[go: up one dir, main page]

CN117592450A - Panoramic archive generation method and system based on employee information integration - Google Patents

Panoramic archive generation method and system based on employee information integration Download PDF

Info

Publication number
CN117592450A
CN117592450A CN202311345854.9A CN202311345854A CN117592450A CN 117592450 A CN117592450 A CN 117592450A CN 202311345854 A CN202311345854 A CN 202311345854A CN 117592450 A CN117592450 A CN 117592450A
Authority
CN
China
Prior art keywords
category
data
information
panoramic
employee
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202311345854.9A
Other languages
Chinese (zh)
Inventor
冯天健
周明
张靖
马永
薛晓茹
徐道磊
唐轶轩
周婕
张子健
张迪
郑皓文
时雨农
查伟伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Information and Telecommunication Branch of State Grid Anhui Electric Power Co Ltd
Original Assignee
Information and Telecommunication Branch of State Grid Anhui Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Information and Telecommunication Branch of State Grid Anhui Electric Power Co Ltd filed Critical Information and Telecommunication Branch of State Grid Anhui Electric Power Co Ltd
Priority to CN202311345854.9A priority Critical patent/CN117592450A/en
Publication of CN117592450A publication Critical patent/CN117592450A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/10Text processing
    • G06F40/166Editing, e.g. inserting or deleting
    • G06F40/186Templates
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/31Indexing; Data structures therefor; Storage structures
    • G06F16/316Indexing structures
    • G06F16/322Trees
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/33Querying
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/30Information retrieval; Database structures therefor; File system structures therefor of unstructured textual data
    • G06F16/35Clustering; Classification
    • G06F16/353Clustering; Classification into predefined classes
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • G06F18/2415Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
    • G06F18/24155Bayesian classification
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/10Text processing
    • G06F40/12Use of codes for handling textual entities
    • G06F40/14Tree-structured documents
    • G06F40/143Markup, e.g. Standard Generalized Markup Language [SGML] or Document Type Definition [DTD]
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/10Text processing
    • G06F40/12Use of codes for handling textual entities
    • G06F40/151Transformation
    • G06F40/154Tree transformation for tree-structured or markup documents, e.g. XSLT, XSL-FO or stylesheets
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/105Human resources

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • Business, Economics & Management (AREA)
  • Computational Linguistics (AREA)
  • Human Resources & Organizations (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

The invention belongs to the field of human resource management, and provides a panoramic archive generation method and a system based on employee information integration, wherein the method comprises the steps of receiving a data packet imported by an internal and external data source of an enterprise, and analyzing the data packet to obtain employee information resource text; establishing an employee information classification model, traversing the content of the input employee information resource text by text, identifying and classifying employee information data based on a keyword database of a file information list, determining the file category of the employee, and generating a file information item architecture tree corresponding to the file information list; loading a pre-configuration module database, screening corresponding templates based on file categories and file information item architecture trees, writing in according to a format, and automatically generating a panoramic file. The invention provides a more comprehensive and high-quality employee profile by automating and integrating employee information.

Description

基于员工信息整合的全景档案生成方法及系统Panoramic file generation method and system based on employee information integration

技术领域Technical field

本发明涉及人力资源管理领域,尤其涉及一种基于员工信息整合的全景档案生成方法及系统。The invention relates to the field of human resource management, and in particular to a method and system for generating panoramic files based on employee information integration.

背景技术Background technique

在企业管理中,维护准确且及时的员工信息至关重要,以支持各种人力资源和薪资管理活动。随着技术的发展,出现了一些传统的员工信息管理方法和系统,然而,这些方法和系统通常存在一些局限性,包括以下问题:In business management, maintaining accurate and timely employee information is critical to support various human resources and payroll management activities. With the development of technology, some traditional employee information management methods and systems have emerged. However, these methods and systems usually have some limitations, including the following problems:

1.信息分散:传统企业使用人力资源信息系统(HRIS)或类似的系统来管理员工信息,这些系统通常包含基本的员工信息,如姓名、联系方式、工作经验、培训记录和绩效数据。然而,这些信息通常分散在不同的部门和数据库中,难以全面整合和访问,导致信息的分散和不一致,难以维护。1. Information dispersion: Traditional enterprises use human resource information systems (HRIS) or similar systems to manage employee information. These systems usually contain basic employee information, such as name, contact information, work experience, training records and performance data. However, this information is usually scattered in different departments and databases, making it difficult to fully integrate and access it, resulting in information dispersion and inconsistency that is difficult to maintain.

2.时效性低:传统员工信息管理方法通常依赖于手工维护,导致信息的时效性低,员工信息可能发生变化,但不及时更新,从而影响人力资源决策的准确性。2. Low timeliness: Traditional employee information management methods usually rely on manual maintenance, resulting in low timeliness of information. Employee information may change but is not updated in a timely manner, thus affecting the accuracy of human resources decision-making.

3.数据质量问题:由于数据收集和维护过程中,员工信息来自多个来源,包括内部数据库、外部招聘网站、员工手册、在线表单等。这些信息以不同的格式存在,包括文本、电子表格和数据库记录,存在数据来源多样性问题,员工信息通常分散在不同的数据库和系统中,不同部门可能使用不同的软件和工具来管理员工信息,存在数据分散性问题,两者导致的数据质量问题也是一个常见挑战。3. Data quality issues: Due to the data collection and maintenance process, employee information comes from multiple sources, including internal databases, external recruitment websites, employee handbooks, online forms, etc. This information exists in different formats, including text, spreadsheets and database records. There is a problem of diversity of data sources. Employee information is usually scattered in different databases and systems. Different departments may use different software and tools to manage employee information. There is the problem of data dispersion, and data quality issues caused by both are also a common challenge.

4.手动整合和访问问题:传统员工信息管理通常涉及手动整合和数据访问。员工信息通常需要从多个来源手动整合,并且访问员工信息可能需要长时间的搜索和数据整理,缺乏多角度查询,难以从不同角度查看员工信息,如薪资历史、培训记录、绩效评估等。4. Manual integration and access issues: Traditional employee information management often involves manual integration and data access. Employee information usually needs to be manually integrated from multiple sources, and accessing employee information may require a long time of searching and data sorting. There is a lack of multi-angle query and it is difficult to view employee information from different angles, such as salary history, training records, performance evaluation, etc.

5.难以支持多场景应用:传统员工信息管理系统通常无法有效支持多场景应用,如薪资调整、人才申报等,需要多次导出和处理数据。5. Difficulty supporting multi-scenario applications: Traditional employee information management systems usually cannot effectively support multi-scenario applications, such as salary adjustment, talent declaration, etc., and require multiple exports and processing of data.

因此,现有技术往往是基于单一用途的员工信息系统,难以满足多样化的企业需求,无法解决数据分散、手动处理、数据不一致性和难以访问的囊,而忽视了信息整合和多角度查询的需求。基于上述问题,需要一种全方位、多角度的员工信息管理方法和系统,以全景档案的方法应对现代企业管理中的挑战,提高员工信息管理的效率和准确性。Therefore, existing technologies are often based on single-purpose employee information systems, which are difficult to meet the diverse needs of enterprises and cannot solve the problem of data dispersion, manual processing, data inconsistency and inaccessibility, while ignoring the integration of information and multi-angle query. need. Based on the above problems, an all-round and multi-angle employee information management method and system is needed to respond to the challenges in modern enterprise management with a panoramic archive method and improve the efficiency and accuracy of employee information management.

发明内容Contents of the invention

本发明实施例的目的在于提供一种基于员工信息整合的全景档案生成方法及系统,通过自动化和整合员工信息,提供更全面、高质量的员工档案,并解决了传统员工信息管理中的多种问题,为企业提供了更好的数据访问、信息整合和合规性,有助于提高管理效率和决策质量。The purpose of the embodiments of the present invention is to provide a panoramic file generation method and system based on employee information integration, to provide more comprehensive and high-quality employee files through automation and integration of employee information, and to solve various problems in traditional employee information management. problem, providing enterprises with better data access, information integration and compliance, helping to improve management efficiency and decision-making quality.

为实现上述目的,本发明实施例提供了如下的技术方案。To achieve the above objects, embodiments of the present invention provide the following technical solutions.

第一方面,本发明提供了一种基于员工信息整合的全景档案生成方法,包括以下步骤:In the first aspect, the present invention provides a panoramic profile generation method based on employee information integration, which includes the following steps:

接收企业内外部数据源导入的数据包,解析所述数据包获取员工信息资源文本;Receive data packets imported from internal and external data sources within the enterprise, and parse the data packets to obtain employee information resource text;

建立员工信息分类模型,逐文本遍历输入的所述员工信息资源文本的内容,基于档案信息列表的关键词数据库对员工信息数据进行识别和分类,确定员工的档案类别,并生成对应档案信息列表的档案信息项架构树;Establish an employee information classification model, traverse the content of the input employee information resource text text by text, identify and classify employee information data based on the keyword database of the file information list, determine the employee's file category, and generate a corresponding file information list File information item structure tree;

加载预配置模块数据库,基于档案类别和档案信息项架构树,筛选对应的模板并按照格式进行写入,自动生成全景档案。Load the preconfigured module database, filter the corresponding templates based on the file category and file information item architecture tree, and write them according to the format to automatically generate panoramic files.

作为本发明的进一步方案,所述基于员工信息整合的全景档案生成方法,还包括全景档案的调用;所述全景档案的调用包括以下步骤:As a further solution of the present invention, the panoramic file generation method based on employee information integration also includes the invocation of the panoramic file; the invocation of the panoramic file includes the following steps:

获取用户端输入的档案调取请求,所述档案调取请求包括员工唯一标识符及调取要求的特定项目信息;Obtain the file retrieval request input by the user, and the file retrieval request includes the employee's unique identifier and the specific project information required for retrieval;

根据员工唯一标识符,从全景档案资源数据库中检索相应员工的全景档案数据,并按照所述调取要求进行筛选和整理;According to the employee's unique identifier, retrieve the corresponding employee's panoramic file data from the panoramic file resource database, and filter and organize it according to the retrieval requirements;

对所筛选的全景档案数据,识别其中与调取要求相关的关键词数据,包括但不限于日期、项目名称;For the screened panoramic archive data, identify the keyword data related to the retrieval requirements, including but not limited to date and project name;

基于关键词数据,筛选出符合调取要求的全景档案资源数据,并生成相应的全景档案文本;Based on the keyword data, screen out the panoramic archive resource data that meets the retrieval requirements, and generate the corresponding panoramic archive text;

将生成的员工全景档案文本导出,以便用户进行查阅或进一步处理。Export the generated employee panoramic file text for users to review or further process.

作为本发明的进一步方案,解析所述数据包获取员工信息资源文本时,包括:识别数据包中包含的文本文件、表格文件或者数据库文件的格式;基于加载的文本解析器、表格处理库和数据库连接工具对数据包进行解析,提取员工信息数据并转化为结构化的文本形式;其中,提取的员工信息数据包括个人基本信息、工作经历以及教育背景,转化为结构化的文本形式采用XML或JSON格式。As a further solution of the present invention, when parsing the data package to obtain the employee information resource text, it includes: identifying the format of the text file, table file or database file contained in the data package; based on the loaded text parser, table processing library and database The connection tool parses the data package, extracts employee information data and converts it into a structured text form; the extracted employee information data includes basic personal information, work experience and educational background, and converts it into a structured text form using XML or JSON. Format.

作为本发明的进一步方案,建立员工信息分类模型,包括以下步骤:As a further solution of the present invention, establishing an employee information classification model includes the following steps:

步骤1.数据采集和处理:Step 1. Data collection and processing:

采集员工信息数据,去除重复项和缺失值后转换为标准化数据格式的文档数据,标识文档类别标签,并作为样本数据;其中,所述员工信息数据包括个人信息、工作经验、教育背景,来自内部企业数据库、外部数据源或用户提供的信息;Collect employee information data, remove duplicates and missing values, convert it into document data in a standardized data format, identify document category labels, and use it as sample data; where the employee information data includes personal information, work experience, educational background, and comes from internal Enterprise databases, external data sources or user-provided information;

步骤2.关键词和短语识别:Step 2. Keyword and phrase identification:

基于建立的关键词和短语数据库,利用自然语言处理(NLP)技术自动识别和提取文档数据中的关键词和短语;Based on the established keyword and phrase database, use natural language processing (NLP) technology to automatically identify and extract keywords and phrases in document data;

步骤3.数据集划分:Step 3. Dataset partitioning:

将文档数据转换为计算机处理的特征向量表示的数据集,并划分数据集为训练集和测试集;Convert document data into a data set represented by computer-processed feature vectors, and divide the data set into a training set and a test set;

步骤4.模型训练与测试:Step 4. Model training and testing:

使用朴素贝叶斯算法构建分类模型,并使用训练集数据对分类模型进行训练,学习将文档数据分配到不同的档案类别中;使用测试集测试模型的召回率,根据性能评估结果,对模型进行参数调整;Use the Naive Bayes algorithm to build a classification model, and use the training set data to train the classification model and learn to assign document data to different archive categories; use the test set to test the recall rate of the model, and evaluate the model based on the performance evaluation results. Parameter adjustment;

步骤5.生成档案信息项架构树:Step 5. Generate the file information item architecture tree:

使用训练好的分类模型,对员工信息文本进行分类,确定每个文本的档案类别;基于分类结果,生成每个档案类别的信息项架构树,其中,包括不同信息项:个人信息、工作经验、教育背景;Use the trained classification model to classify employee information texts and determine the profile category of each text; based on the classification results, generate an information item architecture tree for each profile category, including different information items: personal information, work experience, Education background;

步骤6.部署模型:Step 6. Deploy the model:

部署训练好的模型到全景档案生成系统中,用于员工信息自动分类。Deploy the trained model to the panoramic file generation system for automatic classification of employee information.

作为本发明的进一步方案,使用朴素贝叶斯算法构建分类模型时,还包括计算类别先验概率,步骤如下:As a further solution of the present invention, when using the naive Bayes algorithm to build a classification model, it also includes calculating the category prior probability. The steps are as follows:

准备包含已分类文档的训练数据集,所述训练数据集包括文档数据和文档数据对应的类别标签;Prepare a training data set containing classified documents, where the training data set includes document data and category labels corresponding to the document data;

对训练数据集进行统计,计算每个类别下的文档数量,得到每个类别的文档频数;Make statistics on the training data set, calculate the number of documents under each category, and obtain the frequency of documents in each category;

计算训练数据集中的总文档数量,并通过公式计算类别的先验概率:Calculate the total number of documents in the training dataset and calculate the prior probability of the category by the formula:

P(C)=N/N_totalP(C)=N/N_total

其中,P(C)是类别C的先验概率;N是属于类别C的文档数量;N_total是总文档数量;Among them, P(C) is the prior probability of category C; N is the number of documents belonging to category C; N_total is the total number of documents;

得到的每个类别的先验概率,用于预测新文档的类别。The obtained prior probability of each category is used to predict the category of new documents.

作为本发明的进一步方案,根据得到的每个类别的先验概率预测新文档的类别时,还包括计算特征条件概率(P(x|C)),即在给定类别C的情况下,观察到特征x的概率,步骤如下:As a further solution of the present invention, when predicting the category of a new document based on the obtained prior probability of each category, it also includes calculating the feature conditional probability (P(x|C)), that is, given the category C, observe To obtain the probability of feature x, the steps are as follows:

根据已分类文档的训练数据集,对训练数据集中的文档进行统计,计算每个类别下每个特征的出现次数;其中,所述训练数据集包括文档数据、文档数据对应的类别标签和文档中出现的特征;According to the training data set of classified documents, the documents in the training data set are counted, and the number of occurrences of each feature under each category is calculated; wherein the training data set includes document data, category labels corresponding to the document data, and the number of occurrences of each feature in the document. Characteristics that emerge;

在给定类别C的情况下,特征x的频数;若文档数据有M个不同的特征,则表示为:N(x,C),在类别C下特征x的频数,为每个类别和每个特征生成一个频数;In the case of a given category C, the frequency of feature x; if the document data has M different features, it is expressed as: N(x, C), the frequency of feature x under category C is for each category and each Each feature generates a frequency;

计算特征x在每个类别C中的相对频率P(x|C),得到每个类别下每个特征的条件概率:Calculate the relative frequency P(x|C) of feature x in each category C, and obtain the conditional probability of each feature under each category:

P(x|C)=N(x,C)/N(C)P(x|C)=N(x,C)/N(C)

其中,P(x|C)是在类别C下特征x的条件概率;N(x,C)是在类别C下特征x的频数;N(C)是类别C下的文档总数。Among them, P(x|C) is the conditional probability of feature x under category C; N(x,C) is the frequency of feature x under category C; N(C) is the total number of documents under category C.

作为本发明的进一步方案,使用朴素贝叶斯分类模型,预测新文档的类别时,包括以下步骤:As a further solution of the present invention, when using the Naive Bayes classification model to predict the category of a new document, the following steps are included:

准备训练好的朴素贝叶斯分类模型,包括从训练数据中计算得出的类别的先验概率(P(C))和特征的条件概率(P(x|C));Prepare the trained Naive Bayes classification model, including the prior probability of the category (P(C)) and the conditional probability of the feature (P(x|C)) calculated from the training data;

准备新文档,对新文档进行与训练数据相同的文本预处理,并将新文档转化为特征向量;Prepare new documents, perform the same text preprocessing on the new documents as the training data, and convert the new documents into feature vectors;

对于每个类别C,使用贝叶斯定理计算后验概率P(C|X),其中X表示新文档的特征向量:For each category C, use Bayes’ theorem to calculate the posterior probability P(C|X), where X represents the feature vector of the new document:

P(C|X)=P(X|C)*P(C)/P(X)P(C|X)=P(X|C)*P(C)/P(X)

其中,P(C|X)是在给定特征X的情况下类别C的后验概率;P(X|C)是在类别C下特征X的条件概率,从训练数据中获取;P(C)是类别C的先验概率,从训练数据中获取;P(X)是特征X的边际概率,通过对各类别的后验概率求和来计算,在分类中,P(X)对每个类别是相同的;Among them, P(C|X) is the posterior probability of category C given feature X; P(X|C) is the conditional probability of feature X under category C, obtained from the training data; P(C ) is the prior probability of category C, obtained from the training data; P(X) is the marginal probability of feature X, calculated by summing the posterior probabilities of each category. In classification, P(X) is for each The categories are the same;

计算每个类别的后验概率后,选择具有最高后验概率的类别作为新文档的预测类别;即:After calculating the posterior probability for each category, the category with the highest posterior probability is selected as the predicted category for the new document; that is:

预测类别=argmax P(C|X)。Prediction category=argmax P(C|X).

作为本发明的进一步方案,所述生成对应档案信息列表的档案信息项架构树,包括:As a further solution of the present invention, the generation of the archive information item architecture tree corresponding to the archive information list includes:

定义员工信息整合的档案信息列表,包含员工信息整合的信息项;Define the file information list for employee information integration, including information items for employee information integration;

将档案信息列表中的各个信息项进行层级结构化,以创建档案信息项架构树,并为信息项架构树中的每个信息项分配唯一的树结构标签,建立信息项架构树。Each information item in the archive information list is hierarchically structured to create an archive information item architecture tree, and a unique tree structure label is assigned to each information item in the information item architecture tree to establish an information item architecture tree.

作为本发明的进一步方案,全景档案生成时,员工信息按照信息项架构树中的相应信息项映射,并存储在全景档案资源数据库中,创建完整的全景档案,以供用户端使用员工唯一标识符及调取要求的特定项目信息查询和检索相应员工的全景档案数据。As a further solution of the present invention, when the panoramic archive is generated, the employee information is mapped according to the corresponding information items in the information item architecture tree and stored in the panoramic archive resource database to create a complete panoramic archive for the user to use the employee's unique identifier. And retrieve the required specific project information to query and retrieve the corresponding employee's panoramic file data.

第二方面,本发明还提供了一种基于员工信息整合的全景档案生成系统,包括:In a second aspect, the present invention also provides a panoramic file generation system based on employee information integration, including:

数据导入模块:用于接收来自企业内外部数据源的数据包,解析这些数据包以获取员工信息资源文本;Data import module: used to receive data packages from internal and external data sources within the enterprise, and parse these data packages to obtain employee information resource text;

员工信息分类模型:用于自动识别和分类员工信息数据,并确定员工的档案类别;根据档案信息列表定义的信息项生成档案信息项架构树;Employee information classification model: used to automatically identify and classify employee information data, and determine the employee's profile category; generate a profile information item architecture tree based on the information items defined in the profile information list;

预配置模块数据库:包含预定义的模板和格式,根据档案类别和档案信息项架构树,筛选并自动生成全景档案。Preconfigured module database: Contains predefined templates and formats, filters and automatically generates panoramic archives based on archive categories and archive information item architecture trees.

全景档案资源数据库:用于存储生成的全景档案数据;其中,员工信息按照信息项架构树的结构进行存储;Panoramic archive resource database: used to store the generated panoramic archive data; employee information is stored according to the structure of the information item architecture tree;

全景档案调用模块:允许用户端根据员工唯一标识符以及调取要求的特定项目信息,检索和整理全景档案数据,并生成符合调取要求的全景档案文本,并允许用户查阅。Panoramic file call module: allows the user to retrieve and organize panoramic file data based on the employee's unique identifier and the specific project information required for retrieval, and generate panoramic file text that meets the retrieval requirements, and allows users to review it.

作为本发明的进一步方案,所述基于员工信息整合的全景档案生成系统还包括文本解析器、表格处理库和数据库连接工具;所述文本解析器、表格处理库和数据库连接工具分别用于解析导入的数据包中包含的文本文件、表格文件或数据库文件的格式,将员工信息数据提取并转化为结构化的文本形式。As a further solution of the present invention, the panoramic file generation system based on employee information integration also includes a text parser, a table processing library and a database connection tool; the text parser, table processing library and database connection tool are respectively used for parsing and importing The format of text files, table files or database files contained in the data package is used to extract and convert employee information data into structured text form.

作为本发明的进一步方案,所述基于员工信息整合的全景档案生成系统还包括朴素贝叶斯分类模型,用于员工信息的自动分类,利用已分类文档的训练数据集,计算类别的先验概率和特征的条件概率,便于预测新文档的类别。As a further solution of the present invention, the panoramic profile generation system based on employee information integration also includes a naive Bayes classification model for automatic classification of employee information, using the training data set of classified documents to calculate the prior probability of the category and conditional probabilities of features to facilitate predicting the category of new documents.

第三方面,在本发明提供的又一个实施例中,提供了一种基于员工信息整合的全景档案生成设备,包括:处理器、存储器、通信接口和通信总线,所述处理器、所述存储器和所述通信接口通过所述通信总线完成相互间的通信;所述存储器用于存放至少一可执行指令,所述可执行指令使所述处理器执行如上述第一方面所述的基于员工信息整合的全景档案生成方法对应的操作。In the third aspect, in yet another embodiment of the present invention, a panoramic profile generating device based on employee information integration is provided, including: a processor, a memory, a communication interface and a communication bus. The processor, the memory and the communication interface complete mutual communication through the communication bus; the memory is used to store at least one executable instruction, and the executable instruction causes the processor to execute the employee information-based method as described in the first aspect. Operations corresponding to the integrated panoramic archive generation method.

第四方面,在本发明提供的再一个实施例中,提供了一种存储介质,所述存储介质中存储有至少一可执行指令,所述可执行指令使处理器执行如上述第一方面所述的基于员工信息整合的全景档案生成方法对应的操作。In a fourth aspect, in yet another embodiment of the present invention, a storage medium is provided, and at least one executable instruction is stored in the storage medium, and the executable instruction causes the processor to execute as described in the first aspect. The operations corresponding to the above-mentioned panoramic file generation method based on employee information integration.

与现有技术相比,本发明实施例提供的基于员工信息整合的全景档案生成方法及系统,具有以下有益效果:Compared with the existing technology, the panoramic profile generation method and system based on employee information integration provided by embodiments of the present invention have the following beneficial effects:

1.自动化信息整合:本发明的基于员工信息整合的全景档案生成方法和系统能够自动解析并整合来自不同数据源的员工信息,无需手动干预,极大地提高了信息整合的效率,减少了人工处理的时间和劳动成本。1. Automated information integration: The panoramic file generation method and system based on employee information integration of the present invention can automatically parse and integrate employee information from different data sources without manual intervention, greatly improving the efficiency of information integration and reducing manual processing. time and labor costs.

2.数据准确性:通过自动分类和结构化员工信息,本发明的基于员工信息整合的全景档案生成方法和系统有助于减少数据输入错误和信息不一致性,生成的全景档案保持高质量和准确性。2. Data accuracy: By automatically classifying and structuring employee information, the panoramic profile generation method and system based on employee information integration of the present invention helps reduce data input errors and information inconsistencies, and the generated panoramic profiles maintain high quality and accuracy sex.

3.信息追溯性:本生成的全景档案允许用户轻松追溯员工信息的历史记录和更改,这对于审计和合规性方面非常重要;允许企业根据其特定需求定义档案信息列表和信息项架构树,使其高度可定制,使得系统适应不同组织的要求,而不是强制性地规范信息。3. Information traceability: This generated panoramic archive allows users to easily trace the history and changes of employee information, which is very important for auditing and compliance; it allows enterprises to define archive information lists and information item architecture trees according to their specific needs, Making it highly customizable allows the system to adapt to the requirements of different organizations, rather than mandatory specification of information.

4.快速数据检索:系统中的全景档案调用功能允许用户根据员工唯一标识符和特定项目信息轻松查找和检索员工信息,提高了数据访问和检索的速度和效率。4. Fast data retrieval: The panoramic file calling function in the system allows users to easily find and retrieve employee information based on employee unique identifiers and specific project information, improving the speed and efficiency of data access and retrieval.

5.全景视图:生成的全景档案提供了对员工信息的全面视图,包括个人信息、工作经验、教育背景等,使管理者能够更好地了解员工,作出更明智的决策,全景档案中的信息有助于企业做出更明智的业务决策,如招聘、绩效评估、员工培训等。5. Panoramic view: The generated panoramic profile provides a comprehensive view of employee information, including personal information, work experience, educational background, etc., allowing managers to better understand employees and make more informed decisions. The information in the panoramic profile Helps enterprises make more informed business decisions, such as recruitment, performance evaluation, employee training, etc.

综上所述,本发明的基于员工信息整合的全景档案生成方法及系统改善了员工信息管理的效率和质量,促进了信息的一致性、可追溯性和安全性,为企业提供了更好的数据访问和决策支持工具。In summary, the panoramic file generation method and system based on employee information integration of the present invention improve the efficiency and quality of employee information management, promote the consistency, traceability and security of information, and provide enterprises with better Data access and decision support tools.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings needed to be used in the description of the embodiments or prior art will be briefly introduced below. Obviously, the drawings in the following description are only illustrative of the present invention. Some examples.

图1示出了本发明提供的一种基于员工信息整合的全景档案生成方法的流程图;Figure 1 shows a flow chart of a panoramic profile generation method based on employee information integration provided by the present invention;

图2示出了本发明实施例提供的一种基于员工信息整合的全景档案生成方法中全景档案调用的实现流程图;Figure 2 shows the implementation flow chart of panoramic file calling in a panoramic file generation method based on employee information integration provided by an embodiment of the present invention;

图3示出了本发明实施例提供的一种基于员工信息整合的全景档案生成系统的系统架构图。Figure 3 shows a system architecture diagram of a panoramic profile generation system based on employee information integration provided by an embodiment of the present invention.

具体实施方式Detailed ways

以下描述和附图充分地示出本文的具体实施方案,以使本领域的技术人员能够实践它们。一些实施方案的部分和特征可以被包括在或替换其他实施方案的部分和特征。本文的实施方案的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。The following description and drawings illustrate specific embodiments herein sufficiently to enable those skilled in the art to practice them. Portions and features of some embodiments may be included in or substituted for those of other embodiments. The scope of the embodiments herein includes the full scope of the claims, and all available equivalents of the claims.

本文中,术语“第一”、“第二”等仅被用来将一个元素与另一个元素区分开来,而不要求或者暗示这些元素之间存在任何实际的关系或者顺序。实际上第一元素也能够被称为第二元素,反之亦然。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的结构、系统或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种结构、系统或者设备所固有的要素。As used herein, the terms "first", "second", etc. are used only to distinguish one element from another element and do not require or imply any actual relationship or order between these elements. In fact a first element can also be called a second element and vice versa. Furthermore, the terms "comprises," "comprises," or any other variation thereof are intended to cover a non-exclusive inclusion, such that a structure, system or apparatus including a list of elements includes not only those elements, but also others not expressly listed elements, or also elements inherent to the structure, system or equipment.

为传统员工信息管理中的多种问题,为企业提供了更好的数据访问、信息整合和合规性的管理方案,本发明提供的一种基于员工信息整合的全景档案生成方法及系统,通过自动化和整合员工信息,提供更全面、高质量的员工档案。To solve various problems in traditional employee information management and provide enterprises with better data access, information integration and compliance management solutions, the present invention provides a panoramic file generation method and system based on employee information integration. Automate and consolidate employee information to provide more comprehensive, high-quality employee profiles.

参见图1所示,本发明的实施例提供了一种基于员工信息整合的全景档案生成方法,包括以下步骤:As shown in Figure 1, an embodiment of the present invention provides a panoramic profile generation method based on employee information integration, which includes the following steps:

步骤S10、接收企业内外部数据源导入的数据包,解析所述数据包获取员工信息资源文本;Step S10: Receive data packets imported from internal and external data sources of the enterprise, and parse the data packets to obtain employee information resource text;

其中,解析所述数据包获取员工信息资源文本时,包括:识别数据包中包含的文本文件、表格文件或者数据库文件的格式;基于加载的文本解析器、表格处理库和数据库连接工具对数据包进行解析,提取员工信息数据并转化为结构化的文本形式;其中,提取的员工信息数据包括个人基本信息、工作经历以及教育背景,转化为结构化的文本形式采用XML或JSON格式。Among them, when parsing the data package to obtain the employee information resource text, it includes: identifying the format of the text file, table file or database file contained in the data package; analyzing the data package based on the loaded text parser, table processing library and database connection tool Analyze, extract employee information data and convert it into a structured text form; the extracted employee information data includes basic personal information, work experience and educational background, and convert it into a structured text form using XML or JSON format.

步骤S20、建立员工信息分类模型,逐文本遍历输入的所述员工信息资源文本的内容,基于档案信息列表的关键词数据库对员工信息数据进行识别和分类,确定员工的档案类别,并生成对应档案信息列表的档案信息项架构树;Step S20: Establish an employee information classification model, traverse the content of the input employee information resource text text by text, identify and classify employee information data based on the keyword database of the file information list, determine the employee's file category, and generate a corresponding file The file information item architecture tree of the information list;

步骤S30、加载预配置模块数据库,基于档案类别和档案信息项架构树,筛选对应的模板并按照格式进行写入,自动生成全景档案。Step S30: Load the preconfigured module database, filter the corresponding template based on the file category and the file information item architecture tree and write it according to the format, and automatically generate the panoramic file.

在本实施例的步骤S10中,系统接收来自企业内外部数据源导入的数据包,数据包可以包括各种文件格式,如文本文件、表格文件或者数据库文件。数据包中包含了员工信息资源文本。采用文本解析器、表格处理库和数据库连接工具,对数据包进行解析。这个过程可以识别不同文件格式,然后提取员工信息数据,并将其转化为结构化的文本形式,通常采用XML或JSON格式。数据包中包含了个人基本信息、工作经验和教育背景等员工信息。In step S10 of this embodiment, the system receives data packages imported from internal and external data sources of the enterprise. The data packages may include various file formats, such as text files, table files, or database files. The data package contains employee information resource text. Use text parsers, table processing libraries and database connection tools to parse data packets. This process can identify different file formats, then extract employee information data and convert it into structured text form, usually in XML or JSON format. The data package contains employee information such as basic personal information, work experience and educational background.

在步骤S20中,员工信息分类模型构建中,在数据采集和处理阶段,采集员工信息数据,去除数据中的重复项和缺失值,将上述数据转换为标准化的文档数据格式,并为每个文档数据标识文档类别标签,员工信息数据来自企业的内部数据库、外部数据源或由用户提供。然后进行关键词和短语识别,使用自然语言处理(NLP)技术,系统基于建立的关键词和短语数据库,自动识别和提取文档数据中的关键词和短语,有助于更细致地区分员工信息的不同部分。然后进行数据集划分,将文档数据转换为计算机可处理的特征向量表示的数据集。随后,数据集被划分为训练集和测试集,以便进行分类模型的训练和性能评估。在进行模型训练与测试,使用朴素贝叶斯算法构建分类模型,该分类模型的目标是学习如何将文档数据分配到不同的档案类别中,训练模型时,使用训练集数据进行训练。测试模型时,使用测试集数据评估模型的性能,系统可以根据性能评估结果对模型参数进行调整。最后,成档案信息项架构树,利用训练好的分类模型,对员工信息文本进行分类,基于分类结果,生成每个档案类别的信息项架构树,信息项架构树包括不同的信息项,如个人信息、工作经验、教育背景等,用于组织和存储员工信息的不同部分。In step S20, during the construction of the employee information classification model, during the data collection and processing stages, employee information data is collected, duplicates and missing values in the data are removed, the above data is converted into a standardized document data format, and each document is Data identifies document category tags, and employee information data comes from the company's internal database, external data sources, or is provided by users. Then perform keyword and phrase recognition, using natural language processing (NLP) technology, the system automatically identifies and extracts keywords and phrases in the document data based on the established keyword and phrase database, which helps to distinguish employee information in more detail. different parts. Then the data set is divided to convert the document data into a data set represented by a computer-processable feature vector. Subsequently, the data set was divided into training and test sets for training and performance evaluation of the classification model. During model training and testing, the naive Bayes algorithm is used to build a classification model. The goal of the classification model is to learn how to assign document data to different archive categories. When training the model, the training set data is used for training. When testing the model, use the test set data to evaluate the performance of the model, and the system can adjust the model parameters based on the performance evaluation results. Finally, a profile information item architecture tree is generated, and the trained classification model is used to classify the employee information text. Based on the classification results, an information item architecture tree for each profile category is generated. The information item architecture tree includes different information items, such as personal Information, work experience, educational background, etc. Different sections used to organize and store employee information.

在步骤S30中,档案生成和调用时包括加载预配置模块数据库和生成全景档案,其中,在加载预配置模块数据库步骤中,系统加载预配置的模块数据库,模块数据库包含了员工信息档案生成所需的各种模板,用于生成不同档案类别的全景档案;生成全景档案时,基于档案类别和档案信息项架构树,系统筛选适用的模板,并将数据按照指定的格式写入,自动生成全景档案,全景档案包括了不同信息项的数据,按照事先定义的信息项架构树结构进行组织。In step S30, file generation and calling include loading a preconfigured module database and generating a panoramic file. In the step of loading the preconfigured module database, the system loads the preconfigured module database. The module database contains the information required for generating employee information files. Various templates are used to generate panoramic files of different file categories; when generating panoramic files, based on the file category and file information item architecture tree, the system filters applicable templates and writes the data in the specified format to automatically generate panoramic files. ,The panoramic archive includes data of different information ,items, organized according to the pre-defined information item ,architecture tree structure.

本发明的基于员工信息整合的全景档案生成方法,通过自动化和整合员工信息,提供高质量的全景档案生成和访问。这有助于提高企业内部的数据管理效率和决策支持。The panoramic file generation method based on employee information integration of the present invention provides high-quality panoramic file generation and access through automation and integration of employee information. This helps improve data management efficiency and decision support within the enterprise.

在一些实施例中,参见图2所述,所述基于员工信息整合的全景档案生成方法,还包括全景档案的调用;所述全景档案的调用包括以下步骤:In some embodiments, as shown in Figure 2, the panoramic profile generation method based on employee information integration also includes calling the panoramic profile; the calling of the panoramic profile includes the following steps:

步骤S101、获取用户端输入的档案调取请求,所述档案调取请求包括两主要部分:Step S101: Obtain the file retrieval request input by the client. The file retrieval request includes two main parts:

员工唯一标识符:用户提供员工的唯一标识符,通常是一个独特的识别号码或员工ID,用于精确识别员工;Employee Unique Identifier: The user provides the employee's unique identifier, usually a unique identification number or employee ID, used to accurately identify the employee;

调取要求的特定项目信息:用户指定他们想要获取的特定项目信息,例如员工的教育背景、工作经验或特定日期范围内的项目信息。Retrieve requested project-specific information: Users specify project-specific information they want to retrieve, such as an employee's education, work experience, or project information within a specific date range.

步骤S102、根据员工唯一标识符,从全景档案资源数据库中检索相应员工的全景档案数据,并按照所述调取要求进行筛选和整理;Step S102: Retrieve the panoramic file data of the corresponding employee from the panoramic file resource database according to the employee's unique identifier, and filter and organize according to the retrieval requirements;

步骤S103、对所筛选的全景档案数据,识别其中与调取要求相关的关键词数据,包括但不限于日期、项目名称;Step S103: Identify keyword data related to the retrieval requirements for the screened panoramic archive data, including but not limited to date and project name;

步骤S104、基于关键词数据,筛选出符合调取要求的全景档案资源数据,并生成相应的全景档案文本;Step S104: Based on the keyword data, screen out the panoramic archive resource data that meets the retrieval requirements, and generate the corresponding panoramic archive text;

步骤S105、将生成的员工全景档案文本导出,以便用户进行查阅或进一步处理。Step S105: Export the generated employee panoramic file text for user review or further processing.

本实施例中根据用户的请求,从全景档案资源中检索并整理相关信息,以满足用户的特定需求,有助于用户快速访问所需的员工信息,提高了信息的可用性和可访问性。In this embodiment, according to the user's request, relevant information is retrieved and organized from the panoramic archive resources to meet the specific needs of the user, which helps the user to quickly access the required employee information and improves the usability and accessibility of the information.

在本发明的实施例中,建立员工信息分类模型,包括以下步骤:In the embodiment of the present invention, establishing an employee information classification model includes the following steps:

步骤1.数据采集和处理:Step 1. Data collection and processing:

采集员工信息数据,去除重复项和缺失值后转换为标准化数据格式的文档数据,标识文档类别标签,并作为样本数据;其中,所述员工信息数据包括个人信息、工作经验、教育背景,来自内部企业数据库、外部数据源或用户提供的信息;Collect employee information data, remove duplicates and missing values, convert it into document data in a standardized data format, identify document category labels, and use it as sample data; where the employee information data includes personal information, work experience, educational background, and comes from internal Enterprise databases, external data sources or user-provided information;

步骤2.关键词和短语识别:Step 2. Keyword and phrase identification:

基于建立的关键词和短语数据库,利用自然语言处理(NLP)技术自动识别和提取文档数据中的关键词和短语;Based on the established keyword and phrase database, use natural language processing (NLP) technology to automatically identify and extract keywords and phrases in document data;

步骤3.数据集划分:Step 3. Dataset partitioning:

将文档数据转换为计算机处理的特征向量表示的数据集,并划分数据集为训练集和测试集;Convert document data into a data set represented by computer-processed feature vectors, and divide the data set into a training set and a test set;

步骤4.模型训练与测试:Step 4. Model training and testing:

使用朴素贝叶斯算法构建分类模型,并使用训练集数据对分类模型进行训练,学习将文档数据分配到不同的档案类别中;使用测试集测试模型的召回率,根据性能评估结果,对模型进行参数调整;Use the Naive Bayes algorithm to build a classification model, and use the training set data to train the classification model and learn to assign document data to different archive categories; use the test set to test the recall rate of the model, and evaluate the model based on the performance evaluation results. Parameter adjustment;

步骤5.生成档案信息项架构树:Step 5. Generate the file information item architecture tree:

使用训练好的分类模型,对员工信息文本进行分类,确定每个文本的档案类别;基于分类结果,生成每个档案类别的信息项架构树,其中,包括不同信息项:个人信息、工作经验、教育背景;Use the trained classification model to classify employee information texts and determine the profile category of each text; based on the classification results, generate an information item architecture tree for each profile category, including different information items: personal information, work experience, Education background;

步骤6.部署模型:Step 6. Deploy the model:

部署训练好的模型到全景档案生成系统中,用于员工信息自动分类。Deploy the trained model to the panoramic file generation system for automatic classification of employee information.

在本实施例中,使用朴素贝叶斯算法构建分类模型时,还包括计算类别先验概率,步骤如下:In this embodiment, when using the Naive Bayes algorithm to build a classification model, it also includes calculating the category prior probability. The steps are as follows:

准备包含已分类文档的训练数据集,所述训练数据集包括文档数据和文档数据对应的类别标签;Prepare a training data set containing classified documents, where the training data set includes document data and category labels corresponding to the document data;

对训练数据集进行统计,计算每个类别下的文档数量,得到每个类别的文档频数;Make statistics on the training data set, calculate the number of documents under each category, and obtain the frequency of documents in each category;

计算训练数据集中的总文档数量,并通过公式计算类别的先验概率:Calculate the total number of documents in the training dataset and calculate the prior probability of the category by the formula:

P(C)=N/N_totalP(C)=N/N_total

其中,P(C)是类别C的先验概率;N是属于类别C的文档数量;N_total是总文档数量;Among them, P(C) is the prior probability of category C; N is the number of documents belonging to category C; N_total is the total number of documents;

得到的每个类别的先验概率,用于预测新文档的类别。The obtained prior probability of each category is used to predict the category of new documents.

其中,使用朴素贝叶斯算法构建分类模型时计算类别先验概率的工作过程为:Among them, the working process of calculating the category prior probability when using the Naive Bayes algorithm to build a classification model is:

(1)准备训练数据集:首先,收集包含已分类文档的训练数据集。每个文档应该与其对应的类别标签相关联,训练数据集包括文档数据和文档数据对应的类别标签。(1) Prepare training data set: First, collect a training data set containing classified documents. Each document should be associated with its corresponding category label, and the training data set includes document data and the category labels corresponding to the document data.

(2)统计文档数量:对训练数据集进行统计,计算每个类别下的文档数量,这是为了确定每个类别的文档频数;文档数量表示每个类别中有多少文档。(2) Count the number of documents: Count the training data set and calculate the number of documents under each category. This is to determine the frequency of documents in each category; the number of documents indicates how many documents there are in each category.

(3)计算总文档数量:计算整个训练数据集中的总文档数,即所有类别的文档数量的总和。(3) Calculate the total number of documents: Calculate the total number of documents in the entire training data set, that is, the sum of the number of documents in all categories.

(4)计算类别的先验概率:为每个类别C计算先验概率(P(C))。其中,先验概率表示一个文档属于特定类别C的概率;计算类别的先验概率使用以下公式:(4) Calculate the prior probability of the category: Calculate the prior probability (P(C)) for each category C. Among them, the prior probability represents the probability that a document belongs to a specific category C; the following formula is used to calculate the prior probability of a category:

P(C)=N/N_totalP(C)=N/N_total

其中,P(C)是类别C的先验概率,N是属于类别C的文档数量,N_total是总文档数量。Among them, P(C) is the prior probability of category C, N is the number of documents belonging to category C, and N_total is the total number of documents.

示例性的:假设正在构建一个员工档案分类模型,其中文档的类别是员工的不同类型(例如,全职员工、兼职员工、实习生等);其中,已经准备了一个训练数据集,其中包括以下信息:Illustrative: Assume that an employee profile classification model is being built, in which the categories of documents are different types of employees (for example, full-time employees, part-time employees, interns, etc.); among them, a training data set has been prepared, which includes the following information :

100份文档标记为“全职员工”。100 documents are labeled "Full-time Employees".

50份文档标记为“兼职员工”。50 documents are labeled "Part-time Employees."

30份文档标记为“实习生”。30 documents are marked "Intern".

现在,需要计算每个类别的先验概率。Now, we need to calculate the prior probability for each class.

1.对于“全职员工”类别:1. For the “full-time employee” category:

N(“全职员工”)=100(100份文档属于全职员工类别)N ("full-time employees") = 100 (100 documents belong to the full-time employee category)

N_total(总文档数量)=100+50+30=180N_total (total number of documents) = 100 + 50 + 30 = 180

计算先验概率:P(“全职员工”)=100/180≈0.5556Calculate the prior probability: P("full-time employee")=100/180≈0.5556

2.对于“兼职员工”类别:2. For the “part-time employee” category:

N(“兼职员工”)=50N ("part-time employees") = 50

N_total(总文档数量)=180N_total (total number of documents) = 180

计算先验概率:P(“兼职员工”)=50/180≈0.2778Calculate the prior probability: P ("part-time employee") = 50/180≈0.2778

3.对于“实习生”类别:3. For the “Intern” category:

N(“实习生”)=30N("Intern")=30

N_total(总文档数量)=180N_total (total number of documents) = 180

计算先验概率:P(“实习生”)=30/180≈0.1667。Calculate the prior probability: P("Intern")=30/180≈0.1667.

因此,上述已经计算了每个类别的先验概率,将用于预测新文档的类别,根据新文档的特征向量和贝叶斯定理来计算后验概率。根据最高后验概率的类别,可以预测新文档的类别,有助于模型自动对新文档进行分类。Therefore, the prior probability of each category has been calculated above, which will be used to predict the category of the new document. The posterior probability is calculated based on the feature vector of the new document and Bayes' theorem. Based on the category with the highest posterior probability, the category of the new document can be predicted, which helps the model automatically classify the new document.

在本实施例中,根据得到的每个类别的先验概率预测新文档的类别时,还包括计算特征条件概率(P(x|C)),即在给定类别C的情况下,观察到特征x的概率,步骤如下:In this embodiment, when predicting the category of a new document based on the obtained prior probability of each category, it also includes calculating the feature conditional probability (P(x|C)), that is, given the category C, it is observed that The probability of feature x, the steps are as follows:

根据已分类文档的训练数据集,对训练数据集中的文档进行统计,计算每个类别下每个特征的出现次数;其中,所述训练数据集包括文档数据、文档数据对应的类别标签和文档中出现的特征;According to the training data set of classified documents, the documents in the training data set are counted, and the number of occurrences of each feature under each category is calculated; wherein the training data set includes document data, category labels corresponding to the document data, and the number of occurrences of each feature in the document. Characteristics that emerge;

在给定类别C的情况下,特征x的频数;若文档数据有M个不同的特征,则表示为:N(x,C),在类别C下特征x的频数,为每个类别和每个特征生成一个频数;In the case of a given category C, the frequency of feature x; if the document data has M different features, it is expressed as: N(x, C), the frequency of feature x under category C is for each category and each Each feature generates a frequency;

计算特征x在每个类别C中的相对频率P(x|C),得到每个类别下每个特征的条件概率:Calculate the relative frequency P(x|C) of feature x in each category C, and obtain the conditional probability of each feature under each category:

P(x|C)=N(x,C)/N(C)P(x|C)=N(x,C)/N(C)

其中,P(x|C)是在类别C下特征x的条件概率;N(x,C)是在类别C下特征x的频数;N(C)是类别C下的文档总数。Among them, P(x|C) is the conditional probability of feature x under category C; N(x,C) is the frequency of feature x under category C; N(C) is the total number of documents under category C.

示例性的,假设有一个员工档案分类模型,本发明已经构建了频数矩阵,其中包含了每个类别下每个特征的出现次数,以下是一个部分示例:For example, assuming there is an employee file classification model, the present invention has constructed a frequency matrix, which contains the number of occurrences of each feature under each category. The following is a partial example:

假设本发明有三个类别:A、B、C;以及四个特征:X、Y、Z、W。以下显示了部分频数矩阵的示例:Suppose the invention has three categories: A, B, C; and four features: X, Y, Z, W. An example of a partial frequency matrix is shown below:

AA BB CC XX 2020 1515 1010 YY 1212 1818 99 ZZ 88 77 55 WW 66 44 33

然后,计算本发明的特征条件概率,其中,本发明要计算在类别A下特征X的条件概率:Then, calculate the feature conditional probability of the present invention, where the present invention calculates the conditional probability of feature X under category A:

P(X|A)=N(X,A)/N(A)=20/(20+12+8+6)≈0.4651P(X|A)=N(X,A)/N(A)=20/(20+12+8+6)≈0.4651

这表示在类别A下观察到特征X的概率。同样,本发明可以计算其他特征在不同类别下的条件概率,条件概率将用于朴素贝叶斯分类模型,帮助模型预测新文档的类别,根据新文档中特征的观察情况计算每个类别的后验概率,从而确定最可能的类别。This represents the probability of observing feature X under category A. Similarly, the present invention can calculate the conditional probabilities of other features under different categories. The conditional probabilities will be used in the naive Bayes classification model to help the model predict the category of new documents, and calculate the posterior of each category based on the observation of features in the new document. empirical probability to determine the most likely category.

在本实施例中,使用朴素贝叶斯分类模型,预测新文档的类别时,包括以下步骤:In this embodiment, using the Naive Bayes classification model to predict the category of a new document includes the following steps:

准备训练好的朴素贝叶斯分类模型,包括从训练数据中计算得出的类别的先验概率(P(C))和特征的条件概率(P(x|C));Prepare the trained Naive Bayes classification model, including the prior probability of the category (P(C)) and the conditional probability of the feature (P(x|C)) calculated from the training data;

准备新文档,对新文档进行与训练数据相同的文本预处理,并将新文档转化为特征向量;Prepare new documents, perform the same text preprocessing on the new documents as the training data, and convert the new documents into feature vectors;

对于每个类别C,使用贝叶斯定理计算后验概率P(C|X),其中X表示新文档的特征向量:For each category C, use Bayes’ theorem to calculate the posterior probability P(C|X), where X represents the feature vector of the new document:

P(C|X)=P(X|C)*P(C)/P(X)P(C|X)=P(X|C)*P(C)/P(X)

其中,P(C|X)是在给定特征X的情况下类别C的后验概率;P(X|C)是在类别C下特征X的条件概率,从训练数据中获取;P(C)是类别C的先验概率,从训练数据中获取;P(X)是特征X的边际概率,通过对各类别的后验概率求和来计算,在分类中,P(X)对每个类别是相同的;Among them, P(C|X) is the posterior probability of category C given feature X; P(X|C) is the conditional probability of feature X under category C, obtained from the training data; P(C ) is the prior probability of category C, obtained from the training data; P(X) is the marginal probability of feature X, calculated by summing the posterior probabilities of each category. In classification, P(X) is for each The categories are the same;

计算每个类别的后验概率后,选择具有最高后验概率的类别作为新文档的预测类别;即:After calculating the posterior probability for each category, the category with the highest posterior probability is selected as the predicted category for the new document; that is:

预测类别=argmax P(C|X)。Prediction category=argmax P(C|X).

在本实施例中,示例性的,假设本发明有一个已经训练好的朴素贝叶斯分类模型用于新闻文章分类,其中有两个类别:体育和科技;现在,本发明有一个新的体育新闻文章需要分类:In this embodiment, for example, it is assumed that the present invention has a trained Naive Bayes classification model for classifying news articles, in which there are two categories: sports and technology; now, the present invention has a new sports News articles need to be classified:

1.本发明首先对这篇新闻文章进行预处理,包括分词、去除停用词等。1. This invention first performs preprocessing on this news article, including word segmentation, removal of stop words, etc.

2.针对这篇文章,本发明从模型中提取了特征,这可能包括词频、词袋模型等。2. For this article, the present invention extracts features from the model, which may include word frequency, bag-of-words model, etc.

3.接下来,本发明使用朴素贝叶斯模型,根据贝叶斯定理计算该文章属于体育和科技类别的后验概率。3. Next, the present invention uses the Naive Bayes model to calculate the posterior probability that the article belongs to the sports and technology categories according to Bayes theorem.

4.最后,本发明选择后验概率最高的类别作为该文章的分类结果,如果P(体育|X)>P(科技|X),则将其分类为体育新闻。4. Finally, the present invention selects the category with the highest posterior probability as the classification result of the article. If P(Sports|X)>P(Technology|X), it is classified as sports news.

这个过程将新文档分配给最可能的类别,使得新文档可以被正确分类。This process assigns new documents to the most likely category so that the new document can be classified correctly.

在一些实施例中,所述生成对应档案信息列表的档案信息项架构树,包括:In some embodiments, generating an archive information item architecture tree corresponding to the archive information list includes:

定义员工信息整合的档案信息列表,包含员工信息整合的信息项;Define the file information list for employee information integration, including information items for employee information integration;

将档案信息列表中的各个信息项进行层级结构化,以创建档案信息项架构树,并为信息项架构树中的每个信息项分配唯一的树结构标签,建立信息项架构树。Each information item in the archive information list is hierarchically structured to create an archive information item architecture tree, and a unique tree structure label is assigned to each information item in the information item architecture tree to establish an information item architecture tree.

其中,全景档案生成时,员工信息按照信息项架构树中的相应信息项映射,并存储在全景档案资源数据库中,创建完整的全景档案,以供用户端使用员工唯一标识符及调取要求的特定项目信息查询和检索相应员工的全景档案数据。Among them, when the panoramic file is generated, employee information is mapped according to the corresponding information items in the information item architecture tree and stored in the panoramic file resource database. A complete panoramic file is created for the user to use the employee's unique identifier and retrieve the required information. Specific project information queries and retrieves the corresponding employee's panoramic profile data.

本发明提的一种基于员工信息整合的全景档案生成方法,以有效管理和利用企业内部和外部数据源中的员工信息,并具备以下优势:The invention proposes a panoramic file generation method based on employee information integration to effectively manage and utilize employee information in internal and external data sources of the enterprise, and has the following advantages:

1.全景档案生成:该方法能够将企业内外部数据源中的员工信息转化为全景档案,包括个人信息、工作经验、教育背景等。这种全景档案以结构化的方式组织,使得信息容易访问和管理。1. Panoramic profile generation: This method can transform employee information from internal and external data sources into panoramic profiles, including personal information, work experience, educational background, etc. This panoramic archive is organized in a structured manner, making the information easily accessible and manageable.

2.自动分类和档案生成:本发明使用员工信息分类模型,基于关键词数据库,对员工信息进行自动识别和分类。然后,根据档案信息列表的结构,自动生成档案信息项架构树,从而实现自动档案生成,减轻了人工处理的工作量。2. Automatic classification and file generation: This invention uses an employee information classification model and based on a keyword database to automatically identify and classify employee information. Then, according to the structure of the file information list, the file information item architecture tree is automatically generated, thereby realizing automatic file generation and reducing the workload of manual processing.

3.模板自动生成:方法还支持模板的自动生成,根据档案类别和信息项架构树,选择合适的模板,并将数据填充到模板中。这确保了生成的全景档案都符合特定的标准和格式。3. Automatic generation of templates: The method also supports the automatic generation of templates. According to the file category and information item architecture tree, select the appropriate template and fill the data into the template. This ensures that the resulting panorama archives comply with specific standards and formats.

4.智能档案调用:一些实施例中,该方法还提供了全景档案的调用功能,允许用户根据员工唯一标识符和特定项目信息查询和检索全景档案数据。这增加了系统的智能和交互性,使得员工信息更易于访问。4. Intelligent file calling: In some embodiments, this method also provides a panoramic file calling function, allowing users to query and retrieve panoramic file data based on employee unique identifiers and specific project information. This adds intelligence and interactivity to the system, making employee information more accessible.

5.朴素贝叶斯分类模型:采用朴素贝叶斯算法构建分类模型,从而实现新文档的自动分类,确保了系统的灵活性和性能。5. Naive Bayes classification model: Use the Naive Bayes algorithm to build a classification model to achieve automatic classification of new documents and ensure the flexibility and performance of the system.

6.高效的员工信息整合:本发明提高了员工信息的整合和管理效率,适用于各种企业,尤其是人力资源和员工档案管理方面。6. Efficient employee information integration: The present invention improves the integration and management efficiency of employee information and is suitable for various enterprises, especially in human resources and employee file management.

综上所述,本发明的基于员工信息整合的全景档案生成方法将大大提高企业的信息管理效率,减少了手动工作,确保了数据的一致性和完整性,并提供了高度可访问性的员工信息资源。这对于企业的运营和管理都有重要价值。In summary, the panoramic file generation method based on employee information integration of the present invention will greatly improve the information management efficiency of the enterprise, reduce manual work, ensure the consistency and integrity of data, and provide highly accessible employees information resource. This is of great value to the operation and management of the enterprise.

应该理解的是,上述虽然是按照某一顺序描述的,但是这些步骤并不是必然按照上述顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,本实施例的一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that although the above is described in a certain order, these steps are not necessarily performed in the order described above. Unless explicitly stated in this article, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, some steps of this embodiment may include multiple steps or stages. These steps or stages are not necessarily executed at the same time, but may be executed at different times. The order of execution of these steps or stages does not necessarily change. It must be performed sequentially, but may be performed in turn or alternately with other steps or at least part of steps or stages in other steps.

在一个实施例中,如图3所示,提供了一种基于员工信息整合的全景档案生成系统,包括:In one embodiment, as shown in Figure 3, a panoramic profile generation system based on employee information integration is provided, including:

数据导入模块:用于接收来自企业内外部数据源的数据包,解析这些数据包以获取员工信息资源文本;能够提取员工信息资源文本,为后续的处理提供了原始数据。Data import module: used to receive data packets from internal and external data sources within the enterprise, and parse these data packets to obtain employee information resource text; it can extract employee information resource text, providing raw data for subsequent processing.

员工信息分类模型:用于自动识别和分类员工信息数据,并确定员工的档案类别;根据档案信息列表定义的信息项生成档案信息项架构树;使用朴素贝叶斯分类模型,它可以有效地将员工信息分配到不同的档案类别中。此模型还利用预定义的关键词数据库,以识别和标记关键信息,使后续的档案生成更有针对性。Employee information classification model: used to automatically identify and classify employee information data and determine the employee's profile category; generate a profile information item architecture tree based on the information items defined in the profile information list; using the naive Bayes classification model, it can effectively Employee information is assigned to different profile categories. This model also utilizes a predefined keyword database to identify and tag key information, making subsequent profile generation more targeted.

预配置模块数据库:包含预定义的模板和格式,根据档案类别和档案信息项架构树,筛选并自动生成全景档案。Preconfigured module database: Contains predefined templates and formats, filters and automatically generates panoramic archives based on archive categories and archive information item architecture trees.

全景档案资源数据库:用于存储生成的全景档案数据;其中,员工信息按照信息项架构树的结构进行存储;Panoramic archive resource database: used to store the generated panoramic archive data; employee information is stored according to the structure of the information item architecture tree;

全景档案调用模块:允许用户端根据员工唯一标识符以及调取要求的特定项目信息,检索和整理全景档案数据,并生成符合调取要求的全景档案文本,并允许用户查阅。Panoramic file call module: allows the user to retrieve and organize panoramic file data based on the employee's unique identifier and the specific project information required for retrieval, and generate panoramic file text that meets the retrieval requirements, and allows users to review it.

其中,所述基于员工信息整合的全景档案生成系统还包括文本解析器、表格处理库和数据库连接工具;所述文本解析器、表格处理库和数据库连接工具分别用于解析导入的数据包中包含的文本文件、表格文件或数据库文件的格式,将员工信息数据提取并转化为结构化的文本形式。Among them, the panoramic file generation system based on employee information integration also includes a text parser, a table processing library and a database connection tool; the text parser, table processing library and database connection tool are respectively used to parse the data contained in the imported data package. Text file, table file or database file format to extract and convert employee information data into a structured text form.

其中,所述基于员工信息整合的全景档案生成系统还包括朴素贝叶斯分类模型,用于员工信息的自动分类,利用已分类文档的训练数据集,计算类别的先验概率和特征的条件概率,便于预测新文档的类别。Among them, the panoramic profile generation system based on employee information integration also includes a naive Bayes classification model for automatic classification of employee information, using the training data set of classified documents to calculate the prior probability of categories and the conditional probabilities of features. , which facilitates predicting the category of new documents.

在本实施例中,本发明的基于员工信息整合的全景档案生成系统为企业和组织提供了一种强大的员工信息管理解决方案。该系统以高效的方式接收、整合、分类和存储员工信息,然后根据事先定义的信息架构自动生成全景档案。基于员工信息整合的全景档案生成系统在执行时采用如前述的一种基于员工信息整合的全景档案生成方法的步骤,因此,本实施例中对基于员工信息整合的全景档案生成系统的运行过程不再详细介绍。In this embodiment, the panoramic file generation system based on employee information integration of the present invention provides a powerful employee information management solution for enterprises and organizations. The system receives, integrates, categorizes and stores employee information in an efficient manner and then automatically generates panoramic profiles based on a pre-defined information architecture. The panoramic file generation system based on employee information integration adopts the steps of the panoramic file generation method based on employee information integration as mentioned above during execution. Therefore, in this embodiment, the operation process of the panoramic file generation system based on employee information integration does not change. More details.

在一个实施例中,在本发明的实施例中还提供了一种计算机设备,包括至少一个处理器,以及与至少一个处理器通信连接的存储器,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器执行的基于员工信息整合的全景档案生成方法,该处理器执行指令时实现上述基于员工信息整合的全景档案生成方法的步骤.In one embodiment, an embodiment of the present invention also provides a computer device, including at least one processor, and a memory communicatively connected to the at least one processor, and the memory stores instructions that can be executed by the at least one processor. , the instruction is executed by at least one processor, so that at least one processor executes the panoramic profile generation method based on employee information integration. When the processor executes the instruction, the steps of the above panoramic profile generation method based on employee information integration are implemented.

在一个实施例中,提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,计算机指令用于使计算机执行的基于员工信息整合的全景档案生成方法的步骤。In one embodiment, a computer-readable storage medium is provided. The computer-readable storage medium stores computer instructions, and the computer instructions are used to cause the computer to execute the steps of a panoramic profile generating method based on employee information integration.

本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机指令表征的计算机程序来指令相关的硬件来完成,的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be completed by instructing relevant hardware through computer programs represented by computer instructions. The computer program can be stored in a non-volatile computer readable device. In the storage medium, when executed, the computer program may include the processes of the above method embodiments. Any reference to memory, storage, database or other media used in the embodiments provided in this application may include at least one of non-volatile and volatile memory.

非易失性存储器可包括只读存储器、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器或动态随机存取存储器等。Non-volatile memory may include read-only memory, magnetic tape, floppy disk, flash memory or optical memory, etc. Volatile memory may include random access memory or external cache memory. By way of illustration and not limitation, RAM can be in many forms, such as static random access memory or dynamic random access memory.

以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention shall be included in the protection scope of the present invention. Inside.

Claims (10)

1.一种基于员工信息整合的全景档案生成方法,其特征在于,包括以下步骤:1. A panoramic profile generation method based on employee information integration, which is characterized by including the following steps: 接收企业内外部数据源导入的数据包,解析所述数据包获取员工信息资源文本;Receive data packets imported from internal and external data sources within the enterprise, and parse the data packets to obtain employee information resource text; 建立员工信息分类模型,逐文本遍历输入的所述员工信息资源文本的内容,基于档案信息列表的关键词数据库对员工信息数据进行识别和分类,确定员工的档案类别,并生成对应档案信息列表的档案信息项架构树;Establish an employee information classification model, traverse the content of the input employee information resource text text by text, identify and classify employee information data based on the keyword database of the file information list, determine the employee's file category, and generate a corresponding file information list File information item structure tree; 加载预配置模块数据库,基于档案类别和档案信息项架构树,筛选对应的模板并按照格式进行写入,自动生成全景档案。Load the preconfigured module database, filter the corresponding templates based on the file category and file information item architecture tree, and write them according to the format to automatically generate panoramic files. 2.根据权利要求1所述的基于员工信息整合的全景档案生成方法,其特征在于,所述基于员工信息整合的全景档案生成方法,还包括全景档案的调用;所述全景档案的调用包括以下步骤:2. The panoramic file generation method based on employee information integration according to claim 1, characterized in that the panoramic file generation method based on employee information integration also includes the calling of the panoramic file; the calling of the panoramic file includes the following step: 获取用户端输入的档案调取请求,所述档案调取请求包括员工唯一标识符及调取要求的特定项目信息;Obtain the file retrieval request input by the user, and the file retrieval request includes the employee's unique identifier and the specific project information required for retrieval; 根据员工唯一标识符,从全景档案资源数据库中检索相应员工的全景档案数据,并按照所述调取要求进行筛选和整理;According to the employee's unique identifier, retrieve the corresponding employee's panoramic file data from the panoramic file resource database, and filter and organize it according to the retrieval requirements; 对所筛选的全景档案数据,识别其中与调取要求相关的关键词数据,包括但不限于日期、项目名称;For the screened panoramic archive data, identify the keyword data related to the retrieval requirements, including but not limited to date and project name; 基于关键词数据,筛选出符合调取要求的全景档案资源数据,并生成相应的全景档案文本;Based on the keyword data, screen out the panoramic archive resource data that meets the retrieval requirements, and generate the corresponding panoramic archive text; 将生成的员工全景档案文本导出,以便用户进行查阅或进一步处理。Export the generated employee panoramic file text for users to review or further process. 3.根据权利要求2所述的基于员工信息整合的全景档案生成方法,其特征在于,解析所述数据包获取员工信息资源文本时,包括:识别数据包中包含的文本文件、表格文件或者数据库文件的格式;基于加载的文本解析器、表格处理库和数据库连接工具对数据包进行解析,提取员工信息数据并转化为结构化的文本形式。3. The panoramic file generation method based on employee information integration according to claim 2, characterized in that when parsing the data package to obtain the employee information resource text, it includes: identifying text files, table files or databases contained in the data package. The format of the file; parses the data package based on the loaded text parser, table processing library and database connection tool, extracts employee information data and converts it into a structured text form. 4.根据权利要求1所述的基于员工信息整合的全景档案生成方法,其特征在于,建立员工信息分类模型,包括以下步骤:4. The panoramic profile generation method based on employee information integration according to claim 1, characterized in that establishing an employee information classification model includes the following steps: 步骤1)数据采集和处理:Step 1) Data collection and processing: 采集员工信息数据,去除重复项和缺失值后转换为标准化数据格式的文档数据,标识文档类别标签,并作为样本数据;其中,所述员工信息数据包括个人信息、工作经验、教育背景,来自内部企业数据库、外部数据源或用户提供的信息;Collect employee information data, remove duplicates and missing values, convert it into document data in a standardized data format, identify document category labels, and use it as sample data; where the employee information data includes personal information, work experience, educational background, and comes from internal Enterprise databases, external data sources or user-provided information; 步骤2)关键词和短语识别:Step 2) Keyword and phrase identification: 基于建立的关键词和短语数据库,利用自然语言处理技术自动识别和提取文档数据中的关键词和短语;Based on the established keyword and phrase database, use natural language processing technology to automatically identify and extract keywords and phrases in document data; 步骤3)数据集划分:Step 3) Dataset partitioning: 将文档数据转换为计算机处理的特征向量表示的数据集,并划分数据集为训练集和测试集;Convert document data into a data set represented by computer-processed feature vectors, and divide the data set into a training set and a test set; 步骤4)模型训练与测试:Step 4) Model training and testing: 使用朴素贝叶斯算法构建分类模型,并使用训练集数据对分类模型进行训练,学习将文档数据分配到不同的档案类别中;使用测试集测试模型的召回率,根据性能评估结果,对模型进行参数调整;Use the Naive Bayes algorithm to build a classification model, and use the training set data to train the classification model and learn to assign document data to different archive categories; use the test set to test the recall rate of the model, and evaluate the model based on the performance evaluation results. Parameter adjustment; 步骤5)生成档案信息项架构树:Step 5) Generate the file information item architecture tree: 使用训练好的分类模型,对员工信息文本进行分类,确定每个文本的档案类别;基于分类结果,生成每个档案类别的信息项架构树,其中,包括不同信息项:个人信息、工作经验、教育背景;Use the trained classification model to classify employee information texts and determine the profile category of each text; based on the classification results, generate an information item architecture tree for each profile category, including different information items: personal information, work experience, Education background; 步骤6)部署模型:Step 6) Deploy the model: 部署训练好的模型到全景档案生成系统中,用于员工信息自动分类。Deploy the trained model to the panoramic file generation system for automatic classification of employee information. 5.根据权利要求4所述的基于员工信息整合的全景档案生成方法,其特征在于,使用朴素贝叶斯算法构建分类模型时,还包括计算类别先验概率,步骤如下:5. The panoramic file generation method based on employee information integration according to claim 4, characterized in that when using the Naive Bayes algorithm to build the classification model, it also includes calculating the category prior probability, and the steps are as follows: 准备包含已分类文档的训练数据集,所述训练数据集包括文档数据和文档数据对应的类别标签;Prepare a training data set containing classified documents, where the training data set includes document data and category labels corresponding to the document data; 对训练数据集进行统计,计算每个类别下的文档数量,得到每个类别的文档频数;Make statistics on the training data set, calculate the number of documents under each category, and obtain the frequency of documents in each category; 计算训练数据集中的总文档数量,并通过公式计算类别的先验概率:Calculate the total number of documents in the training dataset and calculate the prior probability of the category by the formula: P(C)=N/N_totalP(C)=N/N_total 其中,P(C)是类别C的先验概率;N是属于类别C的文档数量;N_total是总文档数量;Among them, P(C) is the prior probability of category C; N is the number of documents belonging to category C; N_total is the total number of documents; 得到的每个类别的先验概率,用于预测新文档的类别。The obtained prior probability of each category is used to predict the category of new documents. 6.根据权利要求5所述的基于员工信息整合的全景档案生成方法,其特征在于,根据得到的每个类别的先验概率预测新文档的类别时,还包括计算特征条件概率P(x|C),即在给定类别C的情况下,观察到特征x的概率,步骤如下:6. The panoramic profile generation method based on employee information integration according to claim 5, characterized in that when predicting the category of a new document based on the obtained prior probability of each category, it also includes calculating the characteristic conditional probability P(x| C), that is, the probability of observing feature x given category C, the steps are as follows: 根据已分类文档的训练数据集,对训练数据集中的文档进行统计,计算每个类别下每个特征的出现次数;其中,所述训练数据集包括文档数据、文档数据对应的类别标签和文档中出现的特征;According to the training data set of classified documents, the documents in the training data set are counted, and the number of occurrences of each feature under each category is calculated; wherein the training data set includes document data, category labels corresponding to the document data, and the number of occurrences of each feature in the document. Characteristics that emerge; 在给定类别C的情况下,特征x的频数;若文档数据有M个不同的特征,则表示为:N(x,C),在类别C下特征x的频数,为每个类别和每个特征生成一个频数;In the case of a given category C, the frequency of feature x; if the document data has M different features, it is expressed as: N(x, C), the frequency of feature x under category C is for each category and each Each feature generates a frequency; 计算特征x在每个类别C中的相对频率P(x|C),得到每个类别下每个特征的条件概率:Calculate the relative frequency P(x|C) of feature x in each category C, and obtain the conditional probability of each feature under each category: P(x|C)=N(x,C)/N(C)P(x|C)=N(x,C)/N(C) 其中,P(x|C)是在类别C下特征x的条件概率;N(x,C)是在类别C下特征x的频数;N(C)是类别C下的文档总数。Among them, P(x|C) is the conditional probability of feature x under category C; N(x,C) is the frequency of feature x under category C; N(C) is the total number of documents under category C. 7.根据权利要求6所述的基于员工信息整合的全景档案生成方法,其特征在于,使用朴素贝叶斯分类模型,预测新文档的类别时,包括以下步骤:7. The panoramic profile generation method based on employee information integration according to claim 6, characterized in that when using a naive Bayes classification model to predict the category of a new document, it includes the following steps: 准备训练好的朴素贝叶斯分类模型,包括从训练数据中计算得出的类别的先验概率(P(C))和特征的条件概率(P(x|C));Prepare the trained Naive Bayes classification model, including the prior probability of the category (P(C)) and the conditional probability of the feature (P(x|C)) calculated from the training data; 准备新文档,对新文档进行与训练数据相同的文本预处理,并将新文档转化为特征向量;Prepare new documents, perform the same text preprocessing on the new documents as the training data, and convert the new documents into feature vectors; 对于每个类别C,使用贝叶斯定理计算后验概率P(C|X),其中X表示新文档的特征向量:For each category C, use Bayes’ theorem to calculate the posterior probability P(C|X), where X represents the feature vector of the new document: P(C|X)=P(X|C)*P(C)/P(X)P(C|X)=P(X|C)*P(C)/P(X) 其中,P(C|X)是在给定特征X的情况下类别C的后验概率;P(X|C)是在类别C下特征X的条件概率,从训练数据中获取;P(C)是类别C的先验概率,从训练数据中获取;P(X)是特征X的边际概率,通过对各类别的后验概率求和来计算,在分类中,P(X)对每个类别是相同的;Among them, P(C|X) is the posterior probability of category C given feature X; P(X|C) is the conditional probability of feature X under category C, obtained from the training data; P(C ) is the prior probability of category C, obtained from the training data; P(X) is the marginal probability of feature X, calculated by summing the posterior probabilities of each category. In classification, P(X) is for each The categories are the same; 计算每个类别的后验概率后,选择具有最高后验概率的类别作为新文档的预测类别;即:After calculating the posterior probability for each category, the category with the highest posterior probability is selected as the predicted category for the new document; that is: 预测类别=argmax P(C|X)。Prediction category=argmax P(C|X). 8.根据权利要求7所述的基于员工信息整合的全景档案生成方法,其特征在于,所述生成对应档案信息列表的档案信息项架构树,包括:8. The panoramic profile generation method based on employee information integration according to claim 7, characterized in that the generated profile information item architecture tree corresponding to the profile information list includes: 定义员工信息整合的档案信息列表,包含员工信息整合的信息项;Define the file information list for employee information integration, including information items for employee information integration; 将档案信息列表中的各个信息项进行层级结构化,以创建档案信息项架构树,并为信息项架构树中的每个信息项分配唯一的树结构标签,建立信息项架构树。Each information item in the archive information list is hierarchically structured to create an archive information item architecture tree, and a unique tree structure label is assigned to each information item in the information item architecture tree to establish an information item architecture tree. 9.根据权利要求8所述的基于员工信息整合的全景档案生成方法,其特征在于,全景档案生成时,员工信息按照信息项架构树中的相应信息项映射,并存储在全景档案资源数据库中,创建完整的全景档案,以供用户端使用员工唯一标识符及调取要求的特定项目信息查询和检索相应员工的全景档案数据。9. The panoramic archive generation method based on employee information integration according to claim 8, characterized in that when the panoramic archive is generated, the employee information is mapped according to the corresponding information items in the information item architecture tree and stored in the panoramic archive resource database. , create a complete panoramic file for the user to query and retrieve the corresponding employee's panoramic file data using the employee's unique identifier and the specific project information requested. 10.一种基于员工信息整合的全景档案生成系统,用于执行权利要求1-9任一项所述的基于员工信息整合的全景档案生成方法,其特征在于,该系统包括:10. A panoramic profile generation system based on employee information integration, used to execute the panoramic profile generation method based on employee information integration according to any one of claims 1 to 9, characterized in that the system includes: 数据导入模块:用于接收来自企业内外部数据源的数据包,解析这些数据包以获取员工信息资源文本;Data import module: used to receive data packages from internal and external data sources within the enterprise, and parse these data packages to obtain employee information resource text; 员工信息分类模型:用于自动识别和分类员工信息数据,并确定员工的档案类别;根据档案信息列表定义的信息项生成档案信息项架构树;Employee information classification model: used to automatically identify and classify employee information data, and determine the employee's profile category; generate a profile information item architecture tree based on the information items defined in the profile information list; 预配置模块数据库:包含预定义的模板和格式,根据档案类别和档案信息项架构树,筛选并自动生成全景档案;Preconfigured module database: Contains predefined templates and formats, filters and automatically generates panoramic archives based on archive categories and archive information item architecture trees; 全景档案资源数据库:用于存储生成的全景档案数据;其中,员工信息按照信息项架构树的结构进行存储;Panoramic archive resource database: used to store the generated panoramic archive data; employee information is stored according to the structure of the information item architecture tree; 全景档案调用模块:允许用户端根据员工唯一标识符以及调取要求的特定项目信息,检索和整理全景档案数据,并生成符合调取要求的全景档案文本,并允许用户查阅。Panoramic file call module: allows the user to retrieve and organize panoramic file data based on the employee's unique identifier and the specific project information required for retrieval, and generate panoramic file text that meets the retrieval requirements, and allows users to review it.
CN202311345854.9A 2023-10-17 2023-10-17 Panoramic archive generation method and system based on employee information integration Withdrawn CN117592450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311345854.9A CN117592450A (en) 2023-10-17 2023-10-17 Panoramic archive generation method and system based on employee information integration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311345854.9A CN117592450A (en) 2023-10-17 2023-10-17 Panoramic archive generation method and system based on employee information integration

Publications (1)

Publication Number Publication Date
CN117592450A true CN117592450A (en) 2024-02-23

Family

ID=89912232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311345854.9A Withdrawn CN117592450A (en) 2023-10-17 2023-10-17 Panoramic archive generation method and system based on employee information integration

Country Status (1)

Country Link
CN (1) CN117592450A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118069586A (en) * 2024-04-17 2024-05-24 南通点耐特智能科技有限公司 Employee profile information transmission method
CN119226603A (en) * 2024-08-23 2024-12-31 山东省大数据中心 A vertical search engine ranking method and system based on multi-dimensional features

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118069586A (en) * 2024-04-17 2024-05-24 南通点耐特智能科技有限公司 Employee profile information transmission method
CN119226603A (en) * 2024-08-23 2024-12-31 山东省大数据中心 A vertical search engine ranking method and system based on multi-dimensional features

Similar Documents

Publication Publication Date Title
Diba et al. Extraction, correlation, and abstraction of event data for process mining
US11403347B2 (en) Automated master data classification and curation using machine learning
US7912816B2 (en) Adaptive archive data management
CN115221337B (en) Data weaving processing method, device, electronic device and readable storage medium
US10671631B2 (en) Method, apparatus, and computer-readable medium for non-structured data profiling
US20240362476A1 (en) Generating a large language model prompt based on collaboration activities of a user
CN113221535B (en) Information processing method, device, computer equipment and storage medium
CN114880405A (en) Data lake-based data processing method and system
US20240220876A1 (en) Artificial intelligence (ai) based data product provisioning
CN119088933A (en) A method for processing official document data in a large model scenario
CN118227599A (en) Data standard treatment method, system, equipment and medium based on automatic flow
CN117592450A (en) Panoramic archive generation method and system based on employee information integration
Abb et al. Process-related user interaction logs: State of the art, reference model, and object-centric implementation
CN119474371A (en) A method for archive classification management
CN118227556A (en) Computer information management method and system based on artificial intelligence
CN113849591B (en) Knowledge graph-based data organization storage method, system and storage medium
CN117435792A (en) Distributed data braiding processing architecture
Lumpova et al. Finding a conceptual approach to developing an architecture of general-purpose services for economic researches
CN118964745B (en) Government affair big data recommendation method, system, storage medium and electronic equipment
Russom The Data Catalog’s Role in the Digital Enterprise
Jonathan et al. Big data project success factors: A systematic literature review
CN119202133A (en) Shared dimension optimization method, device, equipment and storage medium for data warehouse model
Felderer et al. A quality analysis procedure for request data of ERP systems
CN113918677A (en) Data processing method and device based on knowledge graph automation link layering and computer readable medium
Moturi et al. A Case for Judicial Data Warehousing and Data Mining in Kenya

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20240223

WW01 Invention patent application withdrawn after publication