CN115563189A - A Massive Data Query Method Based on Data Mining Technology - Google Patents
A Massive Data Query Method Based on Data Mining Technology Download PDFInfo
- Publication number
- CN115563189A CN115563189A CN202211292179.3A CN202211292179A CN115563189A CN 115563189 A CN115563189 A CN 115563189A CN 202211292179 A CN202211292179 A CN 202211292179A CN 115563189 A CN115563189 A CN 115563189A
- Authority
- CN
- China
- Prior art keywords
- data
- query
- user
- module
- retrieval
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2458—Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
- G06F16/2465—Query processing support for facilitating data mining operations in structured databases
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/22—Indexing; Data structures therefor; Storage structures
- G06F16/2228—Indexing structures
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/23—Updating
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/248—Presentation of query results
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Probability & Statistics with Applications (AREA)
- Mathematical Physics (AREA)
- Fuzzy Systems (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
技术领域technical field
本发明涉及数据查询技术领域,具体为一种基于数据挖掘技术的海量数据查询方法。The invention relates to the technical field of data query, in particular to a massive data query method based on data mining technology.
背景技术Background technique
海量数据是指巨大的,浩瀚的数据。目前,大多数的应用都要与数据库相连接,通过查询等操作得到数据预期结果。当达到一定的数据量、符合查询条件较多或多人同时在线查询时,从数据库中查询统计通常需要花费较长时间,导致查询效率较低,给查询用户造成高额的时间成本,导致用户体验感较差。Massive data refers to huge, vast data. At present, most applications must be connected to the database, and the expected results of the data can be obtained through operations such as queries. When a certain amount of data is reached, many query conditions are met, or multiple people query online at the same time, it usually takes a long time to query statistics from the database, resulting in low query efficiency, causing high time costs for query users, and causing users to The experience is poor.
发明内容Contents of the invention
本发明的目的在于提供一种基于数据挖掘技术的海量数据查询方法,以解决上述背景技术中提出的问题。The purpose of the present invention is to provide a massive data query method based on data mining technology, so as to solve the problems raised in the above-mentioned background technology.
为实现上述目的,本发明提供如下技术方案:一种基于数据挖掘技术的海量数据查询方法,包括以下具体的步骤:In order to achieve the above object, the present invention provides the following technical solutions: a massive data query method based on data mining technology, comprising the following specific steps:
S1:用户登录、注册数据查询系统;S1: User login and registration data query system;
S2:用户在系统内输入查询条件;S2: The user inputs query conditions in the system;
S3:系统根据用户输入中的查询条件、用户的注册信息预判用户的待查询数据,并将预判的数据从数据库中提出备用;S3: The system predicts the user's data to be queried according to the query conditions entered by the user and the user's registration information, and puts the predicted data out of the database for backup;
S4:根据用户最终输入的查询条件,系统优先从提出备用的预判数据中提取符合用户查询条件的查询数据至系统的查询界面进行展示;S4: According to the query conditions finally input by the user, the system preferentially extracts the query data that meets the user's query conditions from the proposed spare pre-judgment data and displays them on the query interface of the system;
S5:若预判数据内无符合用户查询条件的查询数据,系统从数据库内提取符合用户查询条件的查询数据至系统的查询界面进行展示;S5: If there is no query data that meets the user's query conditions in the predicted data, the system extracts the query data that meets the user's query conditions from the database and displays them on the query interface of the system;
S6:用户根据查询界面展示的查询数据自主选取所需数据即可。S6: The user can independently select the required data according to the query data displayed on the query interface.
作为本发明的一种优选方案,所述数据查询系统包括数据库,数据库包括录入模块、存储模块,录入模块用于数据库的数据录入和更新,存储模块用于根据录入的数据属性对数据库内的数据进行分类存储和处理。As a preferred solution of the present invention, the data query system includes a database, and the database includes an entry module and a storage module, the entry module is used for data entry and update of the database, and the storage module is used for processing data in the database according to the entered data attributes Classified storage and processing.
作为本发明的一种优选方案,所述存储模块包括关键词存储单元、用户属性存储单元、输入属性存储单元,关键词存储单元用于根据输入数据内的关键词对数据进行分类存储,用户属性存储单元用于根据系统内对应用户的用户属性进行分类存储,输入属性存储单元用于根据输入的数据属性信息对数据进行分类存储。As a preferred solution of the present invention, the storage module includes a keyword storage unit, a user attribute storage unit, and an input attribute storage unit, the keyword storage unit is used to classify and store data according to keywords in the input data, and the user attribute The storage unit is used for classifying and storing the user attributes of the corresponding users in the system, and the input attribute storage unit is used for classifying and storing the data according to the input data attribute information.
作为本发明的一种优选方案,所述用户属性包括用户在查询系统内注册账号中填报的包括年龄、职业、所在地区、爱好在内的相关信息。As a preferred solution of the present invention, the user attributes include relevant information including age, occupation, location, and hobbies that the user fills in the registered account in the query system.
作为本发明的一种优选方案,所述数据查询系统包括输入模块、快速检索模块,输入模块用于查询人员向系统内输入待查询的查询条件,快速检索模块用于根据查询人员的最终查询条件的属性类别在数据库内检索、提出符合查询条件的检索数据。As a preferred solution of the present invention, the data query system includes an input module and a fast retrieval module, the input module is used for the query personnel to input the query conditions to be queried into the system, and the fast retrieval module is used for the query according to the final query conditions of the query personnel The attribute categories are searched in the database, and the retrieved data that meets the query conditions are proposed.
作为本发明的一种优选方案,所述数据查询系统还包括预判模块、预检索模块、预储模块,预判模块用于根据查询人员的登录信息、输入中的检索信息预判其需要查询的相关数据,预检索模块用于根据预判模块的预判结果在数据库内进行预检索操作,并将预检索到的数据系统从数据库内提出至预储模块备用,预储模块用于存储预检索模块提出的预检索数据。As a preferred solution of the present invention, the data query system further includes a pre-judgment module, a pre-retrieval module, and a pre-storage module, and the pre-judgment module is used to predict the query required by the queryer according to his login information and input retrieval information The pre-retrieval module is used to perform pre-retrieval operations in the database according to the pre-judgment results of the pre-judgment module, and the pre-retrieved data system is proposed from the database to the pre-storage module for backup, and the pre-storage module is used to store the pre-storage The pre-retrieval data proposed by the retrieval module.
作为本发明的一种优选方案,所述快速检索模块与预存储模块连接,快速检索模块根据查询人员的最终查询条件的属性类别优先从预存储模块内检索、提出符合查询条件的检索数据。As a preferred solution of the present invention, the fast retrieval module is connected to the pre-storage module, and the fast retrieval module preferentially retrieves from the pre-storage module according to the attribute category of the queryer's final query condition, and proposes retrieval data that meets the query condition.
作为本发明的一种优选方案,所述数据查询系统还包括用户分析模块,用户分析模块用于对用户的相关查询信息、数据进行分析、处理和整合,便于后期想特定的登录用户使用该数据查询系统时,为其提供更加定制化的数据查询服务。As a preferred solution of the present invention, the data query system also includes a user analysis module, which is used to analyze, process and integrate the relevant query information and data of the user, so as to facilitate the later use of the data by specific login users When querying the system, it provides more customized data query services.
作为本发明的一种优选方案,所述用户分析模块包括历史追溯单元、查询分析单元和查询数据处理单元,历史追溯单元用于记录、追溯用户的查询数据,查询分析单元用于对历史追溯单元内的用户查询数据进行分析,进而分析出相关用户检索属性,查询数据处理单元用于存储经由查询分析单元分析出的对应用户的检索属性,并将该数据发送至预判模块进行协同使用。As a preferred solution of the present invention, the user analysis module includes a history traceability unit, a query analysis unit and a query data processing unit, the history traceability unit is used to record and trace user query data, and the query analysis unit is used to analyze the history traceability unit Analyze the user query data in the system, and then analyze the relevant user retrieval attributes. The query data processing unit is used to store the corresponding user retrieval attributes analyzed by the query analysis unit, and send the data to the pre-judgment module for collaborative use.
作为本发明的一种优选方案,所述用户检索属性包括登录用户的检索习惯、检索偏好在内的相关信息。As a preferred solution of the present invention, the user retrieval attributes include relevant information including retrieval habits and retrieval preferences of the logged-in user.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
本发明提供的一种基于数据挖掘技术的海量数据查询方法,本方案针对现有的海量数据查询数据效率较低的技术问题,在数据查询系统内增设有检索预判功能,使其能够根据用户的输入中的查询条件、用户的相关检索习惯、检索偏好、用户身份信息等对用户的所需的查询数据进行预判,为后期用户的全方位检索提供更加准确、优质的查询数据储备,提高系统数据查询效率,提高用户的体验感。The present invention provides a massive data query method based on data mining technology. This solution aims at the existing technical problem of low efficiency of massive data query data, and adds a retrieval and pre-judgment function in the data query system, so that it can The query conditions in the input, the user's relevant retrieval habits, retrieval preferences, user identity information, etc. are used to predict the query data required by the user, so as to provide more accurate and high-quality query data reserves for the later user's all-round retrieval, and improve the System data query efficiency improves user experience.
附图说明Description of drawings
图1为本发明的海量数据查询方法流程图;Fig. 1 is the flowchart of massive data query method of the present invention;
图2为本发明的数据查询系统的具体架构图。FIG. 2 is a specific architecture diagram of the data query system of the present invention.
图中:1、数据查询系统;11、输入模块;12、快速检索模块 ;13、预判模块;14、预检索模块;15、预储模块;16、用户分析模块;161、历史追溯单元;162、查询分析单元;163、查询数据处理单元;2、数据库 ;21、录入模块;22、存储模块;221、关键词存储单元;222、用户属性存储单元;223、输入属性存储单元。In the figure: 1. Data query system; 11. Input module; 12. Quick retrieval module; 13. Pre-judgment module; 14. Pre-retrieval module; 15. Pre-storage module; 16. User analysis module; 161. History tracing unit; 162. Query analysis unit; 163. Query data processing unit; 2. Database; 21. Input module; 22. Storage module; 221. Keyword storage unit; 222. User attribute storage unit; 223. Input attribute storage unit.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
请参阅图1-2,本发明提供一种技术方案:一种基于数据挖掘技术的海量数据查询方法,包括以下具体的步骤:Please refer to Fig. 1-2, the present invention provides a kind of technical scheme: a kind of massive data query method based on data mining technology, comprises the following specific steps:
S1:用户登录、注册数据查询系统1;S1: user login, registration data query system 1;
S2:用户在系统内的输入模块11输入查询条件;S2: the user inputs query conditions in the
S3:系统根据用户在输入模块11中输入的查询条件(通过输入法、输入中的信息属性等)和查询数据处理单元163存储的对应用户的检索属性,通过预判模块13预判该用户可能需要查询的相关数据,通过预检索模块14根据预判结果在数据库2内进行预检索操作,并将预检索到的数据系统从数据库2内提出至预储模块15备用;S3: The system predicts the user's possible Relevant data that needs to be queried is carried out in the
S4:根据用户最终输入的查询条件,系统优先从预储模块15内备用的预判数据中提取用户的查询数据至系统的查询界面进行展示;S4: According to the query condition finally input by the user, the system preferentially extracts the user's query data from the spare pre-judgment data in the
S5:若预判数据内无符合用户查询条件的查询数据,系统从数据库2内提取符合用户查询条件的查询数据至系统的查询界面进行展示;S5: If there is no query data that meets the user's query conditions in the predicted data, the system extracts the query data that meets the user's query conditions from the
S6:用户根据查询界面展示的查询数据自主选取所需数据即可;S6: The user can independently select the required data according to the query data displayed on the query interface;
S7:系统根据历史追溯单元162对用户的查询条件、用户自主选取的所需数据进行追溯,通过查询分析单元对上述数据信息进行分析、处理,并将分析处理结果存储至查询数据处理单元163,以备后期与预判模块13进行协同使用。S7: The system traces back the query conditions of the user and the required data independently selected by the user according to the
上述步骤中的数据查询系统1包括数据库2,数据库2包括录入模块21、存储模块22,录入模块21用于数据库2的数据录入和更新,存储模块22用于根据录入的数据属性对数据库2内的数据进行分类存储和处理。The data query system 1 in the above-mentioned steps comprises a
存储模块22包括关键词存储单元221、用户属性存储单元222、输入属性存储单元223,关键词存储单元221用于根据输入数据内的关键词对数据进行分类存储,用户属性存储单元222用于根据系统内对应用户的用户属性进行分类存储,输入属性存储单元223用于根据输入的数据属性信息对数据进行分类存储。The
用户属性包括用户在查询系统内注册账号中填报的包括年龄、职业、所在地区、爱好在内的相关信息。User attributes include relevant information including age, occupation, location, and hobbies that the user fills in the registered account in the query system.
上述步骤中的数据查询系统1包括输入模块11、快速检索模块12,输入模块11用于查询人员向系统内输入待查询的查询条件,快速检索模块12用于根据查询人员的最终查询条件的属性类别在数据库2内检索、提出符合查询条件的检索数据。The data query system 1 in the above-mentioned steps comprises an
数据查询系统1还包括预判模块13、预检索模块14、预储模块15,预判模块13用于根据查询人员的登录信息、输入中的检索信息预判其需要查询的相关数据,预检索模块14用于根据预判模块13的预判结果在数据库2内进行预检索操作,并将预检索到的数据系统从数据库2内提出至预储模块15备用,预储模块15用于存储预检索模块14提出的预检索数据。The data query system 1 also includes a pre-judgment module 13, a
快速检索模块12与预存储模块22连接,快速检索模块12根据查询人员的最终查询条件的属性类别优先从预存储模块22内检索、提出符合查询条件的检索数据。The
数据查询系统1还包括用户分析模块16,用户分析模块16用于对用户的相关查询信息、数据进行分析、处理和整合。The data query system 1 also includes a
用户分析模块16包括历史追溯单元161、查询分析单元162和查询数据处理单元163,历史追溯单元161用于记录、追溯用户的查询数据,查询分析单元162用于对历史追溯单元161内的用户查询数据进行分析,进而分析出相关的用户检索属性,查询数据处理单元163用于存储经由查询分析单元162分析出的对应用户的检索属性,用户检索属性包括登录用户的检索习惯、检索偏好在内的相关信息,分析出的数据被发送至预判模块13进行协同使用。The
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications and substitutions can be made to these embodiments without departing from the principle and spirit of the present invention. and modifications, the scope of the invention is defined by the appended claims and their equivalents.
Claims (10)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211292179.3A CN115563189A (en) | 2022-10-21 | 2022-10-21 | A Massive Data Query Method Based on Data Mining Technology |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211292179.3A CN115563189A (en) | 2022-10-21 | 2022-10-21 | A Massive Data Query Method Based on Data Mining Technology |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN115563189A true CN115563189A (en) | 2023-01-03 |
Family
ID=84767489
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211292179.3A Pending CN115563189A (en) | 2022-10-21 | 2022-10-21 | A Massive Data Query Method Based on Data Mining Technology |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115563189A (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115860925A (en) * | 2023-02-19 | 2023-03-28 | 广东德澳智慧医疗科技有限公司 | Intelligent data query and investment management system based on artificial intelligence liability |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102103633A (en) * | 2009-12-20 | 2011-06-22 | Sap股份公司 | A method and system for improving information system performance based on usage pattern |
| CN104424258A (en) * | 2013-08-28 | 2015-03-18 | 腾讯科技(深圳)有限公司 | Multidimensional data query method and system, query server and column storage server |
| CN113886426A (en) * | 2021-10-21 | 2022-01-04 | 京东科技信息技术有限公司 | Data query method and device, computer equipment and storage medium |
-
2022
- 2022-10-21 CN CN202211292179.3A patent/CN115563189A/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102103633A (en) * | 2009-12-20 | 2011-06-22 | Sap股份公司 | A method and system for improving information system performance based on usage pattern |
| CN104424258A (en) * | 2013-08-28 | 2015-03-18 | 腾讯科技(深圳)有限公司 | Multidimensional data query method and system, query server and column storage server |
| CN113886426A (en) * | 2021-10-21 | 2022-01-04 | 京东科技信息技术有限公司 | Data query method and device, computer equipment and storage medium |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115860925A (en) * | 2023-02-19 | 2023-03-28 | 广东德澳智慧医疗科技有限公司 | Intelligent data query and investment management system based on artificial intelligence liability |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7912816B2 (en) | Adaptive archive data management | |
| EP3819792A2 (en) | Method, apparatus, device, and storage medium for intention recommendation | |
| US8214361B1 (en) | Organizing search results in a topic hierarchy | |
| US8990241B2 (en) | System and method for recommending queries related to trending topics based on a received query | |
| US9460193B2 (en) | Context and process based search ranking | |
| US11729122B2 (en) | Content suggestion system for real-time communication environments | |
| US20180032606A1 (en) | Recommending topic clusters for unstructured text documents | |
| US8805750B2 (en) | Providing comparison experiences in response to search queries | |
| WO2021098648A1 (en) | Text recommendation method, apparatus and device, and medium | |
| EP3685245B1 (en) | Method, apparatus, and computer-readable media for customer interaction semantic annotation and analytics | |
| CN104933100A (en) | Keyword recommendation method and device | |
| JP2013531289A (en) | Use of model information group in search | |
| CN110389944B (en) | A model-based metadata management system and method | |
| CN113010484A (en) | Log file management method and device | |
| CN111930967B (en) | Data query method and device based on knowledge graph and storage medium | |
| CN113407785A (en) | Data processing method and system based on distributed storage system | |
| US11308177B2 (en) | System and method for accessing and managing cognitive knowledge | |
| CN111833096A (en) | Advertisement recommendation method and system based on machine learning | |
| CN114090877A (en) | Position information recommendation method and device, electronic equipment and storage medium | |
| CN113821596A (en) | Information recommendation method and device, computer equipment and storage medium | |
| CN108470289B (en) | Virtual article issuing method and equipment based on E-commerce shopping platform | |
| CN113342844A (en) | Industrial intelligent search system | |
| CN115563189A (en) | A Massive Data Query Method Based on Data Mining Technology | |
| US12321864B2 (en) | Multi-hop search for entity relationships | |
| CN113377895A (en) | Network knowledge point organization method and device based on directory tree |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |