[go: up one dir, main page]

CN115563189A - A Massive Data Query Method Based on Data Mining Technology - Google Patents

A Massive Data Query Method Based on Data Mining Technology Download PDF

Info

Publication number
CN115563189A
CN115563189A CN202211292179.3A CN202211292179A CN115563189A CN 115563189 A CN115563189 A CN 115563189A CN 202211292179 A CN202211292179 A CN 202211292179A CN 115563189 A CN115563189 A CN 115563189A
Authority
CN
China
Prior art keywords
data
query
user
module
retrieval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211292179.3A
Other languages
Chinese (zh)
Inventor
王硕
亢瑞卿
杜国超
苏鹏
李达
亢志邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Creatunion Information Technology Group Co Ltd
Original Assignee
Beijing Creatunion Information Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Creatunion Information Technology Group Co Ltd filed Critical Beijing Creatunion Information Technology Group Co Ltd
Priority to CN202211292179.3A priority Critical patent/CN115563189A/en
Publication of CN115563189A publication Critical patent/CN115563189A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2458Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
    • G06F16/2465Query processing support for facilitating data mining operations in structured databases
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/22Indexing; Data structures therefor; Storage structures
    • G06F16/2228Indexing structures
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/23Updating
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/248Presentation of query results

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Computational Linguistics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

The invention relates to the technical field of data query, and particularly discloses a mass data query method based on a data mining technology, wherein S1: a user logs in and registers a data query system; s2: a user inputs a query condition in the system; s3: the system pre-judges the data to be inquired of the user and puts the pre-judged data out of the database for standby; s4: according to the query condition finally input by the user, the system preferentially extracts the query data from the pre-judged data for displaying; s5: if the pre-judged data does not contain query data meeting the query conditions of the user, the system extracts the query data from the database for display; s6: and the user selects the required data independently. According to the scheme, the required query data of the user can be judged in advance according to the query conditions in the input of the user, the related retrieval habits, the retrieval preferences, the user identity information and the like, more accurate and high-quality query data storage is provided for the later-stage all-round retrieval of the user, the system data query efficiency is improved, and the user experience is improved.

Description

一种基于数据挖掘技术的海量数据查询方法A Massive Data Query Method Based on Data Mining Technology

技术领域technical field

本发明涉及数据查询技术领域,具体为一种基于数据挖掘技术的海量数据查询方法。The invention relates to the technical field of data query, in particular to a massive data query method based on data mining technology.

背景技术Background technique

海量数据是指巨大的,浩瀚的数据。目前,大多数的应用都要与数据库相连接,通过查询等操作得到数据预期结果。当达到一定的数据量、符合查询条件较多或多人同时在线查询时,从数据库中查询统计通常需要花费较长时间,导致查询效率较低,给查询用户造成高额的时间成本,导致用户体验感较差。Massive data refers to huge, vast data. At present, most applications must be connected to the database, and the expected results of the data can be obtained through operations such as queries. When a certain amount of data is reached, many query conditions are met, or multiple people query online at the same time, it usually takes a long time to query statistics from the database, resulting in low query efficiency, causing high time costs for query users, and causing users to The experience is poor.

发明内容Contents of the invention

本发明的目的在于提供一种基于数据挖掘技术的海量数据查询方法,以解决上述背景技术中提出的问题。The purpose of the present invention is to provide a massive data query method based on data mining technology, so as to solve the problems raised in the above-mentioned background technology.

为实现上述目的,本发明提供如下技术方案:一种基于数据挖掘技术的海量数据查询方法,包括以下具体的步骤:In order to achieve the above object, the present invention provides the following technical solutions: a massive data query method based on data mining technology, comprising the following specific steps:

S1:用户登录、注册数据查询系统;S1: User login and registration data query system;

S2:用户在系统内输入查询条件;S2: The user inputs query conditions in the system;

S3:系统根据用户输入中的查询条件、用户的注册信息预判用户的待查询数据,并将预判的数据从数据库中提出备用;S3: The system predicts the user's data to be queried according to the query conditions entered by the user and the user's registration information, and puts the predicted data out of the database for backup;

S4:根据用户最终输入的查询条件,系统优先从提出备用的预判数据中提取符合用户查询条件的查询数据至系统的查询界面进行展示;S4: According to the query conditions finally input by the user, the system preferentially extracts the query data that meets the user's query conditions from the proposed spare pre-judgment data and displays them on the query interface of the system;

S5:若预判数据内无符合用户查询条件的查询数据,系统从数据库内提取符合用户查询条件的查询数据至系统的查询界面进行展示;S5: If there is no query data that meets the user's query conditions in the predicted data, the system extracts the query data that meets the user's query conditions from the database and displays them on the query interface of the system;

S6:用户根据查询界面展示的查询数据自主选取所需数据即可。S6: The user can independently select the required data according to the query data displayed on the query interface.

作为本发明的一种优选方案,所述数据查询系统包括数据库,数据库包括录入模块、存储模块,录入模块用于数据库的数据录入和更新,存储模块用于根据录入的数据属性对数据库内的数据进行分类存储和处理。As a preferred solution of the present invention, the data query system includes a database, and the database includes an entry module and a storage module, the entry module is used for data entry and update of the database, and the storage module is used for processing data in the database according to the entered data attributes Classified storage and processing.

作为本发明的一种优选方案,所述存储模块包括关键词存储单元、用户属性存储单元、输入属性存储单元,关键词存储单元用于根据输入数据内的关键词对数据进行分类存储,用户属性存储单元用于根据系统内对应用户的用户属性进行分类存储,输入属性存储单元用于根据输入的数据属性信息对数据进行分类存储。As a preferred solution of the present invention, the storage module includes a keyword storage unit, a user attribute storage unit, and an input attribute storage unit, the keyword storage unit is used to classify and store data according to keywords in the input data, and the user attribute The storage unit is used for classifying and storing the user attributes of the corresponding users in the system, and the input attribute storage unit is used for classifying and storing the data according to the input data attribute information.

作为本发明的一种优选方案,所述用户属性包括用户在查询系统内注册账号中填报的包括年龄、职业、所在地区、爱好在内的相关信息。As a preferred solution of the present invention, the user attributes include relevant information including age, occupation, location, and hobbies that the user fills in the registered account in the query system.

作为本发明的一种优选方案,所述数据查询系统包括输入模块、快速检索模块,输入模块用于查询人员向系统内输入待查询的查询条件,快速检索模块用于根据查询人员的最终查询条件的属性类别在数据库内检索、提出符合查询条件的检索数据。As a preferred solution of the present invention, the data query system includes an input module and a fast retrieval module, the input module is used for the query personnel to input the query conditions to be queried into the system, and the fast retrieval module is used for the query according to the final query conditions of the query personnel The attribute categories are searched in the database, and the retrieved data that meets the query conditions are proposed.

作为本发明的一种优选方案,所述数据查询系统还包括预判模块、预检索模块、预储模块,预判模块用于根据查询人员的登录信息、输入中的检索信息预判其需要查询的相关数据,预检索模块用于根据预判模块的预判结果在数据库内进行预检索操作,并将预检索到的数据系统从数据库内提出至预储模块备用,预储模块用于存储预检索模块提出的预检索数据。As a preferred solution of the present invention, the data query system further includes a pre-judgment module, a pre-retrieval module, and a pre-storage module, and the pre-judgment module is used to predict the query required by the queryer according to his login information and input retrieval information The pre-retrieval module is used to perform pre-retrieval operations in the database according to the pre-judgment results of the pre-judgment module, and the pre-retrieved data system is proposed from the database to the pre-storage module for backup, and the pre-storage module is used to store the pre-storage The pre-retrieval data proposed by the retrieval module.

作为本发明的一种优选方案,所述快速检索模块与预存储模块连接,快速检索模块根据查询人员的最终查询条件的属性类别优先从预存储模块内检索、提出符合查询条件的检索数据。As a preferred solution of the present invention, the fast retrieval module is connected to the pre-storage module, and the fast retrieval module preferentially retrieves from the pre-storage module according to the attribute category of the queryer's final query condition, and proposes retrieval data that meets the query condition.

作为本发明的一种优选方案,所述数据查询系统还包括用户分析模块,用户分析模块用于对用户的相关查询信息、数据进行分析、处理和整合,便于后期想特定的登录用户使用该数据查询系统时,为其提供更加定制化的数据查询服务。As a preferred solution of the present invention, the data query system also includes a user analysis module, which is used to analyze, process and integrate the relevant query information and data of the user, so as to facilitate the later use of the data by specific login users When querying the system, it provides more customized data query services.

作为本发明的一种优选方案,所述用户分析模块包括历史追溯单元、查询分析单元和查询数据处理单元,历史追溯单元用于记录、追溯用户的查询数据,查询分析单元用于对历史追溯单元内的用户查询数据进行分析,进而分析出相关用户检索属性,查询数据处理单元用于存储经由查询分析单元分析出的对应用户的检索属性,并将该数据发送至预判模块进行协同使用。As a preferred solution of the present invention, the user analysis module includes a history traceability unit, a query analysis unit and a query data processing unit, the history traceability unit is used to record and trace user query data, and the query analysis unit is used to analyze the history traceability unit Analyze the user query data in the system, and then analyze the relevant user retrieval attributes. The query data processing unit is used to store the corresponding user retrieval attributes analyzed by the query analysis unit, and send the data to the pre-judgment module for collaborative use.

作为本发明的一种优选方案,所述用户检索属性包括登录用户的检索习惯、检索偏好在内的相关信息。As a preferred solution of the present invention, the user retrieval attributes include relevant information including retrieval habits and retrieval preferences of the logged-in user.

与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:

本发明提供的一种基于数据挖掘技术的海量数据查询方法,本方案针对现有的海量数据查询数据效率较低的技术问题,在数据查询系统内增设有检索预判功能,使其能够根据用户的输入中的查询条件、用户的相关检索习惯、检索偏好、用户身份信息等对用户的所需的查询数据进行预判,为后期用户的全方位检索提供更加准确、优质的查询数据储备,提高系统数据查询效率,提高用户的体验感。The present invention provides a massive data query method based on data mining technology. This solution aims at the existing technical problem of low efficiency of massive data query data, and adds a retrieval and pre-judgment function in the data query system, so that it can The query conditions in the input, the user's relevant retrieval habits, retrieval preferences, user identity information, etc. are used to predict the query data required by the user, so as to provide more accurate and high-quality query data reserves for the later user's all-round retrieval, and improve the System data query efficiency improves user experience.

附图说明Description of drawings

图1为本发明的海量数据查询方法流程图;Fig. 1 is the flowchart of massive data query method of the present invention;

图2为本发明的数据查询系统的具体架构图。FIG. 2 is a specific architecture diagram of the data query system of the present invention.

图中:1、数据查询系统;11、输入模块;12、快速检索模块 ;13、预判模块;14、预检索模块;15、预储模块;16、用户分析模块;161、历史追溯单元;162、查询分析单元;163、查询数据处理单元;2、数据库 ;21、录入模块;22、存储模块;221、关键词存储单元;222、用户属性存储单元;223、输入属性存储单元。In the figure: 1. Data query system; 11. Input module; 12. Quick retrieval module; 13. Pre-judgment module; 14. Pre-retrieval module; 15. Pre-storage module; 16. User analysis module; 161. History tracing unit; 162. Query analysis unit; 163. Query data processing unit; 2. Database; 21. Input module; 22. Storage module; 221. Keyword storage unit; 222. User attribute storage unit; 223. Input attribute storage unit.

具体实施方式detailed description

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.

请参阅图1-2,本发明提供一种技术方案:一种基于数据挖掘技术的海量数据查询方法,包括以下具体的步骤:Please refer to Fig. 1-2, the present invention provides a kind of technical scheme: a kind of massive data query method based on data mining technology, comprises the following specific steps:

S1:用户登录、注册数据查询系统1;S1: user login, registration data query system 1;

S2:用户在系统内的输入模块11输入查询条件;S2: the user inputs query conditions in the input module 11 in the system;

S3:系统根据用户在输入模块11中输入的查询条件(通过输入法、输入中的信息属性等)和查询数据处理单元163存储的对应用户的检索属性,通过预判模块13预判该用户可能需要查询的相关数据,通过预检索模块14根据预判结果在数据库2内进行预检索操作,并将预检索到的数据系统从数据库2内提出至预储模块15备用;S3: The system predicts the user's possible Relevant data that needs to be queried is carried out in the database 2 by the pre-retrieval module 14 according to the pre-judgment result, and the pre-retrieval data system is proposed to the pre-storage module 15 from the database 2 for standby;

S4:根据用户最终输入的查询条件,系统优先从预储模块15内备用的预判数据中提取用户的查询数据至系统的查询界面进行展示;S4: According to the query condition finally input by the user, the system preferentially extracts the user's query data from the spare pre-judgment data in the pre-storage module 15 to the query interface of the system for display;

S5:若预判数据内无符合用户查询条件的查询数据,系统从数据库2内提取符合用户查询条件的查询数据至系统的查询界面进行展示;S5: If there is no query data that meets the user's query conditions in the predicted data, the system extracts the query data that meets the user's query conditions from the database 2 and displays them on the query interface of the system;

S6:用户根据查询界面展示的查询数据自主选取所需数据即可;S6: The user can independently select the required data according to the query data displayed on the query interface;

S7:系统根据历史追溯单元162对用户的查询条件、用户自主选取的所需数据进行追溯,通过查询分析单元对上述数据信息进行分析、处理,并将分析处理结果存储至查询数据处理单元163,以备后期与预判模块13进行协同使用。S7: The system traces back the query conditions of the user and the required data independently selected by the user according to the history tracing unit 162, analyzes and processes the above data information through the query analysis unit, and stores the analysis and processing results in the query data processing unit 163, For later use in coordination with the pre-judgment module 13.

上述步骤中的数据查询系统1包括数据库2,数据库2包括录入模块21、存储模块22,录入模块21用于数据库2的数据录入和更新,存储模块22用于根据录入的数据属性对数据库2内的数据进行分类存储和处理。The data query system 1 in the above-mentioned steps comprises a database 2, and the database 2 comprises an entry module 21 and a storage module 22, the entry module 21 is used for data entry and update of the database 2, and the storage module 22 is used for checking the data in the database 2 according to the data attributes entered. classified data storage and processing.

存储模块22包括关键词存储单元221、用户属性存储单元222、输入属性存储单元223,关键词存储单元221用于根据输入数据内的关键词对数据进行分类存储,用户属性存储单元222用于根据系统内对应用户的用户属性进行分类存储,输入属性存储单元223用于根据输入的数据属性信息对数据进行分类存储。The storage module 22 includes a keyword storage unit 221, a user attribute storage unit 222, and an input attribute storage unit 223. The keyword storage unit 221 is used to classify and store data according to the keywords in the input data, and the user attribute storage unit 222 is used to store the data according to the keywords in the input data. The user attributes of corresponding users in the system are classified and stored, and the input attribute storage unit 223 is used to classify and store data according to the input data attribute information.

用户属性包括用户在查询系统内注册账号中填报的包括年龄、职业、所在地区、爱好在内的相关信息。User attributes include relevant information including age, occupation, location, and hobbies that the user fills in the registered account in the query system.

上述步骤中的数据查询系统1包括输入模块11、快速检索模块12,输入模块11用于查询人员向系统内输入待查询的查询条件,快速检索模块12用于根据查询人员的最终查询条件的属性类别在数据库2内检索、提出符合查询条件的检索数据。The data query system 1 in the above-mentioned steps comprises an input module 11 and a quick retrieval module 12. The input module 11 is used for the query personnel to input the query conditions to be queried in the system, and the fast retrieval module 12 is used for according to the attributes of the query personnel's final query conditions. The categories are searched in the database 2, and the retrieved data that meet the query conditions are proposed.

数据查询系统1还包括预判模块13、预检索模块14、预储模块15,预判模块13用于根据查询人员的登录信息、输入中的检索信息预判其需要查询的相关数据,预检索模块14用于根据预判模块13的预判结果在数据库2内进行预检索操作,并将预检索到的数据系统从数据库2内提出至预储模块15备用,预储模块15用于存储预检索模块14提出的预检索数据。The data query system 1 also includes a pre-judgment module 13, a pre-retrieval module 14, and a pre-storage module 15. The pre-judgment module 13 is used to predict the relevant data that needs to be queried according to the login information of the inquirer and the retrieval information in the input, and the pre-retrieval Module 14 is used to carry out pre-retrieval operation in database 2 according to the pre-judgment result of pre-judgment module 13, and puts the pre-retrieved data system from database 2 to pre-storage module 15 for standby, and pre-storage module 15 is used to store pre-storage The retrieval module 14 proposes pre-retrieval data.

快速检索模块12与预存储模块22连接,快速检索模块12根据查询人员的最终查询条件的属性类别优先从预存储模块22内检索、提出符合查询条件的检索数据。The fast retrieval module 12 is connected with the pre-storage module 22, and the fast retrieval module 12 retrieves from the pre-storage module 22 according to the attribute category of the final query condition of the queryer, and proposes retrieval data that meets the query conditions.

数据查询系统1还包括用户分析模块16,用户分析模块16用于对用户的相关查询信息、数据进行分析、处理和整合。The data query system 1 also includes a user analysis module 16 for analyzing, processing and integrating relevant query information and data of users.

用户分析模块16包括历史追溯单元161、查询分析单元162和查询数据处理单元163,历史追溯单元161用于记录、追溯用户的查询数据,查询分析单元162用于对历史追溯单元161内的用户查询数据进行分析,进而分析出相关的用户检索属性,查询数据处理单元163用于存储经由查询分析单元162分析出的对应用户的检索属性,用户检索属性包括登录用户的检索习惯、检索偏好在内的相关信息,分析出的数据被发送至预判模块13进行协同使用。The user analysis module 16 includes a history tracing unit 161, a query analysis unit 162 and a query data processing unit 163. The history tracing unit 161 is used to record and trace user query data, and the query analysis unit 162 is used to query the user in the history tracing unit 161. The query data processing unit 163 is used to store the corresponding user’s retrieval attributes analyzed by the query analysis unit 162, and the user retrieval attributes include the login user’s retrieval habits and retrieval preferences. Relevant information and analyzed data are sent to the pre-judgment module 13 for collaborative use.

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, those skilled in the art can understand that various changes, modifications and substitutions can be made to these embodiments without departing from the principle and spirit of the present invention. and modifications, the scope of the invention is defined by the appended claims and their equivalents.

Claims (10)

1.一种基于数据挖掘技术的海量数据查询方法,其特征在于:包括以下具体的步骤:1. A massive data query method based on data mining technology, characterized in that: comprise the following concrete steps: S1:用户登录、注册数据查询系统(1);S1: User login, registration data query system (1); S2:用户在系统内输入查询条件;S2: The user inputs query conditions in the system; S3:系统根据用户输入中的查询条件、用户的注册信息预判用户的待查询数据,并将预判的数据从数据库(2)中提出备用;S3: The system predicts the user's data to be queried according to the query conditions entered by the user and the user's registration information, and extracts the predicted data from the database (2) for backup; S4:根据用户最终输入的查询条件,系统优先从提出备用的预判数据中提取符合用户查询条件的查询数据至系统的查询界面进行展示;S4: According to the query conditions finally input by the user, the system preferentially extracts the query data that meets the user's query conditions from the proposed spare pre-judgment data and displays them on the query interface of the system; S5:若预判数据内无符合用户查询条件的查询数据,系统从数据库(2)内提取符合用户查询条件的查询数据至系统的查询界面进行展示;S5: If there is no query data that meets the user's query conditions in the predicted data, the system extracts the query data that meets the user's query conditions from the database (2) and displays them on the query interface of the system; S6:用户根据查询界面展示的查询数据自主选取所需数据即可。S6: The user can independently select the required data according to the query data displayed on the query interface. 2.根据权利要求1所述的一种基于数据挖掘技术的海量数据查询方法,其特征在于:所述数据查询系统(1)包括数据库(2),数据库(2)包括录入模块(21)、存储模块(22),录入模块(21)用于数据库(2)的数据录入和更新,存储模块(22)用于根据录入的数据属性对数据库(2)内的数据进行分类存储和处理。2. A massive data query method based on data mining technology according to claim 1, characterized in that: the data query system (1) includes a database (2), and the database (2) includes an entry module (21), The storage module (22), the entry module (21) is used for data entry and update of the database (2), and the storage module (22) is used for classifying, storing and processing the data in the database (2) according to the attributes of the entered data. 3.根据权利要求2所述的一种基于数据挖掘技术的海量数据查询方法,其特征在于:所述存储模块(22)包括关键词存储单元(221)、用户属性存储单元(222)、输入属性存储单元(223),关键词存储单元(221)用于根据输入数据内的关键词对数据进行分类存储,用户属性存储单元(222)用于根据系统内对应用户的用户属性进行分类存储,输入属性存储单元(223)用于根据输入的数据属性信息对数据进行分类存储。3. A massive data query method based on data mining technology according to claim 2, characterized in that: the storage module (22) includes a keyword storage unit (221), a user attribute storage unit (222), an input The attribute storage unit (223), the keyword storage unit (221) is used to classify and store the data according to the keywords in the input data, and the user attribute storage unit (222) is used to classify and store the user attributes of the corresponding users in the system, The input attribute storage unit (223) is used for classifying and storing the data according to the input data attribute information. 4.根据权利要求3所述的一种基于数据挖掘技术的海量数据查询方法,其特征在于:所述用户属性包括用户在查询系统内注册账号中填报的包括年龄、职业、所在地区、爱好在内的相关信息。4. A kind of mass data query method based on data mining technology according to claim 3, characterized in that: said user attributes include age, occupation, location, hobbies, etc. filled in by the user in the account number registered in the query system. related information in . 5.根据权利要求1所述的一种基于数据挖掘技术的海量数据查询方法,其特征在于:所述数据查询系统(1)包括输入模块(11)、快速检索模块(12),输入模块(11)用于查询人员向系统内输入待查询的查询条件,快速检索模块(12)用于根据查询人员的最终查询条件的属性类别在数据库(2)内检索、提出符合查询条件的检索数据。5. A massive data query method based on data mining technology according to claim 1, characterized in that: the data query system (1) includes an input module (11), a fast retrieval module (12), an input module ( 11) It is used for the query personnel to input the query conditions to be queried into the system, and the quick retrieval module (12) is used for searching in the database (2) according to the attribute category of the query personnel's final query conditions, and to propose retrieval data that meet the query conditions. 6.根据权利要求1所述的一种基于数据挖掘技术的海量数据查询方法,其特征在于:所述数据查询系统(1)还包括预判模块(13)、预检索模块(14)、预储模块(15),预判模块(13)用于根据查询人员的登录信息、输入中的检索信息预判其需要查询的相关数据,预检索模块(14)用于根据预判模块(13)的预判结果在数据库(2)内进行预检索操作,并将预检索到的数据系统从数据库(2)内提出至预储模块(15)备用,预储模块(15)用于存储预检索模块(14)提出的预检索数据。6. A massive data query method based on data mining technology according to claim 1, characterized in that: the data query system (1) also includes a pre-judgment module (13), a pre-retrieval module (14), a pre- The storage module (15), the pre-judgment module (13) is used to predict the relevant data that needs to be queried according to the queryer's login information and the input retrieval information, and the pre-retrieval module (14) is used to The pre-judgment results are pre-retrieved in the database (2), and the pre-retrieved data system is proposed from the database (2) to the pre-storage module (15) for backup, and the pre-storage module (15) is used to store the pre-retrieval Module (14) presents the pre-retrieval data. 7.根据权利要求5所述的一种基于数据挖掘技术的海量数据查询方法,其特征在于:所述快速检索模块(12)与预存储模块(22)连接,快速检索模块(12)根据查询人员的最终查询条件的属性类别优先从预存储模块(22)内检索、提出符合查询条件的检索数据。7. A massive data query method based on data mining technology according to claim 5, characterized in that: the fast retrieval module (12) is connected to the pre-storage module (22), and the fast retrieval module (12) according to the query The attribute category of the final query condition of the personnel is preferentially retrieved from the pre-storage module (22), and the retrieval data meeting the query condition is proposed. 8.根据权利要求1所述的一种基于数据挖掘技术的海量数据查询方法,其特征在于:所述数据查询系统(1)还包括用户分析模块(16),用户分析模块(16)用于对用户的相关查询信息、数据进行分析、处理和整合。8. A massive data query method based on data mining technology according to claim 1, characterized in that: the data query system (1) further includes a user analysis module (16), which is used to Analyze, process and integrate relevant query information and data of users. 9.根据权利要求1所述的一种基于数据挖掘技术的海量数据查询方法,其特征在于:所述用户分析模块(16)包括历史追溯单元(161)、查询分析单元(162)和查询数据处理单元(163),历史追溯单元(161)用于记录、追溯用户的查询数据,查询分析单元(162)用于对历史追溯单元(161)内的用户查询数据进行分析,进而分析出相关的用户检索属性,查询数据处理单元(163)用于存储经由查询分析单元(162)分析出的对应用户的检索属性,并将该数据发送至预判模块(13)进行协同使用。9. A massive data query method based on data mining technology according to claim 1, characterized in that: the user analysis module (16) includes a history tracing unit (161), a query analysis unit (162) and a query data The processing unit (163), the history tracing unit (161) is used to record and trace the query data of the user, and the query analysis unit (162) is used to analyze the user query data in the history tracing unit (161), and then analyze the relevant The user retrieval attribute, the query data processing unit (163) is used to store the retrieval attribute of the corresponding user analyzed by the query analysis unit (162), and send the data to the pre-judgment module (13) for collaborative use. 10.根据权利要求9所述的一种基于数据挖掘技术的海量数据查询方法,其特征在于:所述用户检索属性包括登录用户的检索习惯、检索偏好在内的相关信息。10. A massive data query method based on data mining technology according to claim 9, characterized in that: said user retrieval attributes include relevant information including retrieval habits and retrieval preferences of logged-in users.
CN202211292179.3A 2022-10-21 2022-10-21 A Massive Data Query Method Based on Data Mining Technology Pending CN115563189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211292179.3A CN115563189A (en) 2022-10-21 2022-10-21 A Massive Data Query Method Based on Data Mining Technology

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211292179.3A CN115563189A (en) 2022-10-21 2022-10-21 A Massive Data Query Method Based on Data Mining Technology

Publications (1)

Publication Number Publication Date
CN115563189A true CN115563189A (en) 2023-01-03

Family

ID=84767489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211292179.3A Pending CN115563189A (en) 2022-10-21 2022-10-21 A Massive Data Query Method Based on Data Mining Technology

Country Status (1)

Country Link
CN (1) CN115563189A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115860925A (en) * 2023-02-19 2023-03-28 广东德澳智慧医疗科技有限公司 Intelligent data query and investment management system based on artificial intelligence liability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103633A (en) * 2009-12-20 2011-06-22 Sap股份公司 A method and system for improving information system performance based on usage pattern
CN104424258A (en) * 2013-08-28 2015-03-18 腾讯科技(深圳)有限公司 Multidimensional data query method and system, query server and column storage server
CN113886426A (en) * 2021-10-21 2022-01-04 京东科技信息技术有限公司 Data query method and device, computer equipment and storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103633A (en) * 2009-12-20 2011-06-22 Sap股份公司 A method and system for improving information system performance based on usage pattern
CN104424258A (en) * 2013-08-28 2015-03-18 腾讯科技(深圳)有限公司 Multidimensional data query method and system, query server and column storage server
CN113886426A (en) * 2021-10-21 2022-01-04 京东科技信息技术有限公司 Data query method and device, computer equipment and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115860925A (en) * 2023-02-19 2023-03-28 广东德澳智慧医疗科技有限公司 Intelligent data query and investment management system based on artificial intelligence liability

Similar Documents

Publication Publication Date Title
US7912816B2 (en) Adaptive archive data management
EP3819792A2 (en) Method, apparatus, device, and storage medium for intention recommendation
US8214361B1 (en) Organizing search results in a topic hierarchy
US8990241B2 (en) System and method for recommending queries related to trending topics based on a received query
US9460193B2 (en) Context and process based search ranking
US11729122B2 (en) Content suggestion system for real-time communication environments
US20180032606A1 (en) Recommending topic clusters for unstructured text documents
US8805750B2 (en) Providing comparison experiences in response to search queries
WO2021098648A1 (en) Text recommendation method, apparatus and device, and medium
EP3685245B1 (en) Method, apparatus, and computer-readable media for customer interaction semantic annotation and analytics
CN104933100A (en) Keyword recommendation method and device
JP2013531289A (en) Use of model information group in search
CN110389944B (en) A model-based metadata management system and method
CN113010484A (en) Log file management method and device
CN111930967B (en) Data query method and device based on knowledge graph and storage medium
CN113407785A (en) Data processing method and system based on distributed storage system
US11308177B2 (en) System and method for accessing and managing cognitive knowledge
CN111833096A (en) Advertisement recommendation method and system based on machine learning
CN114090877A (en) Position information recommendation method and device, electronic equipment and storage medium
CN113821596A (en) Information recommendation method and device, computer equipment and storage medium
CN108470289B (en) Virtual article issuing method and equipment based on E-commerce shopping platform
CN113342844A (en) Industrial intelligent search system
CN115563189A (en) A Massive Data Query Method Based on Data Mining Technology
US12321864B2 (en) Multi-hop search for entity relationships
CN113377895A (en) Network knowledge point organization method and device based on directory tree

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination