermined risk level.

定义预设规则识别虚拟外部用户的异常行为。这些异常行为可能包括登录时间异常、登录地点异常、访问数据的类型异常以及访问数据的时间异常。Define preset rules to identify abnormal behaviors of virtual external users. These abnormal behaviors may include abnormal login time, abnormal login location, abnormal type of accessed data, and abnormal time of accessed data.

登录时间异常:例如,虚拟外部用户在非工作时间(如深夜或凌晨)频繁登录。登录地点异常:虚拟外部用户的登录地点突然变化,或者来自高风险地区(如境外未知IP)。访问数据的类型异常:用户突然尝试访问与其职责不相关的敏感文档,如财务报告、客户资料等。访问数据的时间异常:用户在短时间内频繁访问大量数据,或者长时间保持对某个文档的访问。Abnormal login time: For example, virtual external users frequently log in during non-working hours (such as late at night or early in the morning). Abnormal login location: The login location of a virtual external user changes suddenly, or the user comes from a high-risk area (such as an unknown IP outside the country). Abnormal type of accessed data: Users suddenly try to access sensitive documents that are not related to their duties, such as financial reports, customer information, etc. Abnormal access time of data: Users frequently access a large amount of data in a short period of time, or maintain access to a certain document for a long time.

对于每个异常行为,数据管理平台会分配一个第一分数,这个分数代表了该异常行为的风险程度。例如:登录时间异常分配3分(假设认为这种异常的风险程度相对较低);登录地点异常分配5分(因为这种异常可能意味着账户被盗用);访问数据的类型异常分配8分(这通常表示用户可能在进行未授权的数据访问);访问数据的时间异常分配6分(这种异常可能表示用户在尝试进行大量数据窃取)。For each abnormal behavior, the data management platform will assign a first score, which represents the risk level of the abnormal behavior. For example: 3 points for abnormal login time (assuming that the risk level of this abnormality is relatively low); 5 points for abnormal login location (because this abnormality may mean that the account has been stolen); 8 points for abnormal access data type (this usually means that the user may be accessing data without authorization); 6 points for abnormal access data time (this abnormality may indicate that the user is trying to steal a large amount of data).

数据管理平台会根据虚拟外部用户的所有异常行为,将其对应的第一分数累加起来,得到第一风险总分。例如,如果某个虚拟外部用户出现了登录时间异常和访问数据类型异常,那么其第一风险总分就是3分(登录时间异常)+8分(访问数据类型异常)=11分。数据管理平台会根据第一风险总分,将其映射到一个预定的风险等级中。这个风险等级可以根据企业的具体需求和安全策略来定义。例如,可以定义以下风险等级:The data management platform will add up the first scores corresponding to all abnormal behaviors of virtual external users to obtain the first total risk score. For example, if a virtual external user has abnormal login time and abnormal access data type, then its first total risk score is 3 points (abnormal login time) + 8 points (abnormal access data type) = 11 points. The data management platform will map the first total risk score to a predetermined risk level. This risk level can be defined based on the specific needs and security policies of the enterprise. For example, the following risk levels can be defined:

低风险(0-5分):这种风险水平下的行为通常是正常的或可以接受的。Low risk (0-5 points): Behavior at this risk level is generally normal or acceptable.

中风险(6-10分):这种风险水平下的行为可能需要进行进一步的审查或限制。Medium Risk (6-10 points): Behaviors at this risk level may require further review or restriction.

高风险(11分以上):这种风险水平下的行为可能表示账户被盗用或存在其他严重的安全威胁,需要立即采取行动(如关闭访问权限、触发警报等)。High risk (11 points or more): Behavior at this risk level may indicate account compromise or other serious security threats, requiring immediate action (such as shutting down access, triggering an alert, etc.).

在这个例子中,由于虚拟外部用户的第一风险总分是11分,它将被归类为高风险等级,系统将关闭其访问权限,并可能触发安全警报或通知管理员进行进一步处理。In this example, since the first risk total score of the virtual external user is 11 points, it will be classified as a high risk level, the system will shut down its access rights, and may trigger a security alert or notify the administrator for further processing.

通过预设规则实时识别目标虚拟外部用户的异常行为,如登录时间异常、登录地点异常等,实现对用户访问行为的实时监控。这种监控能力使得系统能够及时发现潜在的安全风险,为采取进一步的安全措施提供了基础。为每个异常行为分配对应的第一分数,并据此计算目标虚拟外部用户的第一风险总分,实现了风险评估的量化。这种量化评估方式使得数据管理平台能够更准确地评估用户的风险水平,从而为制定合适的安全策略提供依据。将第一风险总分映射到预定的风险等级中,如低风险、中风险、高风险等,使得数据管理平台能够更直观地了解用户的风险水平。这种分类方式不仅方便了管理员对用户风险的把握,也便于系统根据风险等级采取相应的安全措施。基于对用户风险水平的评估,数据管理平台可以优化安全策略,如对于高风险用户采取更严格的访问控制、触发安全警报等。这种策略优化有助于提升系统的整体安全性,降低潜在的安全风险。By using preset rules to identify abnormal behaviors of target virtual external users in real time, such as abnormal login time and login location, real-time monitoring of user access behaviors is achieved. This monitoring capability enables the system to detect potential security risks in a timely manner, providing a basis for taking further security measures. Each abnormal behavior is assigned a corresponding first score, and the first risk total score of the target virtual external user is calculated based on this, realizing the quantification of risk assessment. This quantitative assessment method enables the data management platform to more accurately assess the risk level of users, thereby providing a basis for formulating appropriate security policies. The first risk total score is mapped to a predetermined risk level, such as low risk, medium risk, high risk, etc., so that the data management platform can more intuitively understand the risk level of users. This classification method not only facilitates administrators to grasp user risks, but also facilitates the system to take corresponding security measures according to the risk level. Based on the assessment of user risk levels, the data management platform can optimize security policies, such as taking stricter access control for high-risk users and triggering security alarms. This policy optimization helps to improve the overall security of the system and reduce potential security risks.

S140、当所述身份信息匹配到所述数据库中的目标内部用户时,根据所述目标内部用户的操作和所述目标内部用户的预设行为模式计算第二风险级别,当所述第二风险级别高于第二预设阈值时,降低所述目标内部用户的权限。S140. When the identity information matches a target internal user in the database, a second risk level is calculated according to the operation of the target internal user and a preset behavior pattern of the target internal user. When the second risk level is higher than a second preset threshold, the authority of the target internal user is reduced.

验证用户提供的身份信息,如用户名和密码。如果这些信息与数据库中存储的目标内部用户的记录相匹配,数据管理平台将确认用户的内部身份,并允许其进入数据管理平台。每个内部用户都可能有一个或多个预设的行为模式。这些行为模式是根据用户的职责、历史操作习惯、工作时间等因素设定的,反映了用户正常情况下的操作特征。预设行为模式可以包括登录时间、常用功能、访问的数据类型、操作频率等。用户身份得到确认后,数据管理平台就会开始监控用户的操作行为。这包括用户登录的时间、使用的功能、访问的数据、操作的频率和持续时间等。所有这些操作数据都会被系统记录下来,用于后续的分析和比较。数据管理平台会将用户的实际操作行为与预设的行为模式进行对比,找出两者之间的差异。这些差异可能包括异常登录时间、不常用的功能、访问了非职责范围内的数据、操作频率过高或过低等。根据这些差异,数据管理平台会为每个差异分配一个风险分数。风险分数的分配可以根据差异的严重程度和对企业安全的影响来设定。最终,所有差异的风险分数会被累加,形成用户的第二风险总分。当第二风险总分高于预设的第二阈值时,数据管理平台会判定该用户的操作存在高风险。此时,数据管理平台会采取相应的安全措施,如降低用户的访问权限、触发安全警报或通知管理员进行进一步审查。降低权限的措施可以包括限制用户访问某些敏感数据、限制使用某些功能、缩短会话时间等。这些措施旨在减少用户可能对企业安全造成的威胁,同时保持系统的正常运行。对于被降低权限的内部用户,数据管理平台可以发送通知,告知用户其操作已被系统监测到,并提示其注意自己的操作行为。同时,管理员也可以根据需要与用户进行沟通,了解其操作背后的原因,并给出相应的建议或指导。Verify the identity information provided by the user, such as username and password. If this information matches the record of the target internal user stored in the database, the data management platform will confirm the user's internal identity and allow him to enter the data management platform. Each internal user may have one or more preset behavior patterns. These behavior patterns are set based on factors such as the user's responsibilities, historical operating habits, working hours, etc., and reflect the user's operating characteristics under normal circumstances. The preset behavior pattern may include login time, common functions, accessed data types, operation frequency, etc. After the user's identity is confirmed, the data management platform will begin to monitor the user's operation behavior. This includes the time when the user logs in, the functions used, the data accessed, the frequency and duration of operations, etc. All of this operation data will be recorded by the system for subsequent analysis and comparison. The data management platform will compare the user's actual operation behavior with the preset behavior pattern to find out the differences between the two. These differences may include abnormal login time, infrequently used functions, access to data outside the scope of responsibilities, and too high or too low operation frequency. Based on these differences, the data management platform will assign a risk score to each difference. The allocation of risk scores can be set based on the severity of the difference and the impact on enterprise security. Eventually, the risk scores of all differences will be accumulated to form the user's second total risk score. When the second total risk score is higher than the preset second threshold, the data management platform will determine that the user's operation is high risk. At this time, the data management platform will take corresponding security measures, such as reducing the user's access rights, triggering security alerts, or notifying administrators for further review. Measures to reduce permissions can include restricting users from accessing certain sensitive data, restricting the use of certain functions, shortening session time, etc. These measures are designed to reduce the threat that users may pose to corporate security while maintaining the normal operation of the system. For internal users whose permissions have been reduced, the data management platform can send notifications to inform users that their operations have been monitored by the system and remind them to pay attention to their operating behaviors. At the same time, administrators can also communicate with users as needed to understand the reasons behind their operations and give corresponding suggestions or guidance.

可选的,所述根据所述目标内部用户的操作和所述目标内部用户的预设行为模式计算第二风险级别包括:Optionally, calculating the second risk level according to the operation of the target internal user and a preset behavior pattern of the target internal user includes:

根据所述目标内部用户的历史行为确定预设行为模式,将所述目标内部用户的操作与所述预设行为模式进行比对以确定区别点;Determine a preset behavior pattern according to the historical behavior of the target internal user, and compare the operation of the target internal user with the preset behavior pattern to determine the difference;

确定每个区别点对应的第二分数,并根据所述第二分数计算所述目标内部用户的第二风险总分,并将所述第二风险总分映射到预定风险等级中。A second score corresponding to each distinguishing point is determined, and a second total risk score of the target internal user is calculated according to the second score, and the second total risk score is mapped to a predetermined risk level.

根据目标内部用户的历史行为数据来确定其预设行为模式。这些数据可能包括该员工过去几个月或几年的登录时间、使用数据管理平台的频率、常访问的功能、处理的数据类型等。通过分析这些数据,数据管理平台可以建立一个相对稳定的预设行为模式,代表该员工正常情况下的操作特征。例如,员工A的预设行为模式可能是:工作日早上9点至下午5点登录系统,平均每天登录3次,常访问的功能有订单管理、员工考勤等,处理的数据类型主要是销售订单和考勤记录。实时监控员工A的当前操作行为,并将其与预设行为模式进行比对。这个过程可能涉及到多个方面的比较,如登录时间、使用频率、访问功能、处理数据等。假设某天,员工A在晚上10点登录系统,并且连续访问了多个与财务相关的敏感功能,还试图访问了不属于其职责范围的数据。这些操作与预设行为模式存在明显的区别。数据管理平台会根据比对结果,确定操作与预设行为模式之间的区别点,并为每个区别点分配一个第二分数。这个分数的分配可以根据区别点的严重程度和对系统安全的影响来设定。例如,晚上10点登录可能分配1分(因为与正常工作时间不符),连续访问多个敏感功能可能分配3分(因为可能涉及未经授权的数据访问),访问非职责范围的数据可能分配2分(因为可能涉及越权操作)。数据管理平台会将所有区别点的第二分数累加起来,得到员工A的第二风险总分。在这个例子中,员工A的第二风险总分是1分(登录时间异常)+3分(连续访问敏感功能)+2分(访问非职责范围数据)=6分。数据管理平台会将第二风险总分映射到预定的风险等级中。这些风险等级可以根据企业的安全策略和需求来设定,通常包括低风险、中风险、高风险等。假设企业的风险等级划分如下:低风险:0-3分;中风险:4-7分;高风险:8分以上。在本申请实施例中,员工A的第二风险总分为6分,属于中风险等级。这意味着员工的操作行为存在一定的安全风险,需要管理员进行进一步的审查和关注。Determine the preset behavior pattern based on the historical behavior data of the target internal user. This data may include the employee's login time in the past few months or years, the frequency of using the data management platform, the functions frequently accessed, the types of data processed, etc. By analyzing this data, the data management platform can establish a relatively stable preset behavior pattern that represents the employee's normal operating characteristics. For example, the preset behavior pattern of employee A may be: log in to the system from 9 am to 5 pm on weekdays, log in an average of 3 times a day, frequently access functions such as order management and employee attendance, and the types of data processed are mainly sales orders and attendance records. Monitor employee A's current operating behavior in real time and compare it with the preset behavior pattern. This process may involve comparisons in multiple aspects, such as login time, frequency of use, access functions, processed data, etc. Suppose one day, employee A logs in to the system at 10 pm and continuously accesses multiple sensitive functions related to finance, and also attempts to access data that is not within his scope of responsibility. These operations are significantly different from the preset behavior pattern. Based on the comparison results, the data management platform will determine the difference between the operation and the preset behavior pattern and assign a second score to each difference point. The allocation of this score can be set according to the severity of the difference point and the impact on system security. For example, logging in at 10 pm may be assigned 1 point (because it is inconsistent with normal working hours), continuous access to multiple sensitive functions may be assigned 3 points (because it may involve unauthorized data access), and access to data outside the scope of responsibility may be assigned 2 points (because it may involve unauthorized operations). The data management platform will add up the second scores of all difference points to obtain the second risk total score of employee A. In this example, the second risk total score of employee A is 1 point (abnormal login time) + 3 points (continuous access to sensitive functions) + 2 points (access to data outside the scope of responsibility) = 6 points. The data management platform will map the second risk total score to a predetermined risk level. These risk levels can be set according to the security policies and needs of the enterprise, usually including low risk, medium risk, high risk, etc. Assume that the risk level of the enterprise is divided as follows: low risk: 0-3 points; medium risk: 4-7 points; high risk: 8 points or more. In the embodiment of the present application, the second risk total score of employee A is 6 points, which belongs to the medium risk level. This means that there is a certain security risk in the employee's operation behavior, which requires further review and attention from the administrator.

通过比对目标内部用户的当前操作与基于其历史行为确定的预设行为模式,数据管理平台能够精确地识别出与常规行为模式不符的区别点。这些区别点往往代表了潜在的安全风险或异常行为,使得数据管理平台能够更准确地评估用户的风险级别。数据管理平台能够实时监控内部用户的操作行为,并在发现与预设行为模式不符的情况时立即进行计算和评估。这种实时性确保了数据管理平台能够在最短的时间内发现潜在的安全问题,从而及时采取相应的安全措施。数据管理平台通过为每个区别点分配第二分数并计算第二风险总分的方式,实现了对风险水平的量化评估。这使得企业能够根据风险级别灵活制定和调整风险管理策略,如设置不同的权限级别、触发安全警报或进行进一步的调查等。通过将第二风险总分映射到预定风险等级中,数据管理平台能够提前向管理员发出预警,提示存在潜在的安全风险。这种预警机制有助于企业提前采取预防措施,避免潜在的安全问题转化为实际的安全事件。通过提供精确的风险评估结果和详细的行为分析数据,数据管理平台能够辅助管理员做出更明智的安全决策。管理员可以根据这些信息来优化安全策略、加强用户培训或进行进一步的安全调查,从而提高企业的整体安全水平。在确保安全性的同时,通过合理的预设行为模式和灵活的风险管理策略,数据管理平台可以最大限度地减少对正常用户操作的干扰。这种平衡有助于提升用户的整体体验,并确保企业的业务操作符合相关法规和合规性要求。By comparing the current operation of the target internal user with the preset behavior pattern determined based on its historical behavior, the data management platform can accurately identify the difference points that do not match the regular behavior pattern. These difference points often represent potential security risks or abnormal behaviors, allowing the data management platform to more accurately assess the risk level of the user. The data management platform can monitor the operation behavior of internal users in real time and immediately calculate and evaluate when it finds a situation that does not match the preset behavior pattern. This real-time performance ensures that the data management platform can discover potential security issues in the shortest time and take corresponding security measures in time. The data management platform achieves a quantitative assessment of the risk level by assigning a second score to each difference point and calculating the second risk total score. This enables enterprises to flexibly formulate and adjust risk management strategies according to the risk level, such as setting different permission levels, triggering security alerts, or conducting further investigations. By mapping the second risk total score to the predetermined risk level, the data management platform can issue early warnings to administrators to indicate the existence of potential security risks. This early warning mechanism helps enterprises take preventive measures in advance to avoid potential security issues from turning into actual security incidents. By providing accurate risk assessment results and detailed behavior analysis data, the data management platform can assist administrators in making more informed security decisions. Administrators can use this information to optimize security policies, strengthen user training, or conduct further security investigations, thereby improving the overall security level of the enterprise. While ensuring security, the data management platform can minimize interference with normal user operations through reasonable preset behavior patterns and flexible risk management strategies. This balance helps improve the overall user experience and ensures that the company's business operations comply with relevant regulations and compliance requirements.

可选的,所述根据所述目标内部用户的历史行为确定预设行为模式包括:Optionally, determining a preset behavior pattern according to the historical behavior of the target internal user includes:

统计所述目标内部用户的历史登录时间、历史登录地点、历史访问数据类型、历史访问数据时间;Collect statistics on the historical login time, historical login location, historical access data type, and historical access data time of the target internal users;

根据所述历史登录时间将每个登录时间划分到对应的时间段,确定每个时间段的第一登录权重,并根据所述历史登录地点确定每个登录地点的第二登录权重;Divide each login time into corresponding time periods according to the historical login time, determine a first login weight for each time period, and determine a second login weight for each login location according to the historical login location;

根据所述历史访问数据类型和所述历史访问数据时间确定每种数据类型在不同时间段的访问权重;Determine the access weight of each data type in different time periods according to the historical access data type and the historical access data time;

根据所述第一登录权重、第二登录权重和访问权重确定预设行为模式。A preset behavior mode is determined according to the first login weight, the second login weight and the access weight.

收集目标内部用户(例如员工B)的历史行为数据,这包括:Collect historical behavior data of the target internal user (e.g. employee B), which includes:

历史登录时间:员工B在过去一段时间内的所有登录时间;Historical login time: all login times of employee B in the past period of time;

历史登录地点:员工B登录系统时所使用的设备或网络的地理位置;Historical login location: The geographical location of the device or network used by employee B to log into the system;

历史访问数据类型:员工B访问过的各种数据类型,如文件、数据库记录等;Historical access data types: various data types that employee B has accessed, such as files, database records, etc.;

历史访问数据时间:员工B访问各种数据类型的时间。Historical access data time: the time when employee B accessed various data types.

将历史登录时间划分到不同的时间段,例如早上、中午、晚上、凌晨等。根据员工B在每个时间段的登录频率,确定每个时间段的第一登录权重。例如,如果员工B经常在早上登录系统,则早上的第一登录权重会相对较高。根据员工B的历史登录地点,确定每个登录地点的第二登录权重。如果员工B通常在公司办公室登录,那么公司办公室的第二登录权重会很高;如果员工B偶尔在家或出差时登录,那么这些地点的第二登录权重会相对较低。数据类型与时间段的关联:分析员工B访问的数据类型与访问时间的关系。例如,员工B可能在早上主要访问工作报表,在下午访问项目文件。访问权重确定:根据员工B在不同时间段对不同数据类型的访问频率,确定每种数据类型在不同时间段的访问权重。Divide the historical login time into different time periods, such as morning, noon, evening, early morning, etc. Determine the first login weight for each time period based on the login frequency of employee B in each time period. For example, if employee B often logs into the system in the morning, the first login weight in the morning will be relatively high. Determine the second login weight for each login location based on employee B's historical login locations. If employee B usually logs in at the company office, the second login weight for the company office will be very high; if employee B occasionally logs in at home or on a business trip, the second login weights for these locations will be relatively low. Association between data types and time periods: Analyze the relationship between the data types accessed by employee B and the access time. For example, employee B may mainly access work reports in the morning and project files in the afternoon. Access weight determination: Determine the access weight of each data type in different time periods based on the access frequency of employee B to different data types in different time periods.

将第一登录权重、第二登录权重和访问权重相结合,形成一个预设行为模式。这个模式描述了员工B在正常情况下登录系统的时间、登录系统的地点以及在不同时间段访问的数据类型。预设行为模式可以作为后续检测异常行为的基准。如果员工B的当前行为与预设行为模式存在显著差异,系统就可以发出警告,提示可能存在安全风险。The first login weight, the second login weight, and the access weight are combined to form a preset behavior pattern. This pattern describes the time and location of employee B's login to the system under normal circumstances, as well as the type of data accessed in different time periods. The preset behavior pattern can be used as a benchmark for subsequent detection of abnormal behavior. If employee B's current behavior is significantly different from the preset behavior pattern, the system can issue a warning to indicate that there may be a security risk.

通过统计和分析目标内部用户的历史登录时间、地点、访问数据类型和时间,数据管理平台能够构建一个精确的预设行为模式。这一模式可以帮助系统迅速识别与常规行为模式不符的操作,从而及时发现潜在的安全风险,如未授权访问、异常登录等,提高了整个系统的安全性。由于预设行为模式是基于每个目标内部用户的历史行为来确定的,因此它能够反映每个用户的个性化特征。这种个性化的监控方式相比通用的安全策略更为精确,能够在保障系统安全性的同时,减少对正常用户操作的干扰,提升用户体验。当数据管理平台检测到用户的当前行为与预设行为模式存在显著差异时,可以实时触发风险预警。这种实时性使得企业能够在最短时间内发现潜在的安全风险,并迅速采取相应措施,防止安全事件的发生或扩大。预设行为模式为安全管理人员提供了丰富的数据分析支持。通过分析用户的行为模式,管理人员可以更加准确地了解用户的工作习惯和需求,从而制定更为合理和有效的安全策略和管理措施。通过预设行为模式,数据管理平台可以自动对用户的操作进行风险评估和监控,减少了人工干预的需求。这不仅可以降低安全管理成本,还可以提高安全管理效率,使企业的安全管理工作更加便捷和高效。By counting and analyzing the historical login time, location, access data type and time of the target internal users, the data management platform can build an accurate preset behavior pattern. This pattern can help the system quickly identify operations that do not conform to the normal behavior pattern, so as to timely discover potential security risks, such as unauthorized access, abnormal login, etc., and improve the security of the entire system. Since the preset behavior pattern is determined based on the historical behavior of each target internal user, it can reflect the personalized characteristics of each user. This personalized monitoring method is more accurate than the general security policy. It can reduce interference with normal user operations while ensuring system security and improve user experience. When the data management platform detects that the user's current behavior is significantly different from the preset behavior pattern, it can trigger a risk warning in real time. This real-time feature enables enterprises to discover potential security risks in the shortest time and take corresponding measures quickly to prevent the occurrence or expansion of security incidents. The preset behavior pattern provides security managers with rich data analysis support. By analyzing the user's behavior pattern, managers can more accurately understand the user's work habits and needs, so as to formulate more reasonable and effective security strategies and management measures. Through the preset behavior pattern, the data management platform can automatically assess and monitor the user's operations, reducing the need for manual intervention. This can not only reduce security management costs, but also improve security management efficiency, making the company's security management work more convenient and efficient.

可选的,所述根据所述历史登录时间将每个登录时间划分到对应的时间段,确定每个时间段的第一登录权重,并根据所述历史登录地点确定每个登录地点的第二登录权重包括:Optionally, dividing each login time into corresponding time periods according to the historical login time, determining a first login weight for each time period, and determining a second login weight for each login location according to the historical login location includes:

将每天平均划分为预设数量个时间段,确定所述目标用户在第一目标时间段内的第一登录次数,根据所述第一登录次数与总登录次数的比值确定所述第一目标时间段内的第一登录权重;Divide each day into a preset number of time periods on average, determine the first login times of the target user in a first target time period, and determine the first login weight in the first target time period according to the ratio of the first login times to the total login times;

确定所述目标用户在目标地点的第二登录次数,根据所述第二登录次数与总登录次数的比值确定所述目标地点的第二登录权重。A second login number of the target user at the target location is determined, and a second login weight of the target location is determined according to a ratio of the second login number to the total login number.

例如,将一天平均划分为4个时间段:凌晨(00:00-06:00)、上午(06:00-12:00)、下午(12:00-18:00)和晚上(18:00-24:00)。统计目标用户在过去一个月内的登录记录,得到以下数据:凌晨登录次数:5次;上午登录次数:30次;下午登录次数:20次;晚上登录次数:15次。总登录次数=5+30+20+15=70次。凌晨的第一登录权重=5/70≈0.07;上午的第一登录权重=30/70≈0.43;下午的第一登录权重=20/70≈0.29;晚上的第一登录权重=15/70≈0.21。For example, a day is evenly divided into four time periods: early morning (00:00-06:00), morning (06:00-12:00), afternoon (12:00-18:00) and evening (18:00-24:00). The target user's login records in the past month are counted and the following data is obtained: Number of logins in the early morning: 5 times; number of logins in the morning: 30 times; number of logins in the afternoon: 20 times; number of logins in the evening: 15 times. Total number of logins = 5+30+20+15=70 times. The weight of the first login in the early morning = 5/70≈0.07; the weight of the first login in the morning = 30/70≈0.43; the weight of the first login in the afternoon = 20/70≈0.29; the weight of the first login in the evening = 15/70≈0.21.

假设目标用户在过去一个月内的登录地点主要有三个:办公室、家和咖啡店。统计结果为:在办公室的登录次数:50次;在家的登录次数:15次;在咖啡店的登录次数:5次。总登录次数仍然是70次。计算每个地点的第二登录权重:办公室的第二登录权重=50/70≈0.71;家的第二登录权重=15/70≈0.21;咖啡店的第二登录权重=5/70≈0.07。Assume that the target user has logged in from three main locations in the past month: office, home, and coffee shop. The statistical results are: number of logins in the office: 50 times; number of logins at home: 15 times; number of logins in coffee shops: 5 times. The total number of logins is still 70 times. Calculate the second login weight of each location: the second login weight of the office = 50/70≈0.71; the second login weight of the home = 15/70≈0.21; the second login weight of the coffee shop = 5/70≈0.07.

已经得到了每个时间段和每个地点的登录权重,这些权重可以用于构建用户的预设行为模式。例如,当数据管理平台检测到用户在凌晨时段从非办公室地点登录时,由于凌晨时段和非办公室地点的权重都较低,数据管理平台可能会认为这是一个异常行为,并触发相应的安全警报。The login weights for each time period and each location have been obtained, and these weights can be used to build a preset behavior pattern for users. For example, when the data management platform detects that a user logs in from a non-office location during the early morning hours, since the weights of the early morning hours and non-office locations are both low, the data management platform may consider this to be an abnormal behavior and trigger a corresponding security alert.

通过将每天的登录时间划分为预设数量的时间段,并计算每个时间段内的第一登录权重,数据管理平台能够更精确地识别出用户登录系统的时间段。这种精细化的时间划分有助于数据管理平台更准确地捕捉用户的登录习惯,从而提高对异常登录行为的识别精度。类似地,通过对登录地点的统计和权重计算,数据管理平台能够了解用户登录系统的地点。当数据管理平台检测到用户从非常规地点登录时,可以根据第二登录权重来判断这一行为是否异常。这种基于地理位置的安全性增强有助于防止未经授权的访问和潜在的安全风险。结合第一登录权重和第二登录权重,数据管理平台可以构建一个全面的预设行为模式。当用户的实际登录时间与权重、地点与权重与预设行为模式存在显著差异时,数据管理平台能够实时触发风险预警。这种实时性使得企业能够在第一时间发现潜在的安全风险,并采取相应的措施进行防范。由于每个用户的登录时间和地点都可能存在差异,因此基于历史行为的权重计算可以实现个性化的安全管理。数据管理平台可以根据每个用户的预设行为模式来定制安全策略,从而在保障安全性的同时,减少对用户正常操作的干扰,提升用户体验。通过统计和分析用户的登录时间和地点数据,数据管理平台能够为企业提供丰富的数据支持。这些数据不仅有助于企业了解用户的行为习惯,还可以为安全管理人员制定更为合理和有效的安全策略提供决策依据。通过自动化地计算和应用第一登录权重和第二登录权重,系统可以简化安全管理流程。系统能够自动对用户的登录行为进行风险评估和监控,减少了人工干预的需求,提高了安全管理效率。By dividing the daily login time into a preset number of time periods and calculating the first login weight within each time period, the data management platform can more accurately identify the time period when the user logs into the system. This refined time division helps the data management platform to more accurately capture the user's login habits, thereby improving the accuracy of identifying abnormal login behaviors. Similarly, by counting and calculating the weight of the login location, the data management platform can understand the location where the user logs into the system. When the data management platform detects that the user logs in from an unconventional location, it can determine whether this behavior is abnormal based on the second login weight. This geo-location-based security enhancement helps prevent unauthorized access and potential security risks. Combined with the first login weight and the second login weight, the data management platform can build a comprehensive preset behavior model. When the user's actual login time and weight, location and weight are significantly different from the preset behavior model, the data management platform can trigger a risk warning in real time. This real-time nature enables enterprises to discover potential security risks at the first time and take corresponding measures to prevent them. Since the login time and location of each user may be different, the weight calculation based on historical behavior can achieve personalized security management. The data management platform can customize security policies based on the preset behavior patterns of each user, thereby ensuring security while reducing interference with normal user operations and improving user experience. By counting and analyzing user login time and location data, the data management platform can provide enterprises with rich data support. These data not only help enterprises understand user behavior habits, but also provide decision-making basis for security managers to formulate more reasonable and effective security policies. By automatically calculating and applying the first login weight and the second login weight, the system can simplify the security management process. The system can automatically assess and monitor the risk of user login behavior, reducing the need for manual intervention and improving security management efficiency.

可选的,所述根据所述历史访问数据类型和所述历史访问数据时间确定每种数据类型在不同时间段的访问权重包括:Optionally, determining the access weight of each data type in different time periods according to the historical access data type and the historical access data time includes:

将每天平均划分为预设数量个时间段,确定第二目标时间段内目标数据类型的访问次数及访问时长,Divide each day into a preset number of time periods, determine the number of visits and the duration of visits to the target data type in the second target time period,

根据所述目标数据类型在所述第二目标时间段内的访问次数与所述目标数据类型的总访问次数的比值确定第一访问权重;Determine a first access weight according to a ratio of the number of accesses to the target data type within the second target time period to the total number of accesses to the target data type;

根据所述目标数据类型在所述第二目标时间段内的访问时长与所述目标数据类型的总访问时长的比值确定第二访问权重;Determine a second access weight according to a ratio of the access duration of the target data type in the second target time period to the total access duration of the target data type;

根据所述的第一访问权重和所述第二访问权重确定所述目标数据类型在所述第二目标时间段内的访问权重。An access weight of the target data type within the second target time period is determined according to the first access weight and the second access weight.

例如,将一天平均划分为4个时间段:凌晨(00:00-06:00)、上午(06:00-12:00)、下午(12:00-18:00)和晚上(18:00-24:00)。假设目标用户经常访问两种数据类型:文档(Docs)和报告(Reports)。统计他在过去一个月内在每个时间段的访问次数和访问时长。统计结果可能如下:For example, divide a day into four time periods: early morning (00:00-06:00), morning (06:00-12:00), afternoon (12:00-18:00), and evening (18:00-24:00). Assume that the target user frequently accesses two types of data: documents (Docs) and reports (Reports). Count the number of times he accessed and the duration of his access in each time period in the past month. The statistical results may be as follows:

凌晨(00:00-06:00):Early morning (00:00-06:00):

Docs的访问次数:10次;Docs的访问时长:30分钟;Reports的访问次数:0次;Reports的访问时长:0分钟。Number of visits to Docs: 10 times; duration of visits to Docs: 30 minutes; number of visits to Reports: 0 times; duration of visits to Reports: 0 minutes.

上午(06:00-12:00):Morning (06:00-12:00):

Docs的访问次数:80次;Docs的访问时长:300分钟;Reports的访问次数:20次;Reports的访问时长:60分钟。Number of visits to Docs: 80 times; duration of visits to Docs: 300 minutes; number of visits to Reports: 20 times; duration of visits to Reports: 60 minutes.

下午(12:00-18:00):Afternoon (12:00-18:00):

Docs的访问次数:60次;Docs的访问时长:240分钟;Reports的访问次数:30次;Reports的访问时长:90分钟。Number of visits to Docs: 60 times; duration of visits to Docs: 240 minutes; number of visits to Reports: 30 times; duration of visits to Reports: 90 minutes.

晚上(18:00-24:00):Evening (18:00-24:00):

Docs的访问次数:30次;Docs的访问时长:120分钟;Reports的访问次数:10次;Reports的访问时长:30分钟。Number of visits to Docs: 30 times; duration of visits to Docs: 120 minutes; number of visits to Reports: 10 times; duration of visits to Reports: 30 minutes.

第一访问权重是基于目标数据类型在特定时间段内的访问次数与总访问次数的比值来计算的。例如,对于Docs在上午的访问权重:The first access weight is calculated based on the ratio of the number of visits to the target data type in a specific time period to the total number of visits. For example, the access weight of Docs in the morning is:

第一访问权重=Docs在上午的访问次数/Docs的总访问次数=80次/(80次+60次+30次)=80次/170次≈0.47。The first visit weight = the number of visits to Docs in the morning / the total number of visits to Docs = 80 times / (80 times + 60 times + 30 times) = 80 times / 170 times ≈ 0.47.

第二访问权重是基于目标数据类型在特定时间段内的访问时长与总访问时长的比值来计算的。例如,对于Docs在上午的访问权重:The second access weight is calculated based on the ratio of the access duration of the target data type in a specific time period to the total access duration. For example, the access weight of Docs in the morning is:

第二访问权重=Docs在上午的访问时长/Docs的总访问时长=300分钟/(300分钟+240分钟+120分钟)=300分钟/660分钟≈0.45。The second access weight = the access time of Docs in the morning / the total access time of Docs = 300 minutes / (300 minutes + 240 minutes + 120 minutes) = 300 minutes / 660 minutes ≈ 0.45.

可以根据第一访问权重和第二访问权重来确定目标数据类型在特定时间段内的访问权重。这可以通过取两个权重的平均值或其他计算方法来实现。The access weight of the target data type in a specific time period can be determined based on the first access weight and the second access weight, which can be achieved by taking the average of the two weights or other calculation methods.

例如,对于Docs在上午的访问权重:访问权重=(第一访问权重+第二访问权重)/2=(0.47+0.45)/2=0.46。For example, for the access weight of Docs in the morning: access weight = (first access weight + second access weight)/2 = (0.47+0.45)/2 = 0.46.

确定了每种数据类型在不同时间段的访问权重后,可以将其应用于预设行为模式中。这可以更准确地识别异常行为,例如,在非工作时间段内频繁访问敏感数据,或者在短时间内大量访问特定数据类型等。After determining the access weights of each data type in different time periods, they can be applied to preset behavior patterns. This can more accurately identify abnormal behaviors, such as frequent access to sensitive data during non-working hours, or large-scale access to specific data types in a short period of time.

通过将每天划分为预设数量的时间段,并计算每个时间段内目标数据类型的访问权重,数据管理平台能够更准确地捕捉用户的正常访问行为模式,从而更精确地识别出与正常模式不符的异常行为。这种精确性能够大大提高安全检测系统的准确性,降低误报率。通过计算每种数据类型在不同时间段的访问权重,系统能够深入了解用户的访问习惯和偏好。这有助于企业更好地理解用户需求和行为模式,从而优化产品设计和服务提供。同时,这也为安全管理人员提供了更为丰富的数据支持,使他们能够基于用户行为来制定更为合理和有效的安全策略。结合第一访问权重和第二访问权重,数据管理平台能够构建一个全面的预设行为模式。当用户的实际访问行为与预设行为模式存在显著差异时,系统能够实时触发风险预警。这种实时性使得企业能够在第一时间发现潜在的安全风险,并采取相应的措施进行防范,从而大大降低安全风险的发生概率。由于每个用户的访问行为和偏好都可能存在差异,因此基于历史访问数据的访问权重计算可以实现个性化的安全管理。数据管理平台可以根据每个用户的预设行为模式来定制安全策略,从而在保障安全性的同时,减少对用户正常操作的干扰,提升用户体验。通过对历史访问数据的统计分析,数据管理平台能够为企业提供丰富的数据支持。这些数据不仅有助于企业了解用户的行为习惯和需求,还可以为安全管理人员制定更为合理和有效的安全策略提供决策依据。这种数据驱动的决策方式能够提高决策的科学性和准确性,有助于企业实现更为精准的安全管理。通过自动化地计算和应用访问权重,数据管理平台能够简化安全管理流程。数据管理平台能够自动对用户的访问行为进行风险评估和监控,减少了人工干预的需求,提高了安全管理效率。同时,这种自动化的管理方式还能够降低人为错误的风险,提高安全管理的可靠性。By dividing each day into a preset number of time periods and calculating the access weight of the target data type in each time period, the data management platform can more accurately capture the user's normal access behavior pattern, thereby more accurately identifying abnormal behaviors that do not conform to the normal pattern. This accuracy can greatly improve the accuracy of the security detection system and reduce the false alarm rate. By calculating the access weight of each data type in different time periods, the system can gain in-depth insights into the user's access habits and preferences. This helps companies better understand user needs and behavior patterns, thereby optimizing product design and service provision. At the same time, this also provides security managers with richer data support, enabling them to formulate more reasonable and effective security strategies based on user behavior. Combined with the first access weight and the second access weight, the data management platform can build a comprehensive preset behavior pattern. When the user's actual access behavior is significantly different from the preset behavior pattern, the system can trigger a risk warning in real time. This real-time nature enables companies to discover potential security risks at the first time and take appropriate measures to prevent them, thereby greatly reducing the probability of security risks. Since each user's access behavior and preferences may be different, the access weight calculation based on historical access data can achieve personalized security management. The data management platform can customize security policies based on the preset behavior patterns of each user, thereby ensuring security while reducing interference with normal user operations and improving user experience. Through statistical analysis of historical access data, the data management platform can provide enterprises with rich data support. These data not only help enterprises understand user behavior habits and needs, but also provide decision-making basis for security managers to formulate more reasonable and effective security policies. This data-driven decision-making method can improve the scientificity and accuracy of decision-making, and help enterprises achieve more accurate security management. By automatically calculating and applying access weights, the data management platform can simplify the security management process. The data management platform can automatically assess and monitor the risk of user access behavior, reducing the need for manual intervention and improving security management efficiency. At the same time, this automated management method can also reduce the risk of human error and improve the reliability of security management.

可选的,所述将所述目标内部用户的操作与所述预设行为模式进行比对以确定区别点包括:Optionally, comparing the operation of the target internal user with the preset behavior pattern to determine the difference includes:

确定所述目标内部用户的当前登录时间对应的第一登录权重,并确定所述目标内部用户的当前登录地点对应的第二登录权重,根据所述目标内部用户当前访问的数据类型和访问时长确定访问权重;Determine a first login weight corresponding to the current login time of the target internal user, and determine a second login weight corresponding to the current login location of the target internal user, and determine an access weight according to the type of data currently accessed by the target internal user and the access duration;

当所述第一登录权重小于第三预设阈值时,将当前登录时间作为区别点;When the first login weight is less than a third preset threshold, the current login time is used as a distinguishing point;

当所述第二登录权重小于第四预设阈值时,将当前登录地点作为区别点;When the second login weight is less than a fourth preset threshold, the current login location is used as a distinguishing point;

当所述访问权重小于第五预设阈值时,将当前访问的数据类型和访问时长作为区别点。When the access weight is less than the fifth preset threshold, the data type and access duration of the current access are used as distinguishing points.

例如,确定用户B的当前登录时间为凌晨3点,对应的第一登录权重为0.07,当前登录地点为之前从未登录过的IP地址,对应的第二登录权重为0,当前访问的数据类型为财务报告,访问时长为30分钟。由于员工B的第一登录权重低于第三预设阈值(例如,0.5),因此将当前登录时间(凌晨3点)作为区别点。员工B的第二登录权重低于第四预设阈值(例如,0.7),那么将当前登录地点(该IP地址)作为区别点。如果张三访问财务报告的权重(通过结合访问次数和访问时长的权重计算得到)低于第五预设阈值(例如,0.6),那么将当前访问的数据类型(财务报告)和访问时长作为区别点。确定了区别点之后,可以根据每个区别点对应的第二分数计算第二风险总分。For example, it is determined that the current login time of user B is 3 a.m., the corresponding first login weight is 0.07, the current login location is an IP address that has never been logged in before, the corresponding second login weight is 0, the current accessed data type is financial report, and the access duration is 30 minutes. Since the first login weight of employee B is lower than the third preset threshold (for example, 0.5), the current login time (3 a.m.) is used as the distinguishing point. The second login weight of employee B is lower than the fourth preset threshold (for example, 0.7), so the current login location (the IP address) is used as the distinguishing point. If the weight of Zhang San's access to the financial report (calculated by combining the weight of the number of visits and the access duration) is lower than the fifth preset threshold (for example, 0.6), then the current accessed data type (financial report) and the access duration are used as distinguishing points. After the distinguishing points are determined, the second total risk score can be calculated based on the second score corresponding to each distinguishing point.

通过比对目标内部用户的当前操作与预设行为模式,并基于登录时间、登录地点和访问行为等多个维度计算权重,数据管理平台能够更准确地识别出与正常行为模式不符的异常操作。这种多维度的比对和权重计算方式能够降低误报率,提高安全检测的准确性。数据管理平台检测到目标内部用户的操作与预设行为模式存在显著区别时,它能够立即触发风险预警。这种实时性使得企业能够在第一时间发现潜在的安全风险,并采取相应的措施进行防范,从而避免安全事件的发生或降低其影响。通过对用户操作进行多维度分析和比对,数据管理平台能够更深入地了解用户的登录习惯、访问偏好以及行为模式。由于每个用户的登录和访问行为都可能存在差异,因此基于历史数据的用户行为分析可以实现个性化的安全管理。系统可以根据每个用户的预设行为模式来定制安全策略,从而在保障安全性的同时,减少对用户正常操作的干扰,提升用户体验。通过自动化地比对用户操作与预设行为模式,并确定区别点,数据管理平台能够简化安全管理流程。这种自动化的管理方式减少了人工干预的需求,提高了安全管理效率。By comparing the current operation of the target internal user with the preset behavior pattern and calculating the weight based on multiple dimensions such as login time, login location and access behavior, the data management platform can more accurately identify abnormal operations that do not conform to the normal behavior pattern. This multi-dimensional comparison and weight calculation method can reduce the false alarm rate and improve the accuracy of security detection. When the data management platform detects that the operation of the target internal user is significantly different from the preset behavior pattern, it can immediately trigger a risk warning. This real-time feature enables enterprises to discover potential security risks at the first time and take corresponding measures to prevent them, thereby avoiding the occurrence of security incidents or reducing their impact. By performing multi-dimensional analysis and comparison of user operations, the data management platform can have a deeper understanding of users' login habits, access preferences and behavior patterns. Since each user's login and access behavior may be different, user behavior analysis based on historical data can achieve personalized security management. The system can customize security policies based on each user's preset behavior pattern, thereby reducing interference with users' normal operations while ensuring security and improving user experience. By automatically comparing user operations with preset behavior patterns and determining the differences, the data management platform can simplify the security management process. This automated management approach reduces the need for manual intervention and improves security management efficiency.

本实施例还公开了一种用于身份安全的数据安全保护系统,图2是本申请实施例公开的用于身份安全的数据安全保护系统的模块示意图,如图2所示,数据安全保护系统包括数据模块201、身份模块202、第一执行模块203以及第二执行模块204,其中:This embodiment also discloses a data security protection system for identity security. FIG. 2 is a module diagram of the data security protection system for identity security disclosed in the embodiment of the present application. As shown in FIG. 2 , the data security protection system includes a data module 201, an identity module 202, a first execution module 203, and a second execution module 204, wherein:

数据模块201,配置用于建立数据库,所述数据库包含目标企业的内部用户、所述目标企业的虚拟外部用户、所述目标企业不同重要等级的数据以及不同用户与数据对应的访问权限关系;Data module 201 is configured to establish a database, wherein the database includes internal users of the target enterprise, virtual external users of the target enterprise, data of different importance levels of the target enterprise, and access permission relationships between different users and data;

身份模块202,配置用于响应于目标用户访问目标数据的操作,获取所述目标用户的身份信息,并判断所述身份信息是否能够匹配所述数据库中的内部用户;The identity module 202 is configured to obtain the identity information of the target user in response to the target user's operation of accessing the target data, and determine whether the identity information can match the internal user in the database;

第一执行模块203,配置用于当所述身份信息不能匹配所述数据库中的内部用户时,从所述虚拟外部用户中选择目标虚拟外部用户绑定所述目标用户,根据所述目标虚拟外部用户的操作计算第一风险级别,当所述第一风险级别高于第一预设阈值时,关闭所述目标虚拟外部用户的访问权限;A first execution module 203 is configured to select a target virtual external user from the virtual external users to bind the target user when the identity information cannot match the internal user in the database, calculate a first risk level according to the operation of the target virtual external user, and close the access right of the target virtual external user when the first risk level is higher than a first preset threshold;

第二执行模块204,配置用于当所述身份信息匹配到所述数据库中的目标内部用户时,根据所述目标内部用户的操作和所述目标内部用户的预设行为模式计算第二风险级别,当所述第二风险级别高于第二预设阈值时,降低所述目标内部用户的权限。The second execution module 204 is configured to calculate a second risk level according to the operation of the target internal user and the preset behavior pattern of the target internal user when the identity information matches the target internal user in the database, and reduce the authority of the target internal user when the second risk level is higher than a second preset threshold.

可选的,所述第一执行模块203配置用于:Optionally, the first execution module 203 is configured to:

通过预设规则识别所述目标虚拟外部用户的异常行为,所述异常行为包括登录时间异常、登录地点异常、访问数据的类型异常、访问数据的时间异常;Identify abnormal behaviors of the target virtual external user through preset rules, wherein the abnormal behaviors include abnormal login time, abnormal login location, abnormal type of accessed data, and abnormal time of accessed data;

确定每个异常行为对应的第一分数,根据所述第一分数计算所述目标虚拟外部用户的第一风险总分,并将所述第一风险总分映射到预定风险等级中。A first score corresponding to each abnormal behavior is determined, a first total risk score of the target virtual external user is calculated according to the first score, and the first total risk score is mapped to a predetermined risk level.

可选的,所述第二执行模块204配置用于:Optionally, the second execution module 204 is configured to:

根据所述目标内部用户的历史行为确定预设行为模式,将所述目标内部用户的操作与所述预设行为模式进行比对以确定区别点;Determine a preset behavior pattern according to the historical behavior of the target internal user, and compare the operation of the target internal user with the preset behavior pattern to determine the difference;

确定每个区别点对应的第二分数,并根据所述第二分数计算所述目标内部用户的第二风险总分,并将所述第二风险总分映射到预定风险等级中。A second score corresponding to each distinguishing point is determined, and a second total risk score of the target internal user is calculated according to the second score, and the second total risk score is mapped to a predetermined risk level.

可选的,所述第二执行模块204配置用于:Optionally, the second execution module 204 is configured to:

统计所述目标内部用户的历史登录时间、历史登录地点、历史访问数据类型、历史访问数据时间;Collect statistics on the historical login time, historical login location, historical access data type, and historical access data time of the target internal users;

根据所述历史登录时间将每个登录时间划分到对应的时间段,确定每个时间段的第一登录权重,并根据所述历史登录地点确定每个登录地点的第二登录权重;Divide each login time into corresponding time periods according to the historical login time, determine a first login weight for each time period, and determine a second login weight for each login location according to the historical login location;

根据所述历史访问数据类型和所述历史访问数据时间确定每种数据类型在不同时间段的访问权重;Determine the access weight of each data type in different time periods according to the historical access data type and the historical access data time;

根据所述第一登录权重、第二登录权重和访问权重确定预设行为模式。A preset behavior mode is determined according to the first login weight, the second login weight and the access weight.

可选的,所述第二执行模块204配置用于:Optionally, the second execution module 204 is configured to:

将每天平均划分为预设数量个时间段,确定所述目标用户在第一目标时间段内的第一登录次数,根据所述第一登录次数与总登录次数的比值确定所述第一目标时间段内的第一登录权重;Divide each day into a preset number of time periods on average, determine the first login times of the target user in a first target time period, and determine the first login weight in the first target time period according to the ratio of the first login times to the total login times;

确定所述目标用户在目标地点的第二登录次数,根据所述第二登录次数与总登录次数的比值确定所述目标地点的第二登录权重。A second login number of the target user at the target location is determined, and a second login weight of the target location is determined according to a ratio of the second login number to the total login number.

可选的,所述第二执行模块204配置用于:Optionally, the second execution module 204 is configured to:

将每天平均划分为预设数量个时间段,确定第二目标时间段内目标数据类型的访问次数及访问时长,Divide each day into a preset number of time periods, determine the number of visits and the duration of visits to the target data type in the second target time period,

根据所述目标数据类型在所述第二目标时间段内的访问次数与所述目标数据类型的总访问次数的比值确定第一访问权重;Determine a first access weight according to a ratio of the number of accesses to the target data type within the second target time period to the total number of accesses to the target data type;

根据所述目标数据类型在所述第二目标时间段内的访问时长与所述目标数据类型的总访问时长的比值确定第二访问权重;Determine a second access weight according to a ratio of the access duration of the target data type in the second target time period to the total access duration of the target data type;

根据所述的第一访问权重和所述第二访问权重确定所述目标数据类型在所述第二目标时间段内的访问权重。An access weight of the target data type within the second target time period is determined according to the first access weight and the second access weight.

可选的,所述第二执行模块204配置用于:Optionally, the second execution module 204 is configured to:

确定所述目标内部用户的当前登录时间对应的第一登录权重,并确定所述目标内部用户的当前登录地点对应的第二登录权重,根据所述目标内部用户当前访问的数据类型和访问时长确定访问权重;Determine a first login weight corresponding to the current login time of the target internal user, and determine a second login weight corresponding to the current login location of the target internal user, and determine an access weight according to the type of data currently accessed by the target internal user and the access duration;

当所述第一登录权重小于第三预设阈值时,将当前登录时间作为区别点;When the first login weight is less than a third preset threshold, the current login time is used as a distinguishing point;

当所述第二登录权重小于第四预设阈值时,将当前登录地点作为区别点;When the second login weight is less than a fourth preset threshold, the current login location is used as a distinguishing point;

当所述访问权重小于第五预设阈值时,将当前访问的数据类型和访问时长作为区别点。When the access weight is less than the fifth preset threshold, the data type and access duration of the current access are used as distinguishing points.

需要说明的是:上述实施例提供的装置在实现其功能时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的装置和方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。It should be noted that: when the device provided in the above embodiment realizes its function, only the division of the above functional modules is used as an example. In actual application, the above functions can be assigned to different functional modules as needed, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above. In addition, the device and method embodiments provided in the above embodiment belong to the same concept, and the specific implementation process is detailed in the method embodiment, which will not be repeated here.

本实施例还公开了一种电子设备,参照图3,电子设备可以包括:至少一个处理器301,至少一个通信总线302,用户接口303,网络接口304,至少一个存储器305。This embodiment further discloses an electronic device. Referring to FIG. 3 , the electronic device may include: at least one processor 301 , at least one communication bus 302 , a user interface 303 , a network interface 304 , and at least one memory 305 .

其中,通信总线302用于实现这些组件之间的连接通信。The communication bus 302 is used to realize the connection and communication between these components.

其中,用户接口303可以包括显示屏(Display)、摄像头(Camera),可选用户接口303还可以包括标准的有线接口、无线接口。The user interface 303 may include a display screen (Display) and a camera (Camera). Optionally, the user interface 303 may also include a standard wired interface and a wireless interface.

其中,网络接口304可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。The network interface 304 may optionally include a standard wired interface or a wireless interface (such as a WI-FI interface).

其中,处理器301可以包括一个或者多个处理核心。处理器301利用各种接口和线路连接整个服务器内的各个部分,通过运行或执行存储在存储器305内的指令、程序、代码集或指令集,以及调用存储在存储器305内的数据,执行服务器的各种功能和处理数据。可选的,处理器301可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable LogicArray,PLA)中的至少一种硬件形式来实现。处理器301可集成中央处理器(CentralProcessing Unit,CPU)、图像处理器(Graphics Processing Unit,GPU)和调制解调器等中的一种或几种的组合。其中,CPU主要处理操作系统、用户界面和应用程序等;GPU用于负责显示屏所需要显示的内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到处理器301中,单独通过一块芯片进行实现。Among them, the processor 301 may include one or more processing cores. The processor 301 uses various interfaces and lines to connect various parts in the entire server, and executes various functions of the server and processes data by running or executing instructions, programs, code sets or instruction sets stored in the memory 305, and calling data stored in the memory 305. Optionally, the processor 301 can be implemented in at least one hardware form of digital signal processing (Digital Signal Processing, DSP), field programmable gate array (Field-Programmable Gate Array, FPGA), and programmable logic array (Programmable Logic Array, PLA). The processor 301 can integrate one or a combination of a central processing unit (Central Processing Unit, CPU), a graphics processing unit (Graphics Processing Unit, GPU) and a modem. Among them, the CPU mainly processes the operating system, user interface and application programs; the GPU is responsible for rendering and drawing the content to be displayed on the display screen; the modem is used to process wireless communications. It can be understood that the above-mentioned modem may not be integrated into the processor 301, and it can be implemented separately through a chip.

其中,存储器305可以包括随机存储器(Random Access Memory,RAM),也可以包括只读存储器(Read-Only Memory)。可选的,该存储器305包括非瞬时性计算机可读介质(non-transitory computer-readable storage medium)。存储器305可用于存储指令、程序、代码、代码集或指令集。存储器305可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于至少一个功能的指令(比如触控功能、声音播放功能、图像播放功能等)、用于实现上述各个方法实施例的指令等;存储数据区可存储上面各个方法实施例中涉及的数据等。存储器305可选的还可以是至少一个位于远离前述处理器301的存储装置。如图3所示,作为一种计算机存储介质的存储器305中可以包括操作系统、网络通信模块、用户接口模块以及用于身份安全的数据安全保护方法的应用程序。Among them, the memory 305 may include a random access memory (RAM) or a read-only memory (Read-Only Memory). Optionally, the memory 305 includes a non-transitory computer-readable storage medium. The memory 305 can be used to store instructions, programs, codes, code sets or instruction sets. The memory 305 may include a program storage area and a data storage area, wherein the program storage area may store instructions for implementing an operating system, instructions for at least one function (such as a touch function, a sound playback function, an image playback function, etc.), instructions for implementing the above-mentioned various method embodiments, etc.; the data storage area may store data involved in the above-mentioned various method embodiments, etc. The memory 305 may also be at least one storage device located away from the aforementioned processor 301. As shown in Figure 3, the memory 305 as a computer storage medium may include an operating system, a network communication module, a user interface module, and an application for a data security protection method for identity security.

在图3所示的电子设备中,用户接口303主要用于为用户提供输入的接口,获取用户输入的数据;而处理器301可以用于调用存储器305中存储用于身份安全的数据安全保护方法的应用程序,当由一个或多个处理器301执行时,使得电子设备执行如上述实施例中一个或多个的方法。In the electronic device shown in Figure 3, the user interface 303 is mainly used to provide an input interface for the user and obtain data input by the user; and the processor 301 can be used to call the application program of the data security protection method for identity security stored in the memory 305. When executed by one or more processors 301, the electronic device executes one or more methods in the above-mentioned embodiments.

需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必需的。It should be noted that, for the above-mentioned method embodiments, for the sake of simplicity, they are all expressed as a series of action combinations, but those skilled in the art should be aware that the present application is not limited by the order of the actions described, because according to the present application, certain steps can be performed in other orders or simultaneously. Secondly, those skilled in the art should also be aware that the embodiments described in the specification are all preferred embodiments, and the actions and modules involved are not necessarily required for the present application.

在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。In the above embodiments, the description of each embodiment has its own emphasis. For parts that are not described in detail in a certain embodiment, reference can be made to the relevant descriptions of other embodiments.

在本申请所提供的几个实施例中,应该理解到,所披露的装置,可通过其他的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些服务接口,装置或单元的间接耦合或通信连接,可以是电性或其他的形式。In the several embodiments provided in the present application, it should be understood that the disclosed devices can be implemented in other ways. For example, the device embodiments described above are only schematic, such as the division of units, which is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed. Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some service interfaces, and the indirect coupling or communication connection of devices or units can be electrical or other forms.

作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.

另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit. The above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.

集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器305中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储器305包括:U盘、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable memory. Based on this understanding, the technical solution of the present application, or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory 305, including several instructions for a computer device (which can be a personal computer, server or network device, etc.) to perform all or part of the steps of the various embodiments of the present application. The aforementioned memory 305 includes: various media that can store program codes, such as a USB flash drive, a mobile hard disk, a magnetic disk or an optical disk.

以上所述者,仅为本公开的示例性实施例,不能以此限定本公开的范围。即但凡依本公开教导所作的等效变化与修饰,皆仍属本公开涵盖的范围内。本领域技术人员在考虑说明书及实践真理的公开后,将容易想到本公开的其他实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未记载的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的范围和精神由权利要求限定。The above is only an exemplary embodiment of the present disclosure, and the scope of the present disclosure cannot be limited thereto. That is, any equivalent changes and modifications made according to the teachings of the present disclosure are still within the scope of the present disclosure. After considering the disclosure of the specification and the truth of practice, it will be easy for those skilled in the art to think of other embodiments of the present disclosure. This application is intended to cover any modification, use or adaptation of the present disclosure, which follows the general principles of the present disclosure and includes common knowledge or customary technical means in the technical field that are not recorded in the present disclosure. The description and examples are regarded as exemplary only, and the scope and spirit of the present disclosure are defined by the claims.

Claims (10)

1.一种用于身份安全的数据安全保护方法,其特征在于,应用于数据管理平台,所述方法包括:1. A data security protection method for identity security, characterized in that it is applied to a data management platform, and the method comprises: 建立数据库,所述数据库包含目标企业的内部用户、所述目标企业的虚拟外部用户、所述目标企业不同重要等级的数据以及不同用户与数据对应的访问权限关系;Establishing a database, the database including internal users of the target enterprise, virtual external users of the target enterprise, data of different importance levels of the target enterprise, and access rights relationships between different users and data; 响应于目标用户访问目标数据的操作,获取所述目标用户的身份信息,并判断所述身份信息是否能够匹配所述数据库中的内部用户;In response to an operation of a target user accessing target data, obtaining identity information of the target user, and determining whether the identity information can match an internal user in the database; 当所述身份信息不能匹配所述数据库中的内部用户时,从所述虚拟外部用户中选择目标虚拟外部用户绑定所述目标用户,根据所述目标虚拟外部用户的操作计算第一风险级别,当所述第一风险级别高于第一预设阈值时,关闭所述目标虚拟外部用户的访问权限;When the identity information cannot match the internal user in the database, selecting a target virtual external user from the virtual external users to bind the target user, calculating a first risk level according to an operation of the target virtual external user, and closing the access right of the target virtual external user when the first risk level is higher than a first preset threshold; 当所述身份信息匹配到所述数据库中的目标内部用户时,根据所述目标内部用户的操作和所述目标内部用户的预设行为模式计算第二风险级别,当所述第二风险级别高于第二预设阈值时,降低所述目标内部用户的权限。When the identity information matches the target internal user in the database, a second risk level is calculated according to the operation of the target internal user and the preset behavior pattern of the target internal user. When the second risk level is higher than a second preset threshold, the authority of the target internal user is reduced. 2.根据权利要求1所述的用于身份安全的数据安全保护方法,其特征在于,所述根据所述目标虚拟外部用户的操作计算第一风险级别包括:2. The data security protection method for identity security according to claim 1, characterized in that the step of calculating the first risk level according to the operation of the target virtual external user comprises: 通过预设规则识别所述目标虚拟外部用户的异常行为,所述异常行为包括登录时间异常、登录地点异常、访问数据的类型异常、访问数据的时间异常;Identify abnormal behaviors of the target virtual external user through preset rules, wherein the abnormal behaviors include abnormal login time, abnormal login location, abnormal type of accessed data, and abnormal time of accessed data; 确定每个异常行为对应的第一分数,根据所述第一分数计算所述目标虚拟外部用户的第一风险总分,并将所述第一风险总分映射到预定风险等级中。A first score corresponding to each abnormal behavior is determined, a first total risk score of the target virtual external user is calculated according to the first score, and the first total risk score is mapped to a predetermined risk level. 3.根据权利要求1所述的用于身份安全的数据安全保护方法,其特征在于,所述根据所述目标内部用户的操作和所述目标内部用户的预设行为模式计算第二风险级别包括:3. The data security protection method for identity security according to claim 1, wherein the step of calculating the second risk level according to the operation of the target internal user and the preset behavior pattern of the target internal user comprises: 根据所述目标内部用户的历史行为确定预设行为模式,将所述目标内部用户的操作与所述预设行为模式进行比对以确定区别点;Determine a preset behavior pattern according to the historical behavior of the target internal user, and compare the operation of the target internal user with the preset behavior pattern to determine the difference; 确定每个区别点对应的第二分数,并根据所述第二分数计算所述目标内部用户的第二风险总分,并将所述第二风险总分映射到预定风险等级中。A second score corresponding to each distinguishing point is determined, and a second total risk score of the target internal user is calculated according to the second score, and the second total risk score is mapped to a predetermined risk level. 4.根据权利要求3所述的用于身份安全的数据安全保护方法,其特征在于,所述根据所述目标内部用户的历史行为确定预设行为模式包括:4. The data security protection method for identity security according to claim 3, characterized in that the step of determining the preset behavior pattern according to the historical behavior of the target internal user comprises: 统计所述目标内部用户的历史登录时间、历史登录地点、历史访问数据类型、历史访问数据时间;Collect statistics on the historical login time, historical login location, historical access data type, and historical access data time of the target internal users; 根据所述历史登录时间将每个登录时间划分到对应的时间段,确定每个时间段的第一登录权重,并根据所述历史登录地点确定每个登录地点的第二登录权重;Divide each login time into corresponding time periods according to the historical login time, determine a first login weight for each time period, and determine a second login weight for each login location according to the historical login location; 根据所述历史访问数据类型和所述历史访问数据时间确定每种数据类型在不同时间段的访问权重;Determine the access weight of each data type in different time periods according to the historical access data type and the historical access data time; 根据所述第一登录权重、第二登录权重和访问权重确定预设行为模式。A preset behavior mode is determined according to the first login weight, the second login weight and the access weight. 5.根据权利要求4所述的用于身份安全的数据安全保护方法,其特征在于,所述根据所述历史登录时间将每个登录时间划分到对应的时间段,确定每个时间段的第一登录权重,并根据所述历史登录地点确定每个登录地点的第二登录权重包括:5. The data security protection method for identity security according to claim 4, characterized in that said dividing each login time into corresponding time periods according to the historical login time, determining the first login weight of each time period, and determining the second login weight of each login location according to the historical login location comprises: 将每天平均划分为预设数量个时间段,确定所述目标用户在第一目标时间段内的第一登录次数,根据所述第一登录次数与总登录次数的比值确定所述第一目标时间段内的第一登录权重;Divide each day into a preset number of time periods on average, determine the first login times of the target user in a first target time period, and determine the first login weight in the first target time period according to the ratio of the first login times to the total login times; 确定所述目标用户在目标地点的第二登录次数,根据所述第二登录次数与总登录次数的比值确定所述目标地点的第二登录权重。A second login number of the target user at the target location is determined, and a second login weight of the target location is determined according to a ratio of the second login number to the total login number. 6.根据权利要求4所述的用于身份安全的数据安全保护方法,其特征在于,所述根据所述历史访问数据类型和所述历史访问数据时间确定每种数据类型在不同时间段的访问权重包括:6. The data security protection method for identity security according to claim 4, characterized in that the step of determining the access weight of each data type in different time periods according to the historical access data type and the historical access data time comprises: 将每天平均划分为预设数量个时间段,确定第二目标时间段内目标数据类型的访问次数及访问时长,Divide each day into a preset number of time periods, determine the number of visits and the duration of visits to the target data type in the second target time period, 根据所述目标数据类型在所述第二目标时间段内的访问次数与所述目标数据类型的总访问次数的比值确定第一访问权重;Determine a first access weight according to a ratio of the number of accesses to the target data type within the second target time period to the total number of accesses to the target data type; 根据所述目标数据类型在所述第二目标时间段内的访问时长与所述目标数据类型的总访问时长的比值确定第二访问权重;Determine a second access weight according to a ratio of the access duration of the target data type in the second target time period to the total access duration of the target data type; 根据所述的第一访问权重和所述第二访问权重确定所述目标数据类型在所述第二目标时间段内的访问权重。An access weight of the target data type within the second target time period is determined according to the first access weight and the second access weight. 7.根据权利要求4所述的用于身份安全的数据安全保护方法,其特征在于,所述将所述目标内部用户的操作与所述预设行为模式进行比对以确定区别点包括:7. The data security protection method for identity security according to claim 4, characterized in that the step of comparing the operation of the target internal user with the preset behavior pattern to determine the difference comprises: 确定所述目标内部用户的当前登录时间对应的第一登录权重,并确定所述目标内部用户的当前登录地点对应的第二登录权重,根据所述目标内部用户当前访问的数据类型和访问时长确定访问权重;Determine a first login weight corresponding to the current login time of the target internal user, and determine a second login weight corresponding to the current login location of the target internal user, and determine an access weight according to the type of data currently accessed by the target internal user and the access duration; 当所述第一登录权重小于第三预设阈值时,将当前登录时间作为区别点;When the first login weight is less than a third preset threshold, the current login time is used as a distinguishing point; 当所述第二登录权重小于第四预设阈值时,将当前登录地点作为区别点;When the second login weight is less than a fourth preset threshold, the current login location is used as a distinguishing point; 当所述访问权重小于第五预设阈值时,将当前访问的数据类型和访问时长作为区别点。When the access weight is less than the fifth preset threshold, the data type and access duration of the current access are used as distinguishing points. 8.一种用于身份安全的数据安全保护系统,其特征在于,包括数据模块、身份模块、第一执行模块以及第二执行模块,其中:8. A data security protection system for identity security, characterized in that it includes a data module, an identity module, a first execution module and a second execution module, wherein: 数据模块,配置用于建立数据库,所述数据库包含目标企业的内部用户、所述目标企业的虚拟外部用户、所述目标企业不同重要等级的数据以及不同用户与数据对应的访问权限关系;A data module configured to establish a database, wherein the database includes internal users of a target enterprise, virtual external users of the target enterprise, data of different importance levels of the target enterprise, and access permission relationships between different users and data; 身份模块,配置用于响应于目标用户访问目标数据的操作,获取所述目标用户的身份信息,并判断所述身份信息是否能够匹配所述数据库中的内部用户;an identity module configured to obtain identity information of the target user in response to an operation of the target user accessing the target data, and determine whether the identity information can match an internal user in the database; 第一执行模块,配置用于当所述身份信息不能匹配所述数据库中的内部用户时,从所述虚拟外部用户中选择目标虚拟外部用户绑定所述目标用户,根据所述目标虚拟外部用户的操作计算第一风险级别,当所述第一风险级别高于第一预设阈值时,关闭所述目标虚拟外部用户的访问权限;A first execution module is configured to select a target virtual external user from the virtual external users to bind the target user when the identity information cannot match the internal user in the database, calculate a first risk level according to the operation of the target virtual external user, and close the access right of the target virtual external user when the first risk level is higher than a first preset threshold; 第二执行模块,配置用于当所述身份信息匹配到所述数据库中的目标内部用户时,根据所述目标内部用户的操作和所述目标内部用户的预设行为模式计算第二风险级别,当所述第二风险级别高于第二预设阈值时,降低所述目标内部用户的权限。The second execution module is configured to calculate a second risk level according to the operation of the target internal user and the preset behavior pattern of the target internal user when the identity information matches the target internal user in the database, and reduce the authority of the target internal user when the second risk level is higher than a second preset threshold. 9.一种电子设备,其特征在于,包括处理器、存储器、用户接口以及网络接口,所述存储器用于存储指令,所述用户接口和所述网络接口均用于与其他设备通信,所述处理器用于执行所述存储器中存储的指令,以使所述电子设备执行如权利要求1-7任意一项所述的方法。9. An electronic device, characterized in that it includes a processor, a memory, a user interface and a network interface, the memory is used to store instructions, the user interface and the network interface are both used to communicate with other devices, and the processor is used to execute the instructions stored in the memory so that the electronic device executes the method according to any one of claims 1 to 7. 10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令被执行时,执行如权利要求1-7任意一项所述的方法。10. A computer-readable storage medium, characterized in that the computer-readable storage medium stores instructions, and when the instructions are executed, the method according to any one of claims 1 to 7 is executed.
CN202410673004.XA 2024-05-28 2024-05-28 Data security protection method and device for identity security Pending CN118504002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410673004.XA CN118504002A (en) 2024-05-28 2024-05-28 Data security protection method and device for identity security

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410673004.XA CN118504002A (en) 2024-05-28 2024-05-28 Data security protection method and device for identity security

Publications (1)

Publication Number Publication Date
CN118504002A true CN118504002A (en) 2024-08-16

Family

ID=92244713

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410673004.XA Pending CN118504002A (en) 2024-05-28 2024-05-28 Data security protection method and device for identity security

Country Status (1)

Country Link
CN (1) CN118504002A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118839376A (en) * 2024-09-05 2024-10-25 深圳市银顺天达科技有限公司 Data security management system for banks
CN119377989A (en) * 2024-10-23 2025-01-28 中徽建技术有限公司 A data security management system based on the Internet of Things

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888574A (en) * 2017-10-27 2018-04-06 深信服科技股份有限公司 Method, server and the storage medium of Test database risk
CN117459260A (en) * 2023-10-18 2024-01-26 曲阜师范大学 Edge computing node detection method, system and equipment for user information
CN117459312A (en) * 2023-11-27 2024-01-26 昆明电力交易中心有限责任公司 Identity authentication method and device for electric power system network and computer equipment
CN117692216A (en) * 2023-12-13 2024-03-12 航天信息股份有限公司 Abnormal login behavior management method and device, storage medium and electronic equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107888574A (en) * 2017-10-27 2018-04-06 深信服科技股份有限公司 Method, server and the storage medium of Test database risk
CN117459260A (en) * 2023-10-18 2024-01-26 曲阜师范大学 Edge computing node detection method, system and equipment for user information
CN117459312A (en) * 2023-11-27 2024-01-26 昆明电力交易中心有限责任公司 Identity authentication method and device for electric power system network and computer equipment
CN117692216A (en) * 2023-12-13 2024-03-12 航天信息股份有限公司 Abnormal login behavior management method and device, storage medium and electronic equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118839376A (en) * 2024-09-05 2024-10-25 深圳市银顺天达科技有限公司 Data security management system for banks
CN119377989A (en) * 2024-10-23 2025-01-28 中徽建技术有限公司 A data security management system based on the Internet of Things

Similar Documents

Publication Publication Date Title
US11799893B2 (en) Cybersecurity detection and mitigation system using machine learning and advanced data correlation
KR102542720B1 (en) System for providing internet of behavior based intelligent data security platform service for zero trust security
CN116545731A (en) Zero-trust network access control method and system based on time window dynamic switching
US9038134B1 (en) Managing predictions in data security systems
US20130227712A1 (en) Method and system for resource management based on adaptive risk-based access controls
CN118611948A (en) A multi-cloud data processing control method and system
EP2515252A2 (en) System and method for reducing security risk in computer network
US9954865B2 (en) Sensors for a resource
US20080222706A1 (en) Globally aware authentication system
CN117708880A (en) An intelligent and safe processing method and system for banking business data
CN106548342B (en) Trusted device determining method and device
JP2005526311A (en) Method and apparatus for monitoring a database system
US20210234877A1 (en) Proactively protecting service endpoints based on deep learning of user location and access patterns
CN117978556B (en) A data access control method, network switching subsystem and intelligent computing platform
Reddy Data breaches in healthcare security systems
CN118827140A (en) Data security protection system based on blockchain
CN118504002A (en) Data security protection method and device for identity security
CN117668788A (en) Access control method, device, electronic equipment and storage medium
JP4843546B2 (en) Information leakage monitoring system and information leakage monitoring method
CN118138295A (en) A zero-trust access control system and method based on network security situation assessment
US20230300149A1 (en) Systems and Methods for Contextually Securing Remote Function Calls
CN116566691A (en) General access control method and system based on PBAC and risk assessment
CN108600178A (en) A kind of method for protecting and system, reference platform of collage-credit data
SLAZYK Beyond Compliance: Healthcare's Critical Journey Toward True Cybersecurity.
KR102783920B1 (en) Method, apparatus and computer-readable medium of providing security consulting for introducing a zero trust based security model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20240816