CN117936848B - Flow pressure self-adaptive coordination control method for hydrogen fuel cell - Google Patents
Flow pressure self-adaptive coordination control method for hydrogen fuel cell Download PDFInfo
- Publication number
- CN117936848B CN117936848B CN202410339955.3A CN202410339955A CN117936848B CN 117936848 B CN117936848 B CN 117936848B CN 202410339955 A CN202410339955 A CN 202410339955A CN 117936848 B CN117936848 B CN 117936848B
- Authority
- CN
- China
- Prior art keywords
- flow
- pressure
- air compressor
- gas
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 53
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 239000001257 hydrogen Substances 0.000 title claims abstract description 30
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 30
- 239000007789 gas Substances 0.000 claims abstract description 71
- 230000003044 adaptive effect Effects 0.000 claims abstract description 43
- 238000013461 design Methods 0.000 claims abstract description 23
- 230000008859 change Effects 0.000 claims abstract description 10
- 230000007613 environmental effect Effects 0.000 claims abstract description 8
- 239000013598 vector Substances 0.000 claims description 29
- 230000006870 function Effects 0.000 claims description 25
- 238000010586 diagram Methods 0.000 claims description 14
- 238000004590 computer program Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 13
- 230000006641 stabilisation Effects 0.000 claims description 12
- 238000011105 stabilization Methods 0.000 claims description 12
- 238000004458 analytical method Methods 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 230000007246 mechanism Effects 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 4
- 230000036284 oxygen consumption Effects 0.000 claims description 3
- 230000008878 coupling Effects 0.000 abstract description 4
- 238000010168 coupling process Methods 0.000 abstract description 4
- 238000005859 coupling reaction Methods 0.000 abstract description 4
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 239000012528 membrane Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 238000005312 nonlinear dynamic Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04753—Pressure; Flow of fuel cell reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04111—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants using a compressor turbine assembly
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04305—Modeling, demonstration models of fuel cells, e.g. for training purposes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04992—Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Software Systems (AREA)
- Medical Informatics (AREA)
- Fuzzy Systems (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- Automation & Control Theory (AREA)
- Artificial Intelligence (AREA)
- Fuel Cell (AREA)
Abstract
Description
技术领域Technical Field
本发明属于燃料电池技术领域,具体涉及一种氢燃料电池流量压力自适应协调控制方法。The present invention belongs to the technical field of fuel cells, and in particular relates to a hydrogen fuel cell flow rate and pressure adaptive coordinated control method.
背景技术Background technique
质子交换膜燃料电池通过电化学反应将氢燃料中的化学能直接转换为电能,是一种高效的发电装置,具有能量转换效率高、无污染、运行温度低等特点,目前已经在交通运输、电力系统和航空航天等领域中得到了应用和发展。燃料电池空气供给系统具有强不确定性、高度非线性和深耦合性的特点,流量和压力作为其中关键控制变量,对燃料电池系统安全高效工作具有重要的影响。在实际应用中,一方面,复杂负载工况下空压机的运行状态使得电机参数具有一定的不确定性;海拔高度会改变大气压强、温度和空气密度,进而对空气系统模型参数带来不确定性。另一方面,受到空压机转速和背压阀开度的影响,流量和压力存在耦合效应。在外界环境变化或复杂工况的影响下,气体流量的波动容易导致燃料电池电堆出现“氧饥饿”现象,压强的波动会造成气体的不均匀分布和阴、阳极压差过大,损伤质子交换膜,从而降低燃料电池的使用寿命。因此,针对具有不确定参数空气系统的流量压力自适应协调控制方法是一项关键技术,对提高燃料电池系统性能和寿命具有重要意义。Proton exchange membrane fuel cells convert chemical energy in hydrogen fuel directly into electrical energy through electrochemical reactions. They are efficient power generation devices with the characteristics of high energy conversion efficiency, no pollution, and low operating temperature. They have been applied and developed in the fields of transportation, power systems, and aerospace. The fuel cell air supply system has the characteristics of strong uncertainty, high nonlinearity, and deep coupling. Flow and pressure, as key control variables, have an important impact on the safe and efficient operation of the fuel cell system. In practical applications, on the one hand, the operating state of the air compressor under complex load conditions makes the motor parameters have certain uncertainties; the altitude will change the atmospheric pressure, temperature, and air density, which will bring uncertainty to the air system model parameters. On the other hand, affected by the air compressor speed and the back pressure valve opening, there is a coupling effect between flow and pressure. Under the influence of changes in the external environment or complex working conditions, the fluctuation of gas flow can easily lead to the "oxygen starvation" phenomenon of the fuel cell stack, and the fluctuation of pressure will cause uneven distribution of gas and excessive pressure difference between the cathode and the anode, which will damage the proton exchange membrane and reduce the service life of the fuel cell. Therefore, the flow-pressure adaptive coordinated control method for air systems with uncertain parameters is a key technology, which is of great significance to improving the performance and life of fuel cell systems.
目前,针对空气供给系统流量压力协调控制的研究中,文章“Feedforward-baseddecoupling control of air supply for vehicular fuel cell system: Methodologyand experimental validation”设计了基于前馈解耦的PID控制器实现对阴极压力和过氧比的跟踪控制,但存在拟合的二阶传递函数模型与复杂运行工况下实际系统模型不匹配的问题。文章《基于滑模观测器的PEMFC阴极进气系统解耦控制》设计了滑模观测器和状态反馈控制器相结合的控制算法,实现进气流量和压力的高精度控制,但没有考虑氧气的消耗和空压机的非线性动态特性。中国专利申请CN202310992892.7(一种燃料电池空气系统解耦控制方法)中利用自抗扰控制算法对不同工况下空气系统的传递函数进行反向解耦,实现空气系统气体流量和压力的独立控制。中国专利申请CN202210348576.1(一种航空用燃料电池空气供应系统的建模与多目标控制方法)考虑了不同海拔高度下空压机动力学特性,设计了模糊解耦控制器,保证气压和过氧比具有较好的动态特性。中国专利申请CN202310254199.X(燃料电池空气供给系统数据驱动离散三步解耦控制方法)设计了一种基于离散三步法的无模型自适应控制器使得空气质量流量和压力跟踪期望值,但动态线性化模型存在数据计算量较大的问题,不利于工程实现。At present, in the research on coordinated control of air supply system flow and pressure, the article "Feedforward-based decoupling control of air supply for vehicular fuel cell system: Methodology and experimental validation" designed a PID controller based on feedforward decoupling to achieve tracking control of cathode pressure and excess oxygen ratio, but there is a problem that the fitted second-order transfer function model does not match the actual system model under complex operating conditions. The article "Decoupling control of PEMFC cathode intake system based on sliding mode observer" designed a control algorithm combining sliding mode observer and state feedback controller to achieve high-precision control of intake flow and pressure, but did not consider oxygen consumption and nonlinear dynamic characteristics of air compressor. Chinese patent application CN202310992892.7 (A decoupling control method for fuel cell air system) uses an anti-disturbance control algorithm to reversely decouple the transfer function of the air system under different working conditions to achieve independent control of the gas flow and pressure of the air system. Chinese patent application CN202210348576.1 (A modeling and multi-objective control method for a fuel cell air supply system for aviation) takes into account the dynamic characteristics of the air compressor at different altitudes and designs a fuzzy decoupling controller to ensure that the air pressure and the oxygen excess ratio have good dynamic characteristics. Chinese patent application CN202310254199.X (Data-driven discrete three-step decoupling control method for fuel cell air supply system) designs a model-free adaptive controller based on the discrete three-step method to make the air mass flow and pressure track the expected value, but the dynamic linearization model has the problem of large data calculation, which is not conducive to engineering implementation.
综上所述,在复杂负载工况和环境条件变化下,现有方法缺乏针对高阶非线性、强耦合性空气供给系统的流量压力协调跟踪控制能力,亟需攻克基于自适应技术的氢燃料电池空气供给系统多变量协调控制方法。In summary, under complex load conditions and changing environmental conditions, the existing methods lack the ability to coordinate flow and pressure tracking control for high-order nonlinear and strongly coupled air supply systems. It is urgent to overcome the multivariable coordinated control method of hydrogen fuel cell air supply systems based on adaptive technology.
发明内容Summary of the invention
针对燃料电池空气供给系统的参数不确定和气体流量压力强耦合问题,为克服现有技术的不足,本发明提供一种氢燃料电池流量压力自适应协调控制方法,实现了在复杂负载工况和恶劣环境条件下控制器参数的自适应调整,基于反步法设计空压机输入电压和背压阀开度控制指令,保证了质子交换膜燃料电池空气系统流量和压力的独立跟踪控制,提升了燃料电池的工作效率和系统稳定性。In view of the parameter uncertainty and the strong coupling of gas flow and pressure in the fuel cell air supply system, and to overcome the shortcomings of the prior art, the present invention provides a hydrogen fuel cell flow and pressure adaptive coordinated control method, which realizes the adaptive adjustment of controller parameters under complex load conditions and harsh environmental conditions, and designs the air compressor input voltage and back pressure valve opening control instructions based on the backstepping method, thereby ensuring the independent tracking control of the flow and pressure of the proton exchange membrane fuel cell air system, and improving the working efficiency and system stability of the fuel cell.
为达到上述目的,本发明采用如下技术解决方案:In order to achieve the above object, the present invention adopts the following technical solutions:
一种氢燃料电池流量压力自适应协调控制方法,包括以下步骤:A hydrogen fuel cell flow pressure adaptive coordinated control method comprises the following steps:
第一步,分析空气供给系统中空压机和背压阀对进气流量和阴极气体压力的影响,结合供气管道和阴极流场的气体反应机理,建立多输入多输出的空气供给系统动力学模型;The first step is to analyze the influence of the air compressor and back pressure valve in the air supply system on the intake flow rate and cathode gas pressure, and to establish a multi-input and multi-output air supply system dynamic model based on the gas reaction mechanism of the air supply pipeline and cathode flow field.
第二步,基于第一步中的空气供给系统动力学模型,围绕变负载工况下空压机参数不确定和不同环境条件下大气压强和温度引起的参数变化问题,定义待估计的不确定参数向量,设计参数估计自适应律;In the second step, based on the dynamic model of the air supply system in the first step, the uncertain parameter vector to be estimated is defined, and the parameter estimation adaptive law is designed around the parameter uncertainty of the air compressor under variable load conditions and the parameter variation caused by atmospheric pressure and temperature under different environmental conditions;
第三步,基于第二步中的参数估计自适应律,依据气体流量和气体压力的跟踪误差,选取关于背压阀开度的非线性函数和气体流量作为中间被控变量,设计相应的镇定函数;The third step is to select the nonlinear function of the back pressure valve opening and the gas flow rate as the intermediate controlled variables based on the parameter estimation adaptive law in the second step and the tracking error of the gas flow rate and the gas pressure, and design the corresponding stabilization function;
第四步,基于第三步中的镇定函数,根据虚拟控制变量跟踪误差,设计背压阀开度和空压机输入电压控制指令,完成基于反步法的氢燃料电池流量压力自适应协调控制。In the fourth step, based on the stabilization function in the third step and the tracking error of the virtual control variable, the back pressure valve opening and the air compressor input voltage control instructions are designed to complete the adaptive coordinated control of the hydrogen fuel cell flow and pressure based on the backstepping method.
本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述的一种氢燃料电池流量压力自适应协调控制方法的步骤。The present invention also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements the steps of the above-mentioned method for adaptively coordinating flow and pressure control of a hydrogen fuel cell when executing the program.
本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述的一种氢燃料电池流量压力自适应协调控制方法的步骤。The present invention also provides a non-transitory computer-readable storage medium having a computer program stored thereon, which, when executed by a processor, implements the steps of the above-mentioned hydrogen fuel cell flow pressure adaptive coordinated control method.
本发明与现有技术相比的有益效果在于:The beneficial effects of the present invention compared with the prior art are:
本发明针对复杂负载工况和环境条件变化造成的系统参数不确定问题,利用自适应技术实现具有初值先验信息的空气系统模型参数估计,基于反步法设计背压阀开度和空压机输入电压控制指令,实现了对高阶非线性、强耦合性空气系统的流量压力高精度跟踪控制,提升了系统的工作效率和稳定性,具有控制精度高、易于工程实现的特点,适用于复杂工况下质子交换膜燃料电池多变量耦合系统的跟踪控制。In order to solve the problem of system parameter uncertainty caused by complex load conditions and changes in environmental conditions, the present invention uses adaptive technology to estimate the air system model parameters with initial value prior information, and designs the backpressure valve opening and air compressor input voltage control instructions based on the backstepping method, thereby realizing high-precision tracking and control of the flow pressure of high-order nonlinear and strongly coupled air systems, improving the working efficiency and stability of the system. The present invention has the characteristics of high control accuracy and easy engineering implementation, and is suitable for tracking and control of multivariable coupled systems of proton exchange membrane fuel cells under complex conditions.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明的一种氢燃料电池流量压力自适应协调控制方法的流程图;FIG1 is a flow chart of a method for adaptively coordinating flow and pressure control of a hydrogen fuel cell according to the present invention;
图2为本发明的一种氢燃料电池流量压力自适应协调控制方法的空压机MAP图;FIG2 is an air compressor MAP diagram of a hydrogen fuel cell flow pressure adaptive coordinated control method of the present invention;
图3为本发明的一种氢燃料电池流量压力自适应协调控制方法的负载电流图;FIG3 is a load current diagram of a hydrogen fuel cell flow pressure adaptive coordinated control method of the present invention;
图4为本发明的一种氢燃料电池流量压力自适应协调控制方法的流量跟踪曲线图;FIG4 is a flow tracking curve diagram of a hydrogen fuel cell flow pressure adaptive coordinated control method of the present invention;
图5为本发明的一种氢燃料电池流量压力自适应协调控制方法的压力跟踪曲线图;FIG5 is a pressure tracking curve diagram of a hydrogen fuel cell flow pressure adaptive coordinated control method of the present invention;
图6为本发明的一种氢燃料电池流量压力自适应协调控制方法的歧管压力曲线图;FIG6 is a manifold pressure curve diagram of a hydrogen fuel cell flow pressure adaptive coordinated control method of the present invention;
图7为本发明的一种氢燃料电池流量压力自适应协调控制方法的空压机转速曲线图;FIG7 is a graph showing the air compressor speed of a hydrogen fuel cell flow pressure adaptive coordinated control method according to the present invention;
图8为本发明的一种氢燃料电池流量压力自适应协调控制方法的空压机输入电压曲线图;FIG8 is a graph showing an air compressor input voltage curve of a hydrogen fuel cell flow pressure adaptive coordinated control method of the present invention;
图9为本发明的一种氢燃料电池流量压力自适应协调控制方法的背压阀开度曲线图。FIG. 9 is a back pressure valve opening curve diagram of a hydrogen fuel cell flow pressure adaptive coordinated control method of the present invention.
具体实施方式Detailed ways
下面结合附图及实施例对本发明进行详细说明。The present invention is described in detail below with reference to the accompanying drawings and embodiments.
如图1所示,本发明的一种氢燃料电池流量压力自适应协调控制方法包括如下步骤:As shown in FIG1 , a hydrogen fuel cell flow pressure adaptive coordinated control method of the present invention comprises the following steps:
第一步,分析空气供给系统中空压机和背压阀对进气流量和阴极气体压力的影响,结合供气管道和阴极流场的气体反应机理,建立多输入多输出的空气供给系统动力学模型;The first step is to analyze the influence of the air compressor and back pressure valve in the air supply system on the intake flow rate and cathode gas pressure, and to establish a multi-input and multi-output air supply system dynamic model based on the gas reaction mechanism of the air supply pipeline and cathode flow field.
第二步,基于第一步中的空气供给系统动力学模型,围绕变负载工况下空压机参数不确定和不同环境条件下大气压强和温度引起的参数变化问题,定义待估计的不确定参数向量,设计参数估计自适应律;In the second step, based on the dynamic model of the air supply system in the first step, the uncertain parameter vector to be estimated is defined, and the parameter estimation adaptive law is designed around the parameter uncertainty of the air compressor under variable load conditions and the parameter variation caused by atmospheric pressure and temperature under different environmental conditions;
第三步,基于第二步中的参数估计自适应律,依据气体流量和气体压力的跟踪误差,选取关于背压阀开度的非线性函数和气体流量作为中间被控变量,设计相应的镇定函数;The third step is to select the nonlinear function of the back pressure valve opening and the gas flow rate as the intermediate controlled variables based on the parameter estimation adaptive law in the second step and the tracking error of the gas flow rate and the gas pressure, and design the corresponding stabilization function;
第四步,基于第三步中的镇定函数,根据虚拟控制变量跟踪误差,设计背压阀开度和空压机输入电压控制指令,完成基于反步法的氢燃料电池流量压力自适应协调控制。In the fourth step, based on the stabilization function in the third step and the tracking error of the virtual control variable, the back pressure valve opening and the air compressor input voltage control instructions are designed to complete the adaptive coordinated control of the hydrogen fuel cell flow and pressure based on the backstepping method.
具体地,所述第一步具体实现如下:Specifically, the first step is implemented as follows:
根据供气管道和阴极流场的气体反应机理,气体压力的变化可表示为:According to the gas reaction mechanism of the gas supply pipeline and the cathode flow field, the change of gas pressure can be expressed as:
, ,
其中,和/>为供气歧管气体压力和变化率,/>和/>为阴极流场气体压力和变化率,/>、/>分别为空气和氧气的理想气体常数,分别取值为286.9J/kg/K和259.8J/kg/K,/>为电堆温度,取值为348.1K,分别为空压机出口温度、电堆温度,分别为/>、/>分别为供气管道体积、阴极流场体积,分别取值为/>和/>,/>、/>、/>、/>、/>和/>分别表示空压机出口温度、空压机出口气体流量、歧管出口流量、阴极场入口流量、阴极场出口流量和电堆内氧气消耗量。in, and/> is the gas pressure and rate of change of the gas supply manifold,/> and/> is the cathode flow field gas pressure and change rate,/> 、/> are the ideal gas constants for air and oxygen, which are 286.9 J/kg/K and 259.8 J/kg/K respectively. is the stack temperature, which is 348.1K, and are the compressor outlet temperature and stack temperature, respectively. 、/> are the volume of the gas supply pipeline and the volume of the cathode flow field, respectively, and their values are / > and/> ,/> 、/> 、/> 、/> 、/> and/> They respectively represent the air compressor outlet temperature, air compressor outlet gas flow, manifold outlet flow, cathode field inlet flow, cathode field outlet flow and oxygen consumption in the fuel cell stack.
根据空气供给系统执行部件空压机和背压阀的流量特性,空压机出口气体流量和阴极出口气体流量表示为:According to the flow characteristics of the air compressor and back pressure valve, the air compressor outlet gas flow and cathode outlet gas flow are expressed as:
, ,
其中,为大气压强,取值为101325Pa,空压机出口气体流量/>可根据MAP图拟合为关于压比/>和空压机转速/>的多项式函数,拟合系数/>,,/>,/>,/>,/>,拟合结果如图2所示;阴极出口流量/>可表示为关于阴极场压力/>和背压阀开度/>的非线性函数,/>为理想气体常数,取值为8.314J/mol/K,/>为绝热指数,取值为1.4,/>、/>为阀门参数,分别取值为0.0248、/>。in, is the atmospheric pressure, which is 101325Pa, and the air compressor outlet gas flow rate/> According to the MAP diagram, it can be fitted into the pressure ratio / > and compressor speed/> Polynomial function of, fitting coefficients/> , ,/> ,/> ,/> ,/> , the fitting results are shown in Figure 2; cathode outlet flow /> It can be expressed as the cathode field pressure / > and back pressure valve opening/> A nonlinear function of is the ideal gas constant, which is 8.314 J/mol/K,/> is the adiabatic index, with a value of 1.4,/> 、/> are valve parameters, and their values are 0.0248, /> .
结合以上分析和空压机、背压阀的动力学特征,建立如下多输入多输出的空气供给系统动力学模型:Combining the above analysis with the dynamic characteristics of the air compressor and back pressure valve, the following multi-input and multi-output air supply system dynamic model is established:
, ,
其中,为状态量,分别表示/>,其中,/>初值/>取值为111460Pa,/>初值/>取值为151990Pa,/>为空压机角速度,初值/>取值为7000rad/s,/>为燃料电池负载电流,具体形式如图3所示,/>为空压机输入电压控制指令,为背压阀开度控制指令,/>,/>,/>,/>表示/>的导数,/>为系统模型参数,。in, are state quantities, respectively representing/> , where /> Initial value/> The value is 111460Pa,/> Initial value/> The value is 151990Pa,/> is the angular velocity of the air compressor, initial value/> The value is 7000rad/s,/> is the fuel cell load current, the specific form of which is shown in Figure 3, /> Input voltage control command for the air compressor. is the back pressure valve opening control instruction, /> ,/> ,/> ,/> Indicates/> The derivative of are system model parameters, .
定义气体流量和压力跟踪误差向量如下:Define gas flow and pressure tracking error vector as follows:
, ,
其中,为气体流量跟踪误差,/>为压力跟踪误差,/>为空压机出口气体流量期望值,/>为阴极流场气体压力期望值。in, is the gas flow tracking error,/> is the pressure tracking error, /> is the expected value of the air compressor outlet gas flow rate, /> is the expected value of the cathode flow field gas pressure.
具体地,所述第二步具体实现如下:Specifically, the second step is implemented as follows:
基于第一步中建立的多输入多输出空气供给系统动力学模型,围绕变负载工况下空压机参数不确定和不同环境条件下大气压强和温度变化问题,定义待估计的参数向量:Based on the dynamic model of the multi-input and multi-output air supply system established in the first step, the parameter vector to be estimated is defined around the uncertainty of air compressor parameters under variable load conditions and the changes in atmospheric pressure and temperature under different environmental conditions:
, ,
其中,为需要估计的不确定参数向量,中间参数/>,未知参数/>满足,上标T表示向量的转置;in, is the uncertain parameter vector to be estimated, the intermediate parameters/> , unknown parameters/> satisfy , the superscript T indicates the transpose of a vector;
依据李雅普诺夫稳定性分析,设计参数估计自适应律如下:According to Lyapunov stability analysis, the adaptive law of design parameter estimation is as follows:
, ,
其中,表示不确定参数向量/>的估计值/>的变化率,/>为参数自适应律初值,分别取值为/>,/>,/>,/>,/>,和/>为设计的正定对角矩阵,/>表示/>阶的单位矩阵,/>为过程变量,/>为正设计参数,取值为15,/>分别为气体流量和压力跟踪误差向量/>和虚拟控制变量跟踪误差向量/>的第k个元素,/>。具体地,/>为气体流量跟踪误差,/>为压力跟踪误差,/>,/>没有具体含义。in, Represents the uncertain parameter vector/> Estimated value of/> The rate of change, /> is the initial value of the parameter adaptive law, and its values are respectively/> ,/> ,/> ,/> ,/> , and/> is the designed positive definite diagonal matrix,/> Indicates/> The identity matrix of order, /> is the process variable, /> is a positive design parameter, with a value of 15,/> are respectively the gas flow and pressure tracking error vectors/> and virtual control variable tracking error vector/> The kth element of . Specifically, /> is the gas flow tracking error,/> is the pressure tracking error, /> ,/> No specific meaning.
具体地,所述第三步具体实现如下:Specifically, the third step is implemented as follows:
基于第二步中的参数估计自适应律,依据气体流量和压力的跟踪误差向量,选取关于背压阀开度的非线性项和气体流量作为中间被控变量/>,并设计相应的镇定函数:Based on the parameter estimation adaptive law in the second step, the tracking error vector of gas flow and pressure is , select the nonlinear term about the back pressure valve opening and the gas flow rate as the intermediate controlled variables/> , and design the corresponding stabilization function :
, ,
其中,表示不确定参数向量的估计值/>的第k个元素,/>为过程变量/>的第k个元素,k=1,2,/>为正设计参数,取值为0.001。in, Represents the estimated value of the uncertain parameter vector/> The kth element of For process variables/> The kth element of , k=1,2,/> It is a positive design parameter and its value is 0.001.
具体地,所述第四步具体实现如下:Specifically, the fourth step is implemented as follows:
基于第三步中的镇定函数,得到虚拟控制变量跟踪误差向量/>,设计背压阀开度控制指令/>和空压机输入电压控制指令/>为:Based on the stabilization function in the third step , get the virtual control variable tracking error vector/> , design back pressure valve opening control instruction/> And air compressor input voltage control command/> for:
, ,
其中,分别为中间被控变量/>的第k个元素,不确定参数向量的估计值/>的第k个元素,过程变量/>的第k个元素,k=1,2,/>为偏导符号,/>为设计参数。in, are the intermediate controlled variables/> The kth element of , the estimated value of the uncertain parameter vector/> The kth element of , process variable/> The kth element of , k=1,2,/> is the symbol of partial derivative, /> is the design parameter.
实施例:Example:
本实施例以100-kW水冷型燃料电池为例,系统模型参数如表1所示。考虑到海拔、大气湿度等外界环境影响,以及空气泄露、摩擦等故障工况会导致氢燃料电池系统参数发生未知变化,因此需要对未知不确定参数进行自适应估计,在自适应调节参数的基础上反步控制空压机输入电压和背压阀开度,进而实现空气路流量和压力的跟踪控制。This embodiment takes a 100-kW water-cooled fuel cell as an example, and the system model parameters are shown in Table 1. Considering the influence of external environment such as altitude and atmospheric humidity, as well as fault conditions such as air leakage and friction, which may cause unknown changes in hydrogen fuel cell system parameters, it is necessary to adaptively estimate the unknown and uncertain parameters, and back-step control the air compressor input voltage and back pressure valve opening on the basis of adaptive adjustment parameters, so as to achieve tracking control of air flow and pressure.
表1Table 1
, ,
具体步骤如下:Specific steps are as follows:
第一步,根据系统各部件工作机理分析,可以对燃料电池建立如下多输入多输出的空气供给系统动力学模型:In the first step, based on the working mechanism analysis of each component of the system, the following multi-input and multi-output air supply system dynamics model can be established for the fuel cell:
, ,
其中,系统模型参数,/>,/>,/>,,/>,/>,/>,/>,/>,/>,/>,具体参数意义和值见表1,/>为空压机出口气体流量,其曲线的拟合结果如图2所示,可以看出不同空压机转速下流量特性曲线与实验数据拟合结果较好。/>为状态量,分别表示,初值选取参见上文。/>为燃料电池负载电流,如图3所示。in, System model parameters, /> ,/> ,/> , ,/> ,/> ,/> ,/> ,/> ,/> ,/> , the specific parameter meanings and values are shown in Table 1,/> is the gas flow rate at the air compressor outlet, and the fitting result of the curve is shown in Figure 2. It can be seen that the flow characteristic curve under different air compressor speeds has a good fitting result with the experimental data. /> are state quantities, respectively representing , initial value selection see above. /> is the fuel cell load current, as shown in Figure 3.
第二步,基于第一步中建立的多输入多输出的空气供给系统动力学模型和负载电流,定义流量的参考值为空压机出口气体流量期望值,压力的参考值为阴极流场气体压力期望值/>:In the second step, based on the multi-input and multi-output air supply system dynamics model and load current established in the first step, the reference value of the flow rate is defined as the expected value of the air compressor outlet gas flow rate. The reference value of pressure is the expected value of cathode flow field gas pressure/> :
, ,
, ,
为了方便进行自适应估计,引入未知的中间参数满足/>,考虑到作为控制增益的中间参数/>为未知不确定参数,需要对增益的倒数进行估计,因此定义待估计的参数向量/>;In order to facilitate adaptive estimation, unknown intermediate parameters are introduced Satisfaction/> , considering as the intermediate parameter of control gain/> For unknown uncertain parameters, the inverse of the gain needs to be estimated, so the parameter vector to be estimated is defined as ;
针对模型参数不确定问题,进一步,定义待估计的参数向量方便后续控制器设计;To address the problem of model parameter uncertainty, we further define the parameter vector to be estimated: Facilitates subsequent controller design;
设计李雅普诺夫函数,根据李雅普诺夫稳定性分析,设计参数估计自适应律;Design of Lyapunov functions , based on Lyapunov stability analysis, the adaptive law for parameter estimation is designed;
第三步,基于第二步中的参数估计自适应律,依据气体流量和压力跟踪误差向量,选取关于背压阀开度的非线性项和气体流量作为中间被控变量/>,并设计相应的镇定函数/>。In the third step, based on the parameter estimation adaptive law in the second step, the error vector is tracked according to the gas flow and pressure. , select the nonlinear term about the back pressure valve opening and the gas flow rate as the intermediate controlled variables/> , and design the corresponding stabilization function/> .
第四步,基于第三步中的镇定函数,依据虚拟控制变量跟踪误差向量/>,设计背压阀开度控制指令/>和空压机输入电压控制指令/>。The fourth step is based on the stabilization function in the third step. , according to the virtual control variable tracking error vector/> , design back pressure valve opening control instruction/> And air compressor input voltage control command/> .
为验证所设计的控制方法有效性,选择图3所示的阶跃的负载电流,根据负载电流可确定流量和压力的参考值,根据所设计的控制方法可以计算出空压机输入电压和背压阀开度,通过观察空压机出口流量和阴极流场气体压力是否能够分别跟踪流量参考值和压力参考值完成本发明有效性的验证。In order to verify the effectiveness of the designed control method, the step load current shown in Figure 3 is selected. The reference values of flow and pressure can be determined according to the load current. The air compressor input voltage and back pressure valve opening can be calculated according to the designed control method. The effectiveness of the present invention is verified by observing whether the air compressor outlet flow and the cathode flow field gas pressure can track the flow reference value and the pressure reference value respectively.
在背压阀开度控制指令和空压机输入电压控制指令/>的驱动下,系统的流量跟踪曲线如图4所示,流量的跟踪误差为0.17%,初始时刻的调节时间为0.005s,超调为0.017%,可知实际控制的流量值和参考值是完全重合的,并且有较快的收敛时间。阴极压力跟踪曲线如图5所示,跟踪误差为0.29%,初始时刻的调节时间为0.013s,超调为0.49%,可知实际控制的压力值跟踪参考值的效果较好,在负载变化时具有较快的收敛时间和较小的超调量。进行相应控制后的歧管压力如图6所示,空压机转速如图7所示,空压机输入电压如图8所示,背压阀开度如图9所示。至此,完成氢燃料电池流量压力的自适应协调控制。In the back pressure valve opening control command And air compressor input voltage control command/> Driven by , the flow tracking curve of the system is shown in Figure 4. The flow tracking error is 0.17%, the adjustment time at the initial moment is 0.005s, and the overshoot is 0.017%. It can be seen that the actual controlled flow value and the reference value are completely overlapped, and there is a faster convergence time. The cathode pressure tracking curve is shown in Figure 5. The tracking error is 0.29%, the adjustment time at the initial moment is 0.013s, and the overshoot is 0.49%. It can be seen that the actual controlled pressure value tracks the reference value better, and has a faster convergence time and a smaller overshoot when the load changes. The manifold pressure after corresponding control is shown in Figure 6, the air compressor speed is shown in Figure 7, the air compressor input voltage is shown in Figure 8, and the back pressure valve opening is shown in Figure 9. At this point, the adaptive coordinated control of the flow pressure of the hydrogen fuel cell is completed.
本发明还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述的一种氢燃料电池流量压力自适应协调控制方法的步骤。The present invention also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein the processor implements the steps of the above-mentioned method for adaptively coordinating flow and pressure control of a hydrogen fuel cell when executing the program.
本发明还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述的一种氢燃料电池流量压力自适应协调控制方法的步骤。The present invention also provides a non-transitory computer-readable storage medium having a computer program stored thereon, which, when executed by a processor, implements the steps of the above-mentioned hydrogen fuel cell flow pressure adaptive coordinated control method.
本领域内的技术人员应明白,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。本发明实施例中的方案可以采用各种计算机语言实现,例如,面向对象的程序设计语言Java和直译式脚本语言JavaScript等。Those skilled in the art should understand that the present invention may be in the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes. The solutions in the embodiments of the present invention may be implemented in various computer languages, such as object-oriented programming language Java and interpreted scripting language JavaScript.
本发明是参照根据本发明实施例的方法和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to the flowchart and/or block diagram of the method and computer program product according to the embodiment of the present invention. It should be understood that each process and/or box in the flowchart and/or block diagram, as well as the combination of the processes and/or boxes in the flowchart and/or block diagram, can be implemented by computer program instructions. These computer program instructions can be provided to a processor of a general-purpose computer, a special-purpose computer, an embedded processor or other programmable data processing device to produce a machine, so that the instructions executed by the processor of the computer or other programmable data processing device produce a device for implementing the functions specified in one process or multiple processes in the flowchart and/or one box or multiple boxes in the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to operate in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。Although the preferred embodiments of the present invention have been described, those skilled in the art may make other changes and modifications to these embodiments once they have learned the basic creative concept. Therefore, the appended claims are intended to be interpreted as including the preferred embodiments and all changes and modifications that fall within the scope of the present invention.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present invention without departing from the spirit and scope of the present invention. Thus, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalents, the present invention is also intended to include these modifications and variations.
Claims (3)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410339955.3A CN117936848B (en) | 2024-03-25 | 2024-03-25 | Flow pressure self-adaptive coordination control method for hydrogen fuel cell |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410339955.3A CN117936848B (en) | 2024-03-25 | 2024-03-25 | Flow pressure self-adaptive coordination control method for hydrogen fuel cell |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN117936848A CN117936848A (en) | 2024-04-26 |
| CN117936848B true CN117936848B (en) | 2024-06-21 |
Family
ID=90768675
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202410339955.3A Active CN117936848B (en) | 2024-03-25 | 2024-03-25 | Flow pressure self-adaptive coordination control method for hydrogen fuel cell |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN117936848B (en) |
Families Citing this family (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN120453421B (en) * | 2025-05-07 | 2025-10-28 | 北京交通大学 | Multi-variable high-coupling oxyhydrogen double-loop coordination control method for hydrogen fuel cell |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115188999A (en) * | 2022-07-22 | 2022-10-14 | 吉林大学 | Control method of air supply loop of fuel cell system |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0719924B1 (en) * | 1994-12-30 | 2003-04-16 | Honda Giken Kogyo Kabushiki Kaisha | Fuel metering control system for internal combustion engine |
| DE10200058B4 (en) * | 2002-01-02 | 2019-05-29 | General Motors Llc ( N. D. Ges. D. Staates Delaware ) | Delivery system for supplying a gaseous fuel to a fuel stack, fuel cell system and method for supplying a gaseous fuel |
| US8889311B2 (en) * | 2012-10-25 | 2014-11-18 | GM Global Technology Operations LLC | Cathode pressure control utilizing a capacitance model |
| JP2016134348A (en) * | 2015-01-21 | 2016-07-25 | トヨタ自動車株式会社 | Fuel cell system |
| CN105680071B (en) * | 2016-03-16 | 2018-04-13 | 华中科技大学 | Based on fractional order sliding moding structure SOFC system thermoelectricity cooperative control methods |
| CN110350221B (en) * | 2019-06-26 | 2022-05-20 | 同济大学 | A closed-loop control method of fuel cell power based on internal model |
| CN113346108A (en) * | 2021-05-28 | 2021-09-03 | 黄冈格罗夫氢能汽车有限公司 | Fuel cell air system for power station and control method |
| CN113644301B (en) * | 2021-06-03 | 2022-07-01 | 吉林大学 | Cathode flow and pressure control method for vehicle fuel cell |
| CN115566235B (en) * | 2022-11-08 | 2024-01-26 | 海卓动力(北京)能源科技有限公司 | A fuel cell air compressor anti-surge control method, system, equipment and medium |
| CN116154237B (en) * | 2023-01-16 | 2025-08-29 | 海卓动力(北京)能源科技有限公司 | Adaptive control method, computer and medium for fuel cell flow and pressure |
| CN117393809A (en) * | 2023-11-01 | 2024-01-12 | 电子科技大学 | A joint control method of fuel cell cathode gas flow and pressure |
-
2024
- 2024-03-25 CN CN202410339955.3A patent/CN117936848B/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115188999A (en) * | 2022-07-22 | 2022-10-14 | 吉林大学 | Control method of air supply loop of fuel cell system |
Also Published As
| Publication number | Publication date |
|---|---|
| CN117936848A (en) | 2024-04-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Yang et al. | Modeling and control of PEMFC air supply system based on TS fuzzy theory and predictive control | |
| Han et al. | Adaptive control for robust air flow management in an automotive fuel cell system | |
| CN111403783B (en) | Decoupling control method for fuel cell air inlet system | |
| Wang et al. | Observer-based discrete adaptive neural network control for automotive PEMFC air-feed subsystem | |
| CN110501909B (en) | A fuzzy predictive control method with enhanced robustness based on disturbance observer | |
| Bougatef et al. | Fault detection of a PEMFC system based on delayed LPV observer | |
| Grujicic et al. | Control of the transient behaviour of polymer electrolyte membrane fuel cell systems | |
| Abbaker AM et al. | Adaptive integral type‐terminal sliding mode control for PEMFC air supply system using time delay estimation algorithm | |
| Fan et al. | Oxygen excess ratio control of PEM fuel cell based on self-adaptive fuzzy PID | |
| She et al. | Multiobjective control of PEM fuel cell system with improved durability | |
| CN117936848B (en) | Flow pressure self-adaptive coordination control method for hydrogen fuel cell | |
| CN111952646A (en) | A decoupling control method and system for a fuel cell air system | |
| Kim et al. | Approximation-based adaptive control of constrained uncertain thermal management systems with nonlinear coolant circuit dynamics of PEMFCs | |
| CN116779920A (en) | ADRC-based fuel cell air supply active disturbance rejection control method and system | |
| CN112436166A (en) | Sliding mode control method of air supply system of proton exchange membrane fuel cell | |
| Sadamoto et al. | Fast real-time reinforcement learning for partially-observable large-scale systems | |
| CN111403779B (en) | Model reference self-adaptive control method applied to fuel cell thermal management system | |
| CN114068998B (en) | Optimal control method for solid oxide fuel cell power generation system | |
| Tian et al. | Novel hybrid control scheme of a proton exchange membrane fuel cell air supply system | |
| Li et al. | Neural network based model predictive control of voltage for a polymer electrolyte fuel cell system with constraints | |
| Li et al. | Observer-based control of PEMFC air feed systems via high-order fully actuated system approaches | |
| Afsharinejad et al. | Optimal gain‐scheduling control of proton exchange membrane fuel cell: An LMI approach | |
| Damour et al. | On‐line PEMFC control using parameterized nonlinear model‐based predictive control | |
| Bacher-Chong et al. | Efficiency-aware and constraint-aware control of PEMFC air-path using a reference governor and MIMO internal model controller | |
| CN117154150A (en) | An adaptive dynamic surface control method for hydrogen fuel cell air supply system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |