CN115648227B - Robot motion trajectory neural network fuzzy control optimization method - Google Patents
Robot motion trajectory neural network fuzzy control optimization method Download PDFInfo
- Publication number
- CN115648227B CN115648227B CN202211679876.4A CN202211679876A CN115648227B CN 115648227 B CN115648227 B CN 115648227B CN 202211679876 A CN202211679876 A CN 202211679876A CN 115648227 B CN115648227 B CN 115648227B
- Authority
- CN
- China
- Prior art keywords
- neural network
- fuzzy
- robot
- controller
- joint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 18
- 238000005457 optimization Methods 0.000 title claims abstract description 17
- 230000002068 genetic effect Effects 0.000 claims abstract description 14
- 230000001537 neural effect Effects 0.000 claims abstract description 4
- 230000006870 function Effects 0.000 claims description 6
- 238000010606 normalization Methods 0.000 claims description 2
- 239000006185 dispersion Substances 0.000 claims 1
- 238000004364 calculation method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Images
Landscapes
- Feedback Control In General (AREA)
Abstract
本发明提出了一种机器人运动轨迹神经网络模糊控制优化方法,包括:步骤S1,生成符合连续性要求的机器人运动参考轨迹
;步骤S2,设计神经网络模糊控制器,其中,所述神经网络模糊控制器包括:模糊化、模糊推理和去模糊化三个部分,然后将所述步骤1中的机器人运动参考轨迹输入至所述神经网络模糊控制器中;步骤S3,利用遗传算法优化所述神经模糊控制器调整参数,以实现快速调节控制器参数,实现优化。The present invention proposes a neural network fuzzy control optimization method for robot motion trajectory, including: step S1, generating a robot motion reference trajectory that meets the continuity requirement
; Step S2, designing a neural network fuzzy controller, wherein the neural network fuzzy controller includes: fuzzification, fuzzy reasoning and defuzzification three parts, and then the robot motion reference trajectory in the step 1 input into the neural network fuzzy controller; Step S3, optimize the adjustment parameters of the neural fuzzy controller by genetic algorithm, so as to realize the rapid adjustment of the controller parameters and realize the optimization.Description
技术领域Technical Field
本发明涉及工业机器人技术领域,特别涉及一种机器人运动轨迹神经网络模糊控制优化方法。The invention relates to the technical field of industrial robots, and in particular to a neural network fuzzy control optimization method for robot motion trajectory.
背景技术Background Art
过去几十年工业机器人控制大多建立在三环控制器原理上,为了提高机器人控制系统输出精度,出现了多种机器人控制系统。其中神经网络模糊控制器在机器人输出误差上控制效果较好。过去的测试大多在神经网络模糊控制器空载条件下进行,后来发现在负载条件下运动时,容易受到负载因素干扰,导致机器人输出误差较大。In the past few decades, industrial robot control has been mostly based on the principle of three-loop controllers. In order to improve the output accuracy of robot control systems, a variety of robot control systems have emerged. Among them, the neural network fuzzy controller has a better control effect on the robot output error. In the past, most tests were conducted under no-load conditions of the neural network fuzzy controller. Later, it was found that when moving under load conditions, it was easily disturbed by load factors, resulting in a large output error of the robot.
发明内容Summary of the invention
本发明的目的旨在至少解决所述技术缺陷之一。The object of the present invention is to solve at least one of the technical drawbacks.
为此,本发明的目的在于提出一种机器人运动轨迹神经网络模糊控制优化方法。To this end, the purpose of the present invention is to propose a neural network fuzzy control optimization method for robot motion trajectory.
为了实现上述目的,本发明的实施例提供一种机器人运动轨迹神经网络模糊控制优化方法,包括如下步骤:In order to achieve the above object, an embodiment of the present invention provides a robot motion trajectory neural network fuzzy control optimization method, comprising the following steps:
步骤S1,生成符合连续性要求的机器人运动参考轨迹;Step S1, generate a robot motion reference trajectory that meets the continuity requirements ;
步骤S2,设计神经网络模糊控制器,其中,所述神经网络模糊控制器包括:模糊化、模糊推理和去模糊化三个部分,然后将所述步骤S1中的机器人运动参考轨迹输入至所述神经网络模糊控制器中;Step S2, designing a neural network fuzzy controller, wherein the neural network fuzzy controller includes three parts: fuzzification, fuzzy reasoning and defuzzification, and then converting the robot motion reference trajectory in step S1 into Input into the neural network fuzzy controller;
步骤S3,利用遗传算法优化所述神经模糊控制器调整参数,以实现快速调节控制器参数,实现优化。Step S3, optimizing the adjustment parameters of the neuro-fuzzy controller by using a genetic algorithm to achieve rapid adjustment of the controller parameters and achieve optimization.
进一步,在所述步骤S1中,所述机器人运动轨迹为:Furthermore, in step S1, the robot motion trajectory for:
其中,t0 、tf 为初始和最终运动时刻; 为参考轨迹;q0 、q'0 、qf 、q'f 为初始和最终位置和速度;a0、 a1、 a2、 a3 分别是三阶多项式的系数。Among them, t 0 and t f are the initial and final movement moments; is the reference trajectory; q 0 , q' 0 , q f , q' f are the initial and final positions and velocities; a 0 , a 1 , a 2 , a 3 are the coefficients of the third-order polynomial respectively.
进一步,在所述步骤S2中,对输入的机器人运动参考轨迹进行输入归一化增益、模糊子集形式、模糊推理、去模糊化和输出增益,然后传输至工业机器人,得到工业机器人的运动轨迹q。Further, in step S2, the input robot motion reference trajectory The input normalized gain, fuzzy subset form, fuzzy reasoning, defuzzification and output gain are performed and then transmitted to the industrial robot to obtain the motion trajectory q of the industrial robot.
进一步,在所述步骤S3中,使用遗传算法优化的6 个参数,包括:2个模糊化的输入归一化增益和4个分散调节器的解模糊输出增益,其目标函数是整个轨迹上所有关节误差的绝对和。Furthermore, in step S3, six parameters are optimized using a genetic algorithm, including two fuzzified input normalization gains and four defuzzified output gains of decentralized regulators, and the objective function is the absolute sum of all joint errors on the entire trajectory.
根据本发明实施例的机器人运动轨迹神经网络模糊控制优化方法,实现神经网络模糊控制算法和遗传算法优化控制器参数。本发明在机器人有负载情况下.采用遗传算法优化后,机器人运动关节角位移跟踪误差明显变小,且能够利用遗传算法优化控制器调整参数,从而快速调节控制器参数,达到降低误差的目的;计算过程耗时少、实时性高。According to the robot motion trajectory neural network fuzzy control optimization method of the embodiment of the present invention, the neural network fuzzy control algorithm and the genetic algorithm are used to optimize the controller parameters. When the robot is loaded, after the genetic algorithm is used for optimization, the robot motion joint angular displacement tracking error is significantly reduced, and the genetic algorithm can be used to optimize the controller adjustment parameters, thereby quickly adjusting the controller parameters to achieve the purpose of reducing the error; the calculation process is less time-consuming and has high real-time performance.
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the present invention will be given in part in the following description and in part will be obvious from the following description, or will be learned through practice of the present invention.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and easily understood from the description of the embodiments in conjunction with the following drawings, in which:
图1为根据本发明实施例的机器人运动轨迹神经网络模糊控制优化方法的流程图;1 is a flow chart of a method for optimizing a robot motion trajectory through a neural network fuzzy control according to an embodiment of the present invention;
图2为根据本发明实施例的机器人运动轨迹神经网络模糊控制优化方法的的示意图;FIG2 is a schematic diagram of a method for optimizing a robot motion trajectory using a neural network fuzzy control method according to an embodiment of the present invention;
图3为根据本发明实施例的神经网络形式的调节器结构图。FIG3 is a structural diagram of a regulator in the form of a neural network according to an embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the accompanying drawings, wherein the same or similar reference numerals throughout represent the same or similar elements or elements having the same or similar functions. The embodiments described below with reference to the accompanying drawings are exemplary and are intended to be used to explain the present invention, and should not be construed as limiting the present invention.
本发明提出一种机器人运动轨迹神经网络模糊控制优化方法,采用遗传算法优化神经网络模糊控制器,通过选择合适的优化参数和目标函数,为改进负载情况下机器人控制精度。The present invention proposes a robot motion trajectory neural network fuzzy control optimization method, which uses a genetic algorithm to optimize the neural network fuzzy controller and improves the robot control accuracy under load conditions by selecting appropriate optimization parameters and objective functions.
如图1和图2所示,本发明实施例的机器人运动轨迹神经网络模糊控制优化方法,包括如下步骤:As shown in FIG. 1 and FIG. 2 , the robot motion trajectory neural network fuzzy control optimization method according to the embodiment of the present invention comprises the following steps:
步骤S1,生成符合连续性要求的机器人运动参考轨迹。Step S1, generate a robot motion reference trajectory that meets the continuity requirements .
在本步骤中,通过三阶多项式来生成轨迹以保证机器人连续性要求。In this step, the trajectory is generated by a third-order polynomial to ensure the continuity requirement of the robot.
机器人运动轨迹为:Robot motion trajectory for:
其中,t0 、tf 为初始和最终运动时刻; 为参考轨迹;q0 、q'0 、qf 、q'f 为初始和最终位置和速度;a0、 a1、 a2、 a3 分别是三阶多项式的系数。Among them, t 0 and t f are the initial and final movement moments; is the reference trajectory; q 0 , q' 0 , q f , q' f are the initial and final positions and velocities; a 0 , a 1 , a 2 , a 3 are the coefficients of the third-order polynomial respectively.
步骤S2,设计神经网络模糊控制器,其中,神经网络模糊控制器包括:模糊化、模糊推理和去模糊化三个部分,然后将步骤S1中的机器人运动参考轨迹输入至神经网络模糊控制器中。Step S2, designing a neural network fuzzy controller, wherein the neural network fuzzy controller includes three parts: fuzzification, fuzzy reasoning and defuzzification, and then converting the robot motion reference trajectory in step S1 into Input into the neural network fuzzy controller.
具体的,对输入的机器人运动参考轨迹进行输入归一化增益、模糊子集形式、模糊推理、去模糊化和输出增益,然后传输至工业机器人,得到工业机器人的运动轨迹q。Specifically, the input robot motion reference trajectory The input normalized gain, fuzzy subset form, fuzzy reasoning, defuzzification and output gain are performed and then transmitted to the industrial robot to obtain the motion trajectory q of the industrial robot.
采用神经模糊推理系统方法,通过在线学习每个关节来调整控制器参数,以获得良好的控制性能。神经网络形式的调节器结构如图3所示。它包含第i个关节的连续误差和误差变化 作为输入,以及每个关节的驱动力矩作为输出。The neuro-fuzzy inference system method is used to adjust the controller parameters by online learning of each joint to obtain good control performance. The structure of the regulator in the form of a neural network is shown in Figure 3. It contains the continuous error of the i-th joint and error variation As input, and the driving torque of each joint as output.
具体的,图3为神经模糊控制的具体实现图,输入与是关节误差和误差变化,第一列A1,A2,B1,B2对应归一化增益函数,第二列对应模糊子集的计算,第三列对应模糊推理,第四列对应去模糊化处理,第5列对应输出增益计算,即输出关节力矩。Specifically, Figure 3 is a specific implementation diagram of neural fuzzy control. and are the joint errors and error changes. The first column A 1 , A 2 , B 1 , B 2 corresponds to the normalized gain function, the second column corresponds to the calculation of fuzzy subsets, the third column corresponds to fuzzy reasoning, the fourth column corresponds to defuzzification processing, and the fifth column corresponds to the output gain calculation, that is, the output joint torque.
步骤S3,利用遗传算法优化神经模糊控制器调整参数,以实现快速调节控制器参数,实现优化。Step S3, using genetic algorithm to optimize the adjustment parameters of the neuro-fuzzy controller to achieve rapid adjustment of the controller parameters and achieve optimization.
参考图2所示,整个系统输入为关节位置误差,及与q的差值,然后通过神经模糊控制器的5个步骤输出机器人关节力矩,这5个步骤分别是计算归一化增益,构建模糊子集,进行模糊推理计算,进行去模糊计算,计算输出增益。其中计算归一化增益,构建模糊子集,计算输出增益这三步有可调节参数参与计算,因此与遗传算法相关,即图中所述。Referring to Figure 2, the input of the entire system is the joint position error, and The difference between q and q is then output through the five steps of the neuro-fuzzy controller, which are to calculate the normalized gain, construct the fuzzy subset, perform the fuzzy reasoning calculation, perform the defuzzification calculation, and calculate the output gain. Among them, the three steps of calculating the normalized gain, constructing the fuzzy subset, and calculating the output gain have adjustable parameters involved in the calculation, so they are related to the genetic algorithm, as described in the figure.
根据本发明实施例的机器人运动轨迹神经网络模糊控制优化方法,实现神经网络模糊控制算法和遗传算法优化控制器参数。本发明在机器人有负载情况下.采用遗传算法优化后,机器人运动关节角位移跟踪误差明显变小,且能够利用遗传算法优化控制器调整参数,从而快速调节控制器参数,达到降低误差的目的;计算过程耗时少、实时性高。According to the robot motion trajectory neural network fuzzy control optimization method of the embodiment of the present invention, the neural network fuzzy control algorithm and the genetic algorithm are used to optimize the controller parameters. When the robot is loaded, after the genetic algorithm is used for optimization, the robot motion joint angular displacement tracking error is significantly reduced, and the genetic algorithm can be used to optimize the controller adjustment parameters, thereby quickly adjusting the controller parameters to achieve the purpose of reducing the error; the calculation process is less time-consuming and has high real-time performance.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、 “示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, the description with reference to the terms "one embodiment", "some embodiments", "example", "specific example", or "some examples" means that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present invention. In this specification, the schematic representation of the above terms does not necessarily refer to the same embodiment or example. Moreover, the specific features, structures, materials or characteristics described can be combined in any one or more embodiments or examples in a suitable manner.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在不脱离本发明的原理和宗旨的情况下在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。本发明的范围由所附权利要求及其等同限定。Although the embodiments of the present invention have been shown and described above, it is understood that the above embodiments are exemplary and cannot be understood as limiting the present invention. Those skilled in the art may change, modify, replace and modify the above embodiments within the scope of the present invention without departing from the principles and purpose of the present invention. The scope of the present invention is defined by the appended claims and their equivalents.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211679876.4A CN115648227B (en) | 2022-12-27 | 2022-12-27 | Robot motion trajectory neural network fuzzy control optimization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211679876.4A CN115648227B (en) | 2022-12-27 | 2022-12-27 | Robot motion trajectory neural network fuzzy control optimization method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115648227A CN115648227A (en) | 2023-01-31 |
CN115648227B true CN115648227B (en) | 2023-03-31 |
Family
ID=85022475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211679876.4A Active CN115648227B (en) | 2022-12-27 | 2022-12-27 | Robot motion trajectory neural network fuzzy control optimization method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115648227B (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05265512A (en) * | 1992-03-17 | 1993-10-15 | Hitachi Ltd | Learning control device and fuzzy inference device |
US5579439A (en) * | 1993-03-24 | 1996-11-26 | National Semiconductor Corporation | Fuzzy logic design generator using a neural network to generate fuzzy logic rules and membership functions for use in intelligent systems |
US8924021B2 (en) * | 2006-04-27 | 2014-12-30 | Honda Motor Co., Ltd. | Control of robots from human motion descriptors |
CN100498600C (en) * | 2007-09-18 | 2009-06-10 | 湖南大学 | Large condenser underwater operation environment two-joint robot control method |
CN108717262B (en) * | 2018-05-14 | 2020-10-02 | 湖南大学 | A special-shaped surface tracking method and system based on moment feature learning neural network |
CN110471281B (en) * | 2019-07-30 | 2021-09-24 | 南京航空航天大学 | A variable universe fuzzy control system and control method for trajectory tracking control |
CN111844020A (en) * | 2020-06-11 | 2020-10-30 | 马鞍山职业技术学院 | Manipulator trajectory tracking control system based on fuzzy neural network |
CN111618864B (en) * | 2020-07-20 | 2021-04-23 | 中国科学院自动化研究所 | Robot Model Predictive Control Method Based on Adaptive Neural Network |
US11772264B2 (en) * | 2020-11-18 | 2023-10-03 | Dibi (Chongqing) Intelligent Technology Research Institute Co., Ltd. | Neural network adaptive tracking control method for joint robots |
-
2022
- 2022-12-27 CN CN202211679876.4A patent/CN115648227B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN115648227A (en) | 2023-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | A review on model reference adaptive control of robotic manipulators | |
CN112947477A (en) | Unmanned ship course active disturbance rejection control system and control method | |
CN107132761B (en) | A Design Method of Electric Steering Gear Using Pure Fuzzy and Fuzzy PID Composite Control | |
US11023827B2 (en) | Machine learning device, servo control device, servo control system, and machine learning method for suppressing variation in position error using feedforward control | |
CN119376350B (en) | High-precision coating die head coating thickness adjusting method based on intelligent feedback control | |
CN109885077B (en) | Attitude control method and controller for four-rotor aircraft | |
CN112180918B (en) | A method and system for synchronous control of dual mobile robots | |
CN110262219A (en) | A kind of motor PID automatic setting method based on BP neural network | |
CN113093526A (en) | Overshoot-free PID controller parameter setting method based on reinforcement learning | |
CN117519136B (en) | A path tracking method for unmanned boat considering large curvature turns | |
CN111273544A (en) | Radar pitch motion control method based on predictive RBF feedforward compensation type fuzzy PID | |
CN114879508A (en) | Grinding robot path tracking control method based on model prediction control | |
CN115229798A (en) | A force-impedance control method combining feedforward compensation and variable damping modeling | |
CN111152213B (en) | Mechanical arm vibration compensation method and device based on hybrid control | |
Zhao et al. | Adaptive variable universe fuzzy sliding-mode control for robot manipulators with model uncertainty | |
CN115648227B (en) | Robot motion trajectory neural network fuzzy control optimization method | |
CN113783479B (en) | Brushless direct current motor fuzzy PID control method based on neural network matrix | |
Anh et al. | Adaptive evolutionary neural control of perturbed nonlinear serial PAM robot | |
Farooq et al. | On the interval type-2 fuzzy logic control of ball and plate system | |
CN118438438B (en) | Variable load mechanical arm self-adaptive limited time fault tolerance control method and system based on fuzzy sliding mode | |
CN118348794A (en) | AGV (automatic guided vehicle) tracking active disturbance rejection controller based on adaptive neural network and method thereof | |
CN110488600B (en) | LQR-optimized brushless DC motor speed-regulating neural network PID controller | |
CN116165900A (en) | Adaptive Single Joint Servo PID Control Method Based on Convolutional Neural Network Deep Learning | |
JP2929538B2 (en) | Nonlinear system learning controller | |
CN114167728A (en) | Adaptive control method and device for multi-agent system with dead zone constraints |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 272000, No. 888 Huarun Road, Zhongxin Electromechanical Industrial Park, Zhongdian Town, Zoucheng City, Jining City, Shandong Province Patentee after: Luoshi (Shandong) Robot Group Co.,Ltd. Country or region after: China Address before: 100097 1-01, floor 7, building a, Beijing Haiqing Shuguang real estate development center (Office) and postal branch project, East wangfuyuan District, Haidian District, Beijing Patentee before: ROKAE, Inc. Country or region before: China |
|
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: 272000, No. 888 Huarun Road, Zhongxin Electromechanical Industrial Park, Zhongdian Town, Zoucheng City, Jining City, Shandong Province Patentee after: Luoshi (Shandong) Robot Group Co.,Ltd. Country or region after: China Address before: 272000, No. 888 Huarun Road, Zhongxin Electromechanical Industrial Park, Zhongdian Town, Zoucheng City, Jining City, Shandong Province Patentee before: Luoshi (Shandong) Robot Group Co.,Ltd. Country or region before: China |
|
CP03 | Change of name, title or address |