[go: up one dir, main page]

CN118446750A - Application recommendation method, electronic equipment and cloud server - Google Patents

Application recommendation method, electronic equipment and cloud server Download PDF

Info

Publication number
CN118446750A
CN118446750A CN202311409758.6A CN202311409758A CN118446750A CN 118446750 A CN118446750 A CN 118446750A CN 202311409758 A CN202311409758 A CN 202311409758A CN 118446750 A CN118446750 A CN 118446750A
Authority
CN
China
Prior art keywords
user
portrait
terminal device
application
behavior data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202311409758.6A
Other languages
Chinese (zh)
Other versions
CN118446750B (en
Inventor
李壮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honor Device Co Ltd
Original Assignee
Honor Device Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honor Device Co Ltd filed Critical Honor Device Co Ltd
Priority to CN202311409758.6A priority Critical patent/CN118446750B/en
Publication of CN118446750A publication Critical patent/CN118446750A/en
Application granted granted Critical
Publication of CN118446750B publication Critical patent/CN118446750B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0241Advertisements
    • G06Q30/0251Targeted advertisements
    • G06Q30/0255Targeted advertisements based on user history
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/903Querying
    • G06F16/9035Filtering based on additional data, e.g. user or group profiles
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/90Details of database functions independent of the retrieved data types
    • G06F16/903Querying
    • G06F16/9038Presentation of query results
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Accounting & Taxation (AREA)
  • General Engineering & Computer Science (AREA)
  • Finance (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Game Theory and Decision Science (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本申请提供了一种应用推荐方法、电子设备及云服务器,该方法包括:云端可以根据终端设备的点击行为数据确定用户预测画像,以及根据用户预测画像将多个终端设备划分至用户画像群。同一用户画像群的终端设备具有相似的应用使用习惯,从而利用同一用户群的终端设备的点击行为数据能够对应用推荐模型的训练过程提供大量的数据支持,提高了推荐模型的训练精度,进而将该用户画像群对应的推荐模型下发至该用户画像群对应的各个终端设备的方式,可以提高各终端设备的应用推荐精度。

The present application provides an application recommendation method, an electronic device and a cloud server, the method comprising: the cloud can determine a user prediction profile based on the click behavior data of the terminal device, and divide multiple terminal devices into user profile groups based on the user prediction profile. The terminal devices of the same user profile group have similar application usage habits, so the click behavior data of the terminal devices of the same user group can provide a large amount of data support for the training process of the application recommendation model, thereby improving the training accuracy of the recommendation model, and then sending the recommendation model corresponding to the user portrait group to each terminal device corresponding to the user portrait group can improve the application recommendation accuracy of each terminal device.

Description

应用推荐方法、电子设备及云服务器Application recommendation method, electronic device and cloud server

技术领域Technical Field

本申请涉及终端设备领域,尤其涉及一种应用推荐方法、电子设备及云服务器。The present application relates to the field of terminal devices, and in particular to an application recommendation method, an electronic device and a cloud server.

背景技术Background technique

随着终端设备技术的发展,终端设备支持的应用也随之增多。面对众多的应用,可以采用预测用户即将使用的应用、并在终端设备上进行应用推荐的方式,来为用户提供更加快捷的使用体验。With the development of terminal equipment technology, the number of applications supported by terminal equipment has also increased. In the face of numerous applications, it is possible to provide users with a faster usage experience by predicting the applications that users are about to use and recommending applications on the terminal equipment.

目前,终端设备往往向用户推荐最近使用或者最常用的应用,其推荐精度较低,影响用户的使用体验。Currently, terminal devices often recommend recently used or most frequently used applications to users, and the recommendation accuracy is low, which affects the user experience.

发明内容Summary of the invention

为了解决上述技术问题,本申请提供一种应用推荐方法、电子设备及云服务器。在该方法中,可以基于终端设备的点击行为数据,预测终端设备用户的用户画像。由于同一用户画像群中的终端设备具有相似的应用使用习惯或者应用使用行为,利用同一用户画像群的各终端设备的点击行为数据,可以为推荐模型的训练提供数据支撑,提高了推荐模型的训练精度,进而将该用户画像群对应的推荐模型下发至该用户画像群对应的各个终端设备的方式,可以提高各终端设备的应用推荐精度。In order to solve the above technical problems, the present application provides an application recommendation method, an electronic device and a cloud server. In this method, the user portrait of the terminal device user can be predicted based on the click behavior data of the terminal device. Since the terminal devices in the same user portrait group have similar application usage habits or application usage behaviors, the click behavior data of each terminal device in the same user portrait group can provide data support for the training of the recommendation model, thereby improving the training accuracy of the recommendation model. Then, the recommendation model corresponding to the user portrait group is sent to each terminal device corresponding to the user portrait group, which can improve the application recommendation accuracy of each terminal device.

第一方面,本申请提供一种应用推荐方法。该方法包括:云端获取多个终端设备的第一点击行为数据。云端基于多个终端设备的第一点击行为数据,获取多个终端设备中的每个终端设备对应的用户预测画像。云端基于多个终端设备中的每个终端设备对应的用户预测画像,将多个终端设备划分为多个用户画像群。云端基于单一用户画像群中的各终端设备的第一点击行为数据进行模型训练,得到单一用户画像群对应的应用推荐模型。云端将单一用户画像群对应的应用推荐模型发送给单一用户画像群中的各终端设备,使得单一用户画像群中的各终端设备基于应用推荐模型进行应用推荐。这样,本申请提供一种应用推荐的方式,云端可以基于终端设备的点击行为数据,确定用户预测画像,并根据用户预测画像将具有相似应用使用习惯的终端设备分至同一用户画像群。从而云端利用同一用户画像群的各终端设备的点击行为数据进行推荐模型训练时,训练得到的推荐模型能够对该类应用使用习惯的用户的应用点击行为进行准确模拟,从而为推荐模型的训练提供了足够的数据支撑,提高了推荐模型的训练精度,进而提高了各终端设备的应用推荐精度。In the first aspect, the present application provides an application recommendation method. The method includes: the cloud obtains the first click behavior data of multiple terminal devices. The cloud obtains the user prediction portrait corresponding to each terminal device in the multiple terminal devices based on the first click behavior data of the multiple terminal devices. The cloud divides the multiple terminal devices into multiple user portrait groups based on the user prediction portrait corresponding to each terminal device in the multiple terminal devices. The cloud performs model training based on the first click behavior data of each terminal device in a single user portrait group to obtain an application recommendation model corresponding to the single user portrait group. The cloud sends the application recommendation model corresponding to the single user portrait group to each terminal device in the single user portrait group, so that each terminal device in the single user portrait group makes application recommendations based on the application recommendation model. In this way, the present application provides a method for application recommendation, and the cloud can determine the user prediction portrait based on the click behavior data of the terminal device, and divide the terminal devices with similar application usage habits into the same user portrait group according to the user prediction portrait. Therefore, when the cloud uses the click behavior data of each terminal device of the same user portrait group to train the recommendation model, the trained recommendation model can accurately simulate the application click behavior of users who have the habit of using this type of application, thereby providing sufficient data support for the training of the recommendation model, improving the training accuracy of the recommendation model, and further improving the application recommendation accuracy of each terminal device.

根据第一方面,云端基于多个终端设备的第一点击行为数据,获取多个终端设备中的每个终端设备对应的用户预测画像,包括:云端将单一终端设备的第一点击行为数据输入画像预测模型,得到单一终端设备对应的用户预测画像,其中,画像预测模型为大语言模型。这样,云端可以利用大语言模型自身的推理能力,自动推理得出人工无法发掘或者总结出的应用点击规律,提高了用户画像预测精度。According to the first aspect, the cloud obtains the predicted user portrait corresponding to each of the multiple terminal devices based on the first click behavior data of the multiple terminal devices, including: the cloud inputs the first click behavior data of a single terminal device into the portrait prediction model to obtain the predicted user portrait corresponding to the single terminal device, wherein the portrait prediction model is a large language model. In this way, the cloud can use the reasoning ability of the large language model itself to automatically infer the application click rules that cannot be discovered or summarized manually, thereby improving the accuracy of user portrait prediction.

根据第一方面,或者以上第一方面的任意一种实现方式,云端基于多个终端设备的第一点击行为数据,获取多个终端设备中的每个终端设备对应的用户预测画像,包括:云端对单一终端设备的第一点击行为数据进行文本表示,生成固定文本格式的描述文本;云端将描述文本输入画像预测模型,得到单一终端设备对应的用户预测画像。这样,通过对点击行为数据的格式转换文本表示,云端可以从点击行为数据中梳理出各维度信息,并将其整理成固定格式,使得不同终端设备发送的点击行为数据的格式更加一致,便于画像预测模型处理,提高模型预测效果。According to the first aspect, or any implementation of the first aspect above, the cloud obtains the user prediction portrait corresponding to each of the multiple terminal devices based on the first click behavior data of the multiple terminal devices, including: the cloud performs text representation on the first click behavior data of a single terminal device to generate a description text in a fixed text format; the cloud inputs the description text into the portrait prediction model to obtain the user prediction portrait corresponding to the single terminal device. In this way, by converting the format of the click behavior data into a text representation, the cloud can sort out the information of each dimension from the click behavior data and organize it into a fixed format, so that the format of the click behavior data sent by different terminal devices is more consistent, which is convenient for the portrait prediction model to process and improve the model prediction effect.

根据第一方面,或者以上第一方面的任意一种实现方式,单一终端设备的第一点击行为数据包括用户维度信息,云端基于多个终端设备的第一点击行为数据,获取多个终端设备中的每个终端设备对应的用户预测画像,包括:云端将单一终端设备的第一点击行为数据输入画像预测模型,得到初始用户画像,初始用户画像包括用户维度信息;云端利用单一终端设备的第一点击行为数据中的用户维度信息,对初始用户画像中的用户维度信息进行修正,得到单一终端设备对应的用户预测画像。这样,通过第一行为数据中的用户维度信息对初始用户画像中的用户维度进行修正,可以提高云端的用户画像预测的预测精度,进而可以提高用户画像群的划分准确度,从而可以通过提高应用模型的准确来提高应用预测精度。According to the first aspect, or any implementation of the first aspect above, the first click behavior data of a single terminal device includes user dimension information, and the cloud obtains a user prediction portrait corresponding to each of the multiple terminal devices based on the first click behavior data of multiple terminal devices, including: the cloud inputs the first click behavior data of the single terminal device into the portrait prediction model to obtain an initial user portrait, and the initial user portrait includes user dimension information; the cloud uses the user dimension information in the first click behavior data of the single terminal device to correct the user dimension information in the initial user portrait to obtain a user prediction portrait corresponding to the single terminal device. In this way, by correcting the user dimension in the initial user portrait through the user dimension information in the first behavior data, the prediction accuracy of the user portrait prediction in the cloud can be improved, and then the accuracy of the division of the user portrait group can be improved, so that the accuracy of the application prediction can be improved by improving the accuracy of the application model.

根据第一方面,或者以上第一方面的任意一种实现方式,用户维度信息包括主观类用户维度信息和客观类用户维度信息,单一终端设备对应的用户预测画像包括单一终端设备的第一点击行为数据中的客观类用户维度信息、以及初始用户画像中的客观类用户维度信息;云端利用单一终端设备的第一点击行为数据中的用户维度信息对初始用户画像中的用户维度信息进行修正,得到单一终端设备对应的用户预测画像,包括:云端利用单一终端设备的第一点击行为数据中的客观类用户维度信息对初始用户画像中的客观类用户维度信息进行替换;云端保持初始用户画像中的客观类用户维度信息不变。这样,由于第一行为点击数据中的客观类用户维度信息较为准确,用户预测画像中的用户维度信息能够较为准确反映用户在近期内的应用使用习惯,因此,通过该修正方式能够进一步提高用户预测画像的准确率,从而可以提高用户画像群的划分准确度,以及可以通过提高应用模型的准确来提高应用预测精度。According to the first aspect, or any implementation of the first aspect above, the user dimension information includes subjective user dimension information and objective user dimension information, and the user prediction portrait corresponding to the single terminal device includes the objective user dimension information in the first click behavior data of the single terminal device and the objective user dimension information in the initial user portrait; the cloud uses the user dimension information in the first click behavior data of the single terminal device to correct the user dimension information in the initial user portrait to obtain the user prediction portrait corresponding to the single terminal device, including: the cloud uses the objective user dimension information in the first click behavior data of the single terminal device to replace the objective user dimension information in the initial user portrait; the cloud keeps the objective user dimension information in the initial user portrait unchanged. In this way, since the objective user dimension information in the first behavior click data is relatively accurate, the user dimension information in the user prediction portrait can more accurately reflect the user's recent application usage habits. Therefore, the accuracy of the user prediction portrait can be further improved through this correction method, thereby improving the accuracy of the division of the user portrait group, and the accuracy of the application prediction can be improved by improving the accuracy of the application model.

根据第一方面,或者以上第一方面的任意一种实现方式,云端将单一终端设备的点击行为数据输入画像预测模型,得到单一终端设备对应的用户预测画像之前,还包括:云端获取多个预测模型训练数据以及基础大语言模型,其中,每个预测模型训练数据包括一个终端设备的第二点击行为数据和一个终端设备对应的用户画像描述文本;云端利用多个预测模型训练数据对基础大语言模型进行指令微调,得到训练完成的画像预测模型。这样,可以通过用户画像描述文本和第二点击行为数据,来对画像预测模型进行准确训练,提高了用户预测模型的预测精度。以及,通过对基础大语言模型的指令微调,可以利用少量预测训练模型训练数据对画像预测模型进行准确训练,降低了训练难度和训练成本。According to the first aspect, or any implementation of the first aspect above, before the cloud inputs the click behavior data of a single terminal device into the portrait prediction model to obtain the user prediction portrait corresponding to the single terminal device, it also includes: the cloud obtains multiple prediction model training data and a basic large language model, wherein each prediction model training data includes the second click behavior data of a terminal device and the user portrait description text corresponding to a terminal device; the cloud uses the multiple prediction model training data to fine-tune the instructions of the basic large language model to obtain a trained portrait prediction model. In this way, the portrait prediction model can be accurately trained through the user portrait description text and the second click behavior data, thereby improving the prediction accuracy of the user prediction model. In addition, by fine-tuning the instructions of the basic large language model, the portrait prediction model can be accurately trained using a small amount of prediction training model training data, thereby reducing the training difficulty and training cost.

根据第一方面,或者以上第一方面的任意一种实现方式,第一点击行为数据包括:时间维度信息、空间维度信息、设备维度信息和应用维度信息中的至少一者。这样,利用上述维度信息来训练推荐模型时,可以使得推荐模型能够基于应用选择行为在上述维度内的变化规律来预测用户期望使用的应用,可以进而提高推荐模型的应用推荐精度。以及,由于上述维度信息和用户预测画像均与用户的应用使用习惯相关联,相应地,云端能够发掘上述维度信息和用户预测画像之间的关联性,从而可以利用上述维度信息来提高用户预测画像的预测精度。According to the first aspect, or any implementation of the first aspect above, the first click behavior data includes: at least one of time dimension information, space dimension information, device dimension information and application dimension information. In this way, when the recommendation model is trained using the above-mentioned dimension information, the recommendation model can predict the application that the user expects to use based on the change pattern of the application selection behavior within the above-mentioned dimension, which can further improve the application recommendation accuracy of the recommendation model. And, since the above-mentioned dimension information and the user prediction portrait are both associated with the user's application usage habits, accordingly, the cloud can discover the correlation between the above-mentioned dimension information and the user prediction portrait, so that the above-mentioned dimension information can be used to improve the prediction accuracy of the user prediction portrait.

第二方面,本申请提供一种应用推荐方法。该方法包括:终端设备接收云端发送的应用推荐模型,具体地,应用推荐模型与目标终端设备所属用户画像群对应,应用推荐模型是云端利用用户画像群中的各终端设备的第一点击行为数据训练得到的,用户画像群是基于多个终端设备中的每个终端设备对应的用户预测画像、将多个终端设备划分得到的,多个终端设备中的每个终端设备对应的用户预测画像是基于多个终端设备的第一点击行为数据确定的。终端设备获取当前场景信息。终端设备将当前场景信息输入应用推荐模型,得到推荐应用。显示推荐应用。这样,本申请提供一种应用推荐的方式,由于云端可以基于终端设备的点击行为数据,确定用户预测画像,并根据用户预测画像将具有相似应用使用习惯的终端设备分至同一用户画像群。从而云端利用同一用户画像群的各终端设备的点击行为数据进行推荐模型训练时,训练得到的推荐模型能够对该类应用使用习惯的用户的应用点击行为进行准确模拟,从而为推荐模型的训练提供了足够的数据支撑,提高了推荐模型的训练精度。进而当终端设备利用该应用推荐模型可以准确预测到用户期望使用的应用进行推荐,提高了应用推荐的准确性。以及,便于用户在终端设备中快速查找到需要使用的应用,提高了应用使用体验。In the second aspect, the present application provides an application recommendation method. The method includes: a terminal device receives an application recommendation model sent by the cloud, specifically, the application recommendation model corresponds to the user portrait group to which the target terminal device belongs, the application recommendation model is trained by the cloud using the first click behavior data of each terminal device in the user portrait group, the user portrait group is based on the user prediction portrait corresponding to each terminal device in multiple terminal devices, and the multiple terminal devices are divided, and the user prediction portrait corresponding to each terminal device in the multiple terminal devices is determined based on the first click behavior data of multiple terminal devices. The terminal device obtains current scene information. The terminal device inputs the current scene information into the application recommendation model to obtain a recommended application. The recommended application is displayed. In this way, the present application provides a method for application recommendation, because the cloud can determine the user prediction portrait based on the click behavior data of the terminal device, and divide the terminal devices with similar application usage habits into the same user portrait group according to the user prediction portrait. Therefore, when the cloud uses the click behavior data of each terminal device in the same user portrait group to train the recommendation model, the trained recommendation model can accurately simulate the application click behavior of users with such application usage habits, thereby providing sufficient data support for the training of the recommendation model and improving the training accuracy of the recommendation model. Furthermore, when the terminal device uses the application recommendation model, it can accurately predict the application that the user expects to use and recommend it, thereby improving the accuracy of application recommendation. In addition, it is convenient for the user to quickly find the application he needs to use in the terminal device, thereby improving the application use experience.

根据第二方面,终端设备显示推荐应用之后,还包括:终端设备检测用户的应用选择操作;终端设备响应于应用选择操作,生成第三点击行为数据;终端设备利用当前时间周期内的第三点击行为数据,对应用推荐模型进行更新。这样,终端设备本地的推荐应用,可以跟随用户的应用选择操作而不断更新,使得应用推荐模型更加贴合用户个人的应用使用习惯,进一步提高了应用推荐精度。According to the second aspect, after the terminal device displays the recommended application, it also includes: the terminal device detects the user's application selection operation; the terminal device generates third click behavior data in response to the application selection operation; the terminal device uses the third click behavior data in the current time period to update the application recommendation model. In this way, the local recommended applications of the terminal device can be continuously updated following the user's application selection operation, so that the application recommendation model is more in line with the user's personal application usage habits, and the accuracy of application recommendation is further improved.

根据第二方面,或者以上第二方面的任意一种实现方式,终端设备利用当前时间周期内的第三点击行为数据,对应用推荐模型进行更新,包括:终端设备基于当前时间周期内的第三点击行为数据,确定目标终端设备在当前时间周期内的应用推荐准确率;终端设备在应用推荐准确率小于预设准确率阈值的情况下,利用当前时间周期内的第三点击行为数据,对应用推荐模型进行更新。这样,可以在应用推荐模型的推荐精度不高时,利用用户的点击行为数据对齐进行更新,使得应用推荐模型更加贴合用户个人的应用使用习惯,进一步提高了应用推荐精度。以及,终端设备在应用推荐模型的推荐精度较高时,不对应用推荐模型进行更新,保证了应用推荐精度的同时,节省了终端设备的算力。According to the second aspect, or any implementation of the second aspect above, the terminal device uses the third click behavior data in the current time period to update the application recommendation model, including: the terminal device determines the application recommendation accuracy of the target terminal device in the current time period based on the third click behavior data in the current time period; when the application recommendation accuracy is less than a preset accuracy threshold, the terminal device uses the third click behavior data in the current time period to update the application recommendation model. In this way, when the recommendation accuracy of the application recommendation model is not high, the user's click behavior data can be used to align and update it, so that the application recommendation model is more in line with the user's personal application usage habits, and the application recommendation accuracy is further improved. And, when the recommendation accuracy of the application recommendation model is high, the terminal device does not update the application recommendation model, which ensures the application recommendation accuracy while saving the computing power of the terminal device.

根据第二方面,或者以上第二方面的任意一种实现方式,终端设备生成第三点击行为数据之后,还包括:终端设备将第三点击行为数据发送给云端,使得云端基于第三点击行为数据进行推荐模型的训练。这样,由于用户的应用点击习惯是不断变化的,终端设备通过点击行为数据的不断上传,可以使得云端根据不断上传的点击行为数据来不断训练应用推荐模型,保证了云端的应用推荐模型的准确性和及时性。According to the second aspect, or any implementation of the second aspect above, after the terminal device generates the third click behavior data, it also includes: the terminal device sends the third click behavior data to the cloud, so that the cloud trains the recommendation model based on the third click behavior data. In this way, since the user's application click habits are constantly changing, the terminal device can continuously upload the click behavior data, so that the cloud can continuously train the application recommendation model based on the continuously uploaded click behavior data, thereby ensuring the accuracy and timeliness of the application recommendation model on the cloud.

根据第二方面,或者以上第二方面的任意一种实现方式,终端设备将当前场景信息输入应用推荐模型,得到推荐应用,包括:终端设备将当前场景信息输入应用推荐模型,得到多个候选应用的被选择概率;终端设备基于多个候选应用的被选择概率和预设推荐规则,在多个候选应用中选择推荐应用。这样,终端设备通过被选择概率,可以选择用户点击概率较高的应用进行推荐,提高了推荐精度。According to the second aspect, or any implementation of the second aspect above, the terminal device inputs the current scenario information into the application recommendation model to obtain the recommended application, including: the terminal device inputs the current scenario information into the application recommendation model to obtain the selection probabilities of multiple candidate applications; the terminal device selects the recommended application from the multiple candidate applications based on the selection probabilities of the multiple candidate applications and the preset recommendation rules. In this way, the terminal device can select applications with a higher probability of being clicked by users for recommendation based on the selection probabilities, thereby improving the recommendation accuracy.

根据第二方面,或者以上第二方面的任意一种实现方式,终端设备的主界面上显示有建议文件夹;终端设备显示推荐应用,包括:终端设备在建议文件夹中显示推荐应用。这样,终端设备通过将推荐应用放入建议文件夹的方式,终端设备可以将推荐应用放在较为直观的入口,便于用户查找想要使用的应用,提高了应用使用便捷性。According to the second aspect, or any implementation of the second aspect above, a recommended folder is displayed on the main interface of the terminal device; and the terminal device displays the recommended application, including: the terminal device displays the recommended application in the recommended folder. In this way, the terminal device can place the recommended application in a more intuitive entrance by placing the recommended application in the recommended folder, which makes it easier for the user to find the application they want to use, thereby improving the convenience of using the application.

根据第二方面,或者以上第二方面的任意一种实现方式,多个终端设备中的每个终端设备对应的用户预测画像是利用画像预测模型对每个终端设备的第一点击行为数据处理得到的,画像预测模型为大语言模型。According to the second aspect, or any implementation of the second aspect above, the user prediction portrait corresponding to each terminal device among the multiple terminal devices is obtained by processing the first click behavior data of each terminal device using a portrait prediction model, and the portrait prediction model is a large language model.

根据第二方面,或者以上第二方面的任意一种实现方式,第一点击行为数据包括:According to the second aspect, or any implementation of the second aspect, the first click behavior data includes:

时间维度信息、空间维度信息、设备维度信息和应用维度信息中的至少一者。At least one of time dimension information, space dimension information, device dimension information, and application dimension information.

第三方面,本申请提供一种云服务器。云服务器包括:一个或多个处理器;存储器;以及一个或多个计算机程序,其中一个或多个计算机程序存储在存储器上,当计算机程序被一个或多个处理器执行时,使得云服务器执行以下步骤:获取多个终端设备的第一点击行为数据;基于多个终端设备的第一点击行为数据,获取多个终端设备中的每个终端设备对应的用户预测画像;基于多个终端设备中的每个终端设备对应的用户预测画像,将多个终端设备划分为多个用户画像群;基于单一用户画像群中的各终端设备的第一点击行为数据进行模型训练,得到单一用户画像群对应的应用推荐模型;将单一用户画像群对应的应用推荐模型发送给单一用户画像群中的各终端设备,使得单一用户画像群中的各终端设备基于应用推荐模型进行应用推荐。In a third aspect, the present application provides a cloud server. The cloud server includes: one or more processors; a memory; and one or more computer programs, wherein the one or more computer programs are stored in the memory, and when the computer programs are executed by the one or more processors, the cloud server performs the following steps: obtaining first click behavior data of multiple terminal devices; obtaining a user prediction portrait corresponding to each terminal device in the multiple terminal devices based on the first click behavior data of the multiple terminal devices; dividing the multiple terminal devices into multiple user portrait groups based on the user prediction portrait corresponding to each terminal device in the multiple terminal devices; performing model training based on the first click behavior data of each terminal device in a single user portrait group to obtain an application recommendation model corresponding to the single user portrait group; sending the application recommendation model corresponding to the single user portrait group to each terminal device in the single user portrait group, so that each terminal device in the single user portrait group performs application recommendation based on the application recommendation model.

根据第三方面,当计算机程序被一个或多个处理器执行时,使得云服务器执行以下步骤:将单一终端设备的第一点击行为数据输入画像预测模型,得到单一终端设备对应的用户预测画像,其中,画像预测模型为大语言模型。According to the third aspect, when the computer program is executed by one or more processors, the cloud server performs the following steps: inputting the first click behavior data of a single terminal device into a portrait prediction model to obtain a user prediction portrait corresponding to the single terminal device, wherein the portrait prediction model is a large language model.

根据第三方面,或者以上第三方面的任意一种实现方式,当计算机程序被一个或多个处理器执行时,使得云服务器执行以下步骤:对单一终端设备的第一点击行为数据进行文本表示,生成固定文本格式的描述文本;将描述文本输入画像预测模型,得到单一终端设备对应的用户预测画像。According to the third aspect, or any implementation of the third aspect above, when the computer program is executed by one or more processors, the cloud server performs the following steps: textually represent the first click behavior data of a single terminal device, and generate a descriptive text in a fixed text format; input the descriptive text into a portrait prediction model to obtain a user prediction portrait corresponding to the single terminal device.

根据第三方面,或者以上第三方面的任意一种实现方式,单一终端设备的第一点击行为数据包括用户维度信息,当计算机程序被一个或多个处理器执行时,使得云服务器执行以下步骤:将单一终端设备的第一点击行为数据输入画像预测模型,得到初始用户画像,初始用户画像包括用户维度信息;利用单一终端设备的第一点击行为数据中的用户维度信息,对初始用户画像中的用户维度信息进行修正,得到单一终端设备对应的用户预测画像。According to the third aspect, or any implementation method of the third aspect above, the first click behavior data of a single terminal device includes user dimension information. When the computer program is executed by one or more processors, the cloud server executes the following steps: inputting the first click behavior data of the single terminal device into the portrait prediction model to obtain an initial user portrait, and the initial user portrait includes user dimension information; using the user dimension information in the first click behavior data of the single terminal device, correcting the user dimension information in the initial user portrait to obtain a user prediction portrait corresponding to the single terminal device.

根据第三方面,或者以上第三方面的任意一种实现方式,用户维度信息包括主观类用户维度信息和客观类用户维度信息,单一终端设备对应的用户预测画像包括单一终端设备的第一点击行为数据中的客观类用户维度信息、以及初始用户画像中的客观类用户维度信息;当计算机程序被一个或多个处理器执行时,使得云服务器执行以下步骤:利用单一终端设备的第一点击行为数据中的客观类用户维度信息对初始用户画像中的客观类用户维度信息进行替换;保持初始用户画像中的客观类用户维度信息不变。According to the third aspect, or any implementation method of the third aspect above, user dimension information includes subjective user dimension information and objective user dimension information, and the user prediction portrait corresponding to a single terminal device includes the objective user dimension information in the first click behavior data of the single terminal device, and the objective user dimension information in the initial user portrait; when the computer program is executed by one or more processors, the cloud server performs the following steps: using the objective user dimension information in the first click behavior data of the single terminal device to replace the objective user dimension information in the initial user portrait; keeping the objective user dimension information in the initial user portrait unchanged.

根据第三方面,或者以上第三方面的任意一种实现方式,当计算机程序被一个或多个处理器执行时,使得云服务器执行以下步骤:获取多个预测模型训练数据以及基础大语言模型,其中,每个预测模型训练数据包括一个终端设备的第二点击行为数据和一个终端设备对应的用户画像描述文本;利用多个预测模型训练数据对基础大语言模型进行微调,得到训练完成的画像预测模型。According to the third aspect, or any implementation of the third aspect above, when the computer program is executed by one or more processors, the cloud server performs the following steps: obtain multiple prediction model training data and a basic large language model, wherein each prediction model training data includes the second click behavior data of a terminal device and a user portrait description text corresponding to the terminal device; use the multiple prediction model training data to fine-tune the basic large language model to obtain a trained portrait prediction model.

根据第三方面,或者以上第三方面的任意一种实现方式,当计算机程序被一个或多个处理器执行时,使得云服务器执行以下步骤:将单一终端设备的第一点击行为数据输入画像预测模型,得到单一终端设备的用户画像描述文本;对用户画像描述文本进行关键词提取,得到单一终端设备的关键画像描述词句;将单一终端设备的关键画像描述词句输入画像预测模型,将画像预测模型的中间输出作为单一终端设备的关键画像描述词句的表示向量;基于多个终端设备的关键画像描述词句的表示向量,对多个终端设备进行用户群体划分,得到多个用户画像群。According to the third aspect, or any implementation method of the third aspect above, when the computer program is executed by one or more processors, the cloud server executes the following steps: input the first click behavior data of a single terminal device into a portrait prediction model to obtain a user portrait description text of the single terminal device; extract keywords from the user portrait description text to obtain key portrait description words and sentences of the single terminal device; input the key portrait description words and sentences of the single terminal device into the portrait prediction model, and use the intermediate output of the portrait prediction model as the representation vector of the key portrait description words and sentences of the single terminal device; based on the representation vectors of the key portrait description words and sentences of multiple terminal devices, divide the multiple terminal devices into user groups to obtain multiple user portrait groups.

根据第三方面,或者以上第三方面的任意一种实现方式,第一点击行为数据包括:时间维度信息、空间维度信息、设备维度信息和应用维度信息中的至少一者。According to the third aspect, or any implementation of the third aspect, the first click behavior data includes: at least one of time dimension information, space dimension information, device dimension information and application dimension information.

第三方面以及第三方面的任意一种实现方式分别与第一方面以及第一方面的任意一种实现方式相对应。第三方面以及第三方面的任意一种实现方式所对应的技术效果可参见上述第一方面以及第一方面的任意一种实现方式所对应的技术效果,此处不再赘述。The third aspect and any implementation of the third aspect correspond to the first aspect and any implementation of the first aspect, respectively. The technical effects corresponding to the third aspect and any implementation of the third aspect can refer to the technical effects corresponding to the first aspect and any implementation of the first aspect, which will not be repeated here.

第四方面,本申请提供一种电子设备。电子设备包括:一个或多个处理器;存储器;以及一个或多个计算机程序,其中一个或多个计算机程序存储在存储器上,当计算机程序被一个或多个处理器执行时,使得电子设备执行以下步骤:接收云端发送的应用推荐模型,应用推荐模型与目标终端设备所属用户画像群对应,应用推荐模型是云端利用用户画像群中的各终端设备的第一点击行为数据训练得到的,用户画像群是基于多个终端设备中的每个终端设备对应的用户预测画像、将多个终端设备划分得到的,多个终端设备中的每个终端设备对应的用户预测画像是基于多个终端设备的第一点击行为数据确定的;获取当前场景信息;将当前场景信息输入应用推荐模型,得到推荐应用;显示推荐应用。In a fourth aspect, the present application provides an electronic device. The electronic device includes: one or more processors; a memory; and one or more computer programs, wherein the one or more computer programs are stored in the memory, and when the computer programs are executed by the one or more processors, the electronic device performs the following steps: receiving an application recommendation model sent by the cloud, the application recommendation model corresponds to the user portrait group to which the target terminal device belongs, the application recommendation model is obtained by training the cloud using the first click behavior data of each terminal device in the user portrait group, the user portrait group is based on the user prediction portrait corresponding to each terminal device in multiple terminal devices, and the multiple terminal devices are divided, and the user prediction portrait corresponding to each terminal device in the multiple terminal devices is determined based on the first click behavior data of the multiple terminal devices; obtaining current scene information; inputting the current scene information into the application recommendation model to obtain recommended applications; and displaying recommended applications.

根据第四方面,当计算机程序被一个或多个处理器执行时,使得电子设备执行以下步骤:检测用户的应用选择操作;响应于应用选择操作,生成第三点击行为数据;利用当前时间周期内的第三点击行为数据,对应用推荐模型进行更新。According to the fourth aspect, when the computer program is executed by one or more processors, the electronic device performs the following steps: detecting the user's application selection operation; generating third click behavior data in response to the application selection operation; and updating the application recommendation model using the third click behavior data within the current time period.

根据第四方面,或者以上第四方面的任意一种实现方式,当计算机程序被一个或多个处理器执行时,使得电子设备执行以下步骤:基于当前时间周期内的第三点击行为数据,确定目标终端设备在当前时间周期内的应用推荐准确率;在应用推荐准确率小于预设准确率阈值的情况下,利用当前时间周期内的第三点击行为数据,对应用推荐模型进行更新。According to the fourth aspect, or any implementation method of the fourth aspect above, when the computer program is executed by one or more processors, the electronic device performs the following steps: based on the third click behavior data in the current time period, determine the application recommendation accuracy of the target terminal device in the current time period; when the application recommendation accuracy is less than the preset accuracy threshold, use the third click behavior data in the current time period to update the application recommendation model.

根据第四方面,或者以上第四方面的任意一种实现方式,当计算机程序被一个或多个处理器执行时,使得电子设备执行以下步骤:将第三点击行为数据发送给云端,使得云端基于第三点击行为数据进行推荐模型的微调训练。According to the fourth aspect, or any implementation of the fourth aspect above, when the computer program is executed by one or more processors, the electronic device performs the following steps: sending the third click behavior data to the cloud, so that the cloud performs fine-tuning training of the recommendation model based on the third click behavior data.

根据第四方面,或者以上第四方面的任意一种实现方式,当计算机程序被一个或多个处理器执行时,使得电子设备执行以下步骤:将当前场景信息输入应用推荐模型,得到多个候选应用的被选择概率;基于多个候选应用的被选择概率和预设推荐规则,在多个候选应用中选择推荐应用。According to the fourth aspect, or any implementation of the fourth aspect above, when the computer program is executed by one or more processors, the electronic device performs the following steps: inputting current scene information into an application recommendation model to obtain selection probabilities of multiple candidate applications; and selecting a recommended application from multiple candidate applications based on the selection probabilities of multiple candidate applications and preset recommendation rules.

根据第四方面,或者以上第四方面的任意一种实现方式,终端设备的主界面上显示有建议文件夹,当计算机程序被一个或多个处理器执行时,使得电子设备执行以下步骤:在建议文件夹中显示推荐应用。According to the fourth aspect, or any implementation of the fourth aspect above, a recommended folder is displayed on the main interface of the terminal device, and when the computer program is executed by one or more processors, the electronic device performs the following steps: displaying recommended applications in the recommended folder.

根据第四方面,或者以上第四方面的任意一种实现方式,多个终端设备中的每个终端设备对应的用户预测画像是利用画像预测模型对每个终端设备的第一点击行为数据处理得到的,画像预测模型为大语言模型。According to the fourth aspect, or any implementation method of the fourth aspect above, the user prediction portrait corresponding to each terminal device among the multiple terminal devices is obtained by processing the first click behavior data of each terminal device using a portrait prediction model, and the portrait prediction model is a large language model.

根据第四方面,或者以上第四方面的任意一种实现方式,第一点击行为数据包括:According to the fourth aspect, or any implementation of the fourth aspect, the first click behavior data includes:

时间维度信息、空间维度信息、设备维度信息和应用维度信息中的至少一者。At least one of time dimension information, space dimension information, device dimension information, and application dimension information.

第四方面以及第四方面的任意一种实现方式分别与第二方面以及第二方面的任意一种实现方式相对应。第四方面以及第四方面的任意一种实现方式所对应的技术效果可参见上述第二方面以及第二方面的任意一种实现方式所对应的技术效果,此处不再赘述。The fourth aspect and any implementation of the fourth aspect correspond to the second aspect and any implementation of the second aspect, respectively. The technical effects corresponding to the fourth aspect and any implementation of the fourth aspect can refer to the technical effects corresponding to the above-mentioned second aspect and any implementation of the second aspect, which will not be repeated here.

第五方面,本申请提供一种应用推荐系统,该系统包括上述第一方面和第二方面涉及的终端设备和云端。In a fifth aspect, the present application provides an application recommendation system, which includes the terminal device and cloud involved in the first and second aspects above.

第六方面,本申请提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。In a sixth aspect, the present application provides a computer-readable medium for storing a computer program, wherein the computer program includes instructions for executing the method in the first aspect or any possible implementation of the first aspect.

第七方面,本申请提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。In a seventh aspect, the present application provides a computer-readable medium for storing a computer program, wherein the computer program includes instructions for executing the method in the second aspect or any possible implementation of the second aspect.

第八方面,本申请提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。In an eighth aspect, the present application provides a computer-readable medium for storing a computer program, wherein the computer program includes instructions for executing the method in the first aspect or any possible implementation of the first aspect.

第九方面,本申请提供了一种计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。In a ninth aspect, the present application provides a computer program comprising instructions for executing the method in the second aspect or any possible implementation of the second aspect.

第十方面,本申请提供了一种芯片,该芯片包括处理电路、收发管脚。其中,该收发管脚、和该处理电路通过内部连接通路互相通信,该处理电路执行第一方面或第一方面的任一种可能的实现方式中的方法,以控制接收管脚接收信号,以控制发送管脚发送信号。In a tenth aspect, the present application provides a chip, the chip comprising a processing circuit and a transceiver pin, wherein the transceiver pin and the processing circuit communicate with each other through an internal connection path, and the processing circuit executes the method in the first aspect or any possible implementation of the first aspect to control the receiving pin to receive a signal and control the sending pin to send a signal.

第十一方面,本申请提供了一种芯片,该芯片包括处理电路、收发管脚。其中,该收发管脚、和该处理电路通过内部连接通路互相通信,该处理电路执行第二方面或第二方面的任一种可能的实现方式中的方法,以控制接收管脚接收信号,以控制发送管脚发送信号。In an eleventh aspect, the present application provides a chip, the chip comprising a processing circuit and a transceiver pin, wherein the transceiver pin and the processing circuit communicate with each other through an internal connection path, and the processing circuit executes the method in the second aspect or any possible implementation of the second aspect to control the receiving pin to receive a signal and control the sending pin to send a signal.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为本申请实施例提供的界面示意图;FIG1 is a schematic diagram of an interface provided in an embodiment of the present application;

图2为示例性示出的应用场景示意图;FIG2 is a schematic diagram of an exemplary application scenario;

图3为示例性示出的电子设备的结构示意图;FIG3 is a schematic diagram showing the structure of an electronic device;

图4是本申请实施例的电子设备的软件结构框图;FIG4 is a software structure block diagram of an electronic device according to an embodiment of the present application;

图5为本申请实施例提供的一种云端设备示例的硬件结构框图;FIG5 is a hardware structure block diagram of an example of a cloud device provided in an embodiment of the present application;

图6为本申请实施例提供的一种应用推荐方法的流程示意图;FIG6 is a flow chart of an application recommendation method provided in an embodiment of the present application;

图7为示例性示出的点击行为数据的示意图;FIG. 7 is a schematic diagram showing exemplary click behavior data;

图8a为示例性示出的一种端云交互示意图;FIG8a is a schematic diagram showing an exemplary end-cloud interaction;

图8b为示例性示出的一种终端显示界面示意图;FIG8b is a schematic diagram of an exemplary terminal display interface;

图8c为示例性示出的另一种端云交互示意图;FIG8c is another schematic diagram of end-cloud interaction shown as an example;

图9所示为示例性示出的推荐模型训练的流程示意图;FIG9 is a schematic diagram showing an exemplary process of training a recommendation model;

图10所示为示例性示出的画像预测模型的训练流程示意图;FIG10 is a schematic diagram showing an exemplary training process of a portrait prediction model;

图11所示为示例性示出的用户画像预测的流程示意图;FIG11 is a schematic diagram showing an exemplary process of user portrait prediction;

图12所示为示例性示出的用户群划分的流程示意图;FIG12 is a schematic diagram showing an exemplary process of dividing user groups;

图13所示为示例性示出的推荐模型的训练流程示意图;FIG13 is a schematic diagram showing an exemplary training process of a recommendation model;

图14所示为示例性示出的推荐模型的分发流程示意图;FIG14 is a schematic diagram showing an exemplary distribution process of a recommendation model;

图15为本申请实施例提供的另一种应用推荐方法的流程示意图;FIG15 is a flow chart of another application recommendation method provided in an embodiment of the present application;

图16所示为示例性示出的推荐模型的使用流程示意图;FIG16 is a schematic diagram showing an exemplary use process of a recommendation model;

图17所示为示例性示出的应用推荐过程的流程示意图;FIG17 is a schematic diagram showing an exemplary process of application recommendation;

图18a为示例性示出的另一种终端显示界面示意图;FIG18a is a schematic diagram of another terminal display interface;

图18b为示例性示出的又一种端云交互示意图;FIG18b is a schematic diagram showing another exemplary end-cloud interaction;

图18c为示例性示出的又一种终端显示界面示意图;FIG18c is a schematic diagram showing another exemplary terminal display interface;

图19所示为示例性示出的推荐模型的本地更新流程示意图;FIG19 is a schematic diagram showing an exemplary local update process of a recommendation model;

图20所示为示例性的推荐模型的本地更新流程示意图;FIG20 is a schematic diagram showing an exemplary local update process of a recommendation model;

图21所示为示例性的推荐模型的更新流程示意图;FIG21 is a schematic diagram showing an exemplary update process of a recommendation model;

图22是本申请实施例提供的一种装置的结构示意图。FIG. 22 is a schematic diagram of the structure of a device provided in an embodiment of the present application.

具体实施方式Detailed ways

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The following will be combined with the drawings in the embodiments of the present application to clearly and completely describe the technical solutions in the embodiments of the present application. Obviously, the described embodiments are part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of this application.

本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。The term "and/or" in this article is merely a description of the association relationship of associated objects, indicating that three relationships may exist. For example, A and/or B can mean: A exists alone, A and B exist at the same time, and B exists alone.

本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。The terms "first" and "second" in the description and claims of the embodiments of the present application are used to distinguish different objects rather than to describe a specific order of objects. For example, a first target object and a second target object are used to distinguish different target objects rather than to describe a specific order of target objects.

在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。In the embodiments of the present application, words such as "exemplary" or "for example" are used to indicate examples, illustrations or descriptions. Any embodiment or design described as "exemplary" or "for example" in the embodiments of the present application should not be interpreted as being more preferred or more advantageous than other embodiments or designs. Specifically, the use of words such as "exemplary" or "for example" is intended to present related concepts in a specific way.

在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。In the description of the embodiments of the present application, unless otherwise specified, the meaning of "multiple" refers to two or more than two. For example, multiple processing units refer to two or more processing units; multiple systems refer to two or more systems.

随着终端设备的发展以及应用程序的多样化,终端设备上下载的应用也越来越多,为用户查找应用带来了一定难度。为了解决该问题,可以在终端设备上通过应用推荐的方式,使得用户能够在终端设备的众多应用中快速查找到期望打开的应用,来提高用户的使用体验。With the development of terminal devices and the diversification of application programs, more and more applications are downloaded on terminal devices, which makes it difficult for users to find applications. In order to solve this problem, application recommendations can be used on terminal devices to enable users to quickly find the application they want to open among the many applications on the terminal device, thereby improving the user experience.

图1为本申请实施例提供的一种界面示意图,在介绍本申请实施例之前,首先结合图1对本申请实施例涉及的应用推荐界面进行说明。参照图1,以终端设备为手机为例,在应用推荐场景下,手机的显示界面可以包括一个或者多个控件,控件可以包括但不限于:建议文件夹101(或推荐文件夹、应用推荐文件夹等)。具体地,建议文件夹内可以包括一个或者推荐应用的应用图标(或称为第一应用图标)。其中,推荐应用即为终端设备推荐用户使用的应用。在本申请实施例中,推荐应用可以是终端设备通过推荐模型预测得到的、用户具有一定概率点击使用的应用程序。Figure 1 is a schematic diagram of an interface provided by an embodiment of the present application. Before introducing the embodiment of the present application, the application recommendation interface involved in the embodiment of the present application is first described in conjunction with Figure 1. Referring to Figure 1, taking the terminal device as a mobile phone as an example, in the application recommendation scenario, the display interface of the mobile phone may include one or more controls, and the controls may include but are not limited to: a recommended folder 101 (or a recommended folder, an application recommendation folder, etc.). Specifically, the recommended folder may include an application icon (or referred to as the first application icon) of one or more recommended applications. Among them, the recommended application is the application recommended by the terminal device for the user to use. In an embodiment of the present application, the recommended application may be an application predicted by the terminal device through a recommendation model, which the user has a certain probability of clicking to use.

需要说明的是,本申请实施例中的建议文件夹101的数量可以是一个或者多个,对此不作限制。当建议文件夹101的数量为多个时,多个建议文件夹101可以在同一页面上或者不同页面上,对此不作限制。It should be noted that the number of the suggested folders 101 in the embodiment of the present application can be one or more, and there is no limitation on this. When there are multiple suggested folders 101, the multiple suggested folders 101 can be on the same page or on different pages, and there is no limitation on this.

以及,当建议文件夹101的数量为多个时,可以将推荐应用按照预设规则放入不同建议文件夹101中。比如,为了进一步提高用户使用体验,可以将同一类型、或者相近类型的推荐应用的应用图标放入一个建议文件夹101中,不同类型或者不相近类型的推荐应用的应用图标放入不同建议文件夹101中。可选地,还可以按照其他方式,比如按照使用频次、使用概率高低,将推荐应用的应用图标放入不同建议文件夹101中,对此不作具体限制。Furthermore, when there are multiple recommended folders 101, the recommended applications can be placed in different recommended folders 101 according to preset rules. For example, in order to further improve the user experience, the application icons of the same or similar types of recommended applications can be placed in one recommended folder 101, and the application icons of different or dissimilar types of recommended applications can be placed in different recommended folders 101. Optionally, the application icons of recommended applications can be placed in different recommended folders 101 in other ways, such as according to the frequency of use or the probability of use, and there is no specific limitation on this.

以及,继续参见图1,手机的显示界面上的控件还可以包括其他应用的应用图标(或称为第二应用图标)。具体地,其他应用即为不进行应用推荐的应用,比如可以是需要在显示界面上显示的、除了推荐应用之外的其他应用。And, still referring to Figure 1, the control on the display interface of the mobile phone may also include application icons of other applications (or second application icons). Specifically, other applications are applications that are not recommended, such as other applications that need to be displayed on the display interface except for the recommended applications.

在一个实施例中,其他应用的应用图标可以直接放置于显示界面上,比如图1中的第一其他应用的应用图标103。In one embodiment, application icons of other applications may be directly placed on the display interface, such as application icon 103 of the first other application in FIG. 1 .

在另一个实施例中,其他应用的应用图标可以放置于其他应用文件夹(即用于放置其他应用的文件夹)中,比如图1中的第二其他应用的应用图标1021可以放于其他应用文件夹102中。需要说明的是,其他应用文件夹102的数量可以是一个或者多个,对此不作限制。当建议文件夹101的数量为多个时,多个其他应用文件夹102可以在同一页面上或者不同页面上,对此不作限制。In another embodiment, the application icons of other applications can be placed in other application folders (i.e., folders for placing other applications), for example, the application icon 1021 of the second other application in FIG. 1 can be placed in the other application folder 102. It should be noted that the number of other application folders 102 can be one or more, and there is no limitation on this. When there are multiple suggestion folders 101, the multiple other application folders 102 can be on the same page or on different pages, and there is no limitation on this.

在本申请实施例的描述中,以推荐应用的应用图标位于推荐文件夹为例进行说明。在其他实施例中,本申请同样适应于推荐应用的应用图标位于推荐卡片、弹窗等显示控件,对此不作具体限制。In the description of the embodiment of the present application, the application icon of the recommended application is located in the recommended folder as an example for explanation. In other embodiments, the present application is also applicable to the application icon of the recommended application being located in a display control such as a recommendation card or a pop-up window, and no specific limitation is made to this.

在应用推荐场景下,在一个示例中,可以将最近使用或者最常使用的应用作为推荐应用,然而,用户的应用使用行为往往较为随机,比如,在用户在购物-回家的生活场景中,用户在购物过程中,会频繁打开支付应用程序进行支付,而在返回家之后,则会打开短视频应用程序进行娱乐休闲。若在用户返回家后,将用户最常使用的支付应用程序作为推荐应用,由于用户在家可能并不会使用则无法满足用户实际使用需求,因此该种推荐方式推荐精度较低。In the application recommendation scenario, in one example, the most recently used or most frequently used application can be used as a recommended application. However, the user's application usage behavior is often relatively random. For example, in the user's life scenario of shopping and returning home, the user will frequently open the payment application to pay during the shopping process, and after returning home, he will open the short video application for entertainment and leisure. If the user's most frequently used payment application is used as a recommended application after the user returns home, it cannot meet the user's actual usage needs because the user may not use it at home. Therefore, this recommendation method has a low recommendation accuracy.

在另一个示例中,可以利用终端设备中的数据构建推荐模型,然后利用推荐模型来预测用户即将使用的程序。然而,由于终端设备的数据有限,预测精度往往较低,影响用户的使用体验。In another example, a recommendation model can be built using the data in the terminal device, and then the recommendation model can be used to predict the program that the user is about to use. However, due to the limited data in the terminal device, the prediction accuracy is often low, which affects the user's experience.

为了解决应用推荐精度较低而影响用户使用体验的问题,本申请实施例提供了一种应用推荐方法,可以基于终端设备的点击行为数据,预测终端设备用户的用户画像。由于同一用户画像群中的用户使用习惯或者使用行为具有相似性,利用同一用户画像群的点击行为数据,可以为推荐模型的训练提供数据支撑,提高了推荐模型的训练精度,进而将该用户画像群对应的推荐模型下发至该用户画像群对应的各个终端设备的方式,可以提高各终端设备的应用推荐精度。In order to solve the problem that the application recommendation accuracy is low and affects the user experience, the embodiment of the present application provides an application recommendation method, which can predict the user portrait of the terminal device user based on the click behavior data of the terminal device. Since the user usage habits or usage behaviors of the same user portrait group are similar, the click behavior data of the same user portrait group can provide data support for the training of the recommendation model, improve the training accuracy of the recommendation model, and then send the recommendation model corresponding to the user portrait group to each terminal device corresponding to the user portrait group, which can improve the application recommendation accuracy of each terminal device.

在对本申请实施例的技术方案说明之前,首先结合附图对本申请实施例的应用场景进行说明。Before describing the technical solution of the embodiment of the present application, the application scenario of the embodiment of the present application is first described with reference to the accompanying drawings.

参见图2,为本申请实施例提供的一种应用场景示意图。该应用场景中包括云端以及多个终端设备(例如终端设备1-终端设备3)。如图2所示,各终端设备与云端进行通信连接。在本申请实施例具体实施的过程中,云端可以包括一个或者多个云服务器,用于为终端设备提供服务。终端设备可以是具有应用显示界面的手机、平板电脑、可穿戴设备、车载设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、笔记本电脑等,本申请实施例对终端设备的具体类型不作限制。需要说明的是,在实际应用中,云端的数量可以为一个或多个,图2所示应用场景的云端与终端设备的数量仅为适应性举例,本申请对此不做限定。Referring to FIG. 2 , a schematic diagram of an application scenario provided in an embodiment of the present application is shown. The application scenario includes a cloud and multiple terminal devices (e.g., terminal device 1-terminal device 3). As shown in FIG. 2 , each terminal device is connected to the cloud for communication. In the specific implementation of the embodiment of the present application, the cloud may include one or more cloud servers for providing services to the terminal device. The terminal device may be a mobile phone, tablet computer, wearable device, vehicle-mounted device, augmented reality (AR)/virtual reality (VR) device, laptop computer, etc. with an application display interface. The embodiment of the present application does not limit the specific type of the terminal device. It should be noted that in actual applications, the number of clouds can be one or more, and the number of clouds and terminal devices in the application scenario shown in FIG. 2 is only an adaptive example, and the present application does not limit this.

图3示出了电子设备100的结构示意图。示例性地,图3中的电子设备的结构可适用于图2中的终端设备。应该理解的是,图3所示电子设备100仅是电子设备的一个范例,并且电子设备100可以具有比图中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图3中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。FIG3 shows a schematic diagram of the structure of the electronic device 100. Exemplarily, the structure of the electronic device in FIG3 may be applicable to the terminal device in FIG2. It should be understood that the electronic device 100 shown in FIG3 is only an example of an electronic device, and the electronic device 100 may have more or fewer components than those shown in the figure, may combine two or more components, or may have different component configurations. The various components shown in FIG3 may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.

电子设备100可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。The electronic device 100 may include: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2, a mobile communication module 150, a wireless communication module 160, an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, a sensor module 180, a button 190, a motor 191, an indicator 192, a camera 193, a display screen 194, and a subscriber identification module (SIM) card interface 195, etc. The sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, a bone conduction sensor 180M, etc.

处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processingunit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。The processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (AP), a modem processor, a graphics processor (GPU), an image signal processor (ISP), a controller, a memory, a video codec, a digital signal processor (DSP), a baseband processor, and/or a neural-network processing unit (NPU), etc. Different processing units may be independent devices or integrated into one or more processors.

其中,控制器可以是电子设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。The controller may be the nerve center and command center of the electronic device 100. The controller may generate an operation control signal according to the instruction operation code and the timing signal to complete the control of fetching and executing instructions.

处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。A memory may also be provided in the processor 110 for storing instructions and data. In some embodiments, the memory in the processor 110 is a high-speed cache memory. The USB interface 130 is an interface that complies with USB standard specifications, and may specifically be a Mini USB interface, a Micro USB interface, a USB Type C interface, etc. The USB interface 130 may be used to connect a charger to charge the electronic device 100, or may be used to transfer data between the electronic device 100 and a peripheral device. It may also be used to connect headphones to play audio through the headphones. The interface may also be used to connect other electronic devices, such as AR devices, etc.

充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。The charging management module 140 is used to receive charging input from a charger. The charger may be a wireless charger or a wired charger. In some wired charging embodiments, the charging management module 140 may receive charging input from a wired charger through the USB interface 130. In some wireless charging embodiments, the charging management module 140 may receive wireless charging input through a wireless charging coil of the electronic device 100. While the charging management module 140 is charging the battery 142, it may also power the electronic device through the power management module 141.

电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。The power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110. The power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the external memory, the display screen 194, the camera 193, and the wireless communication module 160. The wireless communication function of the electronic device 100 can be implemented through the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.

天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。Antenna 1 and antenna 2 are used to transmit and receive electromagnetic wave signals. Each antenna in electronic device 100 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve the utilization of antennas. For example, antenna 1 can be reused as a diversity antenna for a wireless local area network. In some other embodiments, the antenna can be used in combination with a tuning switch.

移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellitesystem,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near fieldcommunication,NFC),红外技术(infrared,IR)等无线通信的解决方案。The mobile communication module 150 can provide solutions for wireless communications including 2G/3G/4G/5G, etc., applied to the electronic device 100. The mobile communication module 150 can include at least one filter, a switch, a power amplifier, a low noise amplifier (LNA), etc. The wireless communication module 160 can provide solutions for wireless communications including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), Bluetooth (BT), global navigation satellite system (GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (IR), etc., applied to the electronic device 100.

在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。In some embodiments, antenna 1 of electronic device 100 is coupled to mobile communication module 150, and antenna 2 is coupled to wireless communication module 160, so that electronic device 100 can communicate with the network and other devices through wireless communication technology.

电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。The electronic device 100 implements the display function through a GPU, a display screen 194, and an application processor. The GPU is a microprocessor for image processing, which connects the display screen 194 and the application processor. The GPU is used to perform mathematical and geometric calculations for graphics rendering. The processor 110 may include one or more GPUs that execute program instructions to generate or change display information.

显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emittingdiode,OLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。The display screen 194 is used to display images, videos, etc. The display screen 194 includes a display panel. The display panel may be a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc. In some embodiments, the electronic device 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.

电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。The electronic device 100 can realize the shooting function through ISP, camera 193, video codec, GPU, display screen 194 and application processor.

摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。The camera 193 is used to capture still images or videos. The object generates an optical image through the lens and projects it onto the photosensitive element. The photosensitive element can be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor. The photosensitive element converts the optical signal into an electrical signal, and then passes the electrical signal to the ISP to be converted into a digital image signal. The ISP outputs the digital image signal to the DSP for processing. The DSP converts the digital image signal into an image signal in a standard RGB, YUV or other format. In some embodiments, the electronic device 100 may include 1 or N cameras 193, where N is a positive integer greater than 1.

外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。The external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100. The external memory card communicates with the processor 110 through the external memory interface 120 to implement a data storage function, such as storing music, video and other files in the external memory card.

内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器110通过运行存储在内部存储器121的指令,使得电子设备执行本申请中的应用推荐方法。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。The internal memory 121 can be used to store computer executable program codes, which include instructions. The processor 110 enables the electronic device to execute the application recommendation method in this application by running the instructions stored in the internal memory 121. The internal memory 121 may include a program storage area and a data storage area. Among them, the program storage area can store an operating system, an application required for at least one function (such as a sound playback function, an image playback function, etc.), etc. The data storage area can store data created during the use of the electronic device 100 (such as audio data, a phone book, etc.), etc. In addition, the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one disk storage device, a flash memory device, a universal flash storage (UFS), etc.

电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。The electronic device 100 can implement audio functions such as music playing and recording through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the headphone jack 170D, and the application processor.

音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。The audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signals. The audio module 170 can also be used to encode and decode audio signals. In some embodiments, the audio module 170 can be arranged in the processor 110, or some functional modules of the audio module 170 can be arranged in the processor 110.

压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。The pressure sensor 180A is used to sense the pressure signal and can convert the pressure signal into an electrical signal. In some embodiments, the pressure sensor 180A can be set on the display screen 194. There are many types of pressure sensors 180A, such as resistive pressure sensors, inductive pressure sensors, capacitive pressure sensors, etc. The capacitive pressure sensor can be a parallel plate including at least two conductive materials. When a force acts on the pressure sensor 180A, the capacitance between the electrodes changes. The electronic device 100 determines the intensity of the pressure according to the change in capacitance. When a touch operation acts on the display screen 194, the electronic device 100 detects the touch operation intensity according to the pressure sensor 180A. The electronic device 100 can also calculate the touch position according to the detection signal of the pressure sensor 180A. In some embodiments, touch operations acting on the same touch position but with different touch operation intensities can correspond to different operation instructions. For example: when a touch operation with a touch operation intensity less than the first pressure threshold acts on the short message application icon, an instruction to view the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold acts on the short message application icon, an instruction to create a new short message is executed.

触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。The touch sensor 180K is also called a "touch panel". The touch sensor 180K can be set on the display screen 194, and the touch sensor 180K and the display screen 194 form a touch screen, also called a "touch screen". The touch sensor 180K is used to detect touch operations acting on or near it. The touch sensor can pass the detected touch operation to the application processor to determine the type of touch event. Visual output related to the touch operation can be provided through the display screen 194. In other embodiments, the touch sensor 180K can also be set on the surface of the electronic device 100, which is different from the position of the display screen 194.

按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。The key 190 includes a power key, a volume key, etc. The key 190 may be a mechanical key or a touch key. The electronic device 100 may receive key input and generate key signal input related to user settings and function control of the electronic device 100.

马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。Motor 191 can generate vibration prompts. Motor 191 can be used for incoming call vibration prompts, and can also be used for touch vibration feedback. For example, touch operations acting on different applications (such as taking pictures, audio playback, etc.) can correspond to different vibration feedback effects. Indicator 192 can be an indicator light, which can be used to indicate charging status, power changes, messages, missed calls, notifications, etc.

电子设备100的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。本申请实施例以分层架构的Android系统为例,示例性说明电子设备100的软件结构。The software system of the electronic device 100 may adopt a layered architecture, an event-driven architecture, a micro-core architecture, a micro-service architecture, or a cloud architecture. The embodiment of the present application takes the Android system of the layered architecture as an example to exemplify the software structure of the electronic device 100.

图4是本申请实施例的电子设备100的软件结构框图。FIG. 4 is a software structure block diagram of the electronic device 100 according to an embodiment of the present application.

电子设备100的分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android系统分为四层,从上至下分别为应用程序层,应用程序框架层,安卓运行时(Android runtime)和系统库,以及内核层。The layered architecture of the electronic device 100 divides the software into several layers, each with clear roles and division of labor. The layers communicate with each other through software interfaces. In some embodiments, the Android system is divided into four layers, from top to bottom, namely, the application layer, the application framework layer, the Android runtime (Android runtime) and the system library, and the kernel layer.

应用程序层可以包括一系列应用程序包。The application layer can include a series of application packages.

如图4所示,应用程序层可以包括相机,图库,日历,通话,地图,导航,WLAN,蓝牙,音乐,视频,短信息等应用程序。As shown in FIG. 4 , the application layer may include applications such as camera, gallery, calendar, call, map, navigation, WLAN, Bluetooth, music, video, short message, etc.

在一些实施例中,应用程序层还可以包括桌面整理模块。In some embodiments, the application layer may also include a desktop organization module.

在本申请实施例中,桌面整理模块可以用于统计数据以及调用推荐模型。其中,桌面整理模块可以响应于用户在终端设备上对应用图标的点击操作,采集终端设备所产生的点击行为数据,以及将点击行为数据发送至云端。以及,还可以接收云端返回的推荐模型。以及获取终端设备的当前场景信息,根据当前场景信息和推荐模型,确定推荐应用。以及,在终端设备的显示界面的建议文件夹显示推荐应用。In an embodiment of the present application, the desktop organization module can be used to collect statistics and call recommendation models. Among them, the desktop organization module can respond to the user's click operation on the application icon on the terminal device, collect the click behavior data generated by the terminal device, and send the click behavior data to the cloud. And, it can also receive the recommendation model returned by the cloud. And obtain the current scene information of the terminal device, and determine the recommended application based on the current scene information and the recommendation model. And, display the recommended application in the suggestion folder of the display interface of the terminal device.

在本申请实施例的描述中,以桌面整理模块位于应用程序层例进行说明。在其他实施例中,本申请同样适应于桌面整理模块位于应用程序框架层、系统层等软件结构层,对此不作具体限制。In the description of the embodiment of the present application, the desktop arrangement module is located in the application layer. In other embodiments, the present application is also applicable to the desktop arrangement module being located in the application framework layer, the system layer, and other software structure layers, without specific limitation.

应用程序框架层为应用程序层的应用程序提供应用编程接口(applicationprogramming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。The application framework layer provides an application programming interface (API) and a programming framework for the applications in the application layer. The application framework layer includes some predefined functions.

如图4所示,应用程序框架层可以包括窗口管理器,内容提供器,视图系统,电话管理器,资源管理器,通知管理器等。As shown in FIG. 4 , the application framework layer may include a window manager, a content provider, a view system, a telephony manager, a resource manager, a notification manager, and the like.

窗口管理器用于管理窗口程序。窗口管理器可以获取显示屏大小,判断是否有状态栏,锁定屏幕,截取屏幕等。The window manager is used to manage window programs. The window manager can obtain the display screen size, determine whether there is a status bar, lock the screen, capture the screen, etc.

内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。所述数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。Content providers are used to store and retrieve data and make it accessible to applications. The data may include videos, images, audio, calls made and received, browsing history and bookmarks, phone books, etc.

视图系统包括可视控件,例如显示文字的控件,显示图片的控件等。视图系统可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。The view system includes visual controls, such as controls for displaying text, controls for displaying images, etc. The view system can be used to build applications. A display interface can be composed of one or more views. For example, a display interface including a text notification icon can include a view for displaying text and a view for displaying images.

电话管理器用于提供电子设备100的通信功能。例如通话状态的管理(包括接通,挂断等)。The phone manager is used to provide communication functions of the electronic device 100, such as management of call status (including connecting, hanging up, etc.).

资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件,视频文件等等。The resource manager provides various resources for applications, such as localized strings, icons, images, layout files, video files, and so on.

通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在系统顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话窗口形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,电子设备振动,指示灯闪烁等。The notification manager enables applications to display notification information in the status bar. It can be used to convey notification-type messages and can disappear automatically after a short stay without user interaction. For example, the notification manager is used to notify download completion, message reminders, etc. The notification manager can also be a notification that appears in the system top status bar in the form of a chart or scroll bar text, such as notifications of applications running in the background, or a notification that appears on the screen in the form of a dialog window. For example, a text message is displayed in the status bar, a prompt sound is emitted, an electronic device vibrates, an indicator light flashes, etc.

内核层是硬件和软件之间的层。内核层至少包含显示驱动,摄像头驱动,音频驱动,传感器驱动。The kernel layer is the layer between hardware and software. The kernel layer contains at least display driver, camera driver, audio driver, and sensor driver.

可以理解的是,图4示出的软件结构中的层以及各层中包含的部件,并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的层,以及每个层中可以包括更多或更少的部件,本申请不做限定。It is understandable that the layers in the software structure shown in FIG4 and the components contained in each layer do not constitute a specific limitation on the electronic device 100. In other embodiments of the present application, the electronic device 100 may include more or fewer layers than shown in the figure, and each layer may include more or fewer components, which is not limited in the present application.

图5为本申请实施例提供的一种云端设备示例的硬件结构框图。本申请实施例中的云端可以是一个或多个服务器集群。集群中可以包括一个或多个云端设备。云端设备可以是云服务器等设备,本申请不做限定。如图5所示,云端设备200包括处理器222,其进一步包括一个或多个处理器,以及由存储器232所代表的存储器资源,用于存储可由处理器222的执行的指令,例如应用程序。存储器232中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理器222被配置为执行指令,以执行本申请实施例提供的应用推荐方法。FIG5 is a block diagram of the hardware structure of an example of a cloud device provided in an embodiment of the present application. The cloud in the embodiment of the present application may be one or more server clusters. The cluster may include one or more cloud devices. The cloud device may be a cloud server or other device, which is not limited in the present application. As shown in FIG5 , the cloud device 200 includes a processor 222, which further includes one or more processors, and a memory resource represented by a memory 232 for storing instructions executable by the processor 222, such as an application. The application stored in the memory 232 may include one or more modules, each of which corresponds to a set of instructions. In addition, the processor 222 is configured to execute instructions to execute the application recommendation method provided in an embodiment of the present application.

云端设备200还可以包括一个电源组件226被配置为执行云端设备200的电源管理,一个有线或无线的网络接口250被配置为将云端设备200连接到网络,和一个输入输出接口258。云端设备200可以操作基于存储在存储器232的操作系统。The cloud device 200 may further include a power supply component 226 configured to perform power management of the cloud device 200, a wired or wireless network interface 250 configured to connect the cloud device 200 to a network, and an input/output interface 258. The cloud device 200 may operate based on an operating system stored in the memory 232.

以下实施例中的方法均可以在具备上述硬件结构的终端设备和云端实现。以下实施例中,以应用推荐系统包括如图2所示的终端设备和云端为例,结合如下图6-图21,对本申请实施例具体实现方式进行详细说明。具体地,本申请实施例中的应用推荐过程可以分为两部分。第一部分为模型生成场景,即云端基于终端设备的点击行为数据进行推荐模型训练并将训练得到的推荐模型下发至终端设备的场景。第二部分为应用预测场景,即终端设备基于推荐模型进行应用预测、推荐的场景。The methods in the following embodiments can be implemented in a terminal device and a cloud with the above-mentioned hardware structure. In the following embodiments, taking the application recommendation system including the terminal device and the cloud as shown in Figure 2 as an example, the specific implementation method of the embodiment of the present application is described in detail in combination with the following Figures 6-21. Specifically, the application recommendation process in the embodiment of the present application can be divided into two parts. The first part is the model generation scenario, that is, the cloud side trains the recommendation model based on the click behavior data of the terminal device and sends the trained recommendation model to the terminal device. The second part is the application prediction scenario, that is, the scenario in which the terminal device predicts and recommends applications based on the recommendation model.

下面结合图6所示的方法流程示意图,对推荐模型的训练过程进行详细说明,参照图6,具体包括:The following is a detailed description of the training process of the recommendation model in conjunction with the method flow diagram shown in FIG6 . Referring to FIG6 , the training process specifically includes:

S101,云端接收终端设备发送的点击行为数据。S101, the cloud receives click behavior data sent by the terminal device.

点击行为数据,即用于描述用户的应用点击行为的相关数据。示例性地,点击行为数据可以包括但不限于以下信息的一种或多种:用户维度信息、时间维度信息、空间维度信息、设备维度信息、应用维度信息。在一个示例中,为了提高应用推荐精度,图7为示例性示出的点击行为数据的示意图。参照图7,点击行为数据可以包括用户维度信息、时间维度信息、空间维度信息、设备维度信息和应用维度信息。在另一个示例中,由于用户维度信息可能难以获取,点击行为信息可以不包括用户维度信息。下面结合图7对各维度信息进行说明。Click behavior data, i.e., relevant data used to describe the user's application click behavior. Exemplarily, click behavior data may include, but is not limited to, one or more of the following information: user dimension information, time dimension information, space dimension information, device dimension information, and application dimension information. In one example, in order to improve the accuracy of application recommendation, FIG7 is a schematic diagram of click behavior data shown as an example. Referring to FIG7, click behavior data may include user dimension information, time dimension information, space dimension information, device dimension information, and application dimension information. In another example, since user dimension information may be difficult to obtain, click behavior information may not include user dimension information. The following is an explanation of each dimension information in conjunction with FIG7.

用户维度信息,即能够反映应用点击行为在用户维度上的相关特征信息。可选地,参照图7,用户维度信息可以包括但不限于:用户标识符(Identity,ID)、性别、年龄、职业、使用习惯、爱好中的一种或多种。User dimension information, that is, relevant characteristic information that can reflect application click behavior in user dimension. Optionally, referring to FIG. 7 , user dimension information may include but is not limited to: one or more of user identifier (Identity, ID), gender, age, occupation, usage habits, and hobbies.

示例性地,用户ID可以是能够表征用户身份的信息,比如用户手机号、终端设备码、用户昵称等。Exemplarily, the user ID may be information that can represent the user's identity, such as the user's mobile phone number, terminal device code, user nickname, etc.

示例性地,性别可以是“男”、“女”。需要说明的是,考虑到不同性别的用户所偏好的应用可能存在不同,即用户应用偏好可能具有性别规律,相应地,云端利用性别来训练推荐模型时,可以使得推荐模型能够基于用户的性别特征来预测用户期望使用的应用,提高了应用推荐精度。以及,云端将性别作为用户画像标签时,用户性别能够体现用户的应用使用习惯,从而使得画像预测模型预测得到的预测画像能够准确描述用户的应用使用习惯,从而能够根据应用使用习惯对用户进行准确分类,提高了分类精度。Exemplarily, gender can be "male" or "female". It should be noted that considering that users of different genders may prefer different applications, that is, user application preferences may have gender patterns, accordingly, when the cloud uses gender to train the recommendation model, the recommendation model can predict the application that the user expects to use based on the user's gender characteristics, thereby improving the accuracy of application recommendations. In addition, when the cloud uses gender as a user portrait label, the user's gender can reflect the user's application usage habits, so that the predicted portrait predicted by the portrait prediction model can accurately describe the user's application usage habits, thereby accurately classifying users according to their application usage habits, thereby improving classification accuracy.

示例性地,年龄可以是能够描述用户年龄特征的信息,例如可以是用户所对应的年龄段,比如“青年”、“中年”等。需要说明的是,由于不同年龄用户所偏好的应用可能存在不同,比如青少年倾向于使用学习类应用,老年人倾向于使用短视频类应用,相应地,云端利用年龄来训练推荐模型时,可以使得推荐模型能够基于用户的年龄特征来预测用户期望使用的应用,提高了应用推荐精度。以及,云端将年龄作为用户画像标签时,由于用户年龄能够体现用户的应用使用习惯,从而使得画像预测模型预测得到的预测画像能够准确描述用户的应用使用习惯,从而能够根据应用使用习惯对用户进行准确分类,提高了分类精度。Exemplarily, age can be information that can describe the age characteristics of the user, for example, it can be the age group corresponding to the user, such as "youth", "middle-aged", etc. It should be noted that since users of different ages may prefer different applications, for example, teenagers tend to use learning applications, and the elderly tend to use short video applications. Accordingly, when the cloud uses age to train the recommendation model, the recommendation model can predict the application that the user expects to use based on the user's age characteristics, thereby improving the accuracy of application recommendations. In addition, when the cloud uses age as a user portrait label, since the user's age can reflect the user's application usage habits, the predicted portrait predicted by the portrait prediction model can accurately describe the user's application usage habits, so that users can be accurately classified according to their application usage habits, thereby improving classification accuracy.

示例性地,职业可以是能够描述用户职业特征的信息,比如“办事人员”、“研究人员”等职业分类,或者“医生”、“职员”等具体职业。For example, occupation may be information that can describe the occupational characteristics of the user, such as occupational classifications such as "clerk" and "researcher", or specific occupations such as "doctor" and "clerk".

需要说明的是,由于不同职业的用户因职业习惯不同,所偏好的应用可能存在不同,即用户应用偏好可能具有职业规律,相应地,云端利用职业来训练推荐模型时,可以使得推荐模型能够基于用户的职业特征来预测用户期望使用的应用,提高推荐模型的应用推荐精度。以及,云端将职业作为用户画像标签时,用户职业能够体现用户的应用使用习惯,从而使得画像预测模型预测得到的预测画像能够准确描述用户的应用使用习惯,从而能够根据应用使用习惯对用户进行准确分类,提高了分类精度。It should be noted that users of different professions may have different preferred applications due to their different professional habits, that is, user application preferences may have professional rules. Accordingly, when the cloud uses profession to train the recommendation model, the recommendation model can predict the applications that the user expects to use based on the user's professional characteristics, thereby improving the application recommendation accuracy of the recommendation model. In addition, when the cloud uses profession as a user portrait label, the user's profession can reflect the user's application usage habits, so that the predicted portrait predicted by the portrait prediction model can accurately describe the user's application usage habits, thereby accurately classifying users according to their application usage habits, thereby improving classification accuracy.

示例性地,使用习惯可以是能够表示用户习惯使用的应用的特征信息,例如用户使用频率较高的应用,比如,使用习惯可以是用户在一段时期内使用频率较高的应用,或者是用户在各个时间段内使用较高的应用等。Exemplarily, usage habits may be characteristic information that can represent applications that users are accustomed to using, such as applications that users use more frequently. For example, usage habits may be applications that users use more frequently over a period of time, or applications that users use more frequently in different time periods.

需要说明的是,由于使用习惯表征着用户习惯使用的应用(或偏好使用的应用),比如,多次使用短视频类应用频率的用户可能偏好使用短视频类应用,频繁使用拍照类应用的用户可能偏好使用拍照类应用或者修图类应用,即用户应用偏好可能具有使用习惯规律,相应地,云端利用使用习惯来训练推荐模型时,可以使得推荐模型能够基于用户的使用习惯特征来预测用户期望使用的应用,可以进而提高推荐模型的应用推荐精度。以及,云端将使用习惯作为用户画像标签时,用户使用习惯能够体现用户的应用使用习惯,从而使得画像预测模型预测得到的预测画像能够准确描述用户的应用使用习惯,从而能够根据应用使用习惯对用户进行准确分类,提高了分类精度。It should be noted that since usage habits represent the applications that users are accustomed to using (or prefer to use), for example, users who frequently use short video applications may prefer to use short video applications, and users who frequently use photo applications may prefer to use photo applications or photo editing applications, that is, user application preferences may have usage habit patterns. Accordingly, when the cloud uses usage habits to train the recommendation model, the recommendation model can predict the applications that users expect to use based on the user's usage habit characteristics, which can further improve the application recommendation accuracy of the recommendation model. In addition, when the cloud uses usage habits as user portrait labels, user usage habits can reflect the user's application usage habits, so that the predicted portraits predicted by the portrait prediction model can accurately describe the user's application usage habits, so that users can be accurately classified according to their application usage habits, thereby improving the classification accuracy.

示例性地,爱好可以是描述用户爱好特征的信息,比如“画画”、“运动”等。需要说明的是,用户维度信息还可以包括诸如速度等其他能够反映应用点击行为的用户特征的其他用户维度信息,对此不作具体限制。For example, hobbies may be information describing user hobby characteristics, such as "drawing", "sports", etc. It should be noted that user dimension information may also include other user dimension information such as speed that can reflect user characteristics of application click behavior, and there is no specific limitation on this.

需要说明的是,由于用户可能偏好使用于爱好相关的应用,比如,多次使用短视频类应用频率的用户可能偏好使用短视频类应用,频繁使用拍照类应用的用户可能偏好使用拍照类应用或者修图类应用,即用户应用偏好可能具有爱好规律,相应地,云端利用爱好来训练推荐模型时,可以使得推荐模型能够基于用户的爱好特征来预测用户期望使用的应用,可以进而提高推荐模型的应用推荐精度。以及,云端将爱好作为用户画像标签时,用户爱好能够体现用户的应用使用习惯,从而使得画像预测模型预测得到的预测画像能够准确描述用户的应用使用习惯,从而能够根据应用使用习惯对用户进行准确分类,提高了分类精度。It should be noted that since users may prefer to use applications related to their hobbies, for example, users who frequently use short video applications may prefer to use short video applications, and users who frequently use photo applications may prefer to use photo applications or photo editing applications, that is, user application preferences may have hobby patterns. Accordingly, when the cloud uses hobbies to train the recommendation model, the recommendation model can predict the applications that the user expects to use based on the user's hobby characteristics, which can further improve the application recommendation accuracy of the recommendation model. In addition, when the cloud uses hobbies as user portrait labels, user hobbies can reflect the user's application usage habits, so that the predicted portraits predicted by the portrait prediction model can accurately describe the user's application usage habits, so that users can be accurately classified according to their application usage habits, thereby improving the classification accuracy.

时间维度信息,即能够反映应用点击行为在时间维度上的相关特征信息(例如终端设备1检测到应用点击行为的具体时间的相关时间特征信息)。可选地,参照图7,时间维度信息可以包括但不限于:小时、周几、月度、季度、节假日中的一种或多种。需要说明的是,时间维度信息还可以包括诸如速度等其他能够反映应用点击行为的时间特征的其他时间维度信息,对此不作具体限制。Time dimension information, i.e., relevant characteristic information that can reflect the application click behavior in the time dimension (e.g., relevant time characteristic information of the specific time when the terminal device 1 detects the application click behavior). Optionally, referring to FIG. 7 , the time dimension information may include, but is not limited to, one or more of: hours, days of the week, months, quarters, holidays. It should be noted that the time dimension information may also include other time dimension information such as speed that can reflect the time characteristics of the application click behavior, and there is no specific limitation on this.

需要说明的是,由于用户可能在不同时间段具有不同应用使用偏好,比如用户在中午吃饭时刷视频,上班时使用办公类软件等往往具有明显的时间规律,相应地,云端利用时间维度信息来训练推荐模型时,可以使得推荐模型能够基于应用点击的时间规律来预测用户期望使用的应用,可以进而提高推荐模型的应用推荐精度。以及,由于时间维度信息和用户预测画像均与用户的应用使用习惯相关联,相应地,云端利用画像预测模型能够发掘时间维度信息和用户预测画像之间的关联性,从而可以利用时间维度信息来提高用户预测画像的预测精度。It should be noted that since users may have different application usage preferences in different time periods, such as watching videos at lunch and using office software at work, there are often obvious time patterns. Accordingly, when the cloud uses time dimension information to train the recommendation model, the recommendation model can predict the application that the user expects to use based on the time pattern of application clicks, which can further improve the application recommendation accuracy of the recommendation model. In addition, since both time dimension information and user prediction portraits are associated with the user's application usage habits, the cloud can use the portrait prediction model to discover the correlation between time dimension information and user prediction portraits, so that the time dimension information can be used to improve the prediction accuracy of user prediction portraits.

空间维度信息,即能够反映应用点击行为在空间维度上的相关特征信息(例如用户在进行该应用点击行为时所处位置的相关位置数据)。可选地,参照图7,空间维度信息可以包括但不限于全球定位系统(Global Positioning System,GPS)位置、基站ID、兴趣点(Point of Interest,POI)分布中的一种或多种。示例性地,GPS位置可以是用户在进行该应用点击行为时、所处位置的GPS定位信息。示例性地,基站ID可以是用户在进行该应用点击行为时、终端设备所连接基站的基站ID。示例性地,POI分布可以是用户在进行该应用点击行为时、分布于用户周围的POI点。比如,POI分布可以是以用户为中心的、预设范围内的POI点。示例性地,POI点可以是指在地图上能够吸引人们注意的具有特殊意义的地方或标志物,比如,商铺、旅游景点、医院、交通枢纽等。Spatial dimension information, that is, the relevant characteristic information that can reflect the application click behavior in the spatial dimension (for example, the relevant location data of the user's location when performing the application click behavior). Optionally, referring to Figure 7, the spatial dimension information may include, but is not limited to, one or more of the global positioning system (GPS) position, base station ID, and point of interest (POI) distribution. Exemplarily, the GPS position may be the GPS positioning information of the user's location when performing the application click behavior. Exemplarily, the base station ID may be the base station ID of the base station to which the terminal device is connected when the user performs the application click behavior. Exemplarily, the POI distribution may be the POI points distributed around the user when the user performs the application click behavior. For example, the POI distribution may be a POI point centered on the user and within a preset range. Exemplarily, the POI point may refer to a place or landmark with special significance on the map that can attract people's attention, such as a shop, a tourist attraction, a hospital, a transportation hub, etc.

可选地,空间维度信息还可以包括诸如速度等其他能够反映应用点击行为的位置特征的其他设备维度信息,对此不作具体限制。Optionally, the spatial dimension information may also include other device dimension information such as speed that can reflect the location characteristics of the application click behavior, and there is no specific limitation on this.

需要说明的是,由于用户处于特定位置时可能具有特定使用偏好,比如,用户处于地铁站或者公交站时可能偏好使用出行类应用,又比如,用户处于火车站时可能偏好使用铁路购票应用软件,用户处于商场时可能偏好使用支付类应用、点餐类应用或者消费点评类应用。上述应用使用行为往往具有明显的空间使用规律,位置变化影响着用户点击行为,相应地,云端利用空间维度信息来训练推荐模型时,可以使得推荐模型能够基于应用点击的位置规律来预测用户期望使用的应用,可以进而提高推荐模型的应用推荐精度。以及,由于空间维度信息和用户预测画像均与用户的应用使用习惯相关联,相应地,云端利用画像预测模型能够发掘空间维度信息和用户预测画像之间的关联性,从而可以利用空间维度信息来提高用户预测画像的预测精度。It should be noted that users may have specific usage preferences when they are in specific locations. For example, users may prefer to use travel applications when they are in subway stations or bus stations. For example, users may prefer to use railway ticket purchasing applications when they are in train stations. Users may prefer to use payment applications, ordering applications, or consumer review applications when they are in shopping malls. The above application usage behaviors often have obvious spatial usage patterns, and location changes affect user click behaviors. Accordingly, when the cloud uses spatial dimension information to train the recommendation model, the recommendation model can predict the application that the user expects to use based on the location pattern of application clicks, which can further improve the application recommendation accuracy of the recommendation model. In addition, since both spatial dimension information and user prediction portraits are associated with the user's application usage habits, the cloud can use the portrait prediction model to explore the correlation between spatial dimension information and user prediction portraits, so that the spatial dimension information can be used to improve the prediction accuracy of user prediction portraits.

设备维度信息,即能够反映应用点击行为在设备维度上的相关特征信息(例如在应用点击行为发生时、终端设备1的设备信息)。可选地,参照图7,设备维度信息可以包括但不限于加速度、电量、充放电、网络连接、蓝牙连接中的一种或者多种。Device dimension information, i.e., relevant characteristic information that can reflect the application click behavior in the device dimension (e.g., the device information of the terminal device 1 when the application click behavior occurs). Optionally, referring to FIG. 7 , the device dimension information may include, but is not limited to, one or more of acceleration, power, charging and discharging, network connection, and Bluetooth connection.

示例性地,加速度可以是指应用点击行为发生时、终端设备的加速度。比如,可以是加速度区间又或者可以是具体的加速度值。For example, acceleration may refer to the acceleration of the terminal device when the application click behavior occurs, for example, it may be an acceleration interval or a specific acceleration value.

需要说明的是,由于用户可能在不同加速度时具有不同应用使用偏好,比如,在用户在躺着刷手机时(加速度为0),此时倾向于打开诸如短视频应用、资讯共享平台、视频类应用,用户在高铁等运输工具上高速移动时(此时加速度较大),由于终端设备信号较差,可能偏好打开即时通讯类应用、小说类应用等对网络信号需求较低的应用。上述应用使用行为往往具有明显的加速度规律,相应地,云端利用加速度来训练推荐模型时,可以使得推荐模型能够基于终端设备的加速度特征来预测用户期望使用的应用,可以进而提高推荐模型的应用推荐精度。以及,由于加速度和用户预测画像均与用户的应用使用习惯相关联,相应地,云端利用画像预测模型能够发掘加速度和用户预测画像之间的关联性,从而可以利用加速度来提高用户预测画像的预测精度。It should be noted that users may have different application usage preferences at different accelerations. For example, when a user is lying down and browsing their phone (acceleration is 0), they tend to open short video applications, information sharing platforms, and video applications. When a user is moving at high speed on a high-speed rail or other means of transportation (at this time, the acceleration is large), due to the poor signal of the terminal device, they may prefer to open instant messaging applications, novel applications, and other applications with low network signal requirements. The above application usage behaviors often have obvious acceleration patterns. Accordingly, when the cloud uses acceleration to train the recommendation model, the recommendation model can predict the application that the user expects to use based on the acceleration characteristics of the terminal device, which can further improve the application recommendation accuracy of the recommendation model. In addition, since both acceleration and user prediction portraits are associated with the user's application usage habits, the cloud can use the portrait prediction model to explore the correlation between acceleration and user prediction portraits, so that acceleration can be used to improve the prediction accuracy of user prediction portraits.

示例性地,电量可以是指应用点击行为发生时、终端设备的剩余电量。比如,电量区间等。For example, the power level may refer to the remaining power level of the terminal device when the application click behavior occurs, for example, the power level interval.

需要说明的是,由于用户在不同电量时可能具有不同的应用使用偏好,比如用户在低电量时可能不会打开游戏、短视频类应用等耗电量较高的应用。上述应用使用行为往往具有明显的电量规律,相应地,云端利用电量来训练推荐模型时,可以使得推荐模型能够基于应用点击时的终端设备的电量规律来预测用户期望使用的应用,可以进而提高推荐模型的应用推荐精度。以及,由于电量和用户预测画像均与用户的应用使用习惯相关联,相应地,云端利用画像预测模型能够发掘电量和用户预测画像之间的关联性,从而可以利用电量来提高用户预测画像的预测精度。It should be noted that users may have different application usage preferences at different power levels. For example, users may not open games, short video applications, and other power-intensive applications when the battery is low. The above application usage behaviors often have obvious power patterns. Accordingly, when the cloud uses power to train the recommendation model, the recommendation model can predict the application that the user expects to use based on the power pattern of the terminal device when the application is clicked, which can further improve the application recommendation accuracy of the recommendation model. In addition, since both the power level and the user prediction portrait are related to the user's application usage habits, the cloud can use the portrait prediction model to discover the correlation between the power level and the user prediction portrait, so that the power level can be used to improve the prediction accuracy of the user prediction portrait.

示例性地,充放电可以是应用点击行为发生时、终端设备的充放电状态。比如,充放电可以包括“充电”或者“放电”。又比如,在终端设备处于充电状态时,由于不同在连接不同充电设备时,用户可能具有不同应用使用偏好,充放电还可以包括充电设备的相关信息。Exemplarily, charging and discharging can be the charging and discharging state of the terminal device when the application click behavior occurs. For example, charging and discharging can include "charging" or "discharging". For another example, when the terminal device is in a charging state, since the user may have different application usage preferences when connecting to different charging devices, charging and discharging can also include relevant information of the charging device.

需要说明的是,由于用户在不同充放电状态时可能具有不同的应用使用偏好,比如用户在利用充电器充电时可能会处于充电器周围,相应地用户可能不会使用运动类应用,上述应用点击行为往往具有充放电规律。相应地,云端利用充放电来训练推荐模型时,可以使得推荐模型能够基于应用点击时终端设备的充放电规律来预测用户期望使用的应用,可以提高推荐模型的应用推荐精度。以及,由于充放电信息和用户预测画像均与用户的应用使用习惯相关联,相应地,云端利用画像预测模型能够发掘充放电信息和用户预测画像之间的关联性,从而可以利用充放电信息来提高用户预测画像的预测精度。It should be noted that since users may have different application usage preferences in different charging and discharging states, for example, users may be around a charger when charging with a charger, and accordingly, users may not use sports applications. The above application click behaviors often have charging and discharging patterns. Accordingly, when the cloud uses charging and discharging to train the recommendation model, the recommendation model can predict the application that the user expects to use based on the charging and discharging pattern of the terminal device when the application is clicked, which can improve the application recommendation accuracy of the recommendation model. In addition, since both the charging and discharging information and the user prediction portrait are associated with the user's application usage habits, accordingly, the cloud can use the portrait prediction model to explore the correlation between the charging and discharging information and the user prediction portrait, so that the charging and discharging information can be used to improve the prediction accuracy of the user prediction portrait.

示例性地,网络连接可以是指应用点击行为发生时、终端设备的网络连接状态,比如无线网络连接、蜂窝网络连接等。又比如,在蜂窝网络连接时,网络连接还可以包括诸如2G、3G、4G、5G等网络模式信息。For example, the network connection may refer to the network connection status of the terminal device when the application click behavior occurs, such as wireless network connection, cellular network connection, etc. For another example, when the cellular network is connected, the network connection may also include network mode information such as 2G, 3G, 4G, 5G, etc.

需要说明的是,由于用户在不同网络连接状态时可能具有不同的应用使用偏好。在一个示例中,用户在无线网络连接时,可能会偏好使用视频类应用等消耗流量较多的应用。在蜂窝网络连接时,可能会偏好使用即时通讯应用等消耗流量较低或者对通信实时性要求较高的应用。在另一个示例中,在2G网络模式下,用户可能会使用对网络通信质量需求不高的应用,比如可以离线使用的应用。而对于短视频类应用等对网络通信质量需求较高的应用的使用概率往往较低。以及,在5G网络模式下,用户可能会使用对网络通信质量需求较高的应用,比如短视频类应用等。上述应用点击行为往往具有网络连接规律,相应地,云端利用网络连接来训练推荐模型时,可以使得推荐模型能够基于应用点击时终端设备的网络连接特征来预测用户期望使用的应用,可以提高推荐模型的应用推荐精度。以及,由于网络连接和用户预测画像均与用户的应用使用习惯相关联,相应地,云端利用画像预测模型能够发掘网络连接和用户预测画像之间的关联性,从而可以利用网络连接来提高用户预测画像的预测精度。It should be noted that users may have different application usage preferences in different network connection states. In one example, when the user is connected to a wireless network, he may prefer to use applications such as video applications that consume more traffic. When connected to a cellular network, he may prefer to use applications such as instant messaging applications that consume less traffic or have higher communication real-time requirements. In another example, in the 2G network mode, users may use applications that do not require high network communication quality, such as applications that can be used offline. The probability of using applications such as short video applications that require high network communication quality is often low. And, in the 5G network mode, users may use applications that require high network communication quality, such as short video applications. The above application click behavior often has a network connection rule. Accordingly, when the cloud uses the network connection to train the recommendation model, the recommendation model can predict the application that the user expects to use based on the network connection characteristics of the terminal device when the application is clicked, which can improve the application recommendation accuracy of the recommendation model. And, since both the network connection and the user prediction portrait are associated with the user's application usage habits, accordingly, the cloud can use the portrait prediction model to discover the correlation between the network connection and the user prediction portrait, so that the network connection can be used to improve the prediction accuracy of the user prediction portrait.

示例性地,蓝牙连接可以是指应用点击行为发生时、终端设备的蓝牙连接状态,比如“运动手表连接”、“耳机连接”、“手写笔连接”等。Exemplarily, the Bluetooth connection may refer to the Bluetooth connection status of the terminal device when the application click behavior occurs, such as "sports watch connected", "headphones connected", "stylus pen connected", etc.

需要说明的是,由于用户在不同蓝牙连接时可能具有不同的应用使用偏好。在一个示例中,在终端设备与运动手表蓝牙连接时,可能会偏好使用运动类应用。在与耳机蓝牙连接时,可能会偏好使用视频类应用或者音乐播放类应用。在与手写笔连接时,可能会偏好使用绘图类应用或者其他使用手写笔的应用。上述应用点击行为往往具有蓝牙连接规律,相应地,云端利用蓝牙连接来训练推荐模型时,可以使得推荐模型能够基于应用点击时终端设备的蓝牙连接特征来预测用户期望使用的应用,可以提高推荐模型的应用推荐精度。以及,由于蓝牙连接和用户预测画像均与用户的应用使用习惯相关联,相应地,云端利用画像预测模型能够发掘蓝牙连接和用户预测画像之间的关联性,从而可以利用蓝牙连接来提高用户预测画像的预测精度。It should be noted that users may have different application usage preferences when using different Bluetooth connections. In one example, when the terminal device is connected to a sports watch via Bluetooth, sports applications may be preferred. When connected to headphones via Bluetooth, video applications or music playback applications may be preferred. When connected to a stylus, drawing applications or other applications that use a stylus may be preferred. The above-mentioned application click behaviors often have Bluetooth connection rules. Accordingly, when the cloud uses Bluetooth connection to train the recommendation model, the recommendation model can predict the application that the user expects to use based on the Bluetooth connection characteristics of the terminal device when the application is clicked, thereby improving the application recommendation accuracy of the recommendation model. In addition, since both Bluetooth connection and user prediction portrait are associated with the user's application usage habits, the cloud can use the portrait prediction model to explore the correlation between Bluetooth connection and user prediction portrait, thereby using Bluetooth connection to improve the prediction accuracy of user prediction portrait.

可选地,设备维度信息还可以包括诸如速度等其他能够反映应用点击行为的设备特征的其他设备维度信息,对此不作具体限制。Optionally, the device dimension information may also include other device dimension information such as speed, which can reflect device characteristics of application click behavior, and there is no specific limitation on this.

应用维度信息,即能够反映应用点击行为在应用维度上的相关特征信息。可选地,应用维度信息可以是指应用点击行为所点击应用的相关应用信息。示例性地,参照图7,应用维度信息可以包括但不限于应用ID、类别、打分、排名、收费中的一种或者多多种。又示例性地,应用维度信息还可以包括终端设备的应用列表信息。其中,应用列表信息用于记录在终端设备内已下载应用的信息。需要说明的是,若用户喜欢拍照,往往会下载多款拍照类APP,因此应用列表信息可以反映用户的应用使用偏好。Application dimension information, that is, the relevant characteristic information that can reflect the application click behavior in the application dimension. Optionally, the application dimension information may refer to the relevant application information of the application clicked by the application click behavior. Exemplarily, referring to Figure 7, the application dimension information may include but is not limited to one or more of application ID, category, scoring, ranking, and charging. Another example is that the application dimension information may also include application list information of the terminal device. Among them, the application list information is used to record the information of the downloaded applications in the terminal device. It should be noted that if the user likes to take pictures, he will often download multiple photo-taking apps, so the application list information can reflect the user's application usage preferences.

需要说明的是,用户多次应用点击行为往往具有一定点击规律,以及诸如应用列表等信息可以反映用户的应用使用偏好,相应地,云端利用应用维度信息来训练推荐模型时,可以使得推荐模型能够基于应用点击规律来预测用户期望使用的应用,可以进而提高推荐模型的应用推荐精度。以及,由于应用维度信息和用户预测画像均与用户的应用使用习惯相关联,相应地,云端利用画像预测模型能够发掘应用维度信息和用户预测画像之间的关联性,从而可以利用应用维度信息来提高用户预测画像的预测精度。It should be noted that users' multiple application click behaviors often have certain click patterns, and information such as application lists can reflect users' application usage preferences. Accordingly, when the cloud uses application dimension information to train the recommendation model, the recommendation model can predict the applications that users expect to use based on the application click patterns, which can further improve the application recommendation accuracy of the recommendation model. In addition, since both application dimension information and user prediction portraits are associated with users' application usage habits, the cloud can use the portrait prediction model to discover the correlation between application dimension information and user prediction portraits, so that the application dimension information can be used to improve the prediction accuracy of user prediction portraits.

在介绍了点击行为数据之后,接下来继续对S101的具体实施方式进行说明。After introducing the click behavior data, the specific implementation of S101 will be described next.

在一些实施例中,终端设备响应于接收到的用户操作(用户操作包括但不限于:单击、双击、滑动等),终端设备采集与此次用户操作相关的点击行为数据。终端设备在采集到点击行为数据之后,向云端发送点击行为数据。示例性地,若点击行为数据中不同信息的采集条件不同,则终端设备向云端发送不同信息的时刻可以不同。下面结合图8a-图8c对点击行为数据的发送过程进行说明。In some embodiments, in response to a received user operation (user operations include but are not limited to: single click, double click, slide, etc.), the terminal device collects click behavior data related to this user operation. After collecting the click behavior data, the terminal device sends the click behavior data to the cloud. Exemplarily, if the collection conditions of different information in the click behavior data are different, the time when the terminal device sends different information to the cloud may be different. The sending process of click behavior data is described below in conjunction with Figures 8a-8c.

在一个示例中,在用户点击了应用之后,终端设备采集本次点击操作所产生的点击行为数据(例如时间维度数据、空间维度数据、设备维度数据、应用维度数据)。图8a为示例性示出的一种端云交互示意图,终端设备1的显示界面可以包括一个或者多个应用图标。用户在处于B1地点时,在终端设备1的显示界面上短视频应用B的应用图标401(具体点击时间为时间A1),终端设备1可以响应于用户的点击操作,采集本次点击操作所产生的点击行为数据。即在用户的点击操作中所产生的、记录着该次点击行为的重要信息的数据(比如“在A1时间B1地点在终端设备1点击了短视频应用B)”,并将所产生的点击行为数据发送至云端。可选地,点击行为数据还可以包括用户维度信息等其他能够用于用户画像预测的信息,对此不作具体限制。In one example, after the user clicks on the application, the terminal device collects the click behavior data (such as time dimension data, space dimension data, device dimension data, application dimension data) generated by this click operation. Figure 8a is an exemplary diagram of a terminal-cloud interaction, and the display interface of the terminal device 1 may include one or more application icons. When the user is at location B1, the application icon 401 of the short video application B is displayed on the display interface of the terminal device 1 (the specific click time is time A1), and the terminal device 1 can respond to the user's click operation and collect the click behavior data generated by this click operation. That is, the data generated in the user's click operation that records the important information of the click behavior (such as "short video application B was clicked on the terminal device 1 at time A1 and location B1)", and the generated click behavior data is sent to the cloud. Optionally, the click behavior data may also include other information that can be used for user portrait prediction, such as user dimension information, and there is no specific restriction on this.

在另一个示例中,在用户填写了点击行为数据(比如用户维度数据)之后,终端设备采集用户所填写的点击行为数据。图8b为示例性示出的一种终端显示界面示意图,参照图8b,在终端设备1显示选择窗口“是否提供用户信息”的情况下,若检测到用户触发了“是”控件,则终端设备1可以显示个人信息填写界面,以供用户填写用户维度信息。以及,图8c为示例性示出的另一种端云交互示意图,在用户填写完毕之后,若检测到用户触发了“提交”控件,则可以将包含用户维度信息的点击行为数据发送至云端。In another example, after the user fills in the click behavior data (such as user dimension data), the terminal device collects the click behavior data filled in by the user. Figure 8b is an exemplary schematic diagram of a terminal display interface. Referring to Figure 8b, when the terminal device 1 displays the selection window "Whether to provide user information", if it is detected that the user has triggered the "Yes" control, the terminal device 1 can display a personal information filling interface for the user to fill in the user dimension information. And, Figure 8c is an exemplary schematic diagram of another end-cloud interaction. After the user has completed the filling, if it is detected that the user has triggered the "Submit" control, the click behavior data containing the user dimension information can be sent to the cloud.

在又一个示例中,若点击行为数据包括应用列表信息,则终端设备可以每间隔预设时间段、或者检测到用户更新了终端设备的应用(比如下载新应用或者删除已有应用)的操作之后,向云端发送应用列表信息。In another example, if the click behavior data includes application list information, the terminal device can send the application list information to the cloud at every preset time period or after detecting that the user has updated the application of the terminal device (such as downloading a new application or deleting an existing application).

在另一些实施例中,终端设备可以周期性地向云端发送所采集的点击行为数据。比如,终端设备可以存储所采集的点击行为数据,以及在一定时长后向云端发送该段时长内所采集的点击行为数据。In other embodiments, the terminal device may periodically send the collected click behavior data to the cloud. For example, the terminal device may store the collected click behavior data, and after a certain period of time, send the collected click behavior data within the period of time to the cloud.

在通过S101介绍了点击行为数据的传输过程之后,接下来结合S102对用户画像的预测过程进行说明。After introducing the transmission process of click behavior data through S101, the prediction process of user portrait is explained in conjunction with S102.

在本申请实施例中,云端可以接收到系统(例如图2所示)中的部分或全部终端设备发送的点击行为数据。即,云端可接收到多个终端设备发送的点击行为数据。In the embodiment of the present application, the cloud can receive click behavior data sent by some or all terminal devices in the system (such as shown in FIG. 2 ). That is, the cloud can receive click behavior data sent by multiple terminal devices.

S102,云端基于点击行为数据和画像预测模型进行用户画像预测。S102, the cloud performs user portrait prediction based on click behavior data and portrait prediction model.

画像预测模型,在本申请实施例中其为大语言模型,即一种利用文本数据训练的深度学习模型,其可以生成自然语言文本或理解语言文本的含义。比如,llama-2、GPT、Palm等模型。The portrait prediction model, in the embodiment of the present application, is a large language model, that is, a deep learning model trained with text data, which can generate natural language text or understand the meaning of language text. For example, llama-2, GPT, Palm and other models.

对于画像预测模型的使用过程,在S102中,云端可以将各终端设备的点击行为数据输入画像预测模型,得到用户预测画像。其中,用户预测画像为通过用户预测模型预测得到的用户画像。示例性地,用户预测画像可以是能够表示用户应用使用习惯的描述信息。比如,可以包括但不限于如下用户维度信息中的一种或多种:性别、年龄、职业、爱好、使用习惯等。Regarding the use of the portrait prediction model, in S102, the cloud can input the click behavior data of each terminal device into the portrait prediction model to obtain a user prediction portrait. Among them, the user prediction portrait is a user portrait predicted by the user prediction model. Exemplarily, the user prediction portrait can be descriptive information that can represent the user's application usage habits. For example, it can include but is not limited to one or more of the following user dimension information: gender, age, occupation, hobbies, usage habits, etc.

可选地,云端可以将各终端设备的点击行为数据逐个输入画像预测模型,或者将多个终端设备的点击行为数据批量输入画像预测模型,对此不做限制。示例性地,如图9所示为示例性示出的推荐模型训练的流程示意图,用户1在终端设备1上进行了应用选择操作(即用于在多个待选应用中选中目标应用的操作,比如点击、敲击、绘制手势等操作)之后,终端设备1将采集得到的点击行为数据1发送至云端,云端可以将预设周期内的多条点击行为数据1输入画像预测模型,得到用户1预测画像(即用户1的预测画像)。其中,多条点击行为数据1是终端设备1基于周期内的不同点击操作获取到的,多条点击行为数据1不相同。比如,用户1在终端设备1上进行了一次点击操作之后,终端设备1可以获取与本次点击操作相关的一条点击行为数据1。Optionally, the cloud can input the click behavior data of each terminal device into the portrait prediction model one by one, or input the click behavior data of multiple terminal devices into the portrait prediction model in batches, without limitation. For example, as shown in FIG9, a flowchart of the exemplary recommendation model training is shown, after user 1 performs an application selection operation on terminal device 1 (i.e., an operation for selecting a target application from multiple applications to be selected, such as click, tap, drawing gestures, etc.), terminal device 1 sends the collected click behavior data 1 to the cloud, and the cloud can input multiple click behavior data 1 within a preset period into the portrait prediction model to obtain a predicted portrait of user 1 (i.e., a predicted portrait of user 1). Among them, the multiple click behavior data 1 are obtained by terminal device 1 based on different click operations within the period, and the multiple click behavior data 1 are different. For example, after user 1 performs a click operation on terminal device 1, terminal device 1 can obtain a click behavior data 1 related to this click operation.

以及,用户2在终端设备2上进行了应用选择操作之后,终端设备2将采集得到的点击行为数据2发送至云端,云端可以将预设周期内的多条点击行为数据2输入画像预测模型,得到用户2预测画像(即用户2的预测画像)。以及,用户3在终端设备3上进行了应用选择操作之后,终端设备3将采集得到的点击行为数据3发送至云端,云端可以将预设周期内的多条点击行为数据3输入画像预测模型,得到用户3预测画像(即用户3的预测画像)。需要说明的是,本申请实施例以云端与终端设备1-终端设备3交互为例,对云端与多个终端设备的交互过程进行说明。需要说明中,与云端交互的终端设备的数量可以更多,本申请不做限定。Also, after user 2 performs an application selection operation on terminal device 2, terminal device 2 sends the collected click behavior data 2 to the cloud, and the cloud can input multiple click behavior data 2 within a preset period into the portrait prediction model to obtain a predicted portrait of user 2 (i.e., a predicted portrait of user 2). Also, after user 3 performs an application selection operation on terminal device 3, terminal device 3 sends the collected click behavior data 3 to the cloud, and the cloud can input multiple click behavior data 3 within a preset period into the portrait prediction model to obtain a predicted portrait of user 3 (i.e., a predicted portrait of user 3). It should be noted that the embodiment of the present application takes the interaction between the cloud and terminal devices 1-terminal devices 3 as an example to illustrate the interaction process between the cloud and multiple terminal devices. It should be noted that the number of terminal devices interacting with the cloud can be more, and this application does not limit it.

对于画像预测模型的训练过程,结合图10进行说明。示例性地,如图10所示为示例性示出的画像预测模型的训练流程示意图。具体地,云端可以利用多个预测模型训练数据(即画像预测模型的训练数据,比如预测模型训练数据1、预测模型训练数据2、预测模型训练数据3。一个预测模型训练数据包括一条点击行为数据以及该条点击行为数据对应的终端设备的画像描述文本。其中,画像描述文本用于描述点击行为数据所对应终端设备的用户画像,比如可以包括性别、年龄、职业、爱好、使用习惯等)对基础大语言模型(即利用大量文本训练得到的预训练语言模型)进行指令微调,在达到训练要求(比如达到收敛条件等)的情况下,得到训练完成的画像预测模型。示例性地,在指令微调过程中,云端可以对基础大语言模型的所有层进行参数(比如模型权重)微调、或者对基础大语言模型顶层进行参数微调等方式对基础大语言模型进行指令微调。示例性地,在指令微调过程中,可以利用预测模型训练数据来构建指令格式的示例。比如,一个预测模型训练数据可以构建为一个指令格式的示例。具体地,指令格式的示例可以包括任务描述、一对输入输出。在一个示例中,一个指令格式的示例可以为“请根据如下用户点击行为数据进行用户画像的描述(即任务描述),时间是xxxx、位置是xxxx、设备状态是xxxx、点击了xxxx应用(即问题的输入)”,回答为“用户A是28岁的女用户,职业为程序员,使用习惯是中午使用外卖应用、深夜使用视频播放应用,爱好追剧和看电影(即答案的输出)”。The training process of the portrait prediction model is explained in conjunction with FIG10. For example, FIG10 is a schematic diagram of the training process of the portrait prediction model shown as an example. Specifically, the cloud can use multiple prediction model training data (i.e., the training data of the portrait prediction model, such as prediction model training data 1, prediction model training data 2, and prediction model training data 3. One prediction model training data includes a click behavior data and a portrait description text of the terminal device corresponding to the click behavior data. Among them, the portrait description text is used to describe the user portrait of the terminal device corresponding to the click behavior data, such as gender, age, occupation, hobbies, usage habits, etc.) to fine-tune the basic large language model (i.e., the pre-trained language model obtained by training a large amount of text), and obtain the trained portrait prediction model when the training requirements (such as convergence conditions, etc.) are met. Exemplarily, in the process of fine-tuning the instructions, the cloud can fine-tune the parameters (such as model weights) of all layers of the basic large language model, or fine-tune the parameters of the top layer of the basic large language model, etc. to fine-tune the instructions of the basic large language model. Exemplarily, in the process of fine-tuning the instructions, the prediction model training data can be used to construct an example of the instruction format. For example, a prediction model training data can be constructed as an example of an instruction format. Specifically, the example of the instruction format may include a task description and a pair of input and output. In one example, an example of an instruction format may be "Please describe the user portrait based on the following user click behavior data (i.e., task description), the time is xxxx, the location is xxxx, the device status is xxxx, and the xxxx application is clicked (i.e., the input of the question)", and the answer is "User A is a 28-year-old female user, a programmer by profession, and has the habit of using food delivery applications at noon and video playback applications late at night. She likes to chase dramas and watch movies (i.e., the output of the answer)".

需要说明的是,通过对基础大语言模型的指令微调,可以利用少量预测训练模型训练数据对画像预测模型进行准确训练,降低了训练难度和训练成本。可选地,还可以采用除指令微调之外的其他微调方式进行模型微调,以及,还可以根据除模型微调之外的其他模型训练方式进行模型训练,对此不作具体限制。在本申请实施例中,云端可以接收到系统(例如图2所示)中的部分或全部终端设备发送的、用于进行用户预测模型训练的点击行为数据。即,云端可接收到多个终端设备发送的、用于进行用户预测模型训练的点击行为数据。It should be noted that by fine-tuning the instructions of the basic large language model, the portrait prediction model can be accurately trained using a small amount of prediction training model training data, reducing the difficulty and cost of training. Optionally, other fine-tuning methods other than instruction fine-tuning can be used for model fine-tuning, and model training can also be performed according to other model training methods other than model fine-tuning, without specific restrictions. In an embodiment of the present application, the cloud can receive click behavior data sent by some or all terminal devices in the system (such as shown in Figure 2) for user prediction model training. That is, the cloud can receive click behavior data sent by multiple terminal devices for user prediction model training.

其中,参照图10,各预测模型训练数据可以包括多组对应的点击行为数据和画像描述文本(比如点击行为数据1与画像描述文本1、点击行为数据2与画像描述文本2、点击行为数据3与画像描述文本3)。其中,点击行为数据可以作为样本,画像描述文本可以作为标签。相应地,云端可以根据基础大语言模型对点击行为数据的输出结果与画像描述文本,来对基础大语言模型的模型参数进行调整。其中,画像描述文本用于描述点击行为数据所对应终端设备的用户画像,比如可以包括性别、年龄、职业、爱好、使用习惯等。示例性地,画像描述文本可以是人工标注的。比如,可以是终端设备的用户自行填写的,比如,可以是以问卷填写的形式来获取画像描述文本。可选地,为了保证画像预测模型的精度,可以周期性地对画像预测模型进行微调。比如,可以获取每个训练周期内的预测模型训练数据,以及利用当前训练周期的预测模型训练数据对前一训练周期的画像预测模型(或者对基础大语言模型)进行微调,得到当前训练周期的画像预测模型。Wherein, referring to Figure 10, each prediction model training data may include multiple groups of corresponding click behavior data and portrait description texts (such as click behavior data 1 and portrait description text 1, click behavior data 2 and portrait description text 2, click behavior data 3 and portrait description text 3). Wherein, the click behavior data can be used as a sample, and the portrait description text can be used as a label. Correspondingly, the cloud can adjust the model parameters of the basic large language model according to the output results of the basic large language model on the click behavior data and the portrait description text. Wherein, the portrait description text is used to describe the user portrait of the terminal device corresponding to the click behavior data, for example, it may include gender, age, occupation, hobbies, usage habits, etc. Exemplarily, the portrait description text may be manually annotated. For example, it may be filled out by the user of the terminal device, for example, the portrait description text may be obtained in the form of a questionnaire. Optionally, in order to ensure the accuracy of the portrait prediction model, the portrait prediction model may be fine-tuned periodically. For example, the prediction model training data in each training cycle can be obtained, and the prediction model training data of the current training cycle can be used to fine-tune the portrait prediction model of the previous training cycle (or the basic large language model) to obtain the portrait prediction model of the current training cycle.

需要说明的是,由于大语言模型自身具有推理能力,在本申请实施例中利用画像预测模型进行用户画像预测,能够通过大语言模型自身的推理能力,从点击行为数据中抽取应用点击行为特征,构建应用点击行为的逻辑链。相较于传统机器学习,无需人工抽取特征,即可通过大语言模型自动分析出哪些特征对应用推荐更具有意义,从而可以利用大语音模型自动推理能力,自动推理得出人工无法发掘或者总结出的应用点击规律,提高了用户画像预测精度。以及,相较于利用专家经验规则构建用户预测画像,无需人工构建经验规则,避免了人工经验的局限性,提高了用户画像预测精度。It should be noted that, since the large language model itself has reasoning capabilities, the portrait prediction model is used to predict user portraits in the embodiments of the present application. It is possible to extract application click behavior features from click behavior data through the reasoning capabilities of the large language model itself, and construct a logical chain of application click behavior. Compared with traditional machine learning, there is no need to manually extract features. The large language model can automatically analyze which features are more meaningful for application recommendations, so that the automatic reasoning capabilities of the large voice model can be used to automatically reason out application click rules that cannot be discovered or summarized manually, thereby improving the accuracy of user portrait prediction. In addition, compared with using expert experience rules to construct user prediction portraits, there is no need to manually construct experience rules, which avoids the limitations of manual experience and improves the accuracy of user portrait prediction.

以及,由于大语言模型可以对自然语言进行处理,从而在采用大语言模型作为用户预测模型时,使用者仅需文本描述相关的点击行为情况,输入更接近人类自然语言的点击行为数据即可对用户画像进行准确预测,降低了用户预测模型的使用难度,提高了用户体验。In addition, since the large language model can process natural language, when using the large language model as a user prediction model, the user only needs to describe the relevant click behavior in text and input the click behavior data that is closer to human natural language to accurately predict the user portrait, which reduces the difficulty of using the user prediction model and improves the user experience.

在介绍了画像预测模型之后,接下来继续对用户预测画像进行说明。After introducing the portrait prediction model, we will continue to explain the user prediction portrait.

用户预测画像,即通过用户预测模型预测得到的用户画像。示例性地,用户预测画像可以是能够表示用户应用使用习惯的描述信息。比如,可以包括但不限于如下用户维度信息中的一种或多种:性别、年龄、职业、爱好、使用习惯等。其中,上述用户维度信息可以参见本申请实施例上述部分结合图7的相关说明,对此不再赘述。在本申请实施例中,若将终端设备的点击行为数据输入用户画像预测模型,则云端可以得到终端设备所属用户的用户预测画像。此时,可以认为用户预测画像对应该用户,或者该用户预测画像对应该终端设备。User prediction portrait, that is, the user portrait predicted by the user prediction model. Exemplarily, the user prediction portrait can be descriptive information that can represent the user's application usage habits. For example, it may include but is not limited to one or more of the following user dimension information: gender, age, occupation, hobbies, usage habits, etc. Among them, the above-mentioned user dimension information can refer to the relevant description of the above part of the embodiment of the present application in combination with Figure 7, which will not be repeated here. In an embodiment of the present application, if the click behavior data of the terminal device is input into the user portrait prediction model, the cloud can obtain the user prediction portrait of the user to which the terminal device belongs. At this time, it can be considered that the user prediction portrait corresponds to the user, or the user prediction portrait corresponds to the terminal device.

可选地,在点击行为数据包括用户维度信息的情况下,云端可以利用点击行为数据中的用户维度信息对用户预测画像进行修正。比如,若点击行为数据包括客观类用户维度信息(性别、年龄、职业等较为客观、或者较为固定的用户信息),则可以将用户预测画像中的客观类用户维度信息替换为点击行为数据中的客观类用户维度信息。又比如,若点击行为数据包括主观类用户维度信息(使用习惯、爱好等较为主观、或者较为容易发生变化的用户信息),则可以不对用户预测画像中的主观类用户维度信息进行修改。Optionally, in the case where the click behavior data includes user dimension information, the cloud can use the user dimension information in the click behavior data to modify the user prediction portrait. For example, if the click behavior data includes objective user dimension information (user information that is more objective or more fixed, such as gender, age, and occupation), the objective user dimension information in the user prediction portrait can be replaced with the objective user dimension information in the click behavior data. For another example, if the click behavior data includes subjective user dimension information (user information that is more subjective or more easily changed, such as usage habits and hobbies), the subjective user dimension information in the user prediction portrait may not be modified.

又可选地,在点击行为数据不包括用户维度信息的情况下,云端可以不对用户预测画像进行修改。Optionally, when the click behavior data does not include user dimension information, the cloud may not modify the user prediction portrait.

在介绍了画像预测模型和用户预测画像等概念之后,接下来继续对S102的实施方式进行说明。After introducing concepts such as the portrait prediction model and user prediction portrait, the implementation method of S102 will be described next.

在一些实施例中,云端可以周期性地进行用户画像预测。具体地,各终端设备可以将点击行为数据发送至云端,云端可以基于当前时间周期内获取的点击行为数据进行用户画像预测。示例性地,对于每一终端设备,云端将当前时间周期内获取的、该终端设备的点击行为数据输入画像预测模型,得到该终端设备对应的用户预测画像。In some embodiments, the cloud can periodically perform user portrait prediction. Specifically, each terminal device can send click behavior data to the cloud, and the cloud can perform user portrait prediction based on the click behavior data obtained in the current time period. Exemplarily, for each terminal device, the cloud inputs the click behavior data of the terminal device obtained in the current time period into the portrait prediction model to obtain the predicted user portrait corresponding to the terminal device.

在一些实施例中,云端在获取到点击行为数据之后,可以对其进行文本表示(比如对其进行格式转换,转换为文本格式),生成固定文本格式的描述文本(即一种以文本格式示出的、用于描述点击行为数据的数据形式),以利用描述文本和画像预测模型进行用户预测画像的生成。示例性地,云端可以从点击行为数据的多个信息维度(例如图7所示的多个信息维度)进行文本描述。例如,在点击行为数据不包括用户维度信息的情况下,描述文本的文本格式可以包括“时间是xxxx(时间维度信息),位置是xxxx(空间维度信息),设备状态是xxxx(设备维度信息),点击了xxxx应用(应用维度信息)”。又例如,在点击行为数据包括用户维度信息的情况下,描述文本的文本格式还可以包括“用户是xxxx(用户维度信息)”。以及,需要说明的是,为了保证用户画像的预测可靠性,云端可以在画像推荐模型的训练过程中,将作为样本的点击行为数据先进行文本表示后再输入基础大语言模型,以进行画像推荐模型的训练。In some embodiments, after acquiring the click behavior data, the cloud can perform a text representation on it (for example, convert it into a text format), generate a description text in a fixed text format (i.e., a data form shown in a text format for describing the click behavior data), and use the description text and the portrait prediction model to generate a user prediction portrait. Exemplarily, the cloud can perform a text description from multiple information dimensions of the click behavior data (such as the multiple information dimensions shown in FIG. 7). For example, in the case where the click behavior data does not include user dimension information, the text format of the description text may include "time is xxxx (time dimension information), location is xxxx (space dimension information), device status is xxxx (device dimension information), and xxxx application is clicked (application dimension information)". For another example, in the case where the click behavior data includes user dimension information, the text format of the description text may also include "user is xxxx (user dimension information)". And, it should be noted that in order to ensure the prediction reliability of the user portrait, the cloud can first perform a text representation on the click behavior data as a sample and then input it into the basic large language model during the training process of the portrait recommendation model to train the portrait recommendation model.

可选地,为了提高画像预测精度,当某一条点击行为数据的一个或者多个维度信息缺失时,云端可以利用同一终端设备发送的、相邻点击行为数据中的维度信息对缺失信息进行补全。比如,终端设备1向云端发送了用户维度信息之后,又接连发送5条点击行为数据,若接连发送的5条点击行为数据中均无用户维度数据,则云端可以利用接收到的用户维度信息对5条点击行为数据进行补全。Optionally, in order to improve the accuracy of portrait prediction, when one or more dimensional information of a certain click behavior data is missing, the cloud can use the dimensional information in the adjacent click behavior data sent by the same terminal device to complete the missing information. For example, after terminal device 1 sends user dimensional information to the cloud, it sends 5 click behavior data in succession. If there is no user dimensional data in the 5 click behavior data sent in succession, the cloud can use the received user dimensional information to complete the 5 click behavior data.

需要说明的是,通过对点击行为数据的文本表示,云端可以从点击行为数据中梳理出各维度信息,并将其整理成固定格式,使得不同终端设备发送的点击行为数据的格式更加一致,便于画像预测模型处理,提高模型预测效果。It should be noted that through the text representation of the click behavior data, the cloud can sort out the information of each dimension from the click behavior data and organize it into a fixed format, so that the format of the click behavior data sent by different terminal devices is more consistent, which is convenient for portrait prediction model processing and improves the model prediction effect.

在一些实施例中,大语言模型的画像预测模型可以输出画像描述文本(即用于描述用户预测画像的文本语句)。云端可以对画像描述文本进行关键词提取,得到关键画像描述词句(即用户预测画像,具体地,关键画像描述词句,即为从画像描述文本中提取的、用于描述用户画像相关的关键词汇和/或关键语句,比如“程序员”(关键词汇)、“喜欢在深夜浏览短视频应用”(关键语句))。其中,用户预测画像可以包括多个画像标签。In some embodiments, the portrait prediction model of the large language model can output a portrait description text (i.e., a text sentence used to describe the predicted user portrait). The cloud can perform keyword extraction on the portrait description text to obtain key portrait description words and sentences (i.e., the predicted user portrait. Specifically, the key portrait description words and sentences are key words and/or key sentences extracted from the portrait description text to describe the user portrait, such as "programmer" (key words), "like to browse short video applications late at night" (key sentences)). Among them, the predicted user portrait can include multiple portrait tags.

在一个示例中,以终端设备1的画像预测过程为例,对S102进行具体说明。如图11所示为示例性示出的用户画像预测的流程示意图。云端在获取终端设备1的点击行为数据(包括时间维度信息、空间维度信息、设备维度信息和应用维度信息,可选地,还可以包括用户维度信息)之后,可以对点击维度信息进行格式转换,得到描述文本1。然后将描述文本1输入画像预测模型,得到用户预测画像的画像描述文本“用户A是28岁的女用户,职业为程序员,使用习惯是中午使用外卖应用、深夜使用视频播放应用,爱好追剧和看电影”。云端对画像描述文本进行关键词提取之后,可以得到用户1预测画像。其中,用户1预测画像可以包括多个用户画像标签,比如“28岁(年龄)”、“女(性别)”、“程序员(职业)”、“深夜使用视频播放应用(使用习惯1)”、“中午使用外卖应用(使用习惯2)”、“追剧(爱好1)”以及“拍照(爱好2)”。In one example, S102 is specifically described by taking the portrait prediction process of terminal device 1 as an example. FIG. 11 is a schematic diagram of the process of user portrait prediction shown as an example. After the cloud obtains the click behavior data of terminal device 1 (including time dimension information, space dimension information, device dimension information and application dimension information, and optionally, user dimension information), the click dimension information can be formatted and the description text 1 can be obtained. Then the description text 1 is input into the portrait prediction model to obtain the portrait description text of the user prediction portrait "User A is a 28-year-old female user, a programmer by profession, and has the habit of using food delivery applications at noon and video playback applications at night, and likes to chase dramas and watch movies". After the cloud extracts keywords from the portrait description text, the predicted portrait of user 1 can be obtained. Among them, the predicted portrait of user 1 can include multiple user portrait tags, such as "28 years old (age)", "female (gender)", "programmer (occupation)", "use video playback applications at night (usage habit 1)", "use food delivery applications at noon (usage habit 2)", "chase dramas (hobby 1)" and "take pictures (hobby 2)".

在通过S102介绍了用户画像的预测过程之后,接下来继续结合S103对用户群划分过程进行说明。After introducing the prediction process of user portraits in S102, the user group segmentation process will be described in conjunction with S103.

S103,云端基于用户预测画像进行用户画像群的划分。S103, the cloud divides the user portrait groups based on the user prediction portraits.

在S103中,云端可以对终端设备(或者用户预测画像)进行划分,得到多个用户画像群。其中,每个用户画像群可以包括至少一个终端设备(或者用户预测画像)。示例性地,继续参照图9,云端可以通过用户画像群划分单元,根据用户1预测画像、用户2预测画像和用户3预测画像对终端设备进行划分,将终端设备1和终端设备3划分至同一用户画像群,终端设备2划分至另一用户画像群。In S103, the cloud can divide the terminal devices (or user prediction portraits) to obtain multiple user portrait groups. Each user portrait group may include at least one terminal device (or user prediction portrait). Exemplarily, referring to FIG. 9 , the cloud can divide the terminal devices according to the user 1 prediction portrait, the user 2 prediction portrait, and the user 3 prediction portrait through the user portrait group division unit, and divide the terminal device 1 and the terminal device 3 into the same user portrait group, and divide the terminal device 2 into another user portrait group.

在一些实施例中,为了保证画像精度,云端可以周期性地进行用户画像群的划分。比如,云端可以每月进行一次用户画像群的划分。需要说明的是,具体周期可以根据实际场景和具体需求设置,对此不作具体限制。In some embodiments, in order to ensure the accuracy of the portrait, the cloud can periodically divide the user portrait groups. For example, the cloud can divide the user portrait groups once a month. It should be noted that the specific period can be set according to the actual scenario and specific needs, and there is no specific restriction on this.

在一些实施例中,云端可以基于已知用户群(比如附图中的用户画像群1和2)的部分典型用户进行用户群划分。示例性地,云端可以对所有用户预测画像进行向量表示,以将用户预测画像表示为多维向量。然后对各用户的多维向量形式的用户预测画像与已知用户群的部分典型用户(即典型用户的多维向量形式的用户画像)进行相似性度量(比如余弦相似度)。再然后,在相似度排名最高的K个典型用户中所属的用户群中,将用户数量最多的用户群作为该用户的群划分结果(比如,对于各已知用户群,可以在K个典型用户中统计属于该用户群的用户数量,然后在各已知群的用户数量中,将用户数量最多的已知用户群确定为该用户的群划分结果)。其中K的具体数值应大于已知用户群的数量,可以根据具体场景和实际需求设置,比如,划分两个用户群体情况下设置K=3,对此不做具体限制。示例性地,可以在已知的每个用户画像群中选出2个或者2个以上的典型用户来进行用户群划分,以保证用户群的划分精度。In some embodiments, the cloud can divide user groups based on some typical users of known user groups (such as user portrait groups 1 and 2 in the attached figure). Exemplarily, the cloud can vectorize all user prediction portraits to represent the user prediction portraits as multidimensional vectors. Then, the similarity measurement (such as cosine similarity) is performed on the user prediction portraits in the form of multidimensional vectors of each user and some typical users of the known user group (i.e., the user portraits in the form of multidimensional vectors of typical users). Then, among the user groups to which the K typical users with the highest similarity ranking belong, the user group with the largest number of users is used as the group division result of the user (for example, for each known user group, the number of users belonging to the user group can be counted among the K typical users, and then among the number of users in each known group, the known user group with the largest number of users is determined as the group division result of the user). The specific value of K should be greater than the number of known user groups, and can be set according to specific scenarios and actual needs. For example, K=3 is set when dividing two user groups, and there is no specific restriction on this. Exemplarily, 2 or more typical users can be selected from each known user portrait group to divide the user group to ensure the accuracy of the division of the user group.

举例说明,图12所示为示例性示出的用户群划分的流程示意图。云端可以对每个用户预测画像与已知用户群的部分典型用户进行相似性度量,比如,用户1预测画像与用户画像群1的典型用户P1的相似度为0.5、用户1预测画像与用户画像群1的典型用户P2的相似度为0.7、用户1预测画像与用户画像群2的典型用户P3的相似度为0.3、用户1预测画像与用户画像群2的典型用户P4的相似度为0.4。在K=3的情况下,云端可以取相似度最高的3个用户(用户画像群1的典型用户P2、用户画像群1的典型用户P1和用户画像群2的典型用户P4)中所属用户群数量最多的用户画像群1作为用户1的用户画像群。For example, FIG12 is a flowchart of an exemplary user group division process. The cloud can measure the similarity between each user's predicted portrait and some typical users of the known user group. For example, the similarity between the predicted portrait of user 1 and the typical user P1 of user portrait group 1 is 0.5, the similarity between the predicted portrait of user 1 and the typical user P2 of user portrait group 1 is 0.7, the similarity between the predicted portrait of user 1 and the typical user P3 of user portrait group 2 is 0.3, and the similarity between the predicted portrait of user 1 and the typical user P4 of user portrait group 2 is 0.4. When K=3, the cloud can take the user portrait group 1 with the largest number of user groups among the three users with the highest similarity (typical user P2 of user portrait group 1, typical user P1 of user portrait group 1, and typical user P4 of user portrait group 2) as the user portrait group of user 1.

同理,用户2预测画像与用户画像群1的典型用户P1的相似度为0.3、用户2预测画像与用户画像群1的典型用户P2的相似度为0.5、用户2预测画像与用户画像群2的典型用户P3的相似度为0.6、用户2预测画像与用户画像群2的典型用户P4的相似度为0.7,用户3预测画像与用户画像群1的典型用户P1的相似度为0.8、用户3预测画像与用户画像群1的典型用户P2的相似度为0.7、用户3预测画像与用户画像群2的典型用户P3的相似度为0.6、用户3预测画像与用户画像群2的典型用户P4的相似度为0.4,则用户2属于用户画像群2,用户3属于用户画像群1。Similarly, the similarity between the predicted portrait of user 2 and the typical user P1 of user portrait group 1 is 0.3, the similarity between the predicted portrait of user 2 and the typical user P2 of user portrait group 1 is 0.5, the similarity between the predicted portrait of user 2 and the typical user P3 of user portrait group 2 is 0.6, and the similarity between the predicted portrait of user 2 and the typical user P4 of user portrait group 2 is 0.7. The similarity between the predicted portrait of user 3 and the typical user P1 of user portrait group 1 is 0.8, the similarity between the predicted portrait of user 3 and the typical user P2 of user portrait group 1 is 0.7, the similarity between the predicted portrait of user 3 and the typical user P3 of user portrait group 2 is 0.6, and the similarity between the predicted portrait of user 3 and the typical user P4 of user portrait group 2 is 0.4. Therefore, user 2 belongs to user portrait group 2 and user 3 belongs to user portrait group 1.

在一个实施例中,为了降低训练成本,画像预测模型可以包括向量表示层,以用户预测画像为关键画像描述词句为例,云端可以将单一终端设备的关键画像描述词句输入画像预测模型,将画像预测模型的中间输出(比如用户预测画像的向量表示层的输出)作为单一终端设备的关键画像描述词句的表示向量。然后,可以基于多个终端设备各自的关键画像描述词句的表示向量,对多个终端设备进行用户群划分,得到多个用户画像群。In one embodiment, in order to reduce the training cost, the portrait prediction model may include a vector representation layer. Taking the user predicted portrait as the key portrait description phrase as an example, the cloud can input the key portrait description phrase of a single terminal device into the portrait prediction model, and use the intermediate output of the portrait prediction model (such as the output of the vector representation layer of the user predicted portrait) as the representation vector of the key portrait description phrase of the single terminal device. Then, based on the representation vectors of the key portrait description phrases of the multiple terminal devices, the multiple terminal devices can be divided into user groups to obtain multiple user portrait groups.

在一个示例中,已知用户群的部分典型用户的获取方式可以包括:对多个用户画像的表示向量进行聚类,从每个聚类(每个聚类对应一个已知用户群)中采样得到的部分用户。又或者,基于用户分析的人工设置,本申请实施实例对具体获取设置方式不作限制。In one example, the method for obtaining some typical users of a known user group may include: clustering the representation vectors of multiple user portraits, and sampling some users from each cluster (each cluster corresponds to a known user group). Alternatively, based on manual settings of user analysis, the implementation example of this application does not limit the specific acquisition setting method.

在另一些实施例中,云端可以采用聚类算法对用户预测画像进行用户群划分。比如,云端可以采用Kmeans、FCM等聚类算法。示例性地,云端可以将用户预测画像进行向量表示,表示为多维向量,然后利用聚类算法对多维向量形式的用户预测画像进行聚类,从而得到各个用户分属的用户画像群。In other embodiments, the cloud can use a clustering algorithm to divide the user prediction portrait into user groups. For example, the cloud can use a clustering algorithm such as Kmeans and FCM. Exemplarily, the cloud can vectorize the user prediction portrait as a multi-dimensional vector, and then use a clustering algorithm to cluster the user prediction portrait in the form of a multi-dimensional vector, so as to obtain the user portrait group to which each user belongs.

由于每一用户预测画像对应着一个终端设备(或者一个用户),通过本申请实施例,根据用户预测画像,云端可以根据用户的应用使用习惯实现对终端设备的精准分类,从而提高了用户群划分的精准性。进一步地,云端基于同一用户画像群的点击行为数据进行推荐模型训练时,由于同一用户画像群的用户,其应用使用习惯较为相似,从而可以为推荐模型的训练,提供更准确、更多的数据支撑。Since each user prediction portrait corresponds to a terminal device (or a user), through the embodiment of the present application, based on the user prediction portrait, the cloud can accurately classify the terminal device according to the user's application usage habits, thereby improving the accuracy of user group division. Furthermore, when the cloud trains the recommendation model based on the click behavior data of the same user portrait group, since the users of the same user portrait group have similar application usage habits, it can provide more accurate and more data support for the training of the recommendation model.

在通过S103介绍了用户群划分过程之后,接下来结合S104对推荐模型的训练过程进行说明。After introducing the user group division process in S103, the training process of the recommendation model is described in conjunction with S104.

S104,云端基于各用户画像群的点击行为数据进行各用户画像群的推荐模型训练。S104, the cloud performs recommendation model training for each user portrait group based on the click behavior data of each user portrait group.

在S104中,在每一用户画像群中,云端可以利用各用户预测画像对应的点击行为数据(各终端设备的用户预测画像对应的点击行为数据,即为该终端设备的点击行为数据)对基础推荐模型进行训练,得到该用户画像群的推荐模型。示例性地,继续参照图9以及图12,在终端设备1(对应于用户1预测画像)和终端设备3(对应于用户3预测画像)属于同一用户画像群(比如用户画像群1)、(终端设备2对应于用户2预测画像)属于另一用户画像群(比如用户画像群2)的情况下,云端的推荐模型A训练单元可以利用训练数据1(终端设备1的点击行为数据)、训练数据3(终端设备3的点击行为数据)训练推荐模型A(即用户画像群1的推荐模型),以及云端的推荐模型B训练单元利用训练数据2(终端设备2的点击行为数据)训练推荐模型B(即用户画像群2的推荐模型)。需要说明的是,在S104中,云端可以利用每一用户画像群中的部分或者全部终端设备的点击行为数据进行该用户画像群的推荐模型的训练。以及,云端可以利用单个终端设备的部分或者全部点击行为数据进行训练,对此不作具体限制。In S104, in each user portrait group, the cloud can use the click behavior data corresponding to each user prediction portrait (the click behavior data corresponding to the user prediction portrait of each terminal device, that is, the click behavior data of the terminal device) to train the basic recommendation model to obtain the recommendation model of the user portrait group. Exemplarily, with continued reference to Figures 9 and 12, when terminal device 1 (corresponding to the predicted portrait of user 1) and terminal device 3 (corresponding to the predicted portrait of user 3) belong to the same user portrait group (such as user portrait group 1), (terminal device 2 corresponding to the predicted portrait of user 2) belongs to another user portrait group (such as user portrait group 2), the recommendation model A training unit in the cloud can use training data 1 (the click behavior data of terminal device 1) and training data 3 (the click behavior data of terminal device 3) to train recommendation model A (that is, the recommendation model of user portrait group 1), and the recommendation model B training unit in the cloud can use training data 2 (the click behavior data of terminal device 2) to train recommendation model B (that is, the recommendation model of user portrait group 2). It should be noted that in S104, the cloud can use the click behavior data of some or all terminal devices in each user portrait group to train the recommendation model of the user portrait group. Also, the cloud can use some or all click behavior data of a single terminal device for training, and there is no specific restriction on this.

对于推荐模型,其用于预测用户即将使用的应用并将预测得到的应用推荐给用户。示例性地,推荐模型可以是深度网络模型或者大语言模型,对此不作具体限制。在本申请实施例中,一个用户画像群可以对应于一个推荐模型,不同用户画像群对应的推荐模型不同。The recommendation model is used to predict the applications that the user is about to use and recommend the predicted applications to the user. Exemplarily, the recommendation model can be a deep network model or a large language model, which is not specifically limited. In an embodiment of the present application, a user portrait group can correspond to a recommendation model, and different user portrait groups correspond to different recommendation models.

对于推荐模型的训练过程,示例性地,如图13所示为示例性示出的推荐模型的训练流程示意图。其中,各用户的点击行为数据可以包括应用维度信息,还可以包括除应用维度信息之外的其他点击行为数据(比如时间维度信息、空间维度信息、设备维度信息等)。其中,其他点击行为数据可以作为样本,应用维度信息(在本次点击行为中,用户所点击应用的应用信息)可以作为标签。For the training process of the recommendation model, exemplarily, as shown in FIG13 , there is an exemplary training flow diagram of the recommendation model. Among them, the click behavior data of each user may include application dimension information, and may also include other click behavior data (such as time dimension information, space dimension information, device dimension information, etc.) in addition to the application dimension information. Among them, other click behavior data can be used as samples, and application dimension information (in this click behavior, the application information of the application clicked by the user) can be used as a label.

具体地,在终端设备1和终端设备3属于用户画像群1,终端设备2属于用户画像群2的情况下,云端可以利用用户1的点击行为数据(推荐模型A的训练数据)和用户3的点击行为数据(推荐模型A的训练数据)对初始模型(待训练模型)进行训练,在满足训练条件(比如损失函数收敛)的情况下,得到推荐模型A(训练完成的应用推荐模型),其中,该推荐模型A与用户画像群1对应。以及,云端可以利用用户2的点击行为数据(推荐模型B的训练数据)对初始模型(待训练模型)进行训练,在满足训练条件的情况下,得到推荐模型B(训练完成的应用推荐模型),其中,该推荐模型B与用户画像群2对应。Specifically, when terminal device 1 and terminal device 3 belong to user portrait group 1, and terminal device 2 belongs to user portrait group 2, the cloud can use the click behavior data of user 1 (training data of recommendation model A) and the click behavior data of user 3 (training data of recommendation model A) to train the initial model (model to be trained), and when the training conditions (such as loss function convergence) are met, the recommendation model A (trained application recommendation model) is obtained, wherein the recommendation model A corresponds to user portrait group 1. In addition, the cloud can use the click behavior data of user 2 (training data of recommendation model B) to train the initial model (model to be trained), and when the training conditions are met, the recommendation model B (trained application recommendation model) is obtained, wherein the recommendation model B corresponds to user portrait group 2.

需要说明的是,由于对应于同一用户画像群的用户往往具有相似的应用使用习惯,通过利用同一用户画像群的点击行为数据进行推荐模型训练,训练得到的推荐模型能够对该类用户的点击习惯进行准确模拟,从而能够准确预测到用户预备点击的应用来进行推荐,提高了应用推荐精度。It should be noted that since users corresponding to the same user portrait group often have similar application usage habits, by using the click behavior data of the same user portrait group to train the recommendation model, the trained recommendation model can accurately simulate the click habits of this type of users, and thus can accurately predict the application that the user is about to click for recommendation, thereby improving the accuracy of application recommendations.

示例性地,针对每一点击行为数据,云端可以对其中的其他点击行为数据进行特征提取,提取得到该次点击行为(产生该点击行为数据的应用点击行为)的场景特征。然后云端将场景特征输入到待训练的推荐模型进行模型训练。For example, for each click behavior data, the cloud can extract features from other click behavior data therein to extract the scene features of the click behavior (the application click behavior that generates the click behavior data). The cloud then inputs the scene features into the recommendation model to be trained for model training.

在通过S104介绍了推荐模型的训练过程之后,接下来继续结合S105对推荐模型的分发过程进行说明。After introducing the training process of the recommendation model through S104, the distribution process of the recommendation model will be described in conjunction with S105.

S105,云端将各用户画像群的推荐模型发送至各用户画像群对应的终端设备。S105, the cloud sends the recommendation model of each user portrait group to the terminal device corresponding to each user portrait group.

在S105中,对于每一用户画像群,云端可以将该用户画像群的推荐模型发送至该用户画像群对应的终端设备(即该用户画像群中的各用户预测画像所对应的终端设备)。示例性地,继续参照图9,可以将用户画像群1的推荐模型A发送至终端设备1和终端设备3,以及将用户画像群2的推荐模型B发送至终端设备2。需要说明的是,云端可以将推荐模型下发至单个用户画像群中的所有终端设备,或者将推荐模型下发至单个用户画像群中开启了应用推荐功能的终端设备,对此不作限制。In S105, for each user portrait group, the cloud can send the recommendation model of the user portrait group to the terminal device corresponding to the user portrait group (i.e., the terminal device corresponding to each user prediction portrait in the user portrait group). Exemplarily, referring to FIG9 , the recommendation model A of user portrait group 1 can be sent to terminal device 1 and terminal device 3, and the recommendation model B of user portrait group 2 can be sent to terminal device 2. It should be noted that the cloud can send the recommendation model to all terminal devices in a single user portrait group, or send the recommendation model to the terminal device with the application recommendation function enabled in a single user portrait group, without limitation.

在一些实施例中,云端可以将推荐模型的模型参数发送至各终端设备,各终端设备通过更新本地推荐模型的模型参数的方式来进行模型更新。示例性地,如图14所示为示例性示出的推荐模型的分发流程示意图。云端在训练得到推荐模型A(用户画像群1对应的应用推荐模型)之后,可以将推荐模型A的模型参数发送至终端设备1,以使终端设备1可以基于推荐模型A进行应用推荐。In some embodiments, the cloud can send the model parameters of the recommendation model to each terminal device, and each terminal device updates the model by updating the model parameters of the local recommendation model. For example, FIG14 is a schematic diagram of the distribution process of the recommendation model. After the cloud obtains the recommendation model A (the application recommendation model corresponding to the user portrait group 1) through training, the model parameters of the recommendation model A can be sent to the terminal device 1, so that the terminal device 1 can make application recommendations based on the recommendation model A.

在介绍了推荐模型的训练场景之后,下面结合图15所示的方法流程示意图,对推荐模型的使用场景进行说明,参照图15,具体包括:After introducing the training scenario of the recommendation model, the following describes the usage scenario of the recommendation model in conjunction with the method flow diagram shown in FIG15 , referring to FIG15 , which specifically includes:

S201,终端设备基于推荐模型进行应用推荐、数据收集和上传。S201, the terminal device recommends applications, collects and uploads data based on the recommendation model.

在S201中,对于应用推荐,终端设备可以在满足预设推荐条件的情况下,获取当前场景信息,以及将当前场景信息输入推荐模型,得到推荐应用。示例性地,如图16所示为示例性示出的推荐模型的使用流程示意图,以终端设备1为例,终端设备1可以利用推荐模型A进行应用推荐,以及在建议文件夹中展示所推荐的应用。In S201, for application recommendation, the terminal device can obtain current scene information and input the current scene information into the recommendation model to obtain recommended applications when the preset recommendation conditions are met. For example, FIG16 is a schematic diagram of the use process of the recommendation model shown exemplarily. Taking terminal device 1 as an example, terminal device 1 can use recommendation model A to recommend applications and display the recommended applications in the recommendation folder.

在一些实施例中,可以将推荐应用展示在终端设备的建议文件夹中。在本申请实施例中,通过将推荐应用放入建议文件夹的方式,可以将推荐应用放在较为直观的入口,便于用户查找想要使用的应用,提高了应用使用便捷性。In some embodiments, the recommended application can be displayed in a suggestion folder of the terminal device. In the embodiment of the present application, by placing the recommended application in the suggestion folder, the recommended application can be placed in a more intuitive entrance, which is convenient for users to find the application they want to use, thereby improving the convenience of application use.

为了便于理解应用推荐过程,先对应用推荐过程中涉及的预设推荐条件和当前场景信息进行说明。In order to facilitate understanding of the application recommendation process, the preset recommendation conditions and current scenario information involved in the application recommendation process are first explained.

预设推荐条件,即需要进行应用推荐时所需满足的条件。在一个示例中,预设推荐条件可以包括检测到终端设备的显示界面跳转至主界面。比如,可以在用户由应用界面切换至主界面时,在终端设备的主界面显示推荐应用。在另一个示例中,预设推荐条件可以包括检测到终端设备的使用场景发生变化。其中,使用场景可以是能够影响用户应用使用偏好的场景,比如时间、位置、设备状态。比如,终端设备可以在检测到中午时段时,重新对用户进行应用推荐。此时,终端设备可以为用户推荐餐饮类应用。又比如,终端设备可以在检测到用户由家移动至地铁站之后,重新对用户进行应用推荐,此时终端设备可以为用户推荐出行类应用。再比如,终端设备可以在检测到用户连接了蓝牙耳机之后,可以对用户重新进行应用推荐,此时终端设备可以为用户推荐音乐类应用。在又一个示例中,预设推荐条件可以包括检测到与上一次推荐时刻间隔预设时长。也就是说,终端设备可以周期性进行应用推荐。需要说明的是,终端设备还可以根据具体推荐场景和推荐需求,设置其他预设推荐条件,对此不作具体限制。The preset recommendation condition is the condition that needs to be met when an application recommendation is required. In one example, the preset recommendation condition may include detecting that the display interface of the terminal device jumps to the main interface. For example, when the user switches from the application interface to the main interface, the recommended application can be displayed on the main interface of the terminal device. In another example, the preset recommendation condition may include detecting that the usage scenario of the terminal device has changed. Among them, the usage scenario can be a scenario that can affect the user's application usage preference, such as time, location, and device status. For example, the terminal device can re-recommend applications to the user when it detects the noon period. At this time, the terminal device can recommend catering applications to the user. For another example, the terminal device can re-recommend applications to the user after detecting that the user moves from home to the subway station, and the terminal device can recommend travel applications to the user. For another example, the terminal device can re-recommend applications to the user after detecting that the user is connected to a Bluetooth headset, and the terminal device can recommend music applications to the user. In another example, the preset recommendation condition may include detecting that the interval between the last recommendation time and the preset time is long. That is to say, the terminal device can periodically recommend applications. It should be noted that the terminal device can also set other preset recommendation conditions according to specific recommendation scenarios and recommendation requirements, and there is no specific restriction on this.

当前场景信息,其可以是与应用使用偏好相关的,终端设备的使用场景。示例性地,可以包括用户维度信息、时间维度信息、空间维度信息、设备维度信息中的一种或者多种。其具体内容可以参见本申请实施例上述部分对点击行为数据的相关说明,对此不再赘述。又一示例性地,还可以包括应用维度信息中的应用列表信息。Current scenario information, which may be a usage scenario of a terminal device related to application usage preferences. Exemplarily, it may include one or more of user dimension information, time dimension information, space dimension information, and device dimension information. For its specific content, please refer to the relevant description of click behavior data in the above part of the embodiment of this application, which will not be repeated here. As another example, it may also include application list information in the application dimension information.

在介绍了预设推荐条件和当前场景信息之后,接下来继续对应用推荐过程进行具体说明。After introducing the preset recommendation conditions and current scenario information, the application recommendation process is described in detail.

如图17所示为示例性示出的应用推荐过程的流程示意图。如图17所示,继续以终端设备1为例,终端设备1可以获取得到当前场景信息,其中,当前场景信息可以包括时间维度信息、空间维度信息、设备维度信息、应用维度信息等。以及,终端设备1对所获取的当前场景信息进行场景特征提取,将提取得到的场景特征输入到推荐模型A,得到多个应用的被选择概率。然后,从多个应用中,选择符合预设推荐规则的N个(N为任意正整数,比如4个)应用,比如应用A、应用B、应用D和应用E。然后,在终端设备1的显示界面(比如终端设备1的主页面上的建议文件夹)中展示应用A、应用B、应用D和应用E。可选地,为了提高用户使用体验,还可以根据各应用的被选择概率,将被选择概率最高的M个(M为小于或等于N的正整数,比如2个)应用进行预加载,比如预加载应用A和应用B。FIG17 is a flowchart of an exemplary application recommendation process. As shown in FIG17 , continuing to take the terminal device 1 as an example, the terminal device 1 can obtain the current scene information, wherein the current scene information may include time dimension information, space dimension information, device dimension information, application dimension information, etc. And, the terminal device 1 extracts the scene features of the obtained current scene information, inputs the extracted scene features into the recommendation model A, and obtains the selection probability of multiple applications. Then, from multiple applications, select N (N is any positive integer, such as 4) applications that meet the preset recommendation rules, such as application A, application B, application D and application E. Then, application A, application B, application D and application E are displayed in the display interface of the terminal device 1 (such as the recommended folder on the main page of the terminal device 1). Optionally, in order to improve the user experience, according to the selection probability of each application, the M (M is a positive integer less than or equal to N, such as 2) applications with the highest selection probability can also be preloaded, such as preloading application A and application B.

其中,预设推荐规则,即被推荐应用所需要满足的规则或者条件。示例性地,预设推荐规则可以包括:选择被选择概率最高的N个已下载应用。其中,已下载应用是已在终端设备1上下载的应用。举例来说,继续参见图17,若按照被选择概率由高到低的次序依次为应用A、应用B、应用C、应用D和应用E,应用C未下载,则在需要选择4个应用时可以选择应用A、应用B、应用D和应用E。又一示例性地,预设推荐规则可以包括:按照被选择概率由高到低的次序进行选择,且每一应用类别中被选择的应用数量小于或等于K。其中,K是小于或等于N的正整数,比如,2个。举例来说,继续参见图17,若按照被选择概率由高到低的次序依次为应用A、应用B、应用C、应用D和应用E、应用F,若应用A、应用D和应用E均为短视频类应用,应用C未下载,则在需要选择4个应用时,可以选择应用A、应用B、应用D和应用F。Among them, the preset recommendation rules are the rules or conditions that the recommended applications need to meet. Exemplarily, the preset recommendation rules may include: selecting N downloaded applications with the highest probability of being selected. Among them, the downloaded applications are applications that have been downloaded on the terminal device 1. For example, referring to Figure 17, if the order of selection probability from high to low is application A, application B, application C, application D and application E, and application C is not downloaded, then when 4 applications need to be selected, application A, application B, application D and application E can be selected. In another exemplary embodiment, the preset recommendation rules may include: selecting in order of selection probability from high to low, and the number of selected applications in each application category is less than or equal to K. Among them, K is a positive integer less than or equal to N, for example, 2. For example, referring to Figure 17, if the order of selection probability from high to low is Application A, Application B, Application C, Application D, Application E, and Application F, if Application A, Application D, and Application E are all short video applications, and Application C has not been downloaded, then when you need to select 4 applications, you can choose Application A, Application B, Application D, and Application F.

可选地,为了提高用户下载体验,终端设备可以在推荐下载文件夹中,显示被选择概率高、且未被下载的应用。比如,在终端设备1的推荐下载文件夹中,可以显示应用C。Optionally, in order to improve the user's downloading experience, the terminal device may display applications that have a high probability of being selected and have not been downloaded in the recommended download folder. For example, application C may be displayed in the recommended download folder of the terminal device 1.

在介绍了应用推荐过程之后,接下来继续对数据收集并上传的过程进行说明。After introducing the application recommendation process, the process of data collection and uploading is explained next.

在S201中,当用户在显示有推荐应用的终端设备的应用界面上进行了应用选择操作之后,终端设备可以采集本地点击操作所产生的本次点击行为数据。以及将本地点击行为数据上传至云端,以供云端进行推荐模型的训练。其中,本地点击行为数据可以参见本申请实施例上述部分的相关描述,对此不再赘述。In S201, after the user performs an application selection operation on the application interface of the terminal device displaying the recommended application, the terminal device can collect the click behavior data generated by the local click operation. And upload the local click behavior data to the cloud for the cloud to train the recommendation model. Among them, the local click behavior data can refer to the relevant description of the above part of the embodiment of this application, which will not be repeated here.

示例性地,如图18a为示例性示出的另一种终端显示界面示意图,继续以终端设备1为例,终端设备1的主页面上可以显示建议文件夹和其他文件夹。当用户点击了其他应用文件夹时,终端设备1的显示屏上显示其他应用文件夹中的多个其他应用。18a is a schematic diagram of another terminal display interface, and taking terminal device 1 as an example, the home page of terminal device 1 can display suggested folders and other folders. When the user clicks on the other application folder, the display screen of terminal device 1 displays multiple other applications in the other application folder.

以及,如图18b为示例性示出的又一种端云交互示意图,当用户在其他应用文件夹中点击了“通讯应用B”时,终端设备1检测到本地应用点击行为,可以生成本次点击行为数据并将本次点击行为数据发送至云端。And, as shown in Figure 18b, which is another exemplary end-cloud interaction diagram, when the user clicks on "Communication Application B" in other application folders, the terminal device 1 detects the local application click behavior, and can generate the click behavior data and send the click behavior data to the cloud.

在本申请实施例中,在S201中进行应用推荐、数据收集和上传中的终端设备可以是系统(例如图2所示)中的部分或全部终端设备,对此不做具体限制。In the embodiment of the present application, the terminal devices used for application recommendation, data collection and uploading in S201 may be part or all of the terminal devices in the system (such as shown in FIG. 2 ), and no specific limitation is imposed on this.

S202,终端设备基于收集数据周期性更新模型。S202, the terminal device periodically updates the model based on the collected data.

示例性地,终端设备可以基于一段时间内收集的点击行为数据对本地的推荐模型进行周期性(比如每天)更新。比如,如图18c为示例性示出的又一种终端显示界面示意图,如图18c所示,终端设备1可以对本地的推荐模型A进行更新。以及,随着推荐模型的更新,在相同场景信息下,终端设备1的推荐应用也产生了一定的差异。继续参照图18c,在推荐模型A的更新前后,终端设备1的建议文件夹中也发生了改变,即由浏览器A的应用图标181变化为通信应用B的应用图标182。Exemplarily, the terminal device can periodically (such as daily) update the local recommendation model based on the click behavior data collected over a period of time. For example, FIG. 18c is another schematic diagram of a terminal display interface shown as an example. As shown in FIG. 18c, the terminal device 1 can update the local recommendation model A. And, with the update of the recommendation model, under the same scenario information, the recommended applications of the terminal device 1 also have certain differences. Continuing to refer to FIG. 18c, before and after the update of the recommendation model A, the recommended folder of the terminal device 1 also changed, that is, the application icon 181 of the browser A changed to the application icon 182 of the communication application B.

示例性地,各终端设备可以基于自身的点击行为数据进行推荐模型更新。比如,如图19所示为示例性示出的推荐模型的本地更新流程示意图。云端向终端设备1和终端设备3下发了相同的推荐模型A之后,终端设备1可以基于自身的点击行为数据对推荐模型A进行本地更新,得到推荐模型A'。在一个示例中,如图20所示为示例性的推荐模型的本地更新流程示意图。用户在应用显示界面上进行了应用选择操作之后,终端设备获取当前点击行为数据,其中,当前点击行为数据可以包括时间维度信息、空间维度信息、设备维度信息、应用维度信息等中的一种或多种。终端设备利用特征嵌入表示模块对当前点击行为数据进行特征提取,可以提前得到场景特征。然后终端设备利用场景特征(比如可以将已点击应用作为标签,将从其他点击行为数据中提取出的场景特征作为样本)对推荐模型A进行训练,在达到训练要求的情况下,得到推荐模型A'。示例性地,为了保证推荐模型的准确度,终端设备的特征嵌入表示模块与云端的特征嵌入表示模块相同,以使得可以从同一点击行为数据提取出相同的场景特征,从而保证了终端设备的本地推荐模型训练与云端的推荐模型训练的一致性。Exemplarily, each terminal device can update the recommendation model based on its own click behavior data. For example, as shown in FIG19, an exemplary schematic diagram of the local update process of the recommendation model is shown. After the cloud sends the same recommendation model A to the terminal device 1 and the terminal device 3, the terminal device 1 can locally update the recommendation model A based on its own click behavior data to obtain the recommendation model A'. In an example, as shown in FIG20, an exemplary schematic diagram of the local update process of the recommendation model is shown. After the user performs an application selection operation on the application display interface, the terminal device obtains the current click behavior data, wherein the current click behavior data may include one or more of time dimension information, space dimension information, device dimension information, application dimension information, etc. The terminal device uses the feature embedding representation module to extract features from the current click behavior data, and the scene features can be obtained in advance. Then the terminal device uses the scene features (for example, the clicked application can be used as a label, and the scene features extracted from other click behavior data can be used as samples) to train the recommendation model A, and obtain the recommendation model A' when the training requirements are met. Exemplarily, in order to ensure the accuracy of the recommendation model, the feature embedding representation module of the terminal device is the same as the feature embedding representation module of the cloud, so that the same scene features can be extracted from the same click behavior data, thereby ensuring the consistency of the local recommendation model training of the terminal device and the recommendation model training of the cloud.

以及,继续参照图19,终端设备3可以基于自身的点击行为数据对推荐模型A进行本地更新,得到推荐模型A”。也就是说,对应于同一用户画像群的不同终端设备,其收到的推荐模型是相同的。在相同场景信息下,若其所下载的应用相同,则不同终端设备所推荐的应用是相同的。然而,随着用户点击行为的不同,不同终端设备的本地推荐模型也随之改变,相应地,在相同场景下不同终端设备所推荐的应用也产生了个性化差异。And, continuing to refer to Figure 19, the terminal device 3 can locally update the recommendation model A based on its own click behavior data to obtain the recommendation model A". That is to say, different terminal devices corresponding to the same user portrait group receive the same recommendation model. Under the same scenario information, if the downloaded applications are the same, the applications recommended by different terminal devices are the same. However, as the user's click behavior changes, the local recommendation models of different terminal devices also change accordingly. Accordingly, the applications recommended by different terminal devices in the same scenario also have personalized differences.

可选地,如图21所示为示例性的推荐模型的更新流程示意图。推荐模型的更新过程可以包括:Optionally, FIG21 is a schematic diagram of an exemplary update process of a recommendation model. The update process of the recommendation model may include:

S2021,终端设备获取当前时间周期内的点击行为数据。S2021, the terminal device obtains the click behavior data within the current time period.

其中,当前时间周期可以是推荐模型的更新周期。比如,可以是每天。The current time period may be an update period of the recommendation model, for example, every day.

需要说明的是,点击行为数据可以参见本申请实施例上述部分的相关说明,对此不再赘述。It should be noted that the click behavior data can be found in the relevant description of the above part of the embodiment of the present application, which will not be repeated here.

S2022,终端设备判断当前时间周期的应用推荐准确率是否大于预设准确率阈值。若判断结果为否,执行步骤S2023。若判断结果为是,执行步骤S2024。S2022, the terminal device determines whether the application recommendation accuracy rate in the current time period is greater than a preset accuracy rate threshold. If the determination result is no, step S2023 is executed. If the determination result is yes, step S2024 is executed.

其中,应用推荐准确率用于表征终端设备本地存储的推荐模型在当前时间周期内的应用推荐的准确程度,预设准确率阈值用于衡量终端设备本地存储的推荐模型是否符合应用推荐的准确性要求,其中,预设准确率阈值可以根据实际场景和具体需求设置为任意值,对此不作具体限制。Among them, the application recommendation accuracy is used to characterize the accuracy of the application recommendation of the recommendation model locally stored in the terminal device within the current time period, and the preset accuracy threshold is used to measure whether the recommendation model locally stored in the terminal device meets the accuracy requirements of the application recommendation. Among them, the preset accuracy threshold can be set to any value according to the actual scenario and specific needs, and there is no specific restriction on this.

在一些实施例中,终端设备可以确定当前时间周期内的准确点击次数(即当前时间周期内点击了推荐应用的次数),以及终端设备确定当前时间周期中的应用点击的总次数(即当前时间周期内用户点击应用的总次数)。然后,终端设备将准确点击次数与总次数的比值确定为当前时间周期的应用推荐准确率。示例性地,对于当前时间周期的每次点击行为,若用户所点击的应用不是建议文件夹中推荐应用的应用图标,则终端设备确定本次应用推荐错误,保持当前时间周期中准确推荐次数不变。同理地,若用户所点击的应用是建议文件夹中任一推荐应用的应用图标,则终端设备确定本次点击行为准确,将当前时间周期中准确点击次数加1。比如,若当前时间周期内,用户共点击了18次应用,其中15次点击了推荐应用,则当前时间周期的应用推荐准确率可以为0.833(即15/18)。In some embodiments, the terminal device may determine the exact number of clicks in the current time period (i.e., the number of times the recommended application is clicked in the current time period), and the total number of application clicks determined by the terminal device in the current time period (i.e., the total number of times the user clicks on the application in the current time period). Then, the terminal device determines the ratio of the exact number of clicks to the total number of clicks as the application recommendation accuracy rate for the current time period. Exemplarily, for each click behavior in the current time period, if the application clicked by the user is not an application icon of a recommended application in the recommended folder, the terminal device determines that this application recommendation is wrong, and keeps the exact number of recommendations in the current time period unchanged. Similarly, if the application clicked by the user is an application icon of any recommended application in the recommended folder, the terminal device determines that this click behavior is accurate, and adds 1 to the exact number of clicks in the current time period. For example, if the user clicks on the application 18 times in total in the current time period, of which 15 times are recommended applications, the application recommendation accuracy rate for the current time period may be 0.833 (i.e., 15/18).

S2023,终端设备利用当前时间周期内的点击行为数据更新推荐模型A,得到推荐模型A'。S2023, the terminal device updates the recommendation model A using the click behavior data in the current time period to obtain the recommendation model A'.

示例性地,在下一时间周期内,终端设备可以利用推荐模型A'继续进行应用推荐,以及,在下一时间周期的应用推荐准确率小于预设准确率阈值的情况下,终端设备可以利用下一时间周期内产生的点击行为数据继续对推荐模型A'进行更新。Exemplarily, in the next time period, the terminal device can continue to recommend applications using recommendation model A', and when the application recommendation accuracy in the next time period is less than a preset accuracy threshold, the terminal device can continue to update recommendation model A' using the click behavior data generated in the next time period.

需要说明的是,S2023可以参见本申请实施例对S104的相关说明,对此不再赘述。It should be noted that S2023 can refer to the relevant description of S104 in the embodiment of the present application, and will not be repeated here.

S2024,终端设备不更新推荐模型A。S2024: The terminal device does not update the recommended model A.

需要说明的是,在本申请实施例中,在S202中进行模型更新的终端设备可以是系统(例如图2所示)中的部分或全部终端设备,对此不做具体限制。It should be noted that, in the embodiment of the present application, the terminal device that performs model updating in S202 may be part or all of the terminal devices in the system (eg, as shown in FIG. 2 ), and no specific limitation is imposed on this.

可以理解的是,电子设备为了实现上述功能,其包含了执行各个功能相应的硬件和/或软件模块。结合本文中所公开的实施例描述的各示例的算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以结合实施例对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。It is understandable that, in order to realize the above functions, the electronic device includes hardware and/or software modules corresponding to the execution of each function. In combination with the algorithm steps of each example described in the embodiments disclosed herein, the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art can use different methods to implement the described functions for each specific application in combination with the embodiments, but such implementation should not be considered to be beyond the scope of the present application.

一个示例中,图22示出了本申请实施例的一种装置300的示意性框图装置300可包括:处理器301和收发器/收发管脚302,可选地,还包括存储器303。In an example, FIG22 shows a schematic block diagram of a device 300 according to an embodiment of the present application. The device 300 may include: a processor 301 and a transceiver/transceiver pin 302 , and optionally, a memory 303 .

装置300的各个组件通过总线304耦合在一起,其中总线304除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都称为总线304。The components of the device 300 are coupled together via a bus 304, wherein the bus 304 includes a power bus, a control bus, and a status signal bus in addition to a data bus. However, for the sake of clarity, all buses are referred to as bus 304 in the figure.

可选地,存储器303可以用于前述方法实施例中的指令。该处理器301可用于执行存储器303中的指令,并控制接收管脚接收信号,以及控制发送管脚发送信号。Optionally, the memory 303 may be used for the instructions in the aforementioned method embodiment. The processor 301 may be used to execute the instructions in the memory 303, and control the receiving pin to receive a signal, and control the sending pin to send a signal.

装置300可以是上述方法实施例中的电子设备或电子设备的芯片。The apparatus 300 may be the electronic device or a chip of the electronic device in the above method embodiment.

其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。Among them, all relevant contents of each step involved in the above method embodiment can be referred to the functional description of the corresponding functional module, and will not be repeated here.

上述本申请实施例提供的一种应用推荐方法中终端设备所执行的步骤,也可以由终端设备中包括的一种芯片系统来执行,其中,该芯片系统可以包括处理器和蓝牙芯片。该芯片系统可以与存储器耦合,使得该芯片系统运行时调用该存储器中存储的计算机程序,实现上述终端设备执行的步骤。其中,该芯片系统中的处理器可以是应用处理器也可以是非应用处理器的处理器。The steps performed by the terminal device in the application recommendation method provided in the above embodiment of the present application can also be performed by a chip system included in the terminal device, wherein the chip system may include a processor and a Bluetooth chip. The chip system can be coupled to a memory so that when the chip system is running, it calls a computer program stored in the memory to implement the steps performed by the above terminal device. The processor in the chip system can be an application processor or a processor other than an application processor.

类似的,上述实施例中,云端执行的步骤也可以由云端包括的一种芯片系统来执行,其中,该芯片系统可以包括处理器和蓝牙芯片。该芯片系统可以与存储器耦合,使得该芯片系统运行时调用该存储器中存储的计算机程序,实现上述云端执行的步骤。其中,该芯片系统中处理器可以是应用处理器也可以是非应用处理器的处理器。Similarly, in the above embodiment, the steps executed in the cloud can also be executed by a chip system included in the cloud, wherein the chip system can include a processor and a Bluetooth chip. The chip system can be coupled to a memory, so that when the chip system is running, it calls a computer program stored in the memory to implement the above steps executed in the cloud. The processor in the chip system can be an application processor or a processor other than an application processor.

以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。As described above, the above embodiments are only used to illustrate the technical solutions of the present application, rather than to limit them. Although the present application has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that they can still modify the technical solutions described in the aforementioned embodiments, or make equivalent replacements for some of the technical features therein. However, these modifications or replacements do not cause the essence of the corresponding technical solutions to deviate from the scope of the technical solutions of the embodiments of the present application.

Claims (34)

1.一种应用推荐方法,其特征在于,所述方法应用于云端,所述方法包括:1. An application recommendation method, characterized in that the method is applied in the cloud, and the method comprises: 获取多个终端设备的第一点击行为数据;Obtain first click behavior data of multiple terminal devices; 基于所述多个终端设备的第一点击行为数据,获取所述多个终端设备中的每个终端设备对应的用户预测画像;Based on the first click behavior data of the multiple terminal devices, obtaining a user prediction portrait corresponding to each terminal device in the multiple terminal devices; 基于所述多个终端设备中的每个终端设备对应的用户预测画像,将所述多个终端设备划分为多个用户画像群;Based on the predicted user portrait corresponding to each terminal device in the plurality of terminal devices, dividing the plurality of terminal devices into a plurality of user portrait groups; 基于单一用户画像群中的各终端设备的第一点击行为数据进行模型训练,得到所述单一用户画像群对应的应用推荐模型;Performing model training based on the first click behavior data of each terminal device in a single user portrait group to obtain an application recommendation model corresponding to the single user portrait group; 将所述单一用户画像群对应的应用推荐模型发送给所述单一用户画像群中的各终端设备,使得所述单一用户画像群中的各终端设备基于所述应用推荐模型进行应用推荐。The application recommendation model corresponding to the single user portrait group is sent to each terminal device in the single user portrait group, so that each terminal device in the single user portrait group makes application recommendations based on the application recommendation model. 2.根据权利要求1所述的方法,其特征在于,所述基于所述多个终端设备的第一点击行为数据,获取所述多个终端设备中的每个终端设备对应的用户预测画像,包括:2. The method according to claim 1, characterized in that the step of obtaining a user prediction portrait corresponding to each of the plurality of terminal devices based on the first click behavior data of the plurality of terminal devices comprises: 将单一终端设备的第一点击行为数据输入画像预测模型,得到所述单一终端设备对应的用户预测画像,Input the first click behavior data of a single terminal device into the portrait prediction model to obtain the user prediction portrait corresponding to the single terminal device. 其中,所述画像预测模型为大语言模型。Among them, the portrait prediction model is a large language model. 3.根据权利要求2所述的方法,其特征在于,所述基于所述多个终端设备的第一点击行为数据,获取所述多个终端设备中的每个终端设备对应的用户预测画像,包括:3. The method according to claim 2, characterized in that the step of obtaining a user prediction portrait corresponding to each of the plurality of terminal devices based on the first click behavior data of the plurality of terminal devices comprises: 对单一终端设备的第一点击行为数据进行文本表示,生成固定文本格式的描述文本;Performing text representation on the first click behavior data of a single terminal device to generate a description text in a fixed text format; 将所述描述文本输入所述画像预测模型,得到所述单一终端设备对应的用户预测画像。The description text is input into the portrait prediction model to obtain a user prediction portrait corresponding to the single terminal device. 4.根据权利要求2所述的方法,其特征在于,所述单一终端设备的第一点击行为数据包括用户维度信息,所述基于所述多个终端设备的第一点击行为数据,获取所述多个终端设备中的每个终端设备对应的用户预测画像,包括:4. The method according to claim 2, wherein the first click behavior data of the single terminal device includes user dimension information, and the obtaining of a user prediction portrait corresponding to each of the multiple terminal devices based on the first click behavior data of the multiple terminal devices comprises: 将所述单一终端设备的第一点击行为数据输入所述画像预测模型,得到初始用户画像,所述初始用户画像包括用户维度信息;Inputting the first click behavior data of the single terminal device into the portrait prediction model to obtain an initial user portrait, wherein the initial user portrait includes user dimension information; 利用所述单一终端设备的第一点击行为数据中的用户维度信息,对所述初始用户画像中的用户维度信息进行修正,得到所述单一终端设备对应的用户预测画像。The user dimension information in the first click behavior data of the single terminal device is used to correct the user dimension information in the initial user portrait to obtain a user prediction portrait corresponding to the single terminal device. 5.根据权利要求4所述的方法,其特征在于,所述用户维度信息包括主观类用户维度信息和客观类用户维度信息,所述单一终端设备对应的用户预测画像包括所述单一终端设备的第一点击行为数据中的客观类用户维度信息、以及所述初始用户画像中的客观类用户维度信息;所述利用所述单一终端设备的第一点击行为数据中的用户维度信息对所述初始用户画像中的用户维度信息进行修正,得到所述单一终端设备对应的用户预测画像,包括:5. The method according to claim 4, characterized in that the user dimension information includes subjective user dimension information and objective user dimension information, and the user prediction portrait corresponding to the single terminal device includes the objective user dimension information in the first click behavior data of the single terminal device and the objective user dimension information in the initial user portrait; the user dimension information in the first click behavior data of the single terminal device is used to correct the user dimension information in the initial user portrait to obtain the user prediction portrait corresponding to the single terminal device, comprising: 利用所述单一终端设备的第一点击行为数据中的客观类用户维度信息对所述初始用户画像中的客观类用户维度信息进行替换;Using the objective user dimension information in the first click behavior data of the single terminal device to replace the objective user dimension information in the initial user portrait; 保持所述初始用户画像中的客观类用户维度信息不变。The objective user dimension information in the initial user portrait is kept unchanged. 6.根据权利要求2所述的方法,其特征在于,所述将单一终端设备的点击行为数据输入画像预测模型,得到所述单一终端设备对应的用户预测画像之前,所述方法还包括:6. The method according to claim 2, characterized in that before inputting the click behavior data of a single terminal device into the portrait prediction model to obtain the user prediction portrait corresponding to the single terminal device, the method further comprises: 获取多个预测模型训练数据以及基础大语言模型,其中,每个预测模型训练数据包括一个终端设备的第二点击行为数据和所述一个终端设备对应的用户画像描述文本;Acquire multiple prediction model training data and a basic large language model, wherein each prediction model training data includes second click behavior data of a terminal device and a user portrait description text corresponding to the terminal device; 利用所述多个预测模型训练数据对所述基础大语言模型进行指令微调,得到训练完成的画像预测模型。The basic large language model is fine-tuned using the multiple prediction model training data to obtain a trained portrait prediction model. 7.根据权利要求1所述的方法,其特征在于,7. The method according to claim 1, characterized in that 所述基于所述多个终端设备的第一点击行为数据,获取所述多个终端设备中的每个终端设备对应的用户预测画像,包括:The acquiring, based on the first click behavior data of the multiple terminal devices, a user prediction portrait corresponding to each terminal device in the multiple terminal devices includes: 将单一终端设备的第一点击行为数据输入画像预测模型,得到所述单一终端设备的用户画像描述文本;Inputting the first click behavior data of a single terminal device into a portrait prediction model to obtain a user portrait description text of the single terminal device; 对所述用户画像描述文本进行关键词提取,得到所述单一终端设备的关键画像描述词句;Perform keyword extraction on the user portrait description text to obtain key portrait description words and sentences of the single terminal device; 将所述单一终端设备的关键画像描述词句输入画像预测模型,将画像预测模型的中间输出作为所述单一终端设备的关键画像描述词句的表示向量;Inputting the key portrait description words and sentences of the single terminal device into the portrait prediction model, and using the intermediate output of the portrait prediction model as the representation vector of the key portrait description words and sentences of the single terminal device; 所述基于所述多个终端设备中的每个终端设备对应的用户预测画像,将所述多个终端设备划分为多个用户画像群,包括:The dividing the plurality of terminal devices into a plurality of user portrait groups based on the predicted user portrait corresponding to each of the plurality of terminal devices comprises: 基于所述多个终端设备的关键画像描述词句的表示向量,对所述多个终端设备进行用户群体划分,得到多个用户画像群。Based on the representation vectors of the key portrait description words and sentences of the multiple terminal devices, the multiple terminal devices are divided into user groups to obtain multiple user portrait groups. 8.根据权利要求1所述的方法,其特征在于,所述第一点击行为数据包括:8. The method according to claim 1, wherein the first click behavior data comprises: 时间维度信息、空间维度信息、设备维度信息和应用维度信息中的至少一者。At least one of time dimension information, space dimension information, device dimension information, and application dimension information. 9.一种应用推荐方法,其特征在于,所述方法应用于目标终端设备,所述方法包括:9. An application recommendation method, characterized in that the method is applied to a target terminal device, and the method comprises: 接收云端发送的应用推荐模型,所述应用推荐模型与所述目标终端设备所属用户画像群对应,所述应用推荐模型是所述云端利用所述用户画像群中的各终端设备的第一点击行为数据训练得到的,所述用户画像群是基于多个终端设备中的每个终端设备对应的用户预测画像、将所述多个终端设备划分得到的,所述多个终端设备中的每个终端设备对应的用户预测画像是基于所述多个终端设备的第一点击行为数据确定的;Receive an application recommendation model sent by the cloud, the application recommendation model corresponds to the user profile group to which the target terminal device belongs, the application recommendation model is trained by the cloud using the first click behavior data of each terminal device in the user profile group, the user profile group is obtained by dividing the multiple terminal devices based on the user prediction profile corresponding to each terminal device in the multiple terminal devices, and the user prediction profile corresponding to each terminal device in the multiple terminal devices is determined based on the first click behavior data of the multiple terminal devices; 获取当前场景信息;Get current scene information; 将所述当前场景信息输入所述应用推荐模型,得到推荐应用;Inputting the current scenario information into the application recommendation model to obtain a recommended application; 显示所述推荐应用。The recommended applications are displayed. 10.根据权利要求9所述的方法,其特征在于,所述显示所述推荐应用之后,所述方法还包括:10. The method according to claim 9, characterized in that after displaying the recommended application, the method further comprises: 检测用户的应用选择操作;Detect the user's application selection operation; 响应于所述应用选择操作,生成第三点击行为数据;In response to the application selection operation, generating third click behavior data; 利用当前时间周期内的所述第三点击行为数据,对所述应用推荐模型进行更新。The application recommendation model is updated using the third click behavior data in the current time period. 11.根据权利要求10所述的方法,其特征在于,所述利用当前时间周期内的所述第三点击行为数据,对所述应用推荐模型进行更新,包括:11. The method according to claim 10, characterized in that the updating of the application recommendation model by using the third click behavior data in the current time period comprises: 基于所述当前时间周期内的所述第三点击行为数据,确定所述目标终端设备在当前时间周期内的应用推荐准确率;Determining the application recommendation accuracy of the target terminal device in the current time period based on the third click behavior data in the current time period; 在所述应用推荐准确率小于预设准确率阈值的情况下,利用当前时间周期内的所述第三点击行为数据,对所述应用推荐模型进行更新。When the application recommendation accuracy is less than a preset accuracy threshold, the application recommendation model is updated using the third click behavior data in the current time period. 12.根据权利要求10所述的方法,其特征在于,所述生成第三点击行为数据之后,所述方法还包括:12. The method according to claim 10, characterized in that after generating the third click behavior data, the method further comprises: 将所述第三点击行为数据发送给所述云端,使得所述云端基于所述第三点击行为数据进行推荐模型的微调训练。The third click behavior data is sent to the cloud, so that the cloud performs fine-tuning training of the recommendation model based on the third click behavior data. 13.根据权利要求9所述的方法,其特征在于,所述将所述当前场景信息输入所述应用推荐模型,得到推荐应用,包括:13. The method according to claim 9, wherein the step of inputting the current scenario information into the application recommendation model to obtain a recommended application comprises: 将所述当前场景信息输入所述应用推荐模型,得到多个候选应用的被选择概率;Inputting the current scenario information into the application recommendation model to obtain selection probabilities of multiple candidate applications; 基于所述多个候选应用的被选择概率和预设推荐规则,在所述多个候选应用中选择所述推荐应用。The recommended application is selected from the multiple candidate applications based on the selection probabilities of the multiple candidate applications and a preset recommendation rule. 14.根据权利要求9所述的方法,其特征在于,所述终端设备的主界面上显示有建议文件夹;14. The method according to claim 9, characterized in that a suggested folder is displayed on the main interface of the terminal device; 所述显示所述推荐应用,包括:The displaying of the recommended application includes: 在所述建议文件夹中显示所述推荐应用。The recommended application is displayed in the suggestion folder. 15.根据权利要求9所述的方法,其特征在于,15. The method according to claim 9, characterized in that 所述多个终端设备中的每个终端设备对应的用户预测画像是利用画像预测模型对所述每个终端设备的第一点击行为数据处理得到的,The user prediction portrait corresponding to each terminal device among the multiple terminal devices is obtained by processing the first click behavior data of each terminal device using the portrait prediction model. 所述画像预测模型为大语言模型。The portrait prediction model is a large language model. 16.根据权利要求9所述的方法,其特征在于,所述第一点击行为数据包括:16. The method according to claim 9, wherein the first click behavior data comprises: 时间维度信息、空间维度信息、设备维度信息和应用维度信息中的至少一者。At least one of time dimension information, space dimension information, device dimension information, and application dimension information. 17.一种云服务器,其特征在于,包括:17. A cloud server, comprising: 一个或多个处理器;one or more processors; 存储器;Memory; 以及一个或多个计算机程序,其中所述一个或多个计算机程序存储在所述存储器上,当所述计算机程序被所述一个或多个处理器执行时,使得所述云服务器执行以下步骤:and one or more computer programs, wherein the one or more computer programs are stored in the memory, and when the computer programs are executed by the one or more processors, the cloud server performs the following steps: 获取多个终端设备的第一点击行为数据;Obtain first click behavior data of multiple terminal devices; 基于所述多个终端设备的第一点击行为数据,获取所述多个终端设备中的每个终端设备对应的用户预测画像;Based on the first click behavior data of the multiple terminal devices, obtaining a user prediction portrait corresponding to each terminal device in the multiple terminal devices; 基于所述多个终端设备中的每个终端设备对应的用户预测画像,将所述多个终端设备划分为多个用户画像群;Based on the predicted user portrait corresponding to each terminal device among the multiple terminal devices, dividing the multiple terminal devices into multiple user portrait groups; 基于单一用户画像群中的各终端设备的第一点击行为数据进行模型训练,得到所述单一用户画像群对应的应用推荐模型;Performing model training based on the first click behavior data of each terminal device in a single user portrait group to obtain an application recommendation model corresponding to the single user portrait group; 将所述单一用户画像群对应的应用推荐模型发送给所述单一用户画像群中的各终端设备,使得所述单一用户画像群中的各终端设备基于所述应用推荐模型进行应用推荐。The application recommendation model corresponding to the single user portrait group is sent to each terminal device in the single user portrait group, so that each terminal device in the single user portrait group makes application recommendations based on the application recommendation model. 18.根据权利要求17所述的云服务器,其特征在于,当所述计算机程序被所述一个或多个处理器执行时,使得所述云服务器执行以下步骤:18. The cloud server according to claim 17, wherein when the computer program is executed by the one or more processors, the cloud server performs the following steps: 将单一终端设备的第一点击行为数据输入画像预测模型,得到所述单一终端设备对应的用户预测画像,Input the first click behavior data of a single terminal device into the portrait prediction model to obtain the user prediction portrait corresponding to the single terminal device. 其中,所述画像预测模型为大语言模型。Among them, the portrait prediction model is a large language model. 19.根据权利要求18所述的云服务器,其特征在于,当所述计算机程序被所述一个或多个处理器执行时,使得所述云服务器执行以下步骤:19. The cloud server according to claim 18, wherein when the computer program is executed by the one or more processors, the cloud server performs the following steps: 对单一终端设备的第一点击行为数据进行文本表示,生成固定文本格式的描述文本;Performing text representation on the first click behavior data of a single terminal device to generate a description text in a fixed text format; 将所述描述文本输入所述画像预测模型,得到所述单一终端设备对应的用户预测画像。The description text is input into the portrait prediction model to obtain a user prediction portrait corresponding to the single terminal device. 20.根据权利要求18所述的云服务器,其特征在于,所述单一终端设备的第一点击行为数据包括用户维度信息,当所述计算机程序被所述一个或多个处理器执行时,使得所述云服务器执行以下步骤:20. The cloud server according to claim 18, wherein the first click behavior data of the single terminal device includes user dimension information, and when the computer program is executed by the one or more processors, the cloud server performs the following steps: 将所述单一终端设备的第一点击行为数据输入所述画像预测模型,得到初始用户画像,所述初始用户画像包括用户维度信息;Inputting the first click behavior data of the single terminal device into the portrait prediction model to obtain an initial user portrait, wherein the initial user portrait includes user dimension information; 利用所述单一终端设备的第一点击行为数据中的用户维度信息,对所述初始用户画像中的用户维度信息进行修正,得到所述单一终端设备对应的用户预测画像。The user dimension information in the first click behavior data of the single terminal device is used to correct the user dimension information in the initial user portrait to obtain a user prediction portrait corresponding to the single terminal device. 21.根据权利要求20所述的云服务器,其特征在于,所述用户维度信息包括主观类用户维度信息和客观类用户维度信息,所述单一终端设备对应的用户预测画像包括所述单一终端设备的第一点击行为数据中的客观类用户维度信息、以及所述初始用户画像中的客观类用户维度信息;21. The cloud server according to claim 20, characterized in that the user dimension information includes subjective user dimension information and objective user dimension information, and the user prediction portrait corresponding to the single terminal device includes the objective user dimension information in the first click behavior data of the single terminal device and the objective user dimension information in the initial user portrait; 当所述计算机程序被所述一个或多个处理器执行时,使得所述云服务器执行以下步骤:When the computer program is executed by the one or more processors, the cloud server performs the following steps: 利用所述单一终端设备的第一点击行为数据中的客观类用户维度信息对所述初始用户画像中的客观类用户维度信息进行替换;Using the objective user dimension information in the first click behavior data of the single terminal device to replace the objective user dimension information in the initial user portrait; 保持所述初始用户画像中的客观类用户维度信息不变。The objective user dimension information in the initial user portrait is kept unchanged. 22.根据权利要求18所述的云服务器,其特征在于,当所述计算机程序被所述一个或多个处理器执行时,使得所述云服务器执行以下步骤:22. The cloud server according to claim 18, wherein when the computer program is executed by the one or more processors, the cloud server performs the following steps: 获取多个预测模型训练数据以及基础大语言模型,其中,每个预测模型训练数据包括一个终端设备的第二点击行为数据和所述一个终端设备对应的用户画像描述文本;Acquire multiple prediction model training data and a basic large language model, wherein each prediction model training data includes second click behavior data of a terminal device and a user portrait description text corresponding to the terminal device; 利用所述多个预测模型训练数据对所述基础大语言模型进行指令微调,得到训练完成的画像预测模型。The basic large language model is fine-tuned using the multiple prediction model training data to obtain a trained portrait prediction model. 23.根据权利要求17所述的云服务器,其特征在于,当所述计算机程序被所述一个或多个处理器执行时,使得所述云服务器执行以下步骤:23. The cloud server according to claim 17, wherein when the computer program is executed by the one or more processors, the cloud server performs the following steps: 将单一终端设备的第一点击行为数据输入画像预测模型,得到所述单一终端设备的用户画像描述文本;Inputting the first click behavior data of a single terminal device into a portrait prediction model to obtain a user portrait description text of the single terminal device; 对所述用户画像描述文本进行关键词提取,得到所述单一终端设备的关键画像描述词句;Perform keyword extraction on the user portrait description text to obtain key portrait description words and sentences of the single terminal device; 将所述单一终端设备的关键画像描述词句输入画像预测模型,将画像预测模型的中间输出作为所述单一终端设备的关键画像描述词句的表示向量;Inputting the key portrait description words and sentences of the single terminal device into the portrait prediction model, and using the intermediate output of the portrait prediction model as the representation vector of the key portrait description words and sentences of the single terminal device; 基于所述多个终端设备的关键画像描述词句的表示向量,对所述多个终端设备进行用户群体划分,得到多个用户画像群。Based on the representation vectors of the key portrait description words and sentences of the multiple terminal devices, the multiple terminal devices are divided into user groups to obtain multiple user portrait groups. 24.根据权利要求17所述的云服务器,其特征在于,所述第一点击行为数据包括:24. The cloud server according to claim 17, wherein the first click behavior data comprises: 时间维度信息、空间维度信息、设备维度信息和应用维度信息中的至少一者。At least one of time dimension information, space dimension information, device dimension information, and application dimension information. 25.一种电子设备,其特征在于,包括:25. An electronic device, comprising: 一个或多个处理器;one or more processors; 存储器;Memory; 以及一个或多个计算机程序,其中所述一个或多个计算机程序存储在所述存储器上,当所述计算机程序被所述一个或多个处理器执行时,使得所述电子设备执行以下步骤:and one or more computer programs, wherein the one or more computer programs are stored in the memory, and when the computer programs are executed by the one or more processors, the electronic device performs the following steps: 接收云端发送的应用推荐模型,所述应用推荐模型与目标终端设备所属用户画像群对应,所述应用推荐模型是所述云端利用所述用户画像群中的各终端设备的第一点击行为数据训练得到的,所述用户画像群是基于多个终端设备中的每个终端设备对应的用户预测画像、将所述多个终端设备划分得到的,所述多个终端设备中的每个终端设备对应的用户预测画像是基于所述多个终端设备的第一点击行为数据确定的;Receive an application recommendation model sent by a cloud, the application recommendation model corresponding to a user profile group to which a target terminal device belongs, the application recommendation model being trained by the cloud using first click behavior data of each terminal device in the user profile group, the user profile group being obtained by dividing the multiple terminal devices based on a predicted user profile corresponding to each terminal device in a plurality of terminal devices, the predicted user profile corresponding to each terminal device in the plurality of terminal devices being determined based on the first click behavior data of the plurality of terminal devices; 获取当前场景信息;Get current scene information; 将所述当前场景信息输入所述应用推荐模型,得到推荐应用;Inputting the current scenario information into the application recommendation model to obtain a recommended application; 显示所述推荐应用。The recommended applications are displayed. 26.根据权利要求25所述的电子设备,其特征在于,当所述计算机程序被所述一个或多个处理器执行时,使得所述电子设备执行以下步骤:26. The electronic device according to claim 25, characterized in that when the computer program is executed by the one or more processors, the electronic device performs the following steps: 检测用户的应用选择操作;Detect the user's application selection operation; 响应于所述应用选择操作,生成第三点击行为数据;In response to the application selection operation, generating third click behavior data; 利用当前时间周期内的所述第三点击行为数据,对所述应用推荐模型进行更新。The application recommendation model is updated using the third click behavior data in the current time period. 27.根据权利要求26所述的电子设备,其特征在于,当所述计算机程序被所述一个或多个处理器执行时,使得所述电子设备执行以下步骤:27. The electronic device according to claim 26, wherein when the computer program is executed by the one or more processors, the electronic device performs the following steps: 基于所述当前时间周期内的所述第三点击行为数据,确定所述目标终端设备在当前时间周期内的应用推荐准确率;Determining the application recommendation accuracy of the target terminal device in the current time period based on the third click behavior data in the current time period; 在所述应用推荐准确率小于预设准确率阈值的情况下,利用当前时间周期内的所述第三点击行为数据,对所述应用推荐模型进行更新。When the application recommendation accuracy is less than a preset accuracy threshold, the application recommendation model is updated using the third click behavior data in the current time period. 28.根据权利要求26所述的电子设备,其特征在于,当所述计算机程序被所述一个或多个处理器执行时,使得所述电子设备执行以下步骤:28. The electronic device according to claim 26, wherein when the computer program is executed by the one or more processors, the electronic device performs the following steps: 将所述第三点击行为数据发送给所述云端,使得所述云端基于所述第三点击行为数据进行推荐模型的微调训练。The third click behavior data is sent to the cloud, so that the cloud performs fine-tuning training of the recommendation model based on the third click behavior data. 29.根据权利要求25所述的电子设备,其特征在于,当所述计算机程序被所述一个或多个处理器执行时,使得所述电子设备执行以下步骤:29. The electronic device according to claim 25, characterized in that when the computer program is executed by the one or more processors, the electronic device performs the following steps: 将所述当前场景信息输入所述应用推荐模型,得到多个候选应用的被选择概率;Inputting the current scenario information into the application recommendation model to obtain selection probabilities of multiple candidate applications; 基于所述多个候选应用的被选择概率和预设推荐规则,在所述多个候选应用中选择所述推荐应用。The recommended application is selected from the multiple candidate applications based on the selection probabilities of the multiple candidate applications and a preset recommendation rule. 30.根据权利要求25所述的电子设备,其特征在于,所述终端设备的主界面上显示有建议文件夹,当所述计算机程序被所述一个或多个处理器执行时,使得所述电子设备执行以下步骤:30. The electronic device according to claim 25, characterized in that a suggested folder is displayed on the main interface of the terminal device, and when the computer program is executed by the one or more processors, the electronic device performs the following steps: 在所述建议文件夹中显示所述推荐应用。The recommended application is displayed in the suggestion folder. 31.根据权利要求25所述的电子设备,其特征在于,31. The electronic device according to claim 25, characterized in that: 所述多个终端设备中的每个终端设备对应的用户预测画像是利用画像预测模型对所述每个终端设备的第一点击行为数据处理得到的,The user prediction portrait corresponding to each terminal device among the multiple terminal devices is obtained by processing the first click behavior data of each terminal device using the portrait prediction model. 所述画像预测模型为大语言模型。The portrait prediction model is a large language model. 32.根据权利要求25所述的电子设备,其特征在于,所述第一点击行为数据包括:32. The electronic device according to claim 25, wherein the first click behavior data comprises: 时间维度信息、空间维度信息、设备维度信息和应用维度信息中的至少一者。At least one of time dimension information, space dimension information, device dimension information, and application dimension information. 33.一种芯片,其特征在于,包括一个或多个接口电路和一个或多个处理器;33. A chip, characterized in that it comprises one or more interface circuits and one or more processors; 其中,所述接口电路用于从云服务器的存储器接收信号,并向所述处理器发送所述信号,所述信号包括存储器中存储的计算机指令;以及,当所述处理器执行所述计算机指令时,使得所述云服务器执行权利要求1至8任一项所述的应用推荐方法。The interface circuit is used to receive a signal from a memory of the cloud server and send the signal to the processor, wherein the signal includes computer instructions stored in the memory; and when the processor executes the computer instructions, the cloud server executes the application recommendation method described in any one of claims 1 to 8. 34.一种芯片,其特征在于,包括一个或多个接口电路和一个或多个处理器;34. A chip, characterized in that it comprises one or more interface circuits and one or more processors; 其中,所述接口电路用于从电子设备的存储器接收信号,并向所述处理器发送所述信号,所述信号包括存储器中存储的计算机指令;以及,当所述处理器执行所述计算机指令时,使得所述终端设备执行权利要求9至16任一项所述的应用推荐方法。The interface circuit is used to receive a signal from a memory of an electronic device and send the signal to the processor, wherein the signal includes computer instructions stored in the memory; and when the processor executes the computer instructions, the terminal device executes the application recommendation method described in any one of claims 9 to 16.
CN202311409758.6A 2023-10-26 2023-10-26 Application recommendation method, electronic device and cloud server Active CN118446750B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311409758.6A CN118446750B (en) 2023-10-26 2023-10-26 Application recommendation method, electronic device and cloud server

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311409758.6A CN118446750B (en) 2023-10-26 2023-10-26 Application recommendation method, electronic device and cloud server

Publications (2)

Publication Number Publication Date
CN118446750A true CN118446750A (en) 2024-08-06
CN118446750B CN118446750B (en) 2025-04-18

Family

ID=92316744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311409758.6A Active CN118446750B (en) 2023-10-26 2023-10-26 Application recommendation method, electronic device and cloud server

Country Status (1)

Country Link
CN (1) CN118446750B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118708820A (en) * 2024-08-28 2024-09-27 北京衡创智成自动化科技有限公司 Application software recommendation method and system based on big data
CN119917131A (en) * 2024-11-29 2025-05-02 荣耀终端股份有限公司 Software updating method, electronic device, readable storage medium and program product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080222132A1 (en) * 2007-03-07 2008-09-11 Jiangyi Pan Personalized shopping recommendation based on search units
CN113204714A (en) * 2021-03-23 2021-08-03 北京中交兴路信息科技有限公司 User portrait based task recommendation method and device, storage medium and terminal
CN113360768A (en) * 2021-06-29 2021-09-07 平安信托有限责任公司 Product recommendation method, device and equipment based on user portrait and storage medium
CN113449188A (en) * 2021-06-30 2021-09-28 东莞市小精灵教育软件有限公司 Application recommendation method and device, electronic equipment and readable storage medium
CN114663198A (en) * 2022-04-25 2022-06-24 未鲲(上海)科技服务有限公司 Product recommendation method, device and equipment based on user portrait and storage medium
CN116911383A (en) * 2023-07-27 2023-10-20 中移(杭州)信息技术有限公司 Federal recommendation model training method, terminal equipment, server and medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080222132A1 (en) * 2007-03-07 2008-09-11 Jiangyi Pan Personalized shopping recommendation based on search units
CN113204714A (en) * 2021-03-23 2021-08-03 北京中交兴路信息科技有限公司 User portrait based task recommendation method and device, storage medium and terminal
CN113360768A (en) * 2021-06-29 2021-09-07 平安信托有限责任公司 Product recommendation method, device and equipment based on user portrait and storage medium
CN113449188A (en) * 2021-06-30 2021-09-28 东莞市小精灵教育软件有限公司 Application recommendation method and device, electronic equipment and readable storage medium
CN114663198A (en) * 2022-04-25 2022-06-24 未鲲(上海)科技服务有限公司 Product recommendation method, device and equipment based on user portrait and storage medium
CN116911383A (en) * 2023-07-27 2023-10-20 中移(杭州)信息技术有限公司 Federal recommendation model training method, terminal equipment, server and medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118708820A (en) * 2024-08-28 2024-09-27 北京衡创智成自动化科技有限公司 Application software recommendation method and system based on big data
CN119917131A (en) * 2024-11-29 2025-05-02 荣耀终端股份有限公司 Software updating method, electronic device, readable storage medium and program product

Also Published As

Publication number Publication date
CN118446750B (en) 2025-04-18

Similar Documents

Publication Publication Date Title
WO2021018154A1 (en) Information representation method and apparatus
CN103902640B (en) Portable electronic device, content recommendation method and computer readable medium
EP3015145A1 (en) Device and method of managing user information based on image
WO2022100221A1 (en) Retrieval processing method and apparatus, and storage medium
CN114255056B (en) Advertisement display method and electronic device
CN109890067A (en) Method and electronic equipment for identifying specific position on specific route
CN110458360B (en) Method, device, equipment and storage medium for predicting hot resources
CN118446750B (en) Application recommendation method, electronic device and cloud server
CN114117225B (en) Book recommendation method and book recommendation device
CN103516780A (en) Mobile terminal, server, system and method for controlling the same
CN112181220A (en) Icon display method, device and system
CN111480158B (en) File management method and electronic equipment
CN115017400A (en) Application APP recommendation method and electronic equipment
US20170249325A1 (en) Proactive favorite leisure interest identification for personalized experiences
WO2024067293A1 (en) Service card recommendation method, and electronic device
CN112287234A (en) Information retrieval method, device and storage medium
WO2023071718A1 (en) Floating window adjusting method and electronic device
US20250013702A1 (en) Application recommendation method and electronic device
CN116302297B (en) A topic generation method and electronic device
CN110909221A (en) Resource display method and related device
CN118741611A (en) Data transmission method, electronic device, system and computer readable storage medium
WO2020207316A1 (en) Device resource configuration method and apparatus, storage medium and electronic device
CN115018524A (en) Commodity searching method, related device and system
CN117332145B (en) Application recommendation method, device and user equipment
WO2024159994A1 (en) Search event context display method and generation method, and electronic device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Country or region after: China

Address after: Unit 3401, unit a, building 6, Shenye Zhongcheng, No. 8089, Hongli West Road, Donghai community, Xiangmihu street, Futian District, Shenzhen, Guangdong 518040

Applicant after: Honor Terminal Co.,Ltd.

Address before: 3401, unit a, building 6, Shenye Zhongcheng, No. 8089, Hongli West Road, Donghai community, Xiangmihu street, Futian District, Shenzhen, Guangdong

Applicant before: Honor Device Co.,Ltd.

Country or region before: China

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant