CN118035049B - Application interface abnormality warning method, device, electronic equipment and medium - Google Patents
Application interface abnormality warning method, device, electronic equipment and medium Download PDFInfo
- Publication number
- CN118035049B CN118035049B CN202410228839.4A CN202410228839A CN118035049B CN 118035049 B CN118035049 B CN 118035049B CN 202410228839 A CN202410228839 A CN 202410228839A CN 118035049 B CN118035049 B CN 118035049B
- Authority
- CN
- China
- Prior art keywords
- interface
- information
- call
- application interface
- application
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/32—Monitoring with visual or acoustical indication of the functioning of the machine
- G06F11/324—Display of status information
- G06F11/327—Alarm or error message display
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/3003—Monitoring arrangements specially adapted to the computing system or computing system component being monitored
- G06F11/302—Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system component is a software system
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Quality & Reliability (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Debugging And Monitoring (AREA)
Abstract
本公开的实施例公开了应用接口异常告警方法、装置、电子设备和介质。该方法的一具体实施方式包括:获取待检测应用接口信息集;对待检测应用接口信息集进行无侵入监控处理,得到应用接口监控信息组集;对接口响应信息组进行分类处理,得到类别接口响应信息组;确定类别接口调用量组;确定类别接口调用量差值组;将待检测应用接口信息,确定为目标应用接口信息;对目标应用接口信息集进行异常检测,得到异常应用接口信息集;对异常应用接口信息集进行根因定位处理,得到接口异常信息集,以及控制关联告警设备进行异常告警。该实施方式可以提高异常检测的准确性,降低误检率和漏检率,提高应用系统的稳定性和用户体验感。
The embodiments of the present disclosure disclose an application interface abnormality alarm method, device, electronic device and medium. A specific implementation of the method includes: obtaining an application interface information set to be detected; performing non-invasive monitoring processing on the application interface information set to be detected to obtain an application interface monitoring information group set; classifying and processing the interface response information group to obtain a category interface response information group; determining a category interface call volume group; determining a category interface call volume difference group; determining the application interface information to be detected as the target application interface information; performing abnormality detection on the target application interface information set to obtain an abnormal application interface information set; performing root cause location processing on the abnormal application interface information set to obtain an interface abnormality information set, and controlling the associated alarm device to issue an abnormality alarm. This implementation can improve the accuracy of abnormality detection, reduce the false detection rate and missed detection rate, and improve the stability of the application system and the user experience.
Description
技术领域Technical Field
本公开的实施例涉及计算机技术领域,具体涉及应用接口异常告警方法、装置、电子设备和介质。Embodiments of the present disclosure relate to the field of computer technology, and in particular to an application interface abnormality alarm method, device, electronic device, and medium.
背景技术Background Art
对应用系统的接口调用进行监控,不仅可以掌握应用系统的使用情况,也可以了解应用系统的运行情况,在应用系统出现异常情况时及时告警和通知相关人员,确保应用系统的稳定性和安全性。对于应用接口异常进行告警,通常采用的方式为:通过探针的形式,对应用系统的各个应用接口的调用进行显式监控,得到接口调用信息集,然后,设置各个应用接口的固定告警阈值。最后,响应于确定应用接口达到固定告警阈值,控制关联告警装置进行告警。Monitoring the interface calls of the application system can not only grasp the usage of the application system, but also understand the operation of the application system. When an abnormal situation occurs in the application system, timely alarm and notification of relevant personnel can be made to ensure the stability and security of the application system. For alarming application interface abnormalities, the usual method is: through the form of probes, the calls of each application interface of the application system are explicitly monitored to obtain the interface call information set, and then the fixed alarm threshold of each application interface is set. Finally, in response to determining that the application interface reaches the fixed alarm threshold, the associated alarm device is controlled to issue an alarm.
然而,实践中发现,当采用上述方式对应用接口异常进行告警时,经常会存在如下技术问题一:由于对应用接口的调用进行显示监控,会对应用的业务逻辑产生影响,增加程序逻辑和监控逻辑的紧耦合,以及由于固定告警阈值的设置依赖专家经验,覆盖告警范围较窄,造成告警的误报和漏报,进而导致应用系统的稳定性较低,用户体验感较低。However, it is found in practice that when the above method is used to issue an alarm for application interface anomalies, the following technical problems often occur: Since the calls to the application interface are monitored explicitly, the business logic of the application will be affected, increasing the tight coupling between the program logic and the monitoring logic; and since the setting of fixed alarm thresholds relies on expert experience, the coverage of the alarm range is narrow, resulting in false alarms and missed alarms, which in turn leads to lower stability of the application system and lower user experience.
在采用技术方案来解决上述技术问题一的过程中,往往又会伴随着如下技术问题二:由于接口调用日志数量较多,以及应用接口之间调用关系错综复杂,并涉及多种调用指标,导致异常告警的细粒度根因分析的耗时较长,分析根因定位分析准确率较低和应用系统稳定性较低。针对上述技术问题二,常规的解决方案一般是:通过接口调用日志,对出现异常的应用接口进行细粒度的根因定位分析。然而,上述常规解决方案依然存在如下问题:由于接口调用日志数量较多,以及应用接口之间调用关系错综复杂,并涉及多种调用指标,导致异常告警的细粒度根因分析的耗时较长,分析根因定位分析准确率较低和应用系统稳定性较低。In the process of adopting technical solutions to solve the above-mentioned technical problem one, the following technical problem two is often accompanied: due to the large number of interface call logs, the intricate calling relationships between application interfaces, and the involvement of multiple call indicators, the fine-grained root cause analysis of abnormal alarms takes a long time, the accuracy of the root cause location analysis is low, and the stability of the application system is low. In response to the above-mentioned technical problem two, the conventional solution is generally: through the interface call log, a fine-grained root cause location analysis is performed on the application interface where the abnormality occurs. However, the above-mentioned conventional solution still has the following problems: due to the large number of interface call logs, the intricate calling relationships between application interfaces, and the involvement of multiple call indicators, the fine-grained root cause analysis of abnormal alarms takes a long time, the accuracy of the root cause location analysis is low, and the stability of the application system is low.
在采用技术方案来解决上述技术问题一的过程中,往往又会伴随着如下技术问题三:对用户行为数据进行one-hot编码,造成数据特征稀疏和数据维度爆炸,不利于模型进行拟合,以及one-hot编码无法准确识别数据之间的关联关系,导致用户流失率预测的准确性较低,用户流失告警准确率较低,大量用户流失和增加应用系统的运行成本。针对上述技术问题三,常规的解决方案一般是:将经过one-hot编码得到的用户行为特征向量输入至用户流失流程预测模型,得到用户流失率。然而,上述常规解决方案依然存在如下问题:对用户行为数据进行one-hot编码,造成数据特征稀疏和数据维度爆炸,不利于模型进行拟合,以及one-hot编码无法准确识别数据之间的关联关系,导致用户流失率预测的准确性较低,用户流失告警准确率较低,大量用户流失和增加应用系统的运行成本。In the process of adopting technical solutions to solve the above technical problem one, the following technical problem three is often accompanied: one-hot encoding of user behavior data causes sparse data features and data dimension explosion, which is not conducive to model fitting, and one-hot encoding cannot accurately identify the correlation between data, resulting in low accuracy of user churn rate prediction, low accuracy of user churn alarm, large number of user churn and increased operating costs of application systems. For the above technical problem three, the conventional solution is generally: input the user behavior feature vector obtained by one-hot encoding into the user churn process prediction model to obtain the user churn rate. However, the above conventional solution still has the following problems: one-hot encoding of user behavior data causes sparse data features and data dimension explosion, which is not conducive to model fitting, and one-hot encoding cannot accurately identify the correlation between data, resulting in low accuracy of user churn rate prediction, low accuracy of user churn alarm, large number of user churn and increased operating costs of application systems.
该背景技术部分中所公开的以上信息仅用于增强对本发明构思的背景的理解,并因此,其可包含并不形成本国的本领域普通技术人员已知的现有技术的信息。The above information disclosed in this Background section is only for enhancement of understanding of the background of the inventive concept and therefore it may contain information that does not form the prior art that is already known in this country to a person of ordinary skill in the art.
发明内容Summary of the invention
本公开的内容部分用于以简要的形式介绍构思,这些构思将在后面的具体实施方式部分被详细描述。本公开的内容部分并不旨在标识要求保护的技术方案的关键特征或必要特征,也不旨在用于限制所要求的保护的技术方案的范围。The content of this disclosure is used to introduce concepts in a brief form, which will be described in detail in the detailed implementation section below. The content of this disclosure is not intended to identify the key features or essential features of the technical solution claimed for protection, nor is it intended to limit the scope of the technical solution claimed for protection.
本公开的一些实施例提出了应用接口异常告警方法、装置、电子设备和介质,来解决以上背景技术部分提到的技术问题中的一项或多项。Some embodiments of the present disclosure propose an application interface abnormality alarm method, device, electronic device and medium to solve one or more of the technical problems mentioned in the above background technology section.
第一方面,本公开的一些实施例提供了一种应用接口异常告警方法,包括:获取目标评价应用的待检测应用接口信息集;对上述待检测应用接口信息集中的每个待检测应用接口信息进行无侵入监控处理,以生成应用接口监控信息组,得到应用接口监控信息组集;对于上述应用接口监控信息组集中的每个应用接口监控信息组,执行以下确定步骤:对上述应用接口监控信息组包括的接口响应信息组进行分类处理,得到类别接口响应信息组;确定上述类别接口响应信息组中的每个类别接口响应信息的类别接口调用量,得到类别接口调用量组;确定上述类别接口调用量组中的每个类别接口调用量与所对应的历史类别接口调用量的类别接口调用量差值,得到类别接口调用量差值组,以及对上述类别接口调用量差值组进行可视化显示;响应于确定上述类别接口调用量差值组中存在大于等于预设调用量范围的类别接口调用量差值,将上述应用接口监控信息组对应的待检测应用接口信息,确定为目标应用接口信息;对所得到的目标应用接口信息集进行异常检测,得到异常应用接口信息集;对上述异常应用接口信息集进行根因定位处理,得到接口异常信息集,以及控制关联告警设备进行异常告警。In a first aspect, some embodiments of the present disclosure provide an application interface abnormality alarm method, comprising: obtaining a set of application interface information to be detected of a target evaluation application; performing non-intrusive monitoring processing on each application interface information to be detected in the above-mentioned application interface information set to generate an application interface monitoring information group, and obtaining an application interface monitoring information group set; for each application interface monitoring information group in the above-mentioned application interface monitoring information group set, performing the following determination steps: classifying the interface response information group included in the above-mentioned application interface monitoring information group to obtain a category interface response information group; determining the category interface call volume of each category interface response information in the above-mentioned category interface response information group to obtain a category interface call volume group; determining the above The category interface call volume difference between each category interface call volume in the category interface call volume group and the corresponding historical category interface call volume is obtained to obtain a category interface call volume difference group, and the above-mentioned category interface call volume difference group is visually displayed; in response to determining that there is a category interface call volume difference greater than or equal to a preset call volume range in the above-mentioned category interface call volume difference group, the application interface information to be detected corresponding to the above-mentioned application interface monitoring information group is determined as the target application interface information; anomaly detection is performed on the obtained target application interface information set to obtain an abnormal application interface information set; root cause location processing is performed on the above-mentioned abnormal application interface information set to obtain an interface abnormality information set, and the associated alarm device is controlled to issue an abnormal alarm.
第二方面,本公开的一些实施例提供了一种应用接口异常告警装置,包括:获取单元,被配置成获取目标评价应用的待检测应用接口信息集;无侵入监控单元,被配置成对上述待检测应用接口信息集中的每个待检测应用接口信息进行无侵入监控处理,以生成应用接口监控信息组,得到应用接口监控信息组集;执行单元,被配置成对于上述应用接口监控信息组集中的每个应用接口监控信息组,执行以下确定步骤:对上述应用接口监控信息组包括的接口响应信息组进行分类处理,得到类别接口响应信息组;确定上述类别接口响应信息组中的每个类别接口响应信息的类别接口调用量,得到类别接口调用量组;确定上述类别接口调用量组中的每个类别接口调用量与所对应的历史类别接口调用量的类别接口调用量差值,得到类别接口调用量差值组,以及对上述类别接口调用量差值组进行可视化显示;响应于确定上述类别接口调用量差值组中存在大于等于预设调用量范围的类别接口调用量差值,将上述应用接口监控信息组对应的待检测应用接口信息,确定为目标应用接口信息;异常检测单元,被配置成对所得到的目标应用接口信息集进行异常检测,得到异常应用接口信息集;异常告警单元,被配置成对上述异常应用接口信息集进行根因定位处理,得到接口异常信息集,以及控制关联告警设备进行异常告警。In a second aspect, some embodiments of the present disclosure provide an application interface abnormality alarm device, comprising: an acquisition unit, configured to acquire a set of application interface information to be detected of a target evaluation application; a non-intrusive monitoring unit, configured to perform non-intrusive monitoring processing on each application interface information to be detected in the above-mentioned application interface information set to generate an application interface monitoring information group, and obtain an application interface monitoring information group set; an execution unit, configured to perform the following determination steps for each application interface monitoring information group in the above-mentioned application interface monitoring information group set: classify the interface response information group included in the above-mentioned application interface monitoring information group to obtain a category interface response information group; determine the category interface call volume of each category interface response information in the above-mentioned category interface response information group to obtain a category interface call volume group ; Determine the category interface call volume difference between each category interface call volume in the above-mentioned category interface call volume group and the corresponding historical category interface call volume, obtain the category interface call volume difference value group, and visualize the above-mentioned category interface call volume difference value group; in response to determining that there is a category interface call volume difference value greater than or equal to the preset call volume range in the above-mentioned category interface call volume difference value group, determine the application interface information to be detected corresponding to the above-mentioned application interface monitoring information group as the target application interface information; the anomaly detection unit is configured to perform anomaly detection on the obtained target application interface information set to obtain an abnormal application interface information set; the abnormal alarm unit is configured to perform root cause location processing on the above-mentioned abnormal application interface information set to obtain an interface abnormality information set, and control the associated alarm device to issue an abnormal alarm.
第三方面,本公开的一些实施例提供了一种电子设备,包括:一个或多个处理器;存储装置,其上存储有一个或多个程序,当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现如第一方面中任一实现方式描述的方法。In a third aspect, some embodiments of the present disclosure provide an electronic device comprising: one or more processors; a storage device on which one or more programs are stored, and when the one or more programs are executed by the one or more processors, the one or more processors implement the method described in any implementation manner in the first aspect.
第四方面,本公开的一些实施例提供了一种计算机可读介质,其上存储有计算机程序,其中,计算机程序被处理器执行时实现如第一方面中任一实现方式描述的方法。In a fourth aspect, some embodiments of the present disclosure provide a computer-readable medium having a computer program stored thereon, wherein when the computer program is executed by a processor, the method described in any implementation manner in the first aspect is implemented.
本公开的上述各个实施例中具有如下有益效果:本公开的一些实施例的应用接口异常告警方法可以提高异常检测的准确性,降低误检率和漏检率,提高应用系统的稳定性和用户体验感。具体来说,造成相关的应用的稳定性较低和用户体验感较低的原因在于:由于对应用接口的调用进行显示监控,会对应用的业务逻辑产生影响,增加程序逻辑和监控逻辑的紧耦合,以及由于固定告警阈值的设置依赖专家经验,覆盖告警范围较窄,造成告警的误报和漏报,进而导致应用系统的稳定性较低,用户体验感较低。基于此,本公开的一些实施例的应用接口异常告警方法可以首先,获取目标评价应用的待检测应用接口信息集。在这里,待检测应用接口信息集用于后续异常检测和根因定位。其次,对上述待检测应用接口信息集中的每个待检测应用接口信息进行无侵入监控处理,以生成应用接口监控信息组,得到应用接口监控信息组集。在这里,无侵入式监控可以将应用的业务逻辑和监控逻辑进行解耦,提高应用系统的可扩展性和减少应用系统的资源浪费,提高应用系统的稳定性。随后,对于上述应用接口监控信息组集中的每个应用接口监控信息组,执行以下确定步骤:第一步,对上述应用接口监控信息组包括的接口响应信息组进行分类处理,得到类别接口响应信息组。在这里,便于对待检测应用接口进行不同类型的接口响应信息进行调用量统计,提高对待检测应用接口的监控的全面性。第二步,确定上述类别接口响应信息组中的每个类别接口响应信息的类别接口调用量,得到类别接口调用量组。在这里,便于后续确定接口调用量的差值。第三步,确定上述类别接口调用量组中的每个类别接口调用量与所对应的历史类别接口调用量的类别接口调用量差值,得到类别接口调用量差值组,以及对上述类别接口调用量差值组进行可视化显示。在这里,确定与所对应的历史类别接口调用量的调用量差值,可以明确待检测应用接口的调用量的发展趋势,并以可视化的形式进行显示,可以更直观的展示待检测应用接口的发展趋势,便于相关人员对待检测应用接口的调用情况的掌握。第四步,响应于确定上述类别接口调用量差值组中存在大于等于预设调用量范围的类别接口调用量差值,将上述应用接口监控信息组对应的待检测应用接口信息,确定为目标应用接口信息。在这里,将任意类型的调用量大于等于预设调用量范围的待检测应用接口,确定为目标应用接口,可以减少后续异常检测的接口数量。然后,对所得到的目标应用接口信息集进行异常检测,得到异常应用接口信息集。在这里,对目标应用接口信息集进行异常检测,可以减少异常检测的接口数据量,减少应用系统的运算资源,从粗粒度到细粒度进行接口调用异常检测,可以提高后续异常检测的准确性和应用系统的稳定性。最后,对上述异常应用接口信息集进行根因定位处理,得到接口异常信息集,以及控制关联告警设备进行异常告警。在这里,根因定位可以确定导致应用接口出现异常的根本原因,控制关联告警设备进行异常告警可以及时提醒相关人员进行相关操作,减少应用系统的损失率,提高用户体验感。由此可得,该应用接口异常告警方法对待检测应用接口进行无侵入式监控,可以对应用业务逻辑和监控逻辑进行解耦,减少应用系统的资源浪费,以及先确定每个待检测应用接口进行不同类型的调用量差值,再对超过预设调用量范围的调用量进行异常检测,得到异常应用接口,可以提高异常检测的准确性,降低误检率和漏检率,并对异常应用接口进行根因定位和告警,可以确定导致接口异常的真正因素,及时对异常问题进行处理,提高应用系统的稳定性。The above-mentioned embodiments of the present disclosure have the following beneficial effects: the application interface abnormal alarm method in some embodiments of the present disclosure can improve the accuracy of abnormal detection, reduce the false detection rate and missed detection rate, and improve the stability of the application system and the user experience. Specifically, the reasons for the low stability and low user experience of the relevant applications are: due to the display monitoring of the call of the application interface, it will affect the business logic of the application, increase the tight coupling of the program logic and the monitoring logic, and because the setting of the fixed alarm threshold depends on expert experience, the coverage alarm range is narrow, resulting in false alarms and missed alarms, which in turn leads to low stability of the application system and low user experience. Based on this, the application interface abnormal alarm method of some embodiments of the present disclosure can first obtain the application interface information set to be detected of the target evaluation application. Here, the application interface information set to be detected is used for subsequent abnormal detection and root cause location. Secondly, each application interface information to be detected in the above-mentioned application interface information set to be detected is subjected to non-intrusive monitoring processing to generate an application interface monitoring information group, and obtain an application interface monitoring information group set. Here, non-intrusive monitoring can decouple the business logic and monitoring logic of the application, improve the scalability of the application system, reduce the waste of resources of the application system, and improve the stability of the application system. Subsequently, for each application interface monitoring information group in the above-mentioned application interface monitoring information group set, the following determination steps are performed: the first step is to classify the interface response information group included in the above-mentioned application interface monitoring information group to obtain a category interface response information group. Here, it is convenient to perform call volume statistics on different types of interface response information for the application interface to be detected, and improve the comprehensiveness of the monitoring of the application interface to be detected. The second step is to determine the category interface call volume of each category interface response information in the above-mentioned category interface response information group to obtain a category interface call volume group. Here, it is convenient to determine the difference in interface call volume later. The third step is to determine the category interface call volume difference between each category interface call volume in the above-mentioned category interface call volume group and the corresponding historical category interface call volume, obtain a category interface call volume difference group, and visualize the above-mentioned category interface call volume difference group. Here, determining the call volume difference with the corresponding historical category interface call volume can clarify the development trend of the call volume of the application interface to be detected, and display it in a visual form, which can more intuitively show the development trend of the application interface to be detected, and facilitate the relevant personnel to grasp the call situation of the application interface to be detected. In the fourth step, in response to determining that there is a category interface call amount difference greater than or equal to the preset call amount range in the above-mentioned category interface call amount difference group, the application interface information to be detected corresponding to the above-mentioned application interface monitoring information group is determined as the target application interface information. Here, the application interface to be detected whose call amount is greater than or equal to the preset call amount range is determined as the target application interface, which can reduce the number of interfaces for subsequent abnormal detection. Then, the obtained target application interface information set is subjected to abnormal detection to obtain an abnormal application interface information set. Here, the target application interface information set is subjected to abnormal detection, which can reduce the amount of interface data for abnormal detection and reduce the computing resources of the application system. The interface call abnormal detection is performed from coarse granularity to fine granularity, which can improve the accuracy of subsequent abnormal detection and the stability of the application system. Finally, the above-mentioned abnormal application interface information set is subjected to root cause location processing to obtain an interface abnormal information set, and the associated alarm device is controlled to perform abnormal alarm. Here, the root cause location can determine the root cause of the abnormal application interface, and the control of the associated alarm device to perform abnormal alarm can timely remind relevant personnel to perform relevant operations, reduce the loss rate of the application system, and improve the user experience. It can be concluded that the application interface abnormality alarm method can perform non-invasive monitoring of the application interface to be detected, decouple the application business logic and the monitoring logic, reduce the resource waste of the application system, and first determine the difference in the call volume of different types for each application interface to be detected, and then perform abnormal detection on the call volume that exceeds the preset call volume range to obtain the abnormal application interface, which can improve the accuracy of abnormality detection, reduce the false detection rate and missed detection rate, and locate the root cause and alarm of the abnormal application interface, which can determine the real factor causing the interface abnormality, handle the abnormal problem in time, and improve the stability of the application system.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
结合附图并参考以下具体实施方式,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。贯穿附图中,相同或相似的附图标记表示相同或相似的元素。应当理解附图是示意性的,元件和元素不一定按照比例绘制。The above and other features, advantages and aspects of the embodiments of the present disclosure will become more apparent with reference to the following detailed description in conjunction with the accompanying drawings. Throughout the accompanying drawings, the same or similar reference numerals represent the same or similar elements. It should be understood that the drawings are schematic and that components and elements are not necessarily drawn to scale.
图1是根据本公开的应用接口异常告警方法的一些实施例的流程图;FIG1 is a flow chart of some embodiments of the application interface abnormality alarm method according to the present disclosure;
图2是根据本公开的应用接口异常告警装置的一些实施例的结构示意图;FIG2 is a schematic diagram of the structure of some embodiments of the application interface abnormality alarm device according to the present disclosure;
图3是适于用来实现本公开的一些实施例的电子设备的结构示意图。FIG. 3 is a schematic diagram of the structure of an electronic device suitable for implementing some embodiments of the present disclosure.
具体实施方式DETAILED DESCRIPTION
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例。相反,提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。Embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. Although certain embodiments of the present disclosure are shown in the accompanying drawings, it should be understood that the present disclosure can be implemented in various forms and should not be construed as being limited to the embodiments set forth herein. On the contrary, these embodiments are provided to provide a more thorough and complete understanding of the present disclosure. It should be understood that the drawings and embodiments of the present disclosure are only for exemplary purposes and are not intended to limit the scope of protection of the present disclosure.
另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。It should also be noted that, for ease of description, only the parts related to the invention are shown in the drawings. In the absence of conflict, the embodiments and features in the embodiments of the present disclosure may be combined with each other.
需要注意,本公开中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。It should be noted that the concepts such as "first" and "second" mentioned in the present disclosure are only used to distinguish different devices, modules or units, and are not used to limit the order or interdependence of the functions performed by these devices, modules or units.
需要注意,本公开中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。It should be noted that the modifications of "one" and "plurality" mentioned in the present disclosure are illustrative rather than restrictive, and those skilled in the art should understand that unless otherwise clearly indicated in the context, it should be understood as "one or more".
本公开实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。The names of the messages or information exchanged between multiple devices in the embodiments of the present disclosure are only used for illustrative purposes and are not used to limit the scope of these messages or information.
下面将参考附图并结合实施例来详细说明本公开。The present disclosure will be described in detail below with reference to the accompanying drawings and in conjunction with embodiments.
图1示出了根据本公开的应用接口异常告警方法的一些实施例的流程100。该应用接口异常告警方法,包括以下步骤:FIG1 shows a process 100 of some embodiments of the application interface abnormality alarm method according to the present disclosure. The application interface abnormality alarm method comprises the following steps:
步骤101,获取目标评价应用的待检测应用接口信息集。Step 101: Obtain an application interface information set to be detected of a target evaluation application.
在一些实施例中,上述应用接口异常告警方法的执行主体(例如电子设备)可以通过有线连接方式或者无线连接方式来获取目标评价应用的待检测应用接口信息集。其中,上述目标评价应用(征信软件)可以是用于评价用户引用的应用程序。上述待检测应用接口信息集中的待检测应用接口信息可以是等待检测的、目标评价应用的接口的信息。例如,上述待检测应用接口信息可以是待检测应用接口的名称信息。In some embodiments, the execution subject (e.g., electronic device) of the above-mentioned application interface abnormality alarm method can obtain the application interface information set to be detected of the target evaluation application through a wired connection method or a wireless connection method. Among them, the above-mentioned target evaluation application (credit investigation software) can be an application program referenced by the evaluation user. The application interface information to be detected in the above-mentioned application interface information set to be detected can be the information of the interface of the target evaluation application waiting to be detected. For example, the above-mentioned application interface information to be detected can be the name information of the application interface to be detected.
步骤102,对待检测应用接口信息集中的每个待检测应用接口信息进行无侵入监控处理,以生成应用接口监控信息组,得到应用接口监控信息组集。Step 102 : performing non-intrusive monitoring processing on each piece of application interface information to be detected in the application interface information set to be detected, so as to generate an application interface monitoring information group, and obtain an application interface monitoring information group set.
在一些实施例中,上述执行主体可以对上述待检测应用接口信息集中的每个待检测应用接口信息进行无侵入监控处理,以生成应用接口监控信息组,得到应用接口监控信息组集。其中,上述应用接口监控信息组中的应用接口监控信息可以是监控到的待检测应用接口的调用和响应信息。例如,上述应用接口监控信息可以包括但不限于以下至少一项:待检测应用接口的流量信息、调用量、异常调用信息。In some embodiments, the execution subject may perform non-intrusive monitoring on each application interface information to be detected in the application interface information set to be detected, so as to generate an application interface monitoring information group and obtain an application interface monitoring information group set. The application interface monitoring information in the application interface monitoring information group may be the monitored call and response information of the application interface to be detected. For example, the application interface monitoring information may include but is not limited to at least one of the following: traffic information, call volume, and abnormal call information of the application interface to be detected.
作为示例,上述执行主体可以对上述待检测应用接口信息集对应的接口日志信息集进行解析处理,得到应用接口监控信息组集。As an example, the execution subject may parse the interface log information set corresponding to the application interface information set to be detected to obtain an application interface monitoring information group set.
在一些实施例的一些可选的实现方式中,上述对上述待检测应用接口信息集中的每个待检测应用接口信息进行无侵入监控处理,以生成应用接口监控信息组,得到应用接口监控信息组集,可以包括以下步骤:In some optional implementations of some embodiments, the non-intrusive monitoring process is performed on each piece of application interface information to be detected in the above-mentioned application interface information set to be detected to generate an application interface monitoring information group to obtain an application interface monitoring information group set, which may include the following steps:
第一步,对于上述待检测应用接口信息集中的每个待检测应用接口信息,执行以下监控步骤:In the first step, for each piece of application interface information to be detected in the above-mentioned application interface information set to be detected, the following monitoring steps are performed:
子步骤1,获取上述待检测应用接口信息的接口调用源代码文件。其中,上述接口调用源代码文件可以是待检测应用接口的调用规约文件。实践中,上述执行主体可以通过源文件提取器,获取上述待检测应用接口信息的接口调用源代码文件。Sub-step 1, obtaining the interface call source code file of the above-mentioned application interface information to be detected. Among them, the above-mentioned interface call source code file can be a call protocol file of the application interface to be detected. In practice, the above-mentioned execution subject can obtain the interface call source code file of the above-mentioned application interface information to be detected through a source file extractor.
子步骤2,对上述接口调用源代码文件进行抽象语法树构建,得到接口调用语法树。其中,上述接口调用语法树可以表征接口调用源代码文件包括的调用方法集和调用对象集之间的调用关系的树状结构。实践中,上述执行主体可以首先,对上述接口调用源代码文件进行分词处理,得到接口语法单元集。其中,上述接口语法单元集中的接口语法单元可以是接口调用源代码文件中的不可再分的最小单元。例如,上述接口语法单元集可以包括但不限于以下至少一项:关键字、标识符、运算符、参数值、字符串、空格、注释。然后,对上述接口语法单元集进行语法分析,得到接口调用语法树。Sub-step 2, constructing an abstract syntax tree for the above-mentioned interface call source code file to obtain an interface call syntax tree. The above-mentioned interface call syntax tree can represent the tree structure of the call relationship between the call method set and the call object set included in the interface call source code file. In practice, the above-mentioned execution subject can first perform word segmentation processing on the above-mentioned interface call source code file to obtain an interface syntax unit set. The interface syntax unit in the above-mentioned interface syntax unit set can be the smallest indivisible unit in the interface call source code file. For example, the above-mentioned interface syntax unit set can include but is not limited to at least one of the following: keywords, identifiers, operators, parameter values, strings, spaces, comments. Then, the above-mentioned interface syntax unit set is subjected to syntax analysis to obtain an interface call syntax tree.
子步骤3,对上述接口调用语法树进行解析处理,得到接口调用连通图。其中,上述接口调用连通图可以是展示各个节点之间调用关系和流程的有向图。上述接口调用连接图包括的节点包括接口调用方法节点和数据节点。上述接口调用方法节点可以表示接口调用中的方法调用、操作符。上述数据节点可以表示接口调用中的对象、参数值。上述接口调用连接图中的边可以表示接口调用方法节点和数据节点之间的调用关系。Sub-step 3, parse the above-mentioned interface call syntax tree to obtain an interface call connectivity graph. Among them, the above-mentioned interface call connectivity graph can be a directed graph that shows the call relationship and process between each node. The nodes included in the above-mentioned interface call connection graph include interface call method nodes and data nodes. The above-mentioned interface call method nodes can represent method calls and operators in interface calls. The above-mentioned data nodes can represent objects and parameter values in interface calls. The edges in the above-mentioned interface call connection graph can represent the call relationship between interface call method nodes and data nodes.
子步骤4,对上述接口调用连通图进行广度优先搜索,得到接口参数配置信息。其中,上述接口参数配置信息可以是待检测应用接口的参数的配置信息。上述接口参数配置信息可以包括但不限于以下至少一项:接口地址信息、接口的参数名称、接口的类型信息、接口的参数格式。Sub-step 4, performing a breadth-first search on the above interface call connectivity graph to obtain interface parameter configuration information. The above interface parameter configuration information may be configuration information of parameters of the application interface to be detected. The above interface parameter configuration information may include but is not limited to at least one of the following: interface address information, interface parameter name, interface type information, and interface parameter format.
子步骤5,将预设切面编程组件添加至上述接口参数配置信息中,得到切面应用接口信息。其中,上述切面应用接口信息可以是在接口参数配置信息中添加接口监控代码的信息。上述预设切面编程组件可以是利用AOP(Aspect oriented programming,面向切面编程)形成的监控组件。Sub-step 5, adding the preset aspect programming component to the above interface parameter configuration information to obtain the aspect application interface information. The above aspect application interface information can be information of adding interface monitoring code in the interface parameter configuration information. The above preset aspect programming component can be a monitoring component formed by using AOP (Aspect oriented programming).
子步骤6,响应于确定上述待检测应用接口信息被调用,控制上述预设切面编程组件对上述切面应用接口信息进行监控,得到上述待检测应用接口信息的接口调用信息组和接口响应信息组。Sub-step 6, in response to determining that the above-mentioned application interface information to be detected is called, controlling the above-mentioned preset aspect programming component to monitor the above-mentioned aspect application interface information, and obtaining the interface call information group and interface response information group of the above-mentioned application interface information to be detected.
第二步,将所得到的接口调用信息组集和所得到的接口响应信息组集,确定为应用接口监控信息组集。In the second step, the obtained interface call information set and the obtained interface response information set are determined as the application interface monitoring information set.
步骤103,对于应用接口监控信息组集中的每个应用接口监控信息组,执行以下确定步骤:Step 103: for each application interface monitoring information group in the application interface monitoring information group set, perform the following determination steps:
步骤1031,对应用接口监控信息组包括的接口响应信息组进行分类处理,得到类别接口响应信息组。Step 1031, classify the interface response information group included in the application interface monitoring information group to obtain a category interface response information group.
在一些实施例中,上述执行主体可以对上述应用接口监控信息组包括的接口响应信息组进行分类处理,得到类别接口响应信息组。其中,上述类别接口响应信息组中的类别接口响应信息可以是同一类型的接口响应信息。上述类别接口响应信息组可以包括但不限于以下至少一项:有返回数据的响应信息、无返回数据的响应信息、返回数据与调用信息不一致的响应信息。In some embodiments, the execution subject may classify the interface response information group included in the application interface monitoring information group to obtain a category interface response information group. The category interface response information in the category interface response information group may be interface response information of the same type. The category interface response information group may include but is not limited to at least one of the following: response information with return data, response information without return data, and response information with return data inconsistent with call information.
步骤1032,确定类别接口响应信息组中的每个类别接口响应信息的类别接口调用量,得到类别接口调用量组。Step 1032: determine the category interface call quantity of each category interface response information in the category interface response information group to obtain a category interface call quantity group.
在一些实施例中,上述执行主体可以确定上述类别接口响应信息组中的每个类别接口响应信息的类别接口调用量,得到类别接口调用量组。其中,上述类别接口调用量组中的类别接口调用量可以是一个时间切片内、待检测应用接口被调用的调用次数。上述时间切片可以是15分钟。实践中,利用统计方法,对上述类别接口响应信息组中的每个类别接口响应信息进行统计计算,以生成类别接口调用量,得到类别接口调用量组。In some embodiments, the execution entity may determine the category interface call volume of each category interface response information in the category interface response information group to obtain a category interface call volume group. The category interface call volume in the category interface call volume group may be the number of times the application interface to be detected is called within a time slice. The time slice may be 15 minutes. In practice, a statistical method is used to perform statistical calculations on each category interface response information in the category interface response information group to generate a category interface call volume and obtain a category interface call volume group.
步骤1033,确定类别接口调用量组中的每个类别接口调用量与所对应的历史类别接口调用量的类别接口调用量差值,得到类别接口调用量差值组,以及对类别接口调用量差值组进行可视化显示。Step 1033, determining the category interface call volume difference between each category interface call volume in the category interface call volume group and the corresponding historical category interface call volume, obtaining the category interface call volume difference value group, and visually displaying the category interface call volume difference value group.
在一些实施例中,上述执行主体可以确定上述类别接口调用量组中的每个类别接口调用量与所对应的历史类别接口调用量的类别接口调用量差值,得到类别接口调用量差值组,以及对上述类别接口调用量差值组进行可视化显示。其中,上述所对应的历史类别接口调用量可以是当前时间切片之前的待检测应用接口的调用量。上述历史类别接口调用量可以是上述类别接口调用量的上一个时间切片的环比类别接口调用量,也可以是上述类别接口调用量的上一年同一时间切片的同比类别接口调用量。上述可视化显示可以是利用图表的形式展示类别接口调用量差值组。In some embodiments, the above-mentioned execution entity can determine the difference in category interface call volume between each category interface call volume in the above-mentioned category interface call volume group and the corresponding historical category interface call volume, obtain a category interface call volume difference group, and visualize the above-mentioned category interface call volume difference group. Among them, the above-mentioned corresponding historical category interface call volume can be the call volume of the application interface to be detected before the current time slice. The above-mentioned historical category interface call volume can be the month-on-month category interface call volume of the previous time slice of the above-mentioned category interface call volume, or it can be the year-on-year category interface call volume of the same time slice of the previous year of the above-mentioned category interface call volume. The above-mentioned visual display can be to display the category interface call volume difference group in the form of a chart.
步骤1034,响应于确定类别接口调用量差值组中存在大于等于预设调用量范围的类别接口调用量差值,将应用接口监控信息组对应的待检测应用接口信息,确定为目标应用接口信息。Step 1034, in response to determining that there is a category interface call amount difference greater than or equal to a preset call amount range in the category interface call amount difference group, the to-be-detected application interface information corresponding to the application interface monitoring information group is determined as the target application interface information.
在一些实施例中,上述执行主体可以响应于确定上述类别接口调用量差值组中存在大于等于预设调用量范围的类别接口调用量差值,将上述应用接口监控信息组对应的待检测应用接口信息,确定为目标应用接口信息。其中,上述预设调用量范围可以是预先设定的、依据专家经验确定的调用量差值范围。上述预设调用量范围可以是负数和正数的调用量范围。In some embodiments, the execution subject may determine the application interface information to be detected corresponding to the application interface monitoring information group as the target application interface information in response to determining that there is a category interface call volume difference greater than or equal to a preset call volume range in the category interface call volume difference group. The preset call volume range may be a call volume difference range that is pre-set and determined based on expert experience. The preset call volume range may be a call volume range of negative and positive numbers.
步骤104,对所得到的目标应用接口信息集进行异常检测,得到异常应用接口信息集。Step 104: perform anomaly detection on the obtained target application interface information set to obtain an abnormal application interface information set.
在一些实施例中,上述执行主体可以对所得到的目标应用接口信息集进行异常检测,得到异常应用接口信息集。其中,上述异常应用接口信息集中的异常应用接口信息可以是存在异常的待检测应用接口的信息。实践中,上述执行主体可以利用接口异常检测模型,对所得到的目标应用接口信息集进行异常检测,得到异常应用接口信息集。其中,上述接口异常检测模型可以是XGBoost(eXtreme Gradient Boosting)模型。In some embodiments, the execution subject may perform anomaly detection on the target application interface information set obtained to obtain an abnormal application interface information set. The abnormal application interface information in the abnormal application interface information set may be information of an application interface to be detected that has an abnormality. In practice, the execution subject may use an interface anomaly detection model to perform anomaly detection on the target application interface information set obtained to obtain an abnormal application interface information set. The interface anomaly detection model may be an XGBoost (eXtreme Gradient Boosting) model.
在一些实施例的一些可选的实现方式中,上述对所得到的目标应用接口信息集进行异常检测,得到异常应用接口信息集,可以包括以下步骤:In some optional implementations of some embodiments, the above-mentioned performing anomaly detection on the obtained target application interface information set to obtain the abnormal application interface information set may include the following steps:
第一步,对上述目标应用接口信息集对应的接口调用日志信息集进行特征提取,得到接口调用特征向量集。其中,上述接口调用日志信息集中的接口调用日志信息可以是记录目标应用接口信息被调用和响应的日志信息。上述接口调用特征向量集中的接口调用特征向量可以表征接口调用日志信息的特征信息。实践中,上述执行主体可以利用日志特征提取模型,对上述目标应用接口信息集对应的接口调用日志信息集进行特征提取,得到接口调用特征向量集。其中,上述日志特征提取模型可以是神经网络模型。The first step is to perform feature extraction on the interface call log information set corresponding to the above target application interface information set to obtain an interface call feature vector set. Among them, the interface call log information in the above interface call log information set can be log information that records the call and response of the target application interface information. The interface call feature vector in the above interface call feature vector set can represent the feature information of the interface call log information. In practice, the above execution entity can use a log feature extraction model to perform feature extraction on the interface call log information set corresponding to the above target application interface information set to obtain an interface call feature vector set. Among them, the above log feature extraction model can be a neural network model.
第二步,将上述接口调用特征向量集输入至接口调用异常模型包括的编码器网络中,得到接口调用隐藏特征向量集。其中,上述接口调用异常模型可以是对输入的接口调用特征向量集进行异常检测,得到异常检测结果的模型。上述接口调用异常模型可以是CAVE(Conditional VAE,条件变分自动编码器)。上述编码器网络可以是提取接口调用特征向量中的隐藏特征向量的网络。上述编码器网络可以是MLP(Multi-Layer Perceptron,多层感知机)、CNN(Convolutional Neural Networks,卷积神经网络)或者RNN(Recurrent NeuralNetwork,循环神经网络)中的一个。上述接口调用隐藏特征向量集中的接口调用隐藏特征向量可以表征上述接口调用特征向量的特征信息和特征向量分布情况。In the second step, the interface call feature vector set is input into the encoder network included in the interface call exception model to obtain the interface call hidden feature vector set. Among them, the interface call exception model can be a model that performs anomaly detection on the input interface call feature vector set to obtain anomaly detection results. The interface call exception model can be CAVE (Conditional VAE, conditional variational autoencoder). The encoder network can be a network that extracts hidden feature vectors from the interface call feature vector. The encoder network can be one of MLP (Multi-Layer Perceptron), CNN (Convolutional Neural Networks) or RNN (Recurrent Neural Network). The interface call hidden feature vector in the interface call hidden feature vector set can characterize the feature information and feature vector distribution of the interface call feature vector.
第三步,确定上述接口调用隐藏特征向量集中的每个接口调用隐藏特征向量的接口隐藏均值组和接口隐藏标准差组,得到接口隐藏均值组集和接口隐藏标准差组集。The third step is to determine the interface hidden mean group and the interface hidden standard deviation group of each interface call hidden feature vector in the above interface call hidden feature vector set, and obtain the interface hidden mean group set and the interface hidden standard deviation group set.
第四步,根据上述接口隐藏均值组集和上述接口隐藏标准差组集,生成随机变量组集。其中,上述随机变量组集中的随机变量可以是接口隐藏均值和对应的接口隐藏标准差生成的服从高斯分布的变量。Step 4: Generate a random variable set based on the interface hidden mean set and the interface hidden standard deviation set, wherein the random variables in the random variable set may be variables that obey Gaussian distribution generated by the interface hidden mean and the corresponding interface hidden standard deviation.
作为示例,上述执行主体可以利用采用函数,根据上述接口隐藏均值组集和上述接口隐藏标准差组集,生成随机变量组集。As an example, the execution subject may generate a random variable set according to the interface hidden mean set and the interface hidden standard deviation set by using a function.
第五步,从上述随机变量组集中的每个随机变量组中随机选取出随机变量,作为潜在特征向量,得到潜在特征向量集。The fifth step is to randomly select a random variable from each random variable group in the above random variable group set as a potential feature vector to obtain a potential feature vector set.
第六步,对上述潜在特征向量集进行后向传输流处理,得到接口潜在特征变量集。其中,上述接口潜在特征变量集中的接口潜在特征变量可以是对潜在特征向量进行非线性变换得到的变量。实践中,上述执行主体可以利用向后传输流,对上述潜在特征向量集进行后向传输流处理,得到接口潜在特征变量集。其中,上述向后传输流可以是一种非线性变换方法,可以对潜在特征向量进行进一步的调整和优化,可以更好地捕捉潜在特征向量的结构。The sixth step is to perform backward transmission flow processing on the above-mentioned potential feature vector set to obtain an interface potential feature variable set. Among them, the interface potential feature variables in the above-mentioned interface potential feature variable set can be variables obtained by performing nonlinear transformation on the potential feature vector. In practice, the above-mentioned execution subject can use the backward transmission flow to perform backward transmission flow processing on the above-mentioned potential feature vector set to obtain an interface potential feature variable set. Among them, the above-mentioned backward transmission flow can be a nonlinear transformation method, which can further adjust and optimize the potential feature vector and better capture the structure of the potential feature vector.
第七步,将上述接口潜在特征变量集输入至上述接口调用异常模型包括的解码器网络中,得到重构接口调用特征向量集。其中,上述解码器网络可以是对接口潜在特征变量进行重构,生成与输入的接口调用特征向量尽可能相似的网络模型。上述解码器网络可以是生成器。In the seventh step, the interface potential feature variable set is input into the decoder network included in the interface call anomaly model to obtain a reconstructed interface call feature vector set. The decoder network can be a network model that reconstructs the interface potential feature variables and generates a network model that is as similar as possible to the input interface call feature vector. The decoder network can be a generator.
第八步,确定上述重构接口调用特征向量集中的每个重构接口调用特征向量与上述接口调用特征向量集中与上述重构接口调用特征向量对应的接口调用特征向量的特征相似度数值,得到特征相似度数值集。In the eighth step, a feature similarity value between each reconstructed interface call feature vector in the reconstructed interface call feature vector set and the interface call feature vector corresponding to the reconstructed interface call feature vector in the interface call feature vector set is determined to obtain a feature similarity value set.
第九步,将上述特征相似度数值集中特征相似度数值未位于预设相似度范围内的至少一个特征相似度数值,确定为目标特征相似度数值集。其中,上述预设相似度范围可以是预先设定的特征相似度数值范围。In the ninth step, at least one feature similarity value in the feature similarity value set that is not within a preset similarity range is determined as a target feature similarity value set. The preset similarity range may be a pre-set feature similarity value range.
第十步,将上述目标特征相似度数值集对应的至少一个待检测应用接口信息,确定为异常应用接口信息集。In the tenth step, at least one piece of application interface information to be detected corresponding to the above target feature similarity value set is determined as an abnormal application interface information set.
步骤105,对异常应用接口信息集进行根因定位处理,得到接口异常信息集,以及控制关联告警设备进行异常告警。Step 105: perform root cause location processing on the abnormal application interface information set to obtain an interface abnormality information set, and control the associated alarm device to issue an abnormality alarm.
在一些实施例中,上述执行主体可以对上述异常应用接口信息集进行根因定位处理,得到接口异常信息集,以及控制关联告警设备进行异常告警。其中,上述接口异常信息集中的接口异常信息可以是导致待检测应用接口发生异常的接口指标信息,也可以是待检测应用接口信息。上述接口指标信息可以包括但不限于以下至少一项:接口CPU(CentralProcessing Unit,中央处理器)利用率、接口内存利用率、接口影响时间。实践中,上述执行主体可以关联规则算法和启发式算法,对上述异常应用接口信息集进行根因定位处理,得到接口异常信息集,以及控制关联告警设备进行异常告警。In some embodiments, the above-mentioned execution subject can perform root cause location processing on the above-mentioned abnormal application interface information set to obtain an interface abnormal information set, and control the associated alarm device to issue an abnormal alarm. Among them, the interface abnormality information in the above-mentioned interface abnormality information set can be the interface indicator information that causes the abnormality of the application interface to be detected, or it can be the application interface information to be detected. The above-mentioned interface indicator information may include but is not limited to at least one of the following: interface CPU (Central Processing Unit) utilization, interface memory utilization, and interface impact time. In practice, the above-mentioned execution subject can associate rule algorithms and heuristic algorithms to perform root cause location processing on the above-mentioned abnormal application interface information set to obtain an interface abnormality information set, and control the associated alarm device to issue an abnormal alarm.
考虑到上述常规解决方案通过接口调用日志,对出现异常的应用接口进行细粒度的根因定位分析的问题,面对上述技术问题二:由于接口调用日志数量较多,以及应用接口之间调用关系错综复杂,并涉及多种调用指标,导致异常告警的细粒度根因分析的耗时较长,分析根因定位分析准确率较低和应用系统稳定性较低。结合所拥有的技术现状,可以决定采用如下解决方案。Considering the problem that the conventional solution above uses interface call logs to perform fine-grained root cause location analysis on abnormal application interfaces, facing the above technical problem 2: due to the large number of interface call logs, the complex call relationships between application interfaces, and the involvement of multiple call indicators, the fine-grained root cause analysis of abnormal alarms takes a long time, the accuracy of root cause location analysis is low, and the stability of the application system is low. Combined with the current technical status, we can decide to adopt the following solution.
在一些实施例的一些可选的实现方式中,上述对上述异常应用接口信息集进行根因分析,得到接口异常信息集,包括:In some optional implementations of some embodiments, the root cause analysis of the abnormal application interface information set is performed to obtain the interface abnormality information set, including:
第一步,确定上述异常应用接口信息集中每个异常应用接口信息对应的接口调用链信息,得到接口调用链信息集。其中,上述接口调用链信息集中的接口调用链信息可以是一个用户请求调用了异常应用接口信息、其他应用接口信息集和服务器节点集形成的接口调用链信息。上述其他应用接口信息集可以是除上述异常应用接口信息外的应用接口信息集。上述接口调用链信息可以是检测到异常应用接口信息发生异常时、前1分钟内形成的接口调用链信息。实践中,上述执行主体可以对于上述异常应用接口信息集中的每个异常应用接口信息,执行以下接口调用链生成步骤:首先,获取上述异常应用接口信息集中每个异常应用接口信息的调用日志信息。其次,确定与上述调用日志信息具有调用关联信息的接口日志信息组。上述具有调用关联信息可以是调用日志信息包括的父调用接口参数对应的信息。随后,通过上述接口日志信息组包括的父调用接口参数组对应的应用接口信息组,生成初始调用链信息。其中,上述应用接口信息可以是目标评价应用包括的各个应用接口信息。上述应用接口信息组包括上述异常应用接口信息。然后,确定上述初始调用链信息包括的应用接口信息集对应的服务器节点,得到接口服务器节点。最后,将上述初始调用链信息和上述接口服务器节点集,确定为接口调用链信息。The first step is to determine the interface call chain information corresponding to each abnormal application interface information in the above abnormal application interface information set, and obtain the interface call chain information set. Among them, the interface call chain information in the above interface call chain information set can be an interface call chain information formed by a user request to call the abnormal application interface information, other application interface information sets and server node sets. The above other application interface information sets can be application interface information sets other than the above abnormal application interface information. The above interface call chain information can be the interface call chain information formed within the first 1 minute when the abnormal application interface information is detected to be abnormal. In practice, the above execution subject can perform the following interface call chain generation steps for each abnormal application interface information in the above abnormal application interface information set: First, obtain the call log information of each abnormal application interface information in the above abnormal application interface information set. Secondly, determine the interface log information group with call association information with the above call log information. The above call association information can be the information corresponding to the parent call interface parameter included in the call log information. Subsequently, the initial call chain information is generated through the application interface information group corresponding to the parent call interface parameter group included in the above interface log information group. Among them, the above application interface information can be each application interface information included in the target evaluation application. The application interface information group includes the abnormal application interface information. Then, the server node corresponding to the application interface information set included in the initial call chain information is determined to obtain the interface server node. Finally, the initial call chain information and the interface server node set are determined as the interface call chain information.
第二步,对上述接口调用链信息集进行接口调用拓扑图构建,得到接口调用拓扑图集。其中,上述接口调用拓扑图集中的接口调用拓扑图可以表征应用接口之间的调用关系和应用接口所属服务器节点的有向图。The second step is to construct an interface call topology graph for the interface call chain information set to obtain an interface call topology graph set, wherein the interface call topology graph in the interface call topology graph set can represent the call relationship between application interfaces and the directed graph of the server nodes to which the application interfaces belong.
第三步,对于上述接口调用拓扑图集中的每个接口调用拓扑图,执行以下根因分析步骤:Step 3: For each interface call topology graph in the above interface call topology graph set, perform the following root cause analysis steps:
子步骤1,确定上述接口调用拓扑图包括的应用接口集中的每个应用接口的接口负载信息和服务器节点集中的每个服务器节点的节点负载信息,得到接口负载信息集和节点负载信息集。其中,上述接口负载信息可以表征应用接口的性能的指标信息。上述接口负载信息可以包括:接口响应时间、接口CPU利用率和接口内存利用率。上述节点负载信息可以表征服务器节点的性能的指标信息。上述节点复杂信息可以包括:服务器CPU利用率、服务器内存利用率和服务器网络吞吐量。实践中,上述执行主体可以通过查询语句,确定上述接口调用拓扑图包括的应用接口集中的每个应用接口的接口负载信息和服务器节点集中的每个服务器节点的节点负载信息,得到接口负载信息集和节点负载信息集。Sub-step 1, determine the interface load information of each application interface in the application interface set included in the above-mentioned interface call topology diagram and the node load information of each server node in the server node set, and obtain an interface load information set and a node load information set. Among them, the above-mentioned interface load information can characterize the index information of the performance of the application interface. The above-mentioned interface load information may include: interface response time, interface CPU utilization and interface memory utilization. The above-mentioned node load information can characterize the index information of the performance of the server node. The above-mentioned node complex information may include: server CPU utilization, server memory utilization and server network throughput. In practice, the above-mentioned execution subject can determine the interface load information of each application interface in the application interface set included in the above-mentioned interface call topology diagram and the node load information of each server node in the server node set through a query statement, and obtain an interface load information set and a node load information set.
子步骤2,利用核密度估计算法,对上述节点负载信息集和上述接口负载信息集进行异常筛选,得到异常接口集和异常服务器节点集。Sub-step 2: using a kernel density estimation algorithm, perform abnormal screening on the node load information set and the interface load information set to obtain an abnormal interface set and an abnormal server node set.
子步骤3,根据上述异常接口集和上述异常服务器节点集,对上述接口调用拓扑图进行剪枝处理,得到异常调用拓扑图。其中,上述异常调用拓扑图可以是从上述接口调用拓扑图中去除与上述异常接口集和上述异常服务器节点集无关的节点集得到的异常调用拓扑图。上述节点集可以包括:去除异常接口集、异常服务器节点集外的剩余应用接口集和剩余服务器节点集中与异常接口集和异常服务器节点无调用关系和所属关系的节点。Sub-step 3, pruning the interface call topology graph according to the abnormal interface set and the abnormal server node set to obtain an abnormal call topology graph. The abnormal call topology graph may be an abnormal call topology graph obtained by removing the node set that is irrelevant to the abnormal interface set and the abnormal server node set from the interface call topology graph. The node set may include: the remaining application interface set excluding the abnormal interface set and the abnormal server node set, and the nodes in the remaining server node set that have no call relationship and belonging relationship with the abnormal interface set and the abnormal server node.
作为示例,上述执行主体可以首先,确定与上述异常接口集和上述异常服务器节点集具有调用关系和所属关系的应用节点集和服务器节点集,作为目标接口集和目标服务器节点集。然后,利用上述调用关系和上述所属关系,对上述异常接口集、上述异常服务器节点集、上述目标接口集和上述目标服务器节点集进行有向图构建,得到异常调用拓扑图。As an example, the execution subject may first determine the application node set and the server node set that have a call relationship and an affiliation relationship with the abnormal interface set and the abnormal server node set as the target interface set and the target server node set. Then, using the call relationship and the affiliation relationship, a directed graph is constructed for the abnormal interface set, the abnormal server node set, the target interface set, and the target server node set to obtain an abnormal call topology graph.
子步骤4,确定上述异常调用拓扑图包括的调用边集中每个调用边的边权重系数,得到边权重值集。其中,上述边权重值集中的边权重可以是有调用边对应的节点对包括的各个节点的皮尔森相关系数组成的权重值。上述节点对可以包括:异常接口和目标接口、异常接口和目标服务器节点、异常服务器节点和目标接口、异常服务器节点和目标服务器节点、异常接口和异常接口、异常服务器节点和异常服务器节点、异常接口和异常服务器节点。Sub-step 4, determining the edge weight coefficient of each call edge in the call edge set included in the above-mentioned abnormal call topology graph, and obtaining an edge weight value set. Among them, the edge weight in the above-mentioned edge weight value set can be a weight value composed of the Pearson correlation coefficient of each node included in the node pair corresponding to the call edge. The above-mentioned node pair may include: abnormal interface and target interface, abnormal interface and target server node, abnormal server node and target interface, abnormal server node and target server node, abnormal interface and abnormal interface, abnormal server node and abnormal server node, abnormal interface and abnormal server node.
子步骤5,根据上述边权重值集,确定上述异常调用拓扑图包括的异常调用节点集中每个异常调用节点的节点异常数值,得到节点异常数值集。其中,上述节点异常数值集中的节点异常数值可以是与节点相连的各个调用边的边权重值和的平均值。上述异常调用节点集可以包括:异常接口集和异常服务器节点集。Sub-step 5, according to the above-mentioned edge weight value set, determine the node abnormality value of each abnormal call node in the abnormal call node set included in the above-mentioned abnormal call topology graph, and obtain the node abnormality value set. Among them, the node abnormality value in the above-mentioned node abnormality value set can be the average value of the sum of the edge weight values of each call edge connected to the node. The above-mentioned abnormal call node set can include: an abnormal interface set and an abnormal server node set.
作为示例,上述执行主体可以对于上述异常调用拓扑图包括的异常调用节点集中的每个异常调用节点,执行以下节点调用异常步骤:确定上述异常调用节点对应的调用边组和调用边组的边权重值组。然后,确定上述边权重值组包括的各个边权重值的和,作为目标权重值。最后,确定上述目标权重值和上述调用边组包括的调用边的数量的比值,作为节点异常数值。As an example, the execution subject may perform the following node call abnormality step for each abnormal call node in the abnormal call node set included in the abnormal call topology graph: determine the call edge group corresponding to the abnormal call node and the edge weight value group of the call edge group. Then, determine the sum of the edge weight values included in the edge weight value group as the target weight value. Finally, determine the ratio of the target weight value to the number of call edges included in the call edge group as the node abnormality value.
子步骤6,根据上述边权重值集,确定上述异常调用节点集的异常传播概率矩阵。其中,上述异常传播概率矩阵可以表征异常情况在上述异常调用拓扑图包括的各个节点之间转播的概率值。上述异常传播概率矩阵的横向量和列向量是上述异常调用拓扑图包括的各个节点。Sub-step 6, based on the edge weight value set, determine the abnormal propagation probability matrix of the abnormal call node set. The abnormal propagation probability matrix can represent the probability value of the abnormal situation being transmitted between the nodes included in the abnormal call topology graph. The horizontal volume and column vector of the abnormal propagation probability matrix are the nodes included in the abnormal call topology graph.
作为示例,上述执行主体可以对于上述异常传播概率矩阵中的每个异常传播数值,执行以下异常传播数值确定步骤:确定上述异常传播数值对应的异常节点对。其次,确定上述异常节点对的边权重值,作为异常边权重值。随后,确定上述异常节点对中位于横向量的节点的边权重值组,作为异常边权重值组。然后,确定上述异常边权重值组的和,作为异常目标权重值。最后,将上述异常边权重值和上述异常目标权重值的比值,确定为异常传播数值。As an example, the execution subject may perform the following abnormal propagation value determination step for each abnormal propagation value in the abnormal propagation probability matrix: determine the abnormal node pair corresponding to the abnormal propagation value. Secondly, determine the edge weight value of the abnormal node pair as the abnormal edge weight value. Subsequently, determine the edge weight value group of the nodes located in the horizontal quantity in the abnormal node pair as the abnormal edge weight value group. Then, determine the sum of the abnormal edge weight value group as the abnormal target weight value. Finally, determine the ratio of the abnormal edge weight value to the abnormal target weight value as the abnormal propagation value.
子步骤7,根据上述异常传播概率矩阵和上述节点异常数值集,确定上述异常调用节点集中的每个调用异常节点的节点根因数值,得到节点根因数值集。其中,上述节点根因数值集中的节点根因数值可以表征节点为导致待检测应用节点发生异常的根本原因的概率数值。Sub-step 7, according to the above-mentioned abnormal propagation probability matrix and the above-mentioned node abnormality value set, determine the node root factor value of each call abnormal node in the above-mentioned abnormal call node set to obtain the node root factor value set. Among them, the node root factor value in the above-mentioned node root factor value set can represent the probability value of the node being the root cause of the abnormality of the application node to be detected.
作为示例,上述执行主体可以对于上述异常调用节点集中的每个调用异常节点,执行以下节点根因数值确定步骤:首先,确定第一预设权重值与上述调用异常节点的节点异常数值的乘积,作为第一异常数值。其中,上述第一预设权重值可以是预先设定的阈值。例如,上述第一异常数值可以是0.15。然后,确定上述第二预设权重值与上述调用异常节点的异常传播数值的乘积,作为第二异常数值。其中,上述第二预设权重值可以是预先设定的、与上述第一预设权重值的和为1的数值。最后,将上述第一异常数值和上述第二异常数值的和,确定为节点根因数值。As an example, the execution subject may perform the following node root factor value determination step for each call abnormal node in the abnormal call node set: first, determine the product of the first preset weight value and the node abnormality value of the call abnormal node as the first abnormality value. The first preset weight value may be a preset threshold. For example, the first abnormality value may be 0.15. Then, determine the product of the second preset weight value and the abnormal propagation value of the call abnormal node as the second abnormality value. The second preset weight value may be a preset value whose sum with the first preset weight value is 1. Finally, determine the sum of the first abnormality value and the second abnormality value as the node root factor value.
子步骤8,对上述节点根因数值集进行排序处理,得到节点根因数值序列。Sub-step 8, sorting the above node root factor value set to obtain a node root factor value sequence.
子步骤9,从上述节点根因数值序列中筛选出根因数值最大的数值对应的异常调用节点,作为目标异常调用节点。Sub-step 9, selecting the abnormal call node corresponding to the value with the largest root factor value from the above node root factor value sequence as the target abnormal call node.
子步骤10,将上述目标异常调用节点的异常节点信息,确定为接口异常信息集。Sub-step 10: determining the abnormal node information of the above target abnormal call node as an interface abnormal information set.
上述技术方案及其相关内容作为本公开的实施例的一个发明点,解决了背景技术提及的技术问题二“由于接口调用日志数量较多,以及应用接口之间调用关系错综复杂,并涉及多种调用指标,导致异常告警的细粒度根因分析的耗时较长,分析根因定位分析准确率较低和应用系统稳定性较低”。导致异常告警的细粒度根因分析的耗时较长,分析根因定位分析准确率较低和应用系统稳定性较低的因素往往如下:由于接口调用日志数量较多,以及应用接口之间调用关系错综复杂,并涉及多种调用指标。如果解决了上述因素,就能达到降低异常告警的细粒度根因分析的耗时较长,提高分析根因定位分析准确率和应用系统稳定性的效果。为了达到这一效果,本公开首先,对上述异常接口信息集中的每个异常应用接口信息构建调用拓扑图,可以直观的掌握与异常接口信息有关的应用接口和服务器节点。其次,通过及接口负载信息集和节点负载信息集,对接口调用拓扑图进行剪枝处理,通过多维度信息,对接口调用拓扑图进行剪枝处理,可以减少后续根因分析的数据量,降低应用系统的负载。然后,确定上述异常调用拓扑图包括的各个节点和各个调用边的边权重值集和节点异常数值集,便于后续确定异常传播概率矩阵。最后,通过异常概率矩阵,确定接口异常信息集,以拓扑图的形式清晰明了的展示了应用接口和服务器节点之间的关系,并通过多维指标,对导致待检测应用接口出现异常的情况从粗到细的确定了根本原因,可以减少异常告警的细粒度根因分析的耗时,提高了根因定位的准确率和应用系统的稳定性。The above technical scheme and its related contents, as an inventive point of an embodiment of the present disclosure, solve the second technical problem mentioned in the background technology: "Due to the large number of interface call logs, the intricate calling relationships between application interfaces, and the involvement of multiple call indicators, the fine-grained root cause analysis of abnormal alarms takes a long time, the accuracy of root cause location analysis is low, and the stability of the application system is low." The factors that lead to the long time spent on fine-grained root cause analysis of abnormal alarms, the low accuracy of root cause location analysis, and the low stability of the application system are often as follows: due to the large number of interface call logs, and the intricate calling relationships between application interfaces, and the involvement of multiple call indicators. If the above factors are solved, the effect of reducing the time spent on fine-grained root cause analysis of abnormal alarms, improving the accuracy of root cause location analysis, and the stability of the application system can be achieved. In order to achieve this effect, the present disclosure first constructs a call topology diagram for each abnormal application interface information in the above abnormal interface information set, so that the application interface and server nodes related to the abnormal interface information can be intuitively grasped. Secondly, the interface call topology is pruned through the interface load information set and the node load information set. The interface call topology is pruned through multi-dimensional information, which can reduce the amount of data for subsequent root cause analysis and reduce the load of the application system. Then, the edge weight value set and node abnormality value set of each node and each call edge included in the above-mentioned abnormal call topology are determined to facilitate the subsequent determination of the abnormal propagation probability matrix. Finally, the interface abnormal information set is determined through the abnormal probability matrix, and the relationship between the application interface and the server node is clearly displayed in the form of a topology map. Through multi-dimensional indicators, the root cause of the abnormal situation that causes the application interface to be detected is determined from coarse to fine, which can reduce the time-consuming fine-grained root cause analysis of abnormal alarms and improve the accuracy of root cause location and the stability of the application system.
可选地,上述执行主体在105之后,还可以执行以下步骤:Optionally, after step 105, the execution subject may further perform the following steps:
第一步,对上述异常应用接口信息集中的每个异常应用接口信息进行数据埋点,以生成用户行为数据,得到用户行为数据集。其中,上述用户行为数据可以是表征用户的行为信息的数据。实践中,上述执行主体可以可视化埋点,对上述异常应用接口信息集中的每个异常应用接口信息进行数据埋点,以生成用户行为数据,得到用户行为数据集。The first step is to perform data embedding for each abnormal application interface information in the abnormal application interface information set to generate user behavior data and obtain a user behavior data set. The user behavior data can be data that characterizes the user's behavior information. In practice, the execution subject can visualize the embedding and perform data embedding for each abnormal application interface information in the abnormal application interface information set to generate user behavior data and obtain a user behavior data set.
第二步,对上述用户行为数据集进行用户流失率预测,得到用户流失率集。其中,上述用户流失率集中的用户流失率可以表征用户放弃使用应用的概率数值。实践中,上述执行主体可以利用用户流失率预测算法,对上述用户行为数据集进行用户流失率预测,得到用户流失率集。其中,上述用户流失率预测算法可以是决策树算法。The second step is to predict the user churn rate of the user behavior data set to obtain a user churn rate set. The user churn rate in the user churn rate set can represent the probability value of a user giving up using the application. In practice, the execution subject can use a user churn rate prediction algorithm to predict the user churn rate of the user behavior data set to obtain a user churn rate set. The user churn rate prediction algorithm can be a decision tree algorithm.
第三步,对上述用户行为数据集进行用户偏好识别,得到用户偏好信息集。其中,上述用户偏好信息集中的用户偏好信息可以表征用户对应用的喜好和选择倾向。实践中,上述执行主体可以利用用户偏好模型,对上述用户行为数据集进行用户偏好识别,得到用户偏好信息集。The third step is to identify user preferences on the user behavior data set to obtain a user preference information set. The user preference information in the user preference information set can represent the user's preferences and selection tendencies for applications. In practice, the execution entity can use the user preference model to identify user preferences on the user behavior data set to obtain a user preference information set.
第四步,根据上述用户偏好信息集和上述用户流失率集,对上述目标评价应用进行迭代更新。The fourth step is to iteratively update the target evaluation application based on the user preference information set and the user churn rate set.
作为示例,上述执行主体可以首先,从上述用户流失率集中筛选出大于等于预设用户流失率阈值的至少一个用户流失率,得到目标用户流失率集。其中,上述预设用户流失率阈值可以是预先设定的、用户流失率的最小值。其次,确定与上述目标用户流失率集对应的各个用户偏好信息。然后,依据上述各个用户偏好信息,对上述目标评价应用进行个性化迭代更新。As an example, the execution subject may first select at least one user churn rate greater than or equal to a preset user churn rate threshold from the user churn rate set to obtain a target user churn rate set. The preset user churn rate threshold may be a preset minimum user churn rate. Secondly, determine the user preference information corresponding to the target user churn rate set. Then, based on the user preference information, perform personalized iterative updates on the target evaluation application.
考虑到上述常规解决方案将经过one-hot编码得到的用户行为特征向量输入至用户流失流程预测模型,得到用户流失率的问题,面对上述技术问题三:对用户行为数据进行one-hot编码,造成数据特征稀疏和数据维度爆炸,不利于模型进行拟合,以及one-hot编码无法准确识别数据之间的关联关系,导致用户流失率预测的准确性较低,用户流失告警准确率较低,大量用户流失和增加应用系统的运行成本。结合所拥有的技术现状,可以决定采用如下解决方案。Considering the above conventional solution, the user behavior feature vector obtained by one-hot encoding is input into the user churn process prediction model to obtain the user churn rate. In the face of the above technical problem three: one-hot encoding of user behavior data causes sparse data features and data dimension explosion, which is not conducive to model fitting, and one-hot encoding cannot accurately identify the relationship between data, resulting in low accuracy of user churn rate prediction, low accuracy of user churn alarm, large number of user churn and increased operating costs of the application system. Combined with the current technical status, we can decide to adopt the following solution.
在一些实施例的一些可选的实现方式中,上述对上述用户行为数据集进行用户流失率识别,得到用户流失率集,可以包括以下步骤:In some optional implementations of some embodiments, the above-mentioned performing user churn rate identification on the above-mentioned user behavior data set to obtain a user churn rate set may include the following steps:
第一步,对上述用户行为数据集包括的分类型的至少一个用户行为数据进行特征编码,得到分类用户行为特征向量集。其中,上述分类型可以是有分类特征的数据。例如,上述分类行的至少一个用户行为数据可以包括但不限于以下至少一项:用户类型、用户访问路劲信息。上述分类用户行为特征向量集中的分类用户行为特征向量可以表征用户行为数据的特征信息。实践中,上述执行主体可以对上述用户行为数据集包括的分类型的至少一个用户行为数据进行one-hot编码,得到分类用户行为特征向量集。The first step is to perform feature encoding on at least one user behavior data of the classification type included in the above user behavior data set to obtain a classified user behavior feature vector set. The above classification type may be data with classification characteristics. For example, the at least one user behavior data of the above classification row may include but is not limited to at least one of the following: user type, user access path information. The classified user behavior feature vector in the above classified user behavior feature vector set may characterize the feature information of the user behavior data. In practice, the above execution entity may perform one-hot encoding on at least one user behavior data of the classification type included in the above user behavior data set to obtain a classified user behavior feature vector set.
第二步,对上述分类用户行为向量集进行特征嵌入处理,得到低维分类行为特征向量集。其中,上述低维分类行为特征向量集中的低维分类行为特征向量可以是将分类用户行为向量映射到低维空间得到的特征向量。The second step is to perform feature embedding processing on the above-mentioned classified user behavior vector set to obtain a low-dimensional classified behavior feature vector set. The low-dimensional classified behavior feature vector in the above-mentioned low-dimensional classified behavior feature vector set can be a feature vector obtained by mapping the classified user behavior vector to a low-dimensional space.
第三步,对上述低维分类行为特征向量集进行上下文特征表示,得到分类语义行为特征向量集。其中,上述分类语义行为特征向量集中的分类语义行为特征向量可以是包含上下文信息的特征向量。实践中,上述执行主体可以将上述低维分类行为特征向量集输入至Transformer的编码器,得到分类语义行为特征向量集。其中,上述Transformer的编码器可以包括:多头自注意力层(Multi-Head Self-Attention)和前馈层(Feed-Forward)。The third step is to perform context feature representation on the above-mentioned low-dimensional classification behavior feature vector set to obtain a classification semantic behavior feature vector set. Among them, the classification semantic behavior feature vector in the above-mentioned classification semantic behavior feature vector set can be a feature vector containing context information. In practice, the above-mentioned execution entity can input the above-mentioned low-dimensional classification behavior feature vector set into the encoder of the Transformer to obtain the classification semantic behavior feature vector set. Among them, the encoder of the above-mentioned Transformer can include: a multi-head self-attention layer (Multi-Head Self-Attention) and a feed-forward layer (Feed-Forward).
第四步,对上述用户行为数据集包括的数值型的至少一个用户行为数据进行层规范化处理,得到归一化行为数据集。其中,上述归一化行为数据集中的归一化行为数据可以是以数值型的用户行为数据的均值和标准差表征数值型的用户行为数据的数据。实践中,上述执行主体可以采用层规范化(Layer Normalization),对上述用户行为数据集包括的数值型的至少一个用户行为数据进行层规范化处理,得到归一化行为数据集。The fourth step is to perform layer normalization processing on at least one numerical user behavior data included in the above user behavior data set to obtain a normalized behavior data set. Among them, the normalized behavior data in the above normalized behavior data set can be data that characterizes the numerical user behavior data by the mean and standard deviation of the numerical user behavior data. In practice, the above execution entity can use layer normalization to perform layer normalization processing on at least one numerical user behavior data included in the above user behavior data set to obtain a normalized behavior data set.
第五步,对上述低维分类行为特征向量集和上述归一化行为数据集分别进行图嵌入表示,得到分类行为图特征向量集和数值行为图特征向量集。其中,上述分类行为图特征向量集中的分类行为图特征向量可以表征低维分类行为特征向量之间的图结构的特征信息。上述数值行为图特征向量集中的数值行为图特征向量可以表征归一化行为数据之间的图结构的特征信息。实践中,上述执行主体可以利用自适应邻接矩阵,对上述低维分类行为特征向量集和上述归一化行为数据集分别进行图嵌入表示,得到分类行为图特征向量集和数值行为图特征向量集。The fifth step is to perform graph embedding representation on the above-mentioned low-dimensional classification behavior feature vector set and the above-mentioned normalized behavior data set respectively, to obtain a classification behavior graph feature vector set and a numerical behavior graph feature vector set. Among them, the classification behavior graph feature vectors in the above-mentioned classification behavior graph feature vector set can represent the characteristic information of the graph structure between the low-dimensional classification behavior feature vectors. The numerical behavior graph feature vectors in the above-mentioned numerical behavior graph feature vector set can represent the characteristic information of the graph structure between the normalized behavior data. In practice, the above-mentioned execution entity can use an adaptive adjacency matrix to perform graph embedding representation on the above-mentioned low-dimensional classification behavior feature vector set and the above-mentioned normalized behavior data set respectively, to obtain a classification behavior graph feature vector set and a numerical behavior graph feature vector set.
第六步,将上述分类行为图特征向量集和上述数值行为图特征向量集进行特征拼接,得到行为拼接图特征向量集。其中,上述特征拼接可以是通道数叠加的特征拼接。Step 6: Perform feature concatenation on the above-mentioned classification behavior graph feature vector set and the above-mentioned numerical behavior graph feature vector set to obtain a behavior concatenation graph feature vector set. The above-mentioned feature concatenation may be a feature concatenation with superimposed channel numbers.
第七步,对上述分类增强行为特征向量集、上述行为拼接图特征向量集和上述归一化行为数据集进行特征拼接,得到行为拼接特征向量集。其中,上述特征拼接可以是通道数叠加的特征拼接。In the seventh step, feature splicing is performed on the classification enhanced behavior feature vector set, the behavior splicing graph feature vector set and the normalized behavior data set to obtain a behavior splicing feature vector set. The feature splicing may be a feature splicing with a superposition of the number of channels.
第八步,对上述行为拼接特征向量集进行映射预测,得到用户流失率集,以及根据上述用户流失率集,控制相关告警设备进行用户流失率告警。In the eighth step, mapping prediction is performed on the above behavior concatenated feature vector set to obtain a user churn rate set, and according to the above user churn rate set, relevant alarm devices are controlled to issue user churn rate alarms.
作为示例,上述执行主体可以将上述行为拼接特征向量集输入至MLP(Multi-LayerPerceptron,多层感知机),得到用户流失率集。然后,响应于确定上述用户流失率集中存在大于等于预设流失率阈值的用户流失率,控制相关告警设备进行用户流失率告警。As an example, the execution subject may input the behavior concatenation feature vector set into an MLP (Multi-Layer Perceptron) to obtain a user churn rate set. Then, in response to determining that there is a user churn rate greater than or equal to a preset churn rate threshold in the user churn rate set, control the relevant alarm device to issue a user churn rate alarm.
上述技术方案及其相关内容作为本公开的实施例的一个发明点,解决了背景技术提及的技术问题三“对用户行为数据进行one-hot编码,造成数据特征稀疏和数据维度爆炸,不利于模型进行拟合,以及one-hot编码无法准确识别数据之间的关联关系,导致用户流失率预测的准确性较低,用户流失告警准确率较低,大量用户流失和增加应用系统的运行成本”。导致用户流失率预测的准确性较低,用户流失告警准确率较低,大量用户流失和增加应用系统的运行成本的因素往往如下:对用户行为数据进行one-hot编码,造成数据特征稀疏和数据维度爆炸,不利于模型进行拟合,以及one-hot编码无法准确识别数据之间的关联关系。如果解决了上述因素,就能达到提高用户流失率预测的准确性和用户流失告警准确率,降低大量用户流失和应用系统的运行成本的效果。为了达到这一效果,本公开首先,对经过one-hot编码后的分类型的用户行为数据集进行特征嵌入和上下文特征表示,可以降低编码后的数据维度,增强分类型的用户行为数据集之间的潜在关联关系。然后,对数值型的用户行为数据集进行层规范化处理,通过对不同类型的用户行为数据集进行不同的处理,可以提高处理后的特征向量的质量,提高后续用户流失率预测的准确性。然后,对上述低维分类行为特征向量集和上述归一化行为数据集分别进行图嵌入表示,可以挖掘特征向量之间的潜在关联关系。最后,对不同特征向量进行特征拼接,以及将拼接后的特征向量进行映射预测,可以提高用户流失率预测的准确性和用户流失率告警准确性,减少误报警和漏报警和降低应用系统的运行成本。The above technical solution and its related contents, as an inventive point of the embodiment of the present disclosure, solve the technical problem three mentioned in the background technology, "One-hot encoding of user behavior data causes sparse data features and data dimension explosion, which is not conducive to model fitting, and one-hot encoding cannot accurately identify the correlation between data, resulting in low accuracy of user churn rate prediction, low accuracy of user churn alarm, large number of user churn and increased operating costs of application systems". The factors that lead to low accuracy of user churn rate prediction, low accuracy of user churn alarm, large number of user churn and increased operating costs of application systems are often as follows: One-hot encoding of user behavior data causes sparse data features and data dimension explosion, which is not conducive to model fitting, and one-hot encoding cannot accurately identify the correlation between data. If the above factors are solved, the effect of improving the accuracy of user churn rate prediction and the accuracy of user churn alarm, reducing large number of user churn and operating costs of application systems can be achieved. In order to achieve this effect, the present disclosure firstly embeds features and represents context features of the classified user behavior data sets after one-hot encoding, which can reduce the dimension of the encoded data and enhance the potential correlation between the classified user behavior data sets. Then, the numerical user behavior data set is layer-normalized. By performing different processing on different types of user behavior data sets, the quality of the processed feature vector can be improved, and the accuracy of subsequent user churn rate prediction can be improved. Then, the above low-dimensional classification behavior feature vector set and the above normalized behavior data set are respectively represented by graph embedding, and the potential correlation between feature vectors can be mined. Finally, feature concatenation of different feature vectors and mapping prediction of the concatenated feature vectors can improve the accuracy of user churn rate prediction and user churn rate alarm, reduce false alarms and missed alarms, and reduce the operating cost of the application system.
在一些实施例的一些可选的实现方式中,上述对上述异常应用接口信息集中的每个异常应用接口信息进行数据埋点,以生成用户行为数据,得到用户行为数据集,可以包括以下步骤:In some optional implementations of some embodiments, the above-mentioned data embedding for each abnormal application interface information in the above-mentioned abnormal application interface information set to generate user behavior data and obtain the user behavior data set may include the following steps:
第一步,根据上述异常应用接口信息集对应的应用接口监控信息集包括的接口调用信息集,生成用户指纹信息集。其中,上述用户指纹信息集中的用户指纹信息可以是唯一识别用户身份的信息。The first step is to generate a user fingerprint information set according to the interface call information set included in the application interface monitoring information set corresponding to the abnormal application interface information set. The user fingerprint information in the user fingerprint information set may be information that uniquely identifies the user.
作为示例,上述执行主体可以首先,对上述接口调用信息集进行解析处理,得到浏览器标识信息集和浏览器版本信息集。其中,上述浏览器标识信息集中的浏览器标识信息可以是表征用户所使用的浏览器的类型信息。其次,对上述浏览器标识信息集和上述浏览器版本信息集进行标准化处理,得到标准化后浏览器标识信息集和标准化浏览器版本信息集。然后,对上述标准化后浏览器标识信息集和上述标准化浏览器版本信息集进行组合处理,得到浏览器组合信息集。最后,对上述组合信息集进行哈希运算,得到浏览器哈希数值集,作为用户指纹信息集。As an example, the execution subject may first parse the interface call information set to obtain a browser identification information set and a browser version information set. The browser identification information in the browser identification information set may be information representing the type of browser used by the user. Secondly, the browser identification information set and the browser version information set are standardized to obtain a standardized browser identification information set and a standardized browser version information set. Then, the standardized browser identification information set and the standardized browser version information set are combined to obtain a browser combination information set. Finally, a hash operation is performed on the combined information set to obtain a browser hash value set as a user fingerprint information set.
第二步,根据上述用户指纹信息集,生成用户访问路径集。其中,上述用户访问路径集中的用户访问路径可以是用户访问各个应用页面形成的路径。The second step is to generate a user access path set based on the user fingerprint information set, wherein the user access path in the user access path set may be a path formed by the user accessing each application page.
作为示例,上述执行主体可以首先,响应于检测到浏览器的访问地址发生改变,通过调用PushState方法,获取发生改变的访问地址的访问记录集。其中,上述访问记录集中的访问记录可以是记录浏览器访问地址是否发生改变的文本。然后,对上述访问记录集包括的访问地址进行有向图构建,得到用户访问路径集。As an example, the execution subject may first, in response to detecting that the browser's access address has changed, obtain an access record set of the changed access address by calling the PushState method. The access record in the access record set may be a text recording whether the browser's access address has changed. Then, a directed graph is constructed for the access addresses included in the access record set to obtain a user access path set.
第三步,获取上述用户访问路径集对应的各个访问应用页面的页面埋点数据集和事件埋点数据集。其中,上述页面埋点数据集中的页面埋点数据可以是记录应用页面的用户访问情况的数据。上述页面埋点数据可以包括但限于以下至少一项:页面访问量、访问人数、页面停留时间和页面路径。上述页面埋点数据可以确定应用页面的总体访问情况,以及便于用户对应用页面的定位。上述事件埋点数据集中的事件埋点数据可以是记录应用页面中各个部分的访问情况的数据。上述事件埋点数据可以包括但不限于以下至少一项:应用页面各个部分的访问量、停留时间。事件埋点数据集可以确定应用页面各个部分对应的应用的功能和内容偏好信息。本步骤通过无侵入的用户指纹生成用户访问路径,获取用户浏览各个应用页面,从而代替了通过具有侵略性的代码埋点的方式获取页面埋点数据集和事件埋点数据集,解决了每次设置新的埋点时对代码的重新部署问题。The third step is to obtain the page buried point data set and event buried point data set of each access application page corresponding to the above user access path set. Among them, the page buried point data in the above page buried point data set can be data recording the user access to the application page. The above page buried point data may include but is limited to at least one of the following: page visits, number of visitors, page dwell time and page path. The above page buried point data can determine the overall access to the application page, and facilitate the user to locate the application page. The event buried point data in the above event buried point data set can be data recording the access to each part of the application page. The above event buried point data may include but is not limited to at least one of the following: the number of visits and dwell time of each part of the application page. The event buried point data set can determine the function and content preference information of the application corresponding to each part of the application page. This step generates the user access path through non-invasive user fingerprints, obtains the user browsing each application page, thereby replacing the acquisition of page buried point data set and event buried point data set through the invasive code buried point method, solving the problem of redeploying the code every time a new buried point is set.
第四步,对上述页面埋点数据集和上述事件埋点数据集进行预处理,得到预处理后页面埋点数据集和预处理后事件埋点数据集。其中,上述预处理可以包括但不限于一项至少一项:缺失值填充、去重、数据转换。The fourth step is to preprocess the page embedding data set and the event embedding data set to obtain a preprocessed page embedding data set and a preprocessed event embedding data set. The preprocessing may include but is not limited to at least one of: missing value filling, deduplication, and data conversion.
第五步,对上述预处理后页面埋点数据集和上述预处理后事件埋点数据集进行数据上报,得到用户行为数据集。实践中,上述执行主体可以通过Kafka消息中间件,将上述预处理后页面埋点数据集和上述预处理后事件埋点数据集进行数据上报,得到用户行为数据集。The fifth step is to report the pre-processed page embedding data set and the pre-processed event embedding data set to obtain a user behavior data set. In practice, the execution subject can report the pre-processed page embedding data set and the pre-processed event embedding data set through Kafka message middleware to obtain a user behavior data set.
在一些实施例的一些可选的实现方式中,上述根据上述异常应用接口信息集对应的应用接口监控信息集包括的接口调用信息集,生成用户指纹信息集,可以包括以下步骤:In some optional implementations of some embodiments, the generating of the user fingerprint information set according to the interface call information set included in the application interface monitoring information set corresponding to the abnormal application interface information set may include the following steps:
对于上述接口调用信息集中的每个接口调用信息,执行以下数值变换步骤:For each interface call information in the above interface call information set, perform the following value transformation steps:
子步骤1,对上述接口调用信息进行数据划分,得到接口划分调用信息组。其中,上述数据划分可以是以分割符进行划分。上述分割符可以是逗号。Sub-step 1, divide the interface call information into data to obtain interface call information groups, wherein the data division may be performed based on a separator, which may be a comma.
子步骤2,对上述接口划分调用信息组中的每个接口划分调用信息,执行以下按位累加步骤:Sub-step 2: for each interface partition call information in the above interface partition call information group, perform the following bitwise accumulation step:
第一子步骤,对上述接口划分调用信息进行前缀编码,得到至少一个前缀接口编码信息。其中,上述至少一个前缀接口编码信息中的前缀接口编码信息可以是对接口划分调用信息进行前缀编码得到的信息。实践中,上述执行主体可以首先,确定上述接口划分调用信息在上述接口划分调用信息组的顺序编号。然后,将上述顺序编号添加至上述接口划分调用信息包括的各个接口划分调用信息项的前面,得到至少一个前缀接口编码信息。The first sub-step is to prefix encode the above-mentioned interface division call information to obtain at least one prefix interface coding information. Among them, the prefix interface coding information in the above-mentioned at least one prefix interface coding information can be the information obtained by prefix encoding the interface division call information. In practice, the above-mentioned execution subject can first determine the sequence number of the above-mentioned interface division call information in the above-mentioned interface division call information group. Then, the above-mentioned sequence number is added to the front of each interface division call information item included in the above-mentioned interface division call information to obtain at least one prefix interface coding information.
第二子步骤,对上述至少一个前缀接口编码信息进行特征选取处理,得到至少一个接口编码特征。其中,上述至少一个接口编码特征中的接口编码特征可以表征前缀接口编码信息的特征信息。实践中,上述执行主体可以利用Bi-gram模型,对上述至少一个前缀接口编码信息进行特征选取处理,得到至少一个接口编码特征。The second sub-step is to perform feature selection processing on the at least one prefix interface coding information to obtain at least one interface coding feature. Among them, the interface coding feature in the at least one interface coding feature can represent the feature information of the prefix interface coding information. In practice, the execution subject can use the Bi-gram model to perform feature selection processing on the at least one prefix interface coding information to obtain at least one interface coding feature.
第三子步骤,对上述至少一个接口编码特征中的每个接口编码特征进行局部敏感哈希运算,以生成接口哈希值,得到至少一个接口哈希值。实践中,上述执行主体可以利用MD5(Message-Digest Algorithm 5,信息-摘要算法5)哈希函数,对上述至少一个接口编码特征中的每个接口编码特征进行局部敏感哈希运算,以生成接口哈希值,得到至少一个接口哈希值。The third sub-step is to perform a local sensitive hashing operation on each of the at least one interface coding feature to generate an interface hash value, thereby obtaining at least one interface hash value. In practice, the execution subject may use an MD5 (Message-Digest Algorithm 5) hash function to perform a local sensitive hashing operation on each of the at least one interface coding feature to generate an interface hash value, thereby obtaining at least one interface hash value.
第四子步骤,对上述至少一个接口哈希值中的每个接口哈希值进行哈希值变换,得到至少一个变换后哈希值。实践中,上述执行主体可以将上述至少一个接口哈希值包括的为0的接口哈希值转变成为-1的接口哈希值,除为0的接口哈希值外的接口哈希值不变。The fourth sub-step is to perform a hash value transformation on each of the at least one interface hash value to obtain at least one transformed hash value. In practice, the execution subject may transform the interface hash value of 0 included in the at least one interface hash value into an interface hash value of -1, and the interface hash values other than the interface hash value of 0 remain unchanged.
第五子步骤,对上述至少一个变换后哈希值组进行按位累加处理,得到哈希累加数值。The fifth sub-step is to perform bitwise accumulation processing on the at least one transformed hash value group to obtain a hash accumulation value.
子步骤3,对所得到的哈希累加数值组中的每个哈希累加数值进行数值变换处理,得到变换后累加数值组,作为用户指纹信息。其中,上述变化后累加数值组可以是将哈希累加数值组中数值大于等于0的哈希累加数值变换成数值为1的变化后累加数值,将小于0的哈希累加数值变化成数值为0的变化后累加数值的数值组。Sub-step 3, performing a numerical transformation process on each hash cumulative value in the obtained hash cumulative value group to obtain a transformed cumulative value group as the user fingerprint information. The transformed cumulative value group can be a value group in which the hash cumulative values with values greater than or equal to 0 in the hash cumulative value group are transformed into a transformed cumulative value with a value of 1, and the hash cumulative values with values less than 0 are transformed into a transformed cumulative value with a value of 0.
本公开的上述各个实施例中具有如下有益效果:本公开的一些实施例的应用接口异常告警方法可以提高异常检测的准确性,降低误检率和漏检率,提高应用系统的稳定性和用户体验感。具体来说,造成相关的应用的稳定性较低和用户体验感较低的原因在于:由于对应用接口的调用进行显示监控,会对应用的业务逻辑产生影响,增加程序逻辑和监控逻辑的紧耦合,以及由于固定告警阈值的设置依赖专家经验,覆盖告警范围较窄,造成告警的误报和漏报,进而导致应用系统的稳定性较低,用户体验感较低。基于此,本公开的一些实施例的应用接口异常告警方法可以首先,获取目标评价应用的待检测应用接口信息集。在这里,待检测应用接口信息集用于后续异常检测和根因定位。其次,对上述待检测应用接口信息集中的每个待检测应用接口信息进行无侵入监控处理,以生成应用接口监控信息组,得到应用接口监控信息组集。在这里,无侵入式监控可以将应用的业务逻辑和监控逻辑进行解耦,提高应用系统的可扩展性和减少应用系统的资源浪费,提高应用系统的稳定性。随后,对于上述应用接口监控信息组集中的每个应用接口监控信息组,执行以下确定步骤:第一步,对上述应用接口监控信息组包括的接口响应信息组进行分类处理,得到类别接口响应信息组。在这里,便于对待检测应用接口进行不同类型的接口响应信息进行调用量统计,提高对待检测应用接口的监控的全面性。第二步,确定上述类别接口响应信息组中的每个类别接口响应信息的类别接口调用量,得到类别接口调用量组。在这里,便于后续确定接口调用量的差值。第三步,确定上述类别接口调用量组中的每个类别接口调用量与所对应的历史类别接口调用量的类别接口调用量差值,得到类别接口调用量差值组,以及对上述类别接口调用量差值组进行可视化显示。在这里,确定与所对应的历史类别接口调用量的调用量差值,可以明确待检测应用接口的调用量的发展趋势,并以可视化的形式进行显示,可以更直观的展示待检测应用接口的发展趋势,便于相关人员对待检测应用接口的调用情况的掌握。第四步,响应于确定上述类别接口调用量差值组中存在大于等于预设调用量范围的类别接口调用量差值,将上述应用接口监控信息组对应的待检测应用接口信息,确定为目标应用接口信息。在这里,将任意类型的调用量大于等于预设调用量范围的待检测应用接口,确定为目标应用接口,可以减少后续异常检测的接口数量。然后,对所得到的目标应用接口信息集进行异常检测,得到异常应用接口信息集。在这里,对目标应用接口信息集进行异常检测,可以减少异常检测的接口数据量,减少应用系统的运算资源,从粗粒度到细粒度进行接口调用异常检测,可以提高后续异常检测的准确性和应用系统的稳定性。最后,对上述异常应用接口信息集进行根因定位处理,得到接口异常信息集,以及控制关联告警设备进行异常告警。在这里,根因定位可以确定导致应用接口出现异常的根本原因,控制关联告警设备进行异常告警可以及时提醒相关人员进行相关操作,减少应用系统的损失率,提高用户体验感。由此可得,该应用接口异常告警方法对待检测应用接口进行无侵入式监控,可以对应用业务逻辑和监控逻辑进行解耦,减少应用系统的资源浪费,以及先确定每个待检测应用接口进行不同类型的调用量差值,再对超过预设调用量范围的调用量进行异常检测,得到异常应用接口,可以提高异常检测的准确性,降低误检率和漏检率,并对异常应用接口进行根因定位和告警,可以确定导致接口异常的真正因素,及时对异常问题进行处理,提高应用系统的稳定性。The above-mentioned embodiments of the present disclosure have the following beneficial effects: the application interface abnormal alarm method in some embodiments of the present disclosure can improve the accuracy of abnormal detection, reduce the false detection rate and missed detection rate, and improve the stability of the application system and the user experience. Specifically, the reasons for the low stability and low user experience of the relevant applications are: due to the display monitoring of the call of the application interface, it will affect the business logic of the application, increase the tight coupling of the program logic and the monitoring logic, and because the setting of the fixed alarm threshold depends on expert experience, the coverage alarm range is narrow, resulting in false alarms and missed alarms, which in turn leads to low stability of the application system and low user experience. Based on this, the application interface abnormal alarm method of some embodiments of the present disclosure can first obtain the application interface information set to be detected of the target evaluation application. Here, the application interface information set to be detected is used for subsequent abnormal detection and root cause location. Secondly, each application interface information to be detected in the above-mentioned application interface information set to be detected is subjected to non-intrusive monitoring processing to generate an application interface monitoring information group, and obtain an application interface monitoring information group set. Here, non-intrusive monitoring can decouple the business logic and monitoring logic of the application, improve the scalability of the application system, reduce the waste of resources of the application system, and improve the stability of the application system. Subsequently, for each application interface monitoring information group in the above-mentioned application interface monitoring information group set, the following determination steps are performed: the first step is to classify the interface response information group included in the above-mentioned application interface monitoring information group to obtain a category interface response information group. Here, it is convenient to perform call volume statistics on different types of interface response information for the application interface to be detected, and improve the comprehensiveness of the monitoring of the application interface to be detected. The second step is to determine the category interface call volume of each category interface response information in the above-mentioned category interface response information group to obtain a category interface call volume group. Here, it is convenient to determine the difference in interface call volume later. The third step is to determine the category interface call volume difference between each category interface call volume in the above-mentioned category interface call volume group and the corresponding historical category interface call volume, obtain a category interface call volume difference group, and visualize the above-mentioned category interface call volume difference group. Here, determining the call volume difference with the corresponding historical category interface call volume can clarify the development trend of the call volume of the application interface to be detected, and display it in a visual form, which can more intuitively show the development trend of the application interface to be detected, and facilitate the relevant personnel to grasp the call situation of the application interface to be detected. In the fourth step, in response to determining that there is a category interface call amount difference greater than or equal to the preset call amount range in the above-mentioned category interface call amount difference group, the application interface information to be detected corresponding to the above-mentioned application interface monitoring information group is determined as the target application interface information. Here, the application interface to be detected whose call amount is greater than or equal to the preset call amount range is determined as the target application interface, which can reduce the number of interfaces for subsequent abnormal detection. Then, the obtained target application interface information set is subjected to abnormal detection to obtain an abnormal application interface information set. Here, the target application interface information set is subjected to abnormal detection, which can reduce the amount of interface data for abnormal detection and reduce the computing resources of the application system. The interface call abnormal detection is performed from coarse granularity to fine granularity, which can improve the accuracy of subsequent abnormal detection and the stability of the application system. Finally, the above-mentioned abnormal application interface information set is subjected to root cause location processing to obtain an interface abnormal information set, and the associated alarm device is controlled to perform abnormal alarm. Here, the root cause location can determine the root cause of the abnormal application interface, and the control of the associated alarm device to perform abnormal alarm can timely remind relevant personnel to perform relevant operations, reduce the loss rate of the application system, and improve the user experience. It can be concluded that the application interface abnormality alarm method can perform non-invasive monitoring of the application interface to be detected, decouple the application business logic and the monitoring logic, reduce the resource waste of the application system, and first determine the difference in the call volume of different types for each application interface to be detected, and then perform abnormal detection on the call volume that exceeds the preset call volume range to obtain the abnormal application interface, which can improve the accuracy of abnormality detection, reduce the false detection rate and missed detection rate, and locate the root cause and alarm of the abnormal application interface, which can determine the real factor causing the interface abnormality, handle the abnormal problem in time, and improve the stability of the application system.
进一步参考图2,作为对上述各图所示方法的实现,本公开提供了一种应用接口异常告警装置的一些实施例,这些装置实施例与图1所示的那些方法实施例相对应,该应用接口异常告警装置具体可以应用于各种电子设备中。Further referring to FIG. 2 , as an implementation of the methods shown in the above figures, the present disclosure provides some embodiments of an application interface abnormality alarm device, which correspond to the method embodiments shown in FIG. 1 , and the application interface abnormality alarm device can be specifically applied to various electronic devices.
如图2所示,一种应用接口异常告警装置200包括:获取单元201、无侵入监控单元202、执行单元203、异常检测单元204和异常告警单元205。其中,获取单元201被配置成:获取目标评价应用的待检测应用接口信息集。无侵入监控单元202被配置成:对上述待检测应用接口信息集中的每个待检测应用接口信息进行无侵入监控处理,以生成应用接口监控信息组,得到应用接口监控信息组集。执行单元203被配置成:对于上述应用接口监控信息组集中的每个应用接口监控信息组,执行以下确定步骤:对上述应用接口监控信息组包括的接口响应信息组进行分类处理,得到类别接口响应信息组;确定上述类别接口响应信息组中的每个类别接口响应信息的类别接口调用量,得到类别接口调用量组;确定上述类别接口调用量组中的每个类别接口调用量与所对应的历史类别接口调用量的类别接口调用量差值,得到类别接口调用量差值组,以及对上述类别接口调用量差值组进行可视化显示;响应于确定上述类别接口调用量差值组中存在大于等于预设调用量范围的类别接口调用量差值,将上述应用接口监控信息组对应的待检测应用接口信息,确定为目标应用接口信息。异常检测单元204被配置成:对所得到的目标应用接口信息集进行异常检测,得到异常应用接口信息集。异常告警单元205被配置成:对上述异常应用接口信息集进行根因定位处理,得到接口异常信息集,以及控制关联告警设备进行异常告警。As shown in FIG2 , an application interface abnormality alarm device 200 includes: an acquisition unit 201, a non-intrusive monitoring unit 202, an execution unit 203, an abnormality detection unit 204, and an abnormality alarm unit 205. The acquisition unit 201 is configured to: acquire a set of application interface information to be detected of a target evaluation application. The non-intrusive monitoring unit 202 is configured to: perform non-intrusive monitoring processing on each application interface information to be detected in the above-mentioned set of application interface information to be detected, so as to generate an application interface monitoring information group, and obtain an application interface monitoring information group set. The execution unit 203 is configured to: for each application interface monitoring information group in the above application interface monitoring information group set, perform the following determination steps: classify the interface response information group included in the above application interface monitoring information group to obtain a category interface response information group; determine the category interface call volume of each category interface response information in the above category interface response information group to obtain a category interface call volume group; determine the category interface call volume difference between each category interface call volume in the above category interface call volume group and the corresponding historical category interface call volume to obtain a category interface call volume difference group, and visualize the above category interface call volume difference group; in response to determining that there is a category interface call volume difference greater than or equal to a preset call volume range in the above category interface call volume difference group, determine the application interface information to be detected corresponding to the above application interface monitoring information group as the target application interface information. The abnormality detection unit 204 is configured to: perform abnormality detection on the obtained target application interface information set to obtain an abnormal application interface information set. The abnormal alarm unit 205 is configured to: perform root cause location processing on the abnormal application interface information set to obtain an interface abnormal information set, and control the associated alarm device to issue an abnormal alarm.
可以理解的是,应用接口异常告警装置200中记载的诸单元与参考图1描述的方法中的各个步骤相对应。由此,上文针对方法描述的操作、特征以及产生的有益效果同样适用于应用接口异常告警装置200及其中包含的单元,在此不再赘述。It is understandable that the units recorded in the application interface abnormality alarm device 200 correspond to the steps in the method described with reference to Figure 1. Therefore, the operations, features and beneficial effects described above for the method are also applicable to the application interface abnormality alarm device 200 and the units contained therein, and will not be repeated here.
下面参考图3,其示出了适于用来实现本公开的一些实施例的电子设备(例如,电子设备)300的结构示意图。图3示出的电子设备仅仅是一个示例,不应对本公开的实施例的功能和使用范围带来任何限制。Referring to FIG3, a schematic diagram of an electronic device (eg, an electronic device) 300 suitable for implementing some embodiments of the present disclosure is shown. The electronic device shown in FIG3 is only an example and should not limit the functions and scope of use of the embodiments of the present disclosure.
如图3所示,电子设备300可以包括处理装置(例如中央处理器、图形处理器等)301,其可以根据存储在只读存储器(ROM)302中的程序或者从存储装置308加载到随机访问存储器(RAM)303中的程序而执行各种适当的动作和处理。在RAM 303中,还存储有电子设备300操作所需的各种程序和数据。处理装置301、ROM 302以及RAM 303通过总线304彼此相连。输入/输出(I/O)接口305也连接至总线304。As shown in FIG3 , the electronic device 300 may include a processing device (e.g., a central processing unit, a graphics processing unit, etc.) 301, which can perform various appropriate actions and processes according to a program stored in a read-only memory (ROM) 302 or a program loaded from a storage device 308 into a random access memory (RAM) 303. In the RAM 303, various programs and data required for the operation of the electronic device 300 are also stored. The processing device 301, the ROM 302, and the RAM 303 are connected to each other via a bus 304. An input/output (I/O) interface 305 is also connected to the bus 304.
通常,以下装置可以连接至I/O接口305:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置306;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置307;包括例如磁带、硬盘等的存储装置308;以及通信装置309。通信装置309可以允许电子设备300与其他设备进行无线或有线通信以交换数据。虽然图3示出了具有各种装置的电子设备300,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。图3中示出的每个方框可以代表一个装置,也可以根据需要代表多个装置。Typically, the following devices may be connected to the I/O interface 305: input devices 306 including, for example, a touch screen, a touchpad, a keyboard, a mouse, a camera, a microphone, an accelerometer, a gyroscope, etc.; output devices 307 including, for example, a liquid crystal display (LCD), a speaker, a vibrator, etc.; storage devices 308 including, for example, a magnetic tape, a hard disk, etc.; and communication devices 309. The communication device 309 may allow the electronic device 300 to communicate with other devices wirelessly or by wire to exchange data. Although FIG. 3 shows an electronic device 300 with various devices, it should be understood that it is not required to implement or have all the devices shown. More or fewer devices may be implemented or have alternatively. Each box shown in FIG. 3 may represent one device, or may represent multiple devices as needed.
特别地,根据本公开的一些实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的一些实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的一些实施例中,该计算机程序可以通过通信装置309从网络上被下载和安装,或者从存储装置308被安装,或者从ROM 302被安装。在该计算机程序被处理装置301执行时,执行本公开的一些实施例的方法中限定的上述功能。In particular, according to some embodiments of the present disclosure, the process described above with reference to the flowchart can be implemented as a computer software program. For example, some embodiments of the present disclosure include a computer program product, which includes a computer program carried on a computer-readable medium, and the computer program includes a program code for executing the method shown in the flowchart. In some such embodiments, the computer program can be downloaded and installed from the network through the communication device 309, or installed from the storage device 308, or installed from the ROM 302. When the computer program is executed by the processing device 301, the above-mentioned functions defined in the method of some embodiments of the present disclosure are executed.
需要说明的是,本公开的一些实施例上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开的一些实施例中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开的一些实施例中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。It should be noted that the computer-readable medium in some embodiments of the present disclosure may be a computer-readable signal medium or a computer-readable storage medium or any combination of the two. The computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination of the above. More specific examples of computer-readable storage media may include, but are not limited to: an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above. In some embodiments of the present disclosure, the computer-readable storage medium may be any tangible medium containing or storing a program that can be used by or in combination with an instruction execution system, device or device. In some embodiments of the present disclosure, the computer-readable signal medium may include a data signal propagated in a baseband or as part of a carrier wave, which carries a computer-readable program code. This propagated data signal may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above. The computer readable signal medium may also be any computer readable medium other than a computer readable storage medium, which may send, propagate or transmit a program for use by or in conjunction with an instruction execution system, apparatus or device. The program code contained on the computer readable medium may be transmitted using any suitable medium, including but not limited to: wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
在一些实施方式中,客户端、服务器可以利用诸如HTTP(Hyper Text TransferProtocol,超文本传输协议)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字数据通信(例如,通信网络)互连。通信网络的示例包括局域网(“LAN”),广域网(“WAN”),网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。In some embodiments, the client and the server may communicate using any currently known or future developed network protocol such as HTTP (Hyper Text Transfer Protocol), and may be interconnected with any form or medium of digital data communication (e.g., a communication network). Examples of communication networks include a local area network ("LAN"), a wide area network ("WAN"), an internet (e.g., the Internet), and a peer-to-peer network (e.g., an ad hoc peer-to-peer network), as well as any currently known or future developed network.
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:获取目标评价应用的待检测应用接口信息集;对上述待检测应用接口信息集中的每个待检测应用接口信息进行无侵入监控处理,以生成应用接口监控信息组,得到应用接口监控信息组集;对于上述应用接口监控信息组集中的每个应用接口监控信息组,执行以下确定步骤:对上述应用接口监控信息组包括的接口响应信息组进行分类处理,得到类别接口响应信息组;确定上述类别接口响应信息组中的每个类别接口响应信息的类别接口调用量,得到类别接口调用量组;确定上述类别接口调用量组中的每个类别接口调用量与所对应的历史类别接口调用量的类别接口调用量差值,得到类别接口调用量差值组,以及对上述类别接口调用量差值组进行可视化显示;响应于确定上述类别接口调用量差值组中存在大于等于预设调用量范围的类别接口调用量差值,将上述应用接口监控信息组对应的待检测应用接口信息,确定为目标应用接口信息;对所得到的目标应用接口信息集进行异常检测,得到异常应用接口信息集;对上述异常应用接口信息集进行根因定位处理,得到接口异常信息集,以及控制关联告警设备进行异常告警。The above-mentioned computer-readable medium may be included in the above-mentioned electronic device; or it may exist independently without being assembled into the electronic device. The above-mentioned computer-readable medium carries one or more programs. When the above-mentioned one or more programs are executed by the electronic device, the electronic device: obtains the application interface information set to be detected of the target evaluation application; performs non-intrusive monitoring processing on each application interface information to be detected in the above-mentioned application interface information set to be detected to generate an application interface monitoring information group and obtain an application interface monitoring information group set; for each application interface monitoring information group in the above-mentioned application interface monitoring information group set, performs the following determination steps: classifies the interface response information group included in the above-mentioned application interface monitoring information group to obtain a category interface response information group; determines the category interface call amount of each category interface response information in the above-mentioned category interface response information group to obtain a category interface response information group. interface call volume group; determine the category interface call volume difference between each category interface call volume in the above category interface call volume group and the corresponding historical category interface call volume to obtain the category interface call volume difference group, and visualize the above category interface call volume difference group; in response to determining that there is a category interface call volume difference greater than or equal to a preset call volume range in the above category interface call volume difference group, determine the application interface information to be detected corresponding to the above application interface monitoring information group as the target application interface information; perform anomaly detection on the obtained target application interface information set to obtain an abnormal application interface information set; perform root cause location processing on the above abnormal application interface information set to obtain an interface abnormality information set, and control the associated alarm device to issue an abnormal alarm.
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的一些实施例的操作的计算机程序代码,上述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)——连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for performing the operations of some embodiments of the present disclosure may be written in one or more programming languages or a combination thereof, including object-oriented programming languages such as Java, Smalltalk, C++, and conventional procedural programming languages such as "C" or similar programming languages. The program code may be executed entirely on the user's computer, partially on the user's computer, as a separate software package, partially on the user's computer and partially on a remote computer, or entirely on a remote computer or server. In cases involving a remote computer, the remote computer may be connected to the user's computer via any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., via the Internet using an Internet service provider).
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flow chart and block diagram in the accompanying drawings illustrate the possible architecture, function and operation of the system, method and computer program product according to various embodiments of the present disclosure. In this regard, each square box in the flow chart or block diagram can represent a module, a program segment or a part of a code, and the module, the program segment or a part of the code contains one or more executable instructions for realizing the specified logical function. It should also be noted that in some implementations as replacements, the functions marked in the square box can also occur in a sequence different from that marked in the accompanying drawings. For example, two square boxes represented in succession can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, depending on the functions involved. It should also be noted that each square box in the block diagram and/or flow chart, and the combination of the square boxes in the block diagram and/or flow chart can be implemented with a dedicated hardware-based system that performs the specified function or operation, or can be implemented with a combination of dedicated hardware and computer instructions.
描述于本公开的一些实施例中的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元也可以设置在处理器中,例如,可以描述为:一种处理器包括获取单元、无侵入监控单元、执行单元、异常检测单元和异常告警单元。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定,例如,获取单元还可以被描述为“获取目标评价应用的待检测应用接口信息集的单元”。The units described in some embodiments of the present disclosure may be implemented by software or by hardware. The described units may also be provided in a processor, for example, may be described as: a processor including an acquisition unit, a non-intrusive monitoring unit, an execution unit, an anomaly detection unit, and an anomaly alarm unit. The names of these units do not, in some cases, constitute limitations on the units themselves, for example, the acquisition unit may also be described as a "unit for acquiring a set of application interface information to be detected of a target evaluation application".
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。The functions described above herein may be performed at least in part by one or more hardware logic components. For example, without limitation, exemplary types of hardware logic components that may be used include: field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chip (SOCs), complex programmable logic devices (CPLDs), and the like.
以上描述仅为本公开的一些较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开的实施例中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开的实施例中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above descriptions are only some preferred embodiments of the present disclosure and an explanation of the technical principles used. Those skilled in the art should understand that the scope of the invention involved in the embodiments of the present disclosure is not limited to the technical solutions formed by a specific combination of the above technical features, but should also cover other technical solutions formed by any combination of the above technical features or their equivalent features without departing from the above invention concept. For example, the above features are replaced with (but not limited to) technical features with similar functions disclosed in the embodiments of the present disclosure.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410228839.4A CN118035049B (en) | 2024-02-29 | 2024-02-29 | Application interface abnormality warning method, device, electronic equipment and medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410228839.4A CN118035049B (en) | 2024-02-29 | 2024-02-29 | Application interface abnormality warning method, device, electronic equipment and medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118035049A CN118035049A (en) | 2024-05-14 |
CN118035049B true CN118035049B (en) | 2024-09-13 |
Family
ID=90983944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410228839.4A Active CN118035049B (en) | 2024-02-29 | 2024-02-29 | Application interface abnormality warning method, device, electronic equipment and medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118035049B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116361121A (en) * | 2023-02-17 | 2023-06-30 | 多点(深圳)数字科技有限公司 | Abnormal interface alarm method, device, electronic equipment and computer readable medium |
CN116881173A (en) * | 2023-09-06 | 2023-10-13 | 国网思极网安科技(北京)有限公司 | Interface parameter detection method, device, electronic equipment and computer readable medium |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9135145B2 (en) * | 2013-01-28 | 2015-09-15 | Rackspace Us, Inc. | Methods and systems of distributed tracing |
CN113495820B (en) * | 2020-04-03 | 2024-06-18 | 北京沃东天骏信息技术有限公司 | Anomaly information collecting and processing method and device and anomaly monitoring system |
CN114816945A (en) * | 2021-01-29 | 2022-07-29 | 腾讯科技(深圳)有限公司 | Method and device for monitoring operation of server |
-
2024
- 2024-02-29 CN CN202410228839.4A patent/CN118035049B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116361121A (en) * | 2023-02-17 | 2023-06-30 | 多点(深圳)数字科技有限公司 | Abnormal interface alarm method, device, electronic equipment and computer readable medium |
CN116881173A (en) * | 2023-09-06 | 2023-10-13 | 国网思极网安科技(北京)有限公司 | Interface parameter detection method, device, electronic equipment and computer readable medium |
Also Published As
Publication number | Publication date |
---|---|
CN118035049A (en) | 2024-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11586972B2 (en) | Tool-specific alerting rules based on abnormal and normal patterns obtained from history logs | |
CN111813960B (en) | Knowledge graph-based data security audit model device, method and terminal equipment | |
CN116822803B (en) | Carbon emission data graph construction method, device and equipment based on intelligent algorithm | |
WO2024148880A1 (en) | System detection method and apparatus based on multi-source heterogeneous data | |
CN114710368B (en) | A security event detection method, device and computer-readable storage medium | |
CN118916194A (en) | Fault diagnosis method, equipment and storage medium for service fault | |
CN110381013A (en) | A kind of network safety situation sensing control method, apparatus, equipment and storage medium | |
CN115357470B (en) | Information generating method, device, electronic device, and computer-readable medium | |
CN112948223B (en) | Method and device for monitoring running condition | |
CN110730164B (en) | Safety early warning method, related equipment and computer readable storage medium | |
CN117992416A (en) | Software detection method, device, chip and computer readable storage medium | |
CN116164822A (en) | Flowmeter fault diagnosis method, device and medium based on knowledge graph | |
CN118504000A (en) | Service data dynamic access control method, device, electronic equipment and medium | |
CN115426161A (en) | Abnormal device identification method, apparatus, device, medium, and program product | |
CN118300886B (en) | Internet security risk analysis method based on big data analysis technology | |
CN114358024A (en) | Log analysis method, apparatus, device, medium and program product | |
CN118885971A (en) | A heterogeneous data fusion method, device, equipment and storage medium | |
US20250103722A1 (en) | Hierarchical representation models | |
CN118035049B (en) | Application interface abnormality warning method, device, electronic equipment and medium | |
CN117785539A (en) | Log data analysis method, device, computer equipment and storage medium | |
CN116668264A (en) | Root cause analysis method, device, equipment and storage medium for alarm clustering | |
CN114492994A (en) | A power information processing system, method and device based on power big data | |
CN118555135B (en) | Network information analysis method, device, equipment and medium based on situation awareness | |
CN119961589A (en) | Method, device, equipment, storage medium and program product for detecting abnormality of indicators | |
CN116980195A (en) | Industrial production Internet security-oriented data monitoring method and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |