CN116128827A - Intelligent evaluation method, device, equipment and computer readable storage medium - Google Patents
Intelligent evaluation method, device, equipment and computer readable storage medium Download PDFInfo
- Publication number
- CN116128827A CN116128827A CN202211732768.9A CN202211732768A CN116128827A CN 116128827 A CN116128827 A CN 116128827A CN 202211732768 A CN202211732768 A CN 202211732768A CN 116128827 A CN116128827 A CN 116128827A
- Authority
- CN
- China
- Prior art keywords
- dynamic range
- scoring
- model
- high dynamic
- interest
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30168—Image quality inspection
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Databases & Information Systems (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Multimedia (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
本发明提供一种基于深度神经网络的高动态范围图像评价方法,所述评价方法包括:通过深度卷神经网络对所述高动态范围图像中的场景识别和兴趣区域划分;将所述场景识别和兴趣区域划分后的所述高动态范围图像形成训练数据集;通过构建数据分析模型和打分模型,共享所述训练数据集;通过移动视觉应用的高效卷积神经网络作为基础,完成所述数据分析模型训练;所述打分模型则根据所述数据分析模型输出的所述场景识别信息和所述兴趣区域完成高动态范围图像的打分将收集的验证集图像依次送入训练好的所述分析模型和打分模型中,核验感兴趣区域的划分及最终打分与预期的符合度,以提高无参考HDR图像质量的评价效果。
The present invention provides a high dynamic range image evaluation method based on a deep neural network. The evaluation method includes: identifying a scene in the high dynamic range image and dividing an area of interest through a deep convolutional neural network; combining the scene identification and The high dynamic range images after the regions of interest are divided form a training data set; the training data set is shared by constructing a data analysis model and a scoring model; the data analysis is completed based on the efficient convolutional neural network of the mobile vision application Model training; the scoring model completes the scoring of the high dynamic range image according to the scene recognition information output by the data analysis model and the region of interest, and sends the collected verification set images into the trained analysis model and In the scoring model, the division of the region of interest and the conformity of the final scoring to the expectation are verified to improve the evaluation effect of the non-reference HDR image quality.
Description
技术领域technical field
本发明涉及一种图像质量评价技术领域,尤其涉及一种基于深度卷积神经网络的对无参考高动态范围图像的评价方法、设备、装置以及计算机可读存储介质。The present invention relates to the technical field of image quality evaluation, in particular to an evaluation method, equipment, device and computer-readable storage medium for a reference-free high dynamic range image based on a deep convolutional neural network.
背景技术Background technique
高动态范围(High Dynamic Range,HDR)成像技术的发展改变了传统的图像显示方式,其能够带给人们更真实的视觉体验。然而图像在采集、压缩、存储和传输过程中,不可避免地会引入降质。图像质量直接反映了用户的体验质量,降低甚至彻底杜绝降质是图像消费者的共同愿望,对高动态范围图像的质量评价进行研究能够有效帮助解决一些降质问题。The development of high dynamic range (High Dynamic Range, HDR) imaging technology has changed the traditional way of image display, which can bring people a more realistic visual experience. However, in the process of image acquisition, compression, storage and transmission, degradation will inevitably be introduced. Image quality directly reflects the quality of user experience, and it is the common desire of image consumers to reduce or even completely eliminate degradation. Research on the quality evaluation of high dynamic range images can effectively help solve some degradation problems.
图像质量评价从方法上可分为主观质量评价方法和客观质量评价方法,主观质量评价方法耗时多、费用高、难以操作,因此,需要建立合适的客观质量评价模型对图像质量进行预测。高动态范围图像的客观质量评价方法可分为基于低动态范围(Low DynamicRange,LDR)图像质量评价的高动态范围图像质量评价方法和针对高动态范围图像设计的质量评价方法。传统的低动态范围图像质量评价方法,如MSE(PSNR)、SSIM、MSSIM、VIF、VSNR等,这些方法不能直接用于高动态范围图像的质量评价,因为这些方法都是在假定图像的像素值和人眼感知的像素值满足线性关系的条件下设计的,而这在高动态范围图像中并不成立。基于低动态范围图像质量评价的高动态范围图像质量评价方法需要先对图像进行log运算或PU编码预处理,使得图像的像素值和人眼感知的像素值大致满足线性关系,再使用低动态范围图像的质量评价方法,该方法经过log运算或PU编码预处理后,虽然评价效果有了大幅提升,但是有待进一步提高,因为它们不能体现高动态范围图像在动态范围、对比度提高之后,具有的与低动态范围图像不同的视觉注意力机制。Image quality evaluation can be divided into subjective quality evaluation method and objective quality evaluation method in terms of methods. The subjective quality evaluation method is time-consuming, expensive, and difficult to operate. Therefore, it is necessary to establish a suitable objective quality evaluation model to predict image quality. The objective quality evaluation methods of high dynamic range images can be divided into high dynamic range image quality evaluation methods based on low dynamic range (Low Dynamic Range, LDR) image quality evaluation and quality evaluation methods designed for high dynamic range images. Traditional low dynamic range image quality evaluation methods, such as MSE (PSNR), SSIM, MSSIM, VIF, VSNR, etc., these methods cannot be directly used for high dynamic range image quality evaluation, because these methods are based on the assumption that the pixel value of the image It is designed under the condition that the pixel value perceived by the human eye satisfies a linear relationship, which is not true in high dynamic range images. The high dynamic range image quality evaluation method based on low dynamic range image quality evaluation needs to perform log operation or PU encoding preprocessing on the image first, so that the pixel value of the image and the pixel value perceived by the human eye roughly satisfy the linear relationship, and then use the low dynamic range Image quality evaluation method, after log operation or PU coding preprocessing, although the evaluation effect has been greatly improved, it needs to be further improved, because they cannot reflect the high dynamic range image after the dynamic range and contrast are improved. Different visual attention mechanisms for low dynamic range images.
目前,针对高动态范围图像设计的质量评价方法只有几种,典型的有Mantiuk等提出的视觉差异预测方法HDR-VDP-2及其权重优化的HDR-VDP-2.2方法,以及针对高动态范围视频质量评价设计的HDR-VQM方法。这几种方法都很好的模拟了人眼对高动态范围图像的高亮度范围的感知,得到了广泛地应用。但是,这几种方法都是全参考的高动态范围图像质量评价方法,需要参考图像和失真图像,然而在实际应用中,参考图像往往是不可获取或不存在的。目前,对无参考高动态范围图像客观质量评价方法的研究还比较缺乏。因此,对无参考高动态范围图像的质量进行准确评价是一个迫切需要解决的问题。At present, there are only several quality evaluation methods designed for high dynamic range images, typically the visual difference prediction method HDR-VDP-2 proposed by Mantiuk et al. HDR-VQM method for quality assessment design. These methods have well simulated the perception of the human eye on the high brightness range of the high dynamic range image, and have been widely used. However, these methods are full-reference high dynamic range image quality evaluation methods, which require reference images and distorted images. However, in practical applications, reference images are often unavailable or non-existent. At present, the research on the objective quality evaluation method of non-reference high dynamic range images is still relatively lacking. Therefore, accurate evaluation of the quality of reference-free high dynamic range images is an urgent problem to be solved.
优秀的高动态范围图像客观质量评价方法应能够很好地反映人眼视觉感知特性,人眼对图像失真的感知是色度失真和亮度失真共同作用的结果,上述针对高动态范围图像设计的全参考客观质量评价方法都只考虑了亮度失真,忽略了色度失真,这与人眼视觉感知不符,尤其对色彩鲜明的高动态范围图像。An excellent objective quality evaluation method for high dynamic range images should be able to well reflect the characteristics of human visual perception. The reference objective quality evaluation methods only consider brightness distortion and ignore chromaticity distortion, which is inconsistent with human visual perception, especially for high dynamic range images with vivid colors.
本发明涉及一种图像质量评价方法,旨在解决无参考高动态范围HDR图像的质量评价问题;The invention relates to an image quality evaluation method, aiming to solve the problem of quality evaluation of HDR images without reference to high dynamic range;
随着手机影像技术的快速发展,人们对于图像质量的要求越来越高,对于图像动态范围的要求也越来越高,当然,针对图像质量评价方法也越来越多样,但如何基于人类视觉对图像进行评价仍然是个难点;With the rapid development of mobile phone imaging technology, people have higher and higher requirements for image quality, and higher and higher requirements for image dynamic range. Of course, there are more and more methods for image quality evaluation, but how to Evaluating images is still a challenge;
HDR图像可以在同一张图像中同时展示高亮区域和低亮区域,曝光显示范围更加宽广,更符合人类视觉特征。HDR可以很好地解决显示问题,使图像细节更加丰富。因此,要保证系统能够提供良好的视觉体验,对HDR图像质量的评价至关重要。HDR images can display high-brightness areas and low-brightness areas in the same image at the same time, and the exposure display range is wider, which is more in line with human visual characteristics. HDR can solve the display problem very well, making the image details richer. Therefore, to ensure that the system can provide a good visual experience, the evaluation of HDR image quality is very important.
人眼主观评价虽然是图像质量的最终标准,但是要评价大量的图像数据过于浪费时间且枯燥繁琐,没有办法成为主流快速评价的方法;Although the subjective evaluation of the human eye is the ultimate standard of image quality, it is too time-consuming and tedious to evaluate a large amount of image data, and there is no way to become a mainstream rapid evaluation method;
根据图像客观评价方法对参考图像的依赖程度,客观质量评价方法可分为全参考、半参考和无参考三种图像质量评价方法。随着研究的不断深入,全参考质量评价方法的准确性越来越高,但是这种方法需要大量的无失真参考图像,对于快速评估一组图像的质量很难实现。因此,无参考图像质量评价方法不需要无失真的参考图像的任何信息,仅根据失真图像就可以评估失真图像的质量,因此已成为机器视觉和图像处理领域的一个研究热点。According to the dependence degree of the image objective evaluation method on the reference image, the objective quality evaluation method can be divided into three image quality evaluation methods: full reference, semi-reference and no reference. With the deepening of research, the accuracy of the full-reference quality assessment method is getting higher and higher, but this method requires a large number of undistorted reference images, which is difficult to quickly evaluate the quality of a group of images. Therefore, the no-reference image quality assessment method does not require any information of the undistorted reference image, and can evaluate the quality of the distorted image only based on the distorted image, so it has become a research hotspot in the field of machine vision and image processing.
发明内容Contents of the invention
本发明的目的在于提供一种基于深度神经网络的高动态范围图像评价方法、设备、装置、及计算机可读存储介质用以提高HDR的评价质量和提高评价效率。The object of the present invention is to provide a high dynamic range image evaluation method, equipment, device, and computer-readable storage medium based on a deep neural network to improve the evaluation quality and efficiency of HDR.
第一方面,本发明实施例提供一种基于深度神经网络的高动态范围图像评价方法,其特征在于,所述评价方法包括:通过深度卷神经网络对所述高动态范围图像中的场景识别和兴趣区域划分;将所述场景识别和兴趣区域划分后的所述高动态范围图像形成训练数据集;通过构建数据分析模型和打分模型,共享所述训练数据集;通过移动视觉应用的高效卷积神经网络作为基础,完成所述数据分析模型训练;所述数据分析模型根据输入的数据进行所述场景识别信息的分析和所述兴趣区域的抽取;所述打分模型则根据所述数据分析模型输出的所述场景识别信息和所述兴趣区域完成高动态范围图像的打分;将收集的验证集图像依次送入训练好的所述分析模型和打分模型中,核验感兴趣区域的划分及最终打分与预期的符合度。In the first aspect, an embodiment of the present invention provides a high dynamic range image evaluation method based on a deep neural network, wherein the evaluation method includes: recognizing and Region of interest division; the high dynamic range image after the scene recognition and region of interest division forms a training data set; by building a data analysis model and a scoring model, sharing the training data set; through efficient convolution of mobile vision applications The neural network is used as the basis to complete the training of the data analysis model; the data analysis model analyzes the scene recognition information and extracts the region of interest according to the input data; the scoring model is output according to the data analysis model The scene recognition information and the region of interest complete the scoring of the high dynamic range image; the collected verification set images are sent to the trained analysis model and scoring model in turn, and the division of the region of interest and the final scoring and scoring are verified. expected compliance.
本发明实施例提供的扫码设备的有益效果在于:本发明旨在排除了图像上其它诸如色彩、构图等对动态范围自动评价的影响,相较于人工的方式进行HDR图像动态范围打分的方式,使用深度学习的方式完成图像数据分析及效果打分能有效的提升图像质量评价的效率并降低图像评价的成本,同时使用深度学习的方式构建标准打分模型能有效避免人工打分过程中容易出现的主观印象及效果偏见,大大的提升了评价的质量及客观化。The beneficial effect of the code scanning device provided by the embodiment of the present invention is that the present invention aims to eliminate the influence of other images such as color and composition on the automatic evaluation of the dynamic range, compared with the manual way of scoring the dynamic range of HDR images , the use of deep learning to complete image data analysis and effect scoring can effectively improve the efficiency of image quality evaluation and reduce the cost of image evaluation. At the same time, using deep learning to build a standard scoring model can effectively avoid subjectivity that is easy to occur in the manual scoring process. Impression and effect bias greatly improve the quality and objectivity of evaluation.
相较于传统的使用一个模型进行HDR图像动态范围评价的深度学习模型,其容易受到来自色彩、畸变、构图等其它图像特征的影响,造成动态范围评价造成影响,导致动态范围评价结果引入了其它噪声元素,最终影响动态范围评价结果。同时人眼对不同场景的动态范围评价标准相差巨大,对于不同场景的评价差异较大。Compared with the traditional deep learning model that uses one model to evaluate the dynamic range of HDR images, it is easily affected by other image features such as color, distortion, composition, etc., causing the dynamic range evaluation to be affected, resulting in the introduction of other dynamic range evaluation results. Noise elements ultimately affect the dynamic range evaluation results. At the same time, the evaluation criteria of the human eye for the dynamic range of different scenes are very different, and the evaluation of different scenes is quite different.
相较于前述两种方案,本发明将数据特征的采集按场景分类,使用前置数据处理模型完成数据特征的抽取及场景信息的获取;通过前置特征采集模块的输出的场景信息及特征信息作为打分模型的输入,有效的避免了色彩、构图等其它噪声信息对动态范围评价的影响,同时由于打分模型区分了场景信息,因此其对场景不敏感,评价更为客观。Compared with the above two schemes, the present invention classifies the collection of data features according to the scene, and uses the pre-data processing model to complete the extraction of data features and the acquisition of scene information; the scene information and feature information output by the pre-feature collection module As the input of the scoring model, it effectively avoids the influence of other noise information such as color and composition on the dynamic range evaluation. At the same time, because the scoring model distinguishes scene information, it is not sensitive to the scene and the evaluation is more objective.
在进一步的实施例里提供的评价方法,所述通过移动视觉应用的高效卷积神经网络作为基础,完成所述数据分析模型的训练,包括:述数据分析模型引入注意力模块,并使用hard_s i gmo id替换ReLU函数作为激活函数,所述注意力模块捕捉训练数据集中所述高动态范围图像的全局信息特征和局部信息特征之间的联系。In the evaluation method provided in a further embodiment, the high-efficiency convolutional neural network of the mobile vision application is used as a basis to complete the training of the data analysis model, including: introducing the attention module into the data analysis model, and using hard_s i gmo id replaces the ReLU function as an activation function, and the attention module captures the connection between the global information features and local information features of the high dynamic range images in the training data set.
在进一步的实施例里提供的评价方法,所述注意力模块由第一卷积层、第二卷积层、池化层、归一化层、hard_s i gmo i d激活函数、第三卷积层构成。In the evaluation method provided in a further embodiment, the attention module consists of a first convolutional layer, a second convolutional layer, a pooling layer, a normalization layer, a hard_s igmo id activation function, and a third convolutional layer layer composition.
在一些实施例里提供的评价方法,所述打分模型与所述数据分析模型一致。In the evaluation method provided in some embodiments, the scoring model is consistent with the data analysis model.
在其他一些实施例里提供的评价方法,包括:构建初始训练集,所述初始训练集包含不同智能移动终端采集的不同曝光等级的所述高动态范围图像;将所述初始训练集针对高动态范围图像的兴趣区域分别进行不可复制的打分标注。The evaluation method provided in some other embodiments includes: constructing an initial training set, the initial training set includes the high dynamic range images of different exposure levels collected by different smart mobile terminals; Regions of interest in range images are scored and marked separately, which cannot be reproduced.
在还有一些的实施例里提供的评价方法,包括:通过使用mobi l eNet V3模型构建数据分析模型,对所述初始训练集进行训练。The evaluation method provided in some other embodiments includes: constructing a data analysis model by using the mobileNet V3 model, and training the initial training set.
在可选的一些实施例里提供的评价方法,通过mobi l eNet V3模型构建打分模型,对所述初始训练集进行训练。In the evaluation method provided in some optional embodiments, the scoring model is constructed through the mobileNet V3 model, and the initial training set is trained.
在一种可能的实现方案中,第二方面本发明创造提供了一种基于深度神经网络的高动态范围图像评价装置,包括:In a possible implementation solution, the second aspect of the present invention provides a high dynamic range image evaluation device based on a deep neural network, including:
训练数据集,包含不同智能移动终端采集的不同曝光等级的所述高动态范围图像;数据分析模块,对所述高动态范围图像中的场景识别和兴趣区域划分;The training data set includes the high dynamic range images of different exposure levels collected by different smart mobile terminals; the data analysis module is used for scene recognition and interest area division in the high dynamic range images;
打分模块,对根据所述数据分析模型输出的所述场景识别信息和所述兴趣区域完成高动态范围图像的打分;A scoring module that completes the scoring of the high dynamic range image for the scene identification information and the region of interest output according to the data analysis model;
所述数据集供所述数据分析模型和打分模型共享综合数据验证模块,收集验证集图像,将所述验证集图像依次送入训练好的所述分析模型和打分模型中,核验感兴趣区域的划分及最终打分与预期的符合度。The data set is shared by the data analysis model and the scoring model with a comprehensive data verification module, collecting images of the verification set, sending the images of the verification set into the trained analysis model and scoring model in turn, and checking the area of interest. The degree of conformity between division and final scoring and expectations.
在一种可能的实现方案中,第三方面本发明创造提供了一种智能评价设备,其特征在于,包括处理器、存储器以及存储在所述存储器内的计算机程序,所述处理器执行所述计算机程序,以实现如权利要求1至7中任意一项所述的评价方法。In a possible implementation solution, the third aspect of the present invention provides an intelligent evaluation device, which is characterized in that it includes a processor, a memory, and a computer program stored in the memory, and the processor executes the A computer program to realize the evaluation method according to any one of claims 1 to 7.
第四方面,本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-7中任一项所述评价方法的步骤。In a fourth aspect, an embodiment of the present invention also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, any one of claims 1-7 is implemented. The steps of the evaluation method.
附图说明Description of drawings
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings that need to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For Those of ordinary skill in the art can also obtain other drawings based on these drawings without making creative efforts.
图1为本发明实施例提供的一种HDR分析和打分模型双模型流程示意图;FIG. 1 is a schematic flow diagram of a dual-model HDR analysis and scoring model provided by an embodiment of the present invention;
图2为本发明实施例提供的一种Squeeze-and-exc itat i on模型框图示意图;Fig. 2 is a schematic diagram of a block diagram of a Squeeze-and-excitati on model provided by an embodiment of the present invention;
图3为本发明实施例提供的一种评价装置模块示意图;Fig. 3 is a schematic diagram of an evaluation device module provided by an embodiment of the present invention;
图4为本发明实施例提供的一种白天感兴趣区域划分示意图;Fig. 4 is a schematic diagram of dividing a daytime region of interest according to an embodiment of the present invention;
图5为本发明实施例提供的一种夜晚感兴趣区域划分示意图;Fig. 5 is a schematic diagram of dividing an area of interest at night according to an embodiment of the present invention;
图6为本发明实施例提供的一种电子设备示意图;FIG. 6 is a schematic diagram of an electronic device provided by an embodiment of the present invention;
图7为本发明实施例提供的一种评价装置的硬件配置框图示意图。Fig. 7 is a schematic diagram of a hardware configuration block diagram of an evaluation device provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。其中,在本发明实施例的描述中,以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请以下各实施例中,“至少一个”、“一个或多个”是指一个或两个以上(包含两个)。术语“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。The technical solutions in the embodiments of the present invention will be described below with reference to the drawings in the embodiments of the present invention. Wherein, in the description of the embodiments of the present invention, the terms used in the following embodiments are only for the purpose of describing specific embodiments, and are not intended to limit the application. As used in the specification and appended claims of this application, the singular expressions "a", "the", "above", "the" and "this" are intended to also include, for example, "a or more" unless the context clearly indicates otherwise. It should also be understood that in the following embodiments of the present application, "at least one" and "one or more" refer to one or more than two (including two). The term "and/or" is used to describe the association relationship of associated objects, indicating that there may be three types of relationships; for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists alone, Wherein A and B can be singular or plural. The character "/" generally indicates that the contextual objects are an "or" relationship.
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。术语“连接”包括直接连接和间接连接,除非另外说明。“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。Reference to "one embodiment" or "some embodiments" or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application. Thus, appearances of the phrases "in one embodiment," "in some embodiments," "in other embodiments," "in other embodiments," etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean "one or more but not all embodiments" unless specifically stated otherwise. The terms "including", "comprising", "having" and variations thereof mean "including but not limited to", unless specifically stated otherwise. The term "connected" includes both direct and indirect connections, unless otherwise stated. "First" and "second" are used for descriptive purposes only, and should not be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
在本发明实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性地”或者“例如”等词旨在以具体方式呈现相关概念。In the embodiments of the present invention, words such as "exemplarily" or "for example" are used as examples, illustrations or descriptions. Any embodiment or design solution described as "exemplary" or "for example" in the embodiments of the present invention shall not be interpreted as being more preferred or more advantageous than other embodiments or design solutions. Rather, the use of words such as "exemplarily" or "for example" is intended to present related concepts in a concrete manner.
本发明实施例中所提供的评价方法,如图1所示,一种基于深度神经网络的高动态范围图像评价方法,所述评价方法包括:通过深度卷神经网络对所述高动态范围图像中的场景识别和兴趣区域划分;将所述场景识别和兴趣区域划分后的所述高动态范围图像形成训练数据集;通过构建数据分析模型和打分模型,共享所述训练数据集;通过移动视觉应用的高效卷积神经网络作为基础,完成所述数据分析模型训练;所述数据分析模型根据输入的数据进行所述场景识别信息的分析和所述兴趣区域的抽取;所述打分模型则根据所述数据分析模型输出的所述场景识别信息和所述兴趣区域完成高动态范围图像的打分。The evaluation method provided in the embodiment of the present invention, as shown in Figure 1, is a high dynamic range image evaluation method based on a deep neural network. Scene recognition and interest region division; the high dynamic range image after the scene recognition and interest region division forms a training data set; by building a data analysis model and a scoring model, share the training data set; through mobile vision applications The high-efficiency convolutional neural network is used as the basis to complete the training of the data analysis model; the data analysis model analyzes the scene recognition information and extracts the region of interest according to the input data; the scoring model is based on the The scene identification information and the region of interest output by the data analysis model complete the scoring of the high dynamic range image.
在可选的评价方法实施例子中,由于HDR图像着重于图像动态范围的评判,因此对于使用整副图像进行训练的方式容易引入色彩、畸变、构图等其它因素对动态范围评判的影响,由前述模式识别及感兴趣区域划分模型所生成的场景信息及ROI区域作为输入,则可有效的避免除ROI区域以外无关图像元素对动态范围评判的影响。In the implementation example of the optional evaluation method, since the HDR image focuses on the evaluation of the dynamic range of the image, it is easy to introduce the influence of color, distortion, composition and other factors on the evaluation of the dynamic range for the method of using the whole image for training. The scene information and ROI area generated by the pattern recognition and ROI division model are used as input, which can effectively avoid the influence of irrelevant image elements other than the ROI area on the dynamic range evaluation.
采用人工方法对失真的图像质量进行主观评测具有效率低、成本高的缺点,难以准确、实时、高效的图像质量评估,因此研究客观图像的主观评价算法是必然趋势。随着人工智能的发展,利用计算机模拟人类视觉系统的感知过程提供了可能。Using artificial methods to subjectively evaluate distorted image quality has the disadvantages of low efficiency and high cost, and it is difficult to evaluate image quality accurately, real-time, and efficiently. Therefore, it is an inevitable trend to study subjective evaluation algorithms for objective images. With the development of artificial intelligence, it is possible to use computers to simulate the perception process of human visual system.
深度神经网络的最大优点是将图像特征提取和回归过程整合在一个优化框架中,真正实现了端到端的学习。由于人类对于不同场景的高动态图像的评价标准有所差异,同时对于高动态图像,人类的关注点及区域也有所差异;因此使用Mob i l eNet V3来完成图像的场景识别及ROI区域的划分,并迭代使用Mob i l eNet V3模型来进行图像打分模型的训练。The biggest advantage of the deep neural network is that it integrates the image feature extraction and regression process in an optimized framework, and truly realizes end-to-end learning. Because humans have different evaluation standards for high dynamic images in different scenes, and for high dynamic images, human concerns and areas are also different; therefore, Mobil eNet V3 is used to complete image scene recognition and ROI area division , and iteratively use the Mobil eNet V3 model to train the image scoring model.
感兴趣区域训练模型如图2所示;首先使用1*1的卷积层进行升维处理,在完成卷积后会有批归一化(Batch Norma l i ze,BN)及hard_s i gmo i d激活函数;第二层为3*3大小的Depthwi se(DW)卷积,卷积层后仍然连接有BN归一化层及hard_s i gmo i d激活函数;最后一个卷积层为1*1的卷积层,起到降维作用。最终该神经网络输出高低光ROI区域及场景类型,其中场景类型根据白天及夜晚划分成两大类,并根据模式识别区分出不同的场景信息,诸如:天空、建筑、绿植、人物等等。The training model of the region of interest is shown in Figure 2; firstly, the 1*1 convolutional layer is used for dimension enhancement processing, and after the convolution is completed, there will be batch normalization (Batch Normalization, BN) and hard_s i gmo i d activation function; the second layer is a 3*3 Depthwise (DW) convolution, and the BN normalization layer and hard_s i gmo i d activation function are still connected after the convolution layer; the last convolution layer is 1* The convolutional layer of 1 plays a role in dimensionality reduction. Finally, the neural network outputs high and low light ROI areas and scene types. The scene types are divided into two categories according to day and night, and different scene information is distinguished according to pattern recognition, such as: sky, buildings, green plants, people, etc.
如图2所示,100-训练集图像;200-1*1的卷积层;300-3*3Depthwi se(DW)卷积层;400-池化层;500-批归一化(Batch Norma l i ze,BN);600-hard_s i gmo i d激活函数;700-1*1卷积层,起降维作用;800-Squeeze-and-exc i tat i on(SE)模块。As shown in Figure 2, 100-training set image; 200-1*1 convolutional layer; 300-3*3Depthwise (DW) convolutional layer; 400-pooling layer; 500-batch normalization (Batch Norma l i ze, BN); 600-hard_s i gmo i d activation function; 700-1*1 convolutional layer for dimensionality reduction; 800-Squeeze-and-exc i tat i on (SE) module.
如图4所示,R框为模型识别出的高光区域,B框为模型识别出的暗部区域。在完成场景识别后,即人工完成相应的场景及ROI区域HDR效果的打分。自此即可完成HDR图像自动打分功能的数据准备。As shown in Figure 4, the R box is the highlight area identified by the model, and the B box is the dark area identified by the model. After the scene recognition is completed, the scoring of the corresponding scene and the HDR effect of the ROI area is manually completed. From then on, the data preparation for the automatic scoring function of HDR images can be completed.
再如图5所示,B框为以上模型识别出暗部区域,R框为一个一个路灯为模型识别出的高光区域。在完成场景识别后,即人工完成相应的场景及ROI区域HDR效果的打分。自此即可完成HDR图像自动打分功能的数据准备。As shown in Figure 5, the B box is the dark area identified by the above model, and the R box is the highlight area identified by the model one by one. After the scene recognition is completed, the scoring of the corresponding scene and the HDR effect of the ROI area is manually completed. From then on, the data preparation for the automatic scoring function of HDR images can be completed.
训练集图像采集方法:使用不同档次的拍摄设备,采集不同曝光等级的图像,来保障数据集中环境的多样性。Training set image collection method: Use different grades of shooting equipment to collect images with different exposure levels to ensure the diversity of the environment in the data set.
人工标记阶段:选择10位对感兴趣区域划分及划分的人员,为获得更全面客观的评价,人员的组成包括:3名图像评审专业人员,3名摄影师,2名图像算法相关人员,2名社会招募人员。人工打分采用截尾均值法,即去掉最高分和最低分后求均值。Manual marking stage: select 10 persons who divide and divide the area of interest. In order to obtain a more comprehensive and objective evaluation, the composition of the personnel includes: 3 image review professionals, 3 photographers, 2 image algorithm related personnel, 2 social recruiters. Manual scoring adopts the censored mean method, that is, removes the highest score and the lowest score and calculates the average.
打分模型结构同样使用Mob i l eNet V3,如图2所示,并且可以与数据分析模型共用训练集;The scoring model structure also uses Mob i l eNet V3, as shown in Figure 2, and can share the training set with the data analysis model;
模型训练完成后,收集验证集图像,将验证集图像依次送入训练好的分析模型和打分模型中,核验感兴趣区域的划分及最终打分是否符合预期;After the model training is completed, collect the verification set images, send the verification set images to the trained analysis model and scoring model in turn, and check whether the division of the region of interest and the final scoring meet expectations;
在一些可选的实施例中,使用深度卷积神经(Deep convo l ut i ona l neuralnetworks,DCNN)网络进行场景识别及兴趣区域划分。由于人眼在不同场景下对不同图像的动态范围感知不同,通过使用DCNN网络识别出场景信息及感兴趣(regi on of interest,RO I)区域,使得评价模型的输入更加具体,排除了图像上其它诸如色彩、构图等对动态范围自动评价的影响。In some optional embodiments, a deep convolutional neural network (Deep convolutional neural networks, DCNN) is used for scene recognition and region-of-interest division. Since the human eye perceives the dynamic range of different images differently in different scenes, by using the DCNN network to identify the scene information and the region of interest (ROI), the input of the evaluation model is more specific, and the image on the image is excluded. Other effects such as color, composition, etc. on the automatic evaluation of dynamic range.
在另一些实施例中,组合使用初期训练数据集;通过人工标注的方式对图像上的高光、低亮区域进行划分及标注,形成感兴趣区域划分数据集,通过人工对HDR图像打分,完成打分数据集的建立;两者可共享图像数据源。值得一提的是,人工标注的方式是独一无二的,不可复制的标注方式。In other embodiments, the initial training data set is used in combination; the high light and low light areas on the image are divided and marked by manual labeling to form a data set for dividing the region of interest, and the scoring is completed by manually scoring the HDR image The establishment of the data set; the two can share the image data source. It is worth mentioning that the manual labeling method is unique and cannot be copied.
在一些其他实施例中,数据分析模型及打分模型是相互独立的,但二者又是相辅相成。数据分析模型根据输入的数据完成场景信息的分析及ROI区域的抽取;而打分模型则根据数据分析模型输出的ROI及场景信息完成图像的打分,两者可共享训练数据集,且可以同时进行训练,互不干扰。In some other embodiments, the data analysis model and the scoring model are independent of each other, but they complement each other. The data analysis model completes the analysis of the scene information and the extraction of the ROI area according to the input data; while the scoring model completes the scoring of the image according to the ROI and scene information output by the data analysis model. The two can share the training data set and can be trained at the same time , do not interfere with each other.
可选地实施例里,使用Mob i l eNetV3作为基础,完成数据分析及打分模型的训练。其中Mob i l eNetV3引入了SE(Squeeze-and-exc i tat i on)模块,如图2所示,并使用hard_s i gmo i d替换ReLU函数作为激活函数。SE模块类似于一个注意力模块,能够灵活的捕捉全局信息和局部信息之间的联系。它的目的就是让模型获得需要重点关注的目标区域,并对该部分投入更大的权重,突出显著有用特征,抑制和忽略无关特征,其中SE主要有以下步骤:In an optional embodiment, use MobileNetV3 as a basis to complete data analysis and scoring model training. Among them, Mob i l eNetV3 introduces the SE (Squeeze-and-exci tat i on) module, as shown in Figure 2, and uses hard_s igmo i d to replace the ReLU function as the activation function. The SE module is similar to an attention module, which can flexibly capture the connection between global information and local information. Its purpose is to let the model obtain the target area that needs to be focused on, and put more weight on this part, highlight the salient and useful features, suppress and ignore irrelevant features, and SE mainly has the following steps:
全局平局池化,将通过第一层卷积后得到的多为数据的每个通道上对应的空间信息压缩到对应通道的一个常量,此时一个像素即代表了一个通道,成为一个向量;将上一步得到的向量输入两个全连接层,并通过hard_s i gmo i d激活函数,得到权重值;根据上一步得到的权重表对特征进行操作,即可完成特征重点程度输出;Global average pooling, which compresses the corresponding spatial information on each channel of mostly data obtained after the first layer of convolution to a constant of the corresponding channel. At this time, a pixel represents a channel and becomes a vector; The vector obtained in the previous step is input into two fully connected layers, and the weight value is obtained through the hard_s i gmo i d activation function; the feature is operated according to the weight table obtained in the previous step to complete the output of the feature emphasis degree;
在可选的实施例评价装置中,如图3所示,一种基于深度神经网络的高动态范围图像评价装置1000,其特征在于,包括:In an optional embodiment evaluation device, as shown in Figure 3, a high dynamic range image evaluation device 1000 based on a deep neural network is characterized in that it includes:
训练数据集100,包含不同智能移动终端采集的不同曝光等级的所述高动态范围图像;数据分析模块120,对所述高动态范围图像中的场景识别和兴趣区域划分;The
打分模块130,对根据所述数据分析模型输出的所述场景识别信息和所述兴趣区域完成高动态范围图像的打分;The
所述数据集供所述数据分析模型和打分模型共享;The data set is shared by the data analysis model and the scoring model;
综合数据验证模块150,收集验证集图像,将所述验证集图像依次送入训练好的所述分析模型和打分模型中,核验感兴趣区域的划分及最终打分与预期的符合度。The comprehensive
图6是本申请实施例的智能测试装置的一示例的示意图。如图6所示,该实施例的电子设备900包括:处理器910、存储器920以及存储在所述存储器920中并可在所述处理器910上运行的计算机程序930。所述处理器910执行所述计算机程序930时实现前述评价方法实施例中的步骤。Fig. 6 is a schematic diagram of an example of an intelligent testing device according to an embodiment of the present application. As shown in FIG. 6 , the
在一些实施例中,图7示出了智能评价设备30的硬件配置框图。智能扫码设备30包括调谐解调器310、移动通信模块320、无线通信模块330、采集器340、外部装置接口350、控制器360、显示器370、音频输出接口380、存储器、供电电源、用户接口中的至少一种。In some embodiments, FIG. 7 shows a hardware configuration block diagram of the
在又一些实施例中,调谐解调器310通过天线感应到电磁波,将感应到的电磁波转换为电信号,再通过电路的处理和变换,最终转为声音,例如通过无线接收方式接收广播信号,以及从广播信号中解调出音频信号。In some other embodiments, the tuner and
移动通信模块320可以提供应用在智能扫码设备30上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块320可以包括至少一个滤波器、开关、功率放大器、低噪声放大器(low noise amplifier,LNA)等。移动通信模块320可以由天线接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调谐解调器310进行解调。移动通信模块320还可以对经调谐解调器310调制后的信号放大,经天线转为电磁波辐射出去。在一些实施例中,移动通信模块320的至少部分功能模块可以被设置于控制器360中。在一些实施例中,移动通信模块320的至少部分功能模块可以与控制器360的至少部分模块被设置在同一个器件中。The
无线通信模块330可以提供应用在智能扫码设备30上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络)、蓝牙(bluetooth,BT)、全球导航卫星系统(global navigation satellite system,GNSS)、调频(frequency modulation,FM)、近距离无线通信技术(near field communication,NFC)、红外技术(infrared,IR)等无线通信的解决方案。无线通信模块330可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块330经由天线接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到控制器360。无线通信模块330还可以从控制器360接收待发送的信号,对其进行调频,放大,经天线转为电磁波辐射出去。The
在其它一些实施例中,采集器340用于采集外部环境或与外部交互的信号。例如,采集器340包括光接收器,用于采集环境光线强度的传感器;或者,采集器340包括图像采集器,如摄像头,可以用于采集外部环境场景、用户的属性或用户交互手势,再或者,采集器340包括声音采集器,如麦克风等,用于接收外部声音。In some other embodiments, the
在又一些实施例中,外部装置接口350可以包括但不限于如下:高清多媒体接口接口(HDMI)、模拟或数据高清分量输入接口(分量)、复合视频输入接口(CVBS)、USB输入接口(USB)、RGB端口等任一个或多个接口。也可以是上述多个接口形成的复合性的输入/输出接口。In some other embodiments, the
在其它一些实施例中,控制器360和调谐解调器310可以位于不同的分体设备中,即调谐解调器310也可在控制器360所在的主体设备的外置设备中,如外置机顶盒等。In some other embodiments, the
再一些实施例中,控制器360,通过存储在存储器上中各种软件控制程序,来控制显示设备的工作和响应用户的操作。控制器360控制智能扫码设备30的整体操作。例如:响应于接收到用于选择在显示器370上显示UI对象的用户命令,控制器360便可以执行与由用户命令选择的对象有关的操作。In some other embodiments, the
在一些可能的实施例中控制器360包括中央处理器(central processing unit,CPU),视频处理器,音频处理器,图形处理器(graphics processing unit,GPU),RAM,ROM,用于输入/输出的第一接口至第n接口,通信总线(Bus)等中的至少一种。In some possible embodiments, the
中央处理器,用于执行存储在存储器中操作系统和应用程序指令,以及根据接收外部输入的各种交互指令,来执行各种应用程序、数据和内容,以便最终显示和播放各种音视频内容。中央处理器,可以包括多个处理器。如,包括一个主处理器以及一个或多个子处理器。The central processing unit is used to execute operating system and application program instructions stored in the memory, and to execute various application programs, data and content according to various interactive instructions received from external inputs, so as to finally display and play various audio and video content . A central processing unit may include multiple processors. For example, including a main processor and one or more sub-processors.
在一些实施例中,图形处理器,用于产生各种图形对象,如:图标、操作菜单、以及用户输入指令显示图形等中的至少一种。图形处理器包括运算器,通过接收用户输入各种交互指令进行运算,根据显示属性显示各种对象;还包括渲染器,对基于运算器得到的各种对象,进行渲染,上述渲染后的对象用于显示在显示器上。In some embodiments, the graphics processor is configured to generate various graphic objects, such as at least one of icons, operation menus, and user input instruction display graphics. The graphics processor includes an arithmetic unit, which performs calculations by receiving various interactive instructions input by users, and displays various objects according to display attributes; it also includes a renderer, which renders various objects obtained based on the arithmetic unit, and the above-mentioned rendered objects are used to be displayed on the display.
在一些实施例中,视频处理器,用于将接收外部视频信号,根据输入信号的标准编解码协议,进行解压缩、解码、缩放、降噪、帧率转换、分辨率转换、图像合成等视频处理中的至少一种,可得到直接智能扫码设备30上显示或播放的信号。In some embodiments, the video processor is used to receive an external video signal and perform video decompression, decoding, scaling, noise reduction, frame rate conversion, resolution conversion, image synthesis, etc. according to the standard codec protocol of the input signal. At least one of the processing can obtain the signal displayed or played directly on the intelligent
在一些实施例中,视频处理器,包括解复用模块、视频解码模块、图像合成模块、帧率转换模块、显示格式化模块等中的至少一种。其中,解复用模块,用于对输入音视频数据流进行解复用处理。视频解码模块,用于对解复用后的视频信号进行处理,包括解码和缩放处理等。图像合成模块,如图像合成器,其用于将图形生成器根据用户输入或自身生成的图形用户界面信号,与缩放处理后视频图像进行叠加混合处理,以生成可供显示的图像信号。帧率转换模块,用于对转换输入视频帧率。显示格式化模块,用于将接收帧率转换后视频输出信号,改变信号以符合显示格式的信号,如输出RGB数据信号。In some embodiments, the video processor includes at least one of a demultiplexing module, a video decoding module, an image synthesis module, a frame rate conversion module, a display formatting module, and the like. Wherein, the demultiplexing module is used for demultiplexing the input audio and video data streams. The video decoding module is used to process the demultiplexed video signal, including decoding and scaling. An image compositing module, such as an image compositor, is used to superimpose and mix the graphics generator with the video image after zooming processing, according to the user input or the GUI signal generated by itself, so as to generate an image signal available for display. The frame rate conversion module is used for converting the input video frame rate. The display formatting module is used to convert the received frame rate to the video output signal, and change the signal to conform to the display format signal, such as outputting RGB data signal.
在一些实施例中,音频处理器,用于接收外部的音频信号,根据输入信号的标准编解码协议,进行解压缩和解码,以及降噪、数模转换、和放大处理等处理中的至少一种,得到可以在扬声器中播放的声音信号。In some embodiments, the audio processor is used to receive an external audio signal, perform decompression and decoding according to the standard codec protocol of the input signal, and perform at least one of processing such as noise reduction, digital-to-analog conversion, and amplification processing , to obtain a sound signal that can be played on a loudspeaker.
在一些实施例中,用户可在显示器370上显示的图形用户界面输入用户命令,则用户输入接口通过图形用户界面接收用户输入命令。或者,用户可通过输入特定的声音或手势进行输入用户命令,则用户输入接口通过传感器识别出声音或手势,来接收用户输入命令。In some embodiments, the user can input user commands on the graphical user interface displayed on the
在一些实施例中,“用户界面”,是应用程序或操作系统与用户之间进行交互和信息交换的介质接口,它实现信息的内部形式与用户可以接受形式之间的转换。图形用户界面是指采用图形方式显示的与计算机操作相关的用户界面。它可以是在电子设备的显示屏中显示的一个图标、窗口、控件等界面元素,其中控件可以包括图标、按钮、菜单、选项卡、文本框、对话框、状态栏、导航栏等可视的界面元素中的至少一种。In some embodiments, "user interface" is a medium interface for interaction and information exchange between an application program or an operating system and a user, and it realizes the conversion between the internal form of information and the form acceptable to the user. Graphical user interface refers to the user interface related to computer operation displayed in a graphical way. It can be an icon, window, control and other interface elements displayed on the display screen of an electronic device, where the control can include icons, buttons, menus, tabs, text boxes, dialog boxes, status bars, navigation bars, etc. At least one of the interface elements.
在一些实施例中,显示器370包括用于呈现画面的显示屏组件,以及驱动图像显示的驱动组件,用于接收源自控制器输出的图像信号,进行显示视频内容、图像内容以及菜单操控界面的组件以及用户操控界面等。In some embodiments, the
在其它一些实施例中,显示器370可为液晶显示器、有机电激光(organic lightemitting diode,OLED)显示器、以及投影显示器中的至少一种,还可以为一种投影装置和投影屏幕。In some other embodiments, the
在又一些实施例中,音频输出接口380包括扬声器、外接音响输出电子等。In still other embodiments, the
在一些实施例中,用户接口,为可用于接收控制输入的接口(如:显示设备本体上的实体按键,或其他等)。In some embodiments, the user interface is an interface that can be used to receive control input (such as: physical buttons on the display device body, or others).
在具体实现时,上述智能扫码设备30,可以为手机,平板电脑,手持计算机,个人电脑(personal computer,PC),蜂窝电话,个人数字助理(personal digital assistant,PDA),可穿戴式设备(如智能手表),智能家居设备(如电视机),车载电脑,游戏机,以及增强现实(augmented reality,AR)\虚拟现实(virtual reality,VR)设备等包含摄像头的电子产品,本实施例对智能扫码设备30的具体设备形态不做特殊限制。During specific implementation, the above-mentioned intelligent
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Through the description of the above embodiments, those skilled in the art can clearly understand that for the convenience and brevity of the description, only the division of the above-mentioned functional modules is used as an example for illustration. In practical applications, the above-mentioned functions can be allocated according to needs It is completed by different functional modules, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above. For the specific working process of the above-described system, device, and unit, reference may be made to the corresponding process in the foregoing method embodiments, and details are not repeated here.
在本发明实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。Each functional unit in each embodiment of the embodiment of the present invention may be integrated into one processing unit, or each unit may physically exist separately, or two or more units may be integrated into one unit. The above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the embodiment of the present invention is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage The medium includes several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) or processor to execute all or part of the steps of the methods described in the various embodiments of the present application. The aforementioned storage medium includes: flash memory, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk, and other various media capable of storing program codes.
以上所述,仅为本发明实施例的具体实施方式,但本发明实施例的保护范围并不局限于此,任何在本发明实施例揭露的技术范围内的变化或替换,都应涵盖在本发明实施例的保护范围之内。因此,本发明实施例的保护范围应以所述权利要求的保护范围为准。The above is only a specific implementation of the embodiment of the present invention, but the scope of protection of the embodiment of the present invention is not limited thereto, and any changes or replacements within the technical scope disclosed in the embodiment of the present invention shall be covered by this Within the protection scope of the invention embodiment. Therefore, the protection scope of the embodiments of the present invention should be determined by the protection scope of the claims.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211732768.9A CN116128827A (en) | 2022-12-30 | 2022-12-30 | Intelligent evaluation method, device, equipment and computer readable storage medium |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211732768.9A CN116128827A (en) | 2022-12-30 | 2022-12-30 | Intelligent evaluation method, device, equipment and computer readable storage medium |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN116128827A true CN116128827A (en) | 2023-05-16 |
Family
ID=86300343
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211732768.9A Pending CN116128827A (en) | 2022-12-30 | 2022-12-30 | Intelligent evaluation method, device, equipment and computer readable storage medium |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN116128827A (en) |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103297801A (en) * | 2013-06-09 | 2013-09-11 | 浙江理工大学 | No-reference video quality evaluation method aiming at video conference |
| CN109801256A (en) * | 2018-12-15 | 2019-05-24 | 华南理工大学 | A kind of image aesthetic quality appraisal procedure based on area-of-interest and global characteristics |
| WO2019114147A1 (en) * | 2017-12-15 | 2019-06-20 | 华为技术有限公司 | Image aesthetic quality processing method and electronic device |
| CN110728656A (en) * | 2019-09-06 | 2020-01-24 | 西安电子科技大学 | Meta-learning-based image quality data processing method without reference, intelligent terminal |
| CN113850785A (en) * | 2021-09-27 | 2021-12-28 | 展讯通信(上海)有限公司 | Method and system for generating and evaluating image quality model, and equipment and medium thereof |
-
2022
- 2022-12-30 CN CN202211732768.9A patent/CN116128827A/en active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103297801A (en) * | 2013-06-09 | 2013-09-11 | 浙江理工大学 | No-reference video quality evaluation method aiming at video conference |
| WO2019114147A1 (en) * | 2017-12-15 | 2019-06-20 | 华为技术有限公司 | Image aesthetic quality processing method and electronic device |
| CN109801256A (en) * | 2018-12-15 | 2019-05-24 | 华南理工大学 | A kind of image aesthetic quality appraisal procedure based on area-of-interest and global characteristics |
| CN110728656A (en) * | 2019-09-06 | 2020-01-24 | 西安电子科技大学 | Meta-learning-based image quality data processing method without reference, intelligent terminal |
| CN113850785A (en) * | 2021-09-27 | 2021-12-28 | 展讯通信(上海)有限公司 | Method and system for generating and evaluating image quality model, and equipment and medium thereof |
Non-Patent Citations (1)
| Title |
|---|
| 赵川;余隋怀;陈晨;寸文哲;王龙;: "面向站立姿态的操纵舒适性评价模型研究", 哈尔滨工业大学学报, no. 05, 10 May 2020 (2020-05-10) * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12254544B2 (en) | Image-text fusion method and apparatus, and electronic device | |
| CN111179282B (en) | Image processing method, image processing device, storage medium and electronic device | |
| CN112449120B (en) | High dynamic range video generation method and device | |
| KR102768317B1 (en) | Projection data processing method and device | |
| CN106658172A (en) | Video image abnormity judgment method and device and terminal device | |
| CN113645476B (en) | Picture processing method and device, electronic equipment and storage medium | |
| US20230300475A1 (en) | Image processing method and apparatus, and electronic device | |
| CN106165409B (en) | Image processing apparatus, photographic device, image processing method and program | |
| CN111338743B (en) | An interface processing method, device and storage medium | |
| CN113240644A (en) | Display processing method of high dynamic range image and related device | |
| US20230351562A1 (en) | Standard dynamic range (sdr) to high dynamic range (hdr)inverse tone mapping using machine learning | |
| CN114782250A (en) | Video image processing method and device, electronic equipment and storage medium | |
| CN114630053B (en) | HDR image display method and display device | |
| CN114531564A (en) | Processing method and electronic equipment | |
| CN112269554B (en) | Display system and display method | |
| CN111263093B (en) | Video recording method and electronic equipment | |
| CN116128827A (en) | Intelligent evaluation method, device, equipment and computer readable storage medium | |
| US20200106821A1 (en) | Video processing apparatus, video conference system, and video processing method | |
| CN118155524A (en) | Display equipment and gamma correction method | |
| US10341531B2 (en) | Applying a perceptually uniform color space for image processing | |
| US20200202500A1 (en) | Image processing apparatus, image processing system, image processing method, and recording medium | |
| CN114630050A (en) | Photographing method, device, medium and terminal equipment | |
| CN117499559B (en) | Virtual shooting system, device configuration method, device, equipment and storage medium | |
| CN115550706B (en) | Display device and image processing method | |
| TW201026052A (en) | Method for transmitting a man-machine operation picture, a mobile video device thereof, and a video system using the same |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |