CN115062858A - User complaint behavior prediction method, device, equipment and storage medium - Google Patents
User complaint behavior prediction method, device, equipment and storage medium Download PDFInfo
- Publication number
- CN115062858A CN115062858A CN202210769602.8A CN202210769602A CN115062858A CN 115062858 A CN115062858 A CN 115062858A CN 202210769602 A CN202210769602 A CN 202210769602A CN 115062858 A CN115062858 A CN 115062858A
- Authority
- CN
- China
- Prior art keywords
- complaint
- user
- predicted
- prediction model
- target user
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2458—Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
- G06F16/2462—Approximate or statistical queries
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/24—Querying
- G06F16/245—Query processing
- G06F16/2458—Special types of queries, e.g. statistical queries, fuzzy queries or distributed queries
- G06F16/2474—Sequence data queries, e.g. querying versioned data
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/01—Customer relationship services
- G06Q30/015—Providing customer assistance, e.g. assisting a customer within a business location or via helpdesk
- G06Q30/016—After-sales
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
- G06Q30/0202—Market predictions or forecasting for commercial activities
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Strategic Management (AREA)
- Development Economics (AREA)
- Theoretical Computer Science (AREA)
- Finance (AREA)
- Accounting & Taxation (AREA)
- General Physics & Mathematics (AREA)
- Entrepreneurship & Innovation (AREA)
- Economics (AREA)
- Marketing (AREA)
- Data Mining & Analysis (AREA)
- General Business, Economics & Management (AREA)
- Game Theory and Decision Science (AREA)
- Probability & Statistics with Applications (AREA)
- Computational Linguistics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Human Resources & Organizations (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- Tourism & Hospitality (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明实施例涉及人工智能技术领域,尤其涉及一种用户投诉行为预测方法、装置、设备及存储介质。Embodiments of the present invention relate to the technical field of artificial intelligence, and in particular, to a method, device, device, and storage medium for predicting user complaint behavior.
背景技术Background technique
随着移动业务的不断发展,各种产品的会员,超级会员等权益用户投诉量也不断增多。权益用户投诉是反映供应商服务质量的一个关键指标。With the continuous development of mobile business, the number of complaints from members of various products, super members and other privileged users is also increasing. Complaints from users of rights and interests are a key indicator reflecting the quality of a supplier's service.
针对权益用户投诉问题,目前只有能够预测潜在投诉用户投诉概率的技术方案。Regarding the complaints of rights and interests users, there are currently only technical solutions that can predict the probability of complaints from potential complaining users.
然而,目前的投诉预测方案只涵盖了静态用户数据,无法全面体现用户可能产生的投诉行为,而且无法预测未来某个时段的投诉量,导致无法动态筛选出某个时段的潜在投诉用户,未能及时处理潜在投诉用户的事宜,导致用户投诉率较高。However, the current complaint prediction scheme only covers static user data, which cannot fully reflect the possible complaints behavior of users, and cannot predict the amount of complaints in a certain period of time in the future, which makes it impossible to dynamically screen out potential complaining users in a certain period of time. Timely handling of potential complaints from users, resulting in a high rate of user complaints.
发明内容SUMMARY OF THE INVENTION
本申请提供一种用户投诉行为预测方法、装置、设备及存储介质,用以解决现有技术无法全面体现用户可能产生的投诉行为,无法预测未来某个时段的投诉量,导致无法准确筛选出某个时段的潜在投诉用户进行及时处理,从而导致用户投诉率较高的问题。The present application provides a method, device, equipment and storage medium for predicting user complaint behavior, so as to solve the problem that the existing technology cannot fully reflect the complaint behavior that may be generated by users, and cannot predict the amount of complaints in a certain period of time in the future, resulting in the inability to accurately screen out a certain complaint behavior. Potential complaining users in a period of time will be dealt with in a timely manner, resulting in a high rate of user complaints.
第一方面,本申请提供一种用户投诉行为预测方法,包括:In the first aspect, the present application provides a method for predicting user complaint behavior, including:
获取目标用户个人信息、最近预设时间范围内目标用户对目标产品的真实投诉量及使用行为数据。Obtain the target user's personal information, the target user's real complaint volume and usage behavior data for the target product within the most recent preset time range.
基于所述真实投诉量及已训练的序列预测模型对目标用户后续时间范围内的投诉量进行预测,并从所述后续时间范围内的投诉量中确定当前预测投诉量。Based on the real complaint volume and the trained sequence prediction model, the target user's complaint volume in the subsequent time range is predicted, and the current predicted complaint volume is determined from the complaint volume in the subsequent time range.
基于所述当前预测投诉量、目标用户个人信息及所述使用行为数据对所述目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户。The complaint probability of the target user is predicted based on the current predicted complaint volume, the target user's personal information and the usage behavior data, so as to obtain the predicted complaining users matching the predicted complaint volume in quantity.
可选地,所述已训练的序列预测模型为季节性时间序列模型ISARIMA模型。Optionally, the trained sequence prediction model is a seasonal time series model ISARIMA model.
所述基于所述真实投诉量及已训练的序列预测模型对目标用户后续时间范围内的投诉量进行预测,包括:The prediction of the complaint volume within the subsequent time range of the target user based on the real complaint volume and the trained sequence prediction model includes:
将所述真实投诉量输入到季节性时间序列模型ISARIMA模型中。The true complaint volume is input into the seasonal time series model ISARIMA model.
采用所述季节性时间序列模型ISARIMA模型根据所述真实投诉量对目标用户后续时间范围内的投诉量进行预测,并输出所述后续时间范围内的投诉量。The seasonal time series model ISARIMA model is used to predict the complaint volume of the target user within the subsequent time range according to the real complaint volume, and output the complaint volume within the subsequent time range.
可选地,所述基于所述当前预测投诉量、目标用户个人信息及所述使用行为数据对所述目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户,包括:Optionally, predicting the complaint probability of the target user based on the current predicted complaint volume, the personal information of the target user, and the usage behavior data, so as to obtain the predicted complaint user that matches the predicted complaint volume in quantity. ,include:
基于所述当前预测投诉量、目标用户个人信息、所述使用行为数据及已训练的投诉用户预测模型对所述目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户。Predict the complaint probability of the target user based on the current predicted complaint volume, the target user's personal information, the usage behavior data and the trained complaint user prediction model, so as to obtain a prediction that quantitatively matches the predicted complaint volume Complain about the user.
可选地,所述基于所述当前预测投诉量、目标用户个人信息、所述使用行为数据及已训练的投诉用户预测模型对所述目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户,包括:Optionally, the target user's complaint probability is predicted based on the current predicted complaint volume, the target user's personal information, the usage behavior data and the trained complaint user prediction model, so as to obtain the same number of complaints as the predicted complaint volume. A matched number of predicted complaining users, including:
将所述当前预测投诉量、所述目标用户个人信息及所述使用行为数据输入到已训练的投诉用户预测模型中。The current predicted complaint volume, the target user's personal information and the usage behavior data are input into the trained complaint user prediction model.
采用所述已训练的投诉用户预测模型根据所述目标用户个人信息及所述使用行为数据对目标用户的投诉概率进行预测。The trained complaint user prediction model is used to predict the complaint probability of the target user according to the target user's personal information and the usage behavior data.
采用所述已训练的投诉用户预测模型根据所述当前预测投诉量及目标用户的投诉概率筛选出与所述预测投诉量相等的预测投诉用户。The trained complaint user prediction model is used to screen out the predicted complaint users equal to the predicted complaint amount according to the current predicted complaint amount and the target user's complaint probability.
可选地,所述基于所述真实投诉量及已训练的序列预测模型对目标用户后续时间范围内的投诉量进行预测之前,还包括:Optionally, before predicting the complaint volume of the target user in the subsequent time range based on the real complaint volume and the trained sequence prediction model, the method further includes:
获取对初始序列预测模型进行训练的第一训练样本集。Obtain the first training sample set for training the initial sequence prediction model.
确定对初始序列预测模型进行训练的每个训练参数的取值范围。Determine the range of values for each training parameter used to train the initial sequence prediction model.
对每个训练参数的取值范围进行遍历,以确定由训练参数组成的训练参数组的所有可能的取值。The value range of each training parameter is traversed to determine all possible values of the training parameter group composed of the training parameters.
遍历训练参数组所有的可能取值,采用所述第一训练样本集对所述初始序列预测模型进行训练,以获得拟合优良性指标AIC最小的序列预测模型。All possible values of the training parameter group are traversed, and the initial sequence prediction model is trained by using the first training sample set to obtain the sequence prediction model with the smallest fitting goodness index AIC.
将拟合优良性指标AIC最小的序列预测模型确定为已训练的序列预测模型。The sequence prediction model with the smallest fit goodness index AIC was determined as the trained sequence prediction model.
可选地,所述已训练的投诉用户预测模型为误差反向传播的BP模型。Optionally, the trained complaint user prediction model is an error back-propagation BP model.
所述基于所述当前预测投诉量、目标用户个人信息、所述使用行为数据及已训练的投诉用户预测模型对所述目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户之前,还包括:The target user's complaint probability is predicted based on the current predicted complaint volume, the target user's personal information, the usage behavior data and the trained complaint user prediction model, so as to obtain a quantitative match with the predicted complaint volume. Predictions of complaining users before, also include:
获取对初始投诉用户预测模型进行训练及测试的样本集,所述样本集中的第二训练样本集及测试样本集划分比例是按照预测准确率确定的。A sample set for training and testing the initial complaint user prediction model is obtained, and the division ratio of the second training sample set and the test sample set in the sample set is determined according to the prediction accuracy.
在确定样本集中的第二训练样本集及测试样本集划分比例后,按照所述划分比例的第二训练样本集及测试样本集对初始投诉用户预测模型进行训练及测试,并在训练及测试过程中,调整初始投诉用户预测模型中神经网络层级数及训练参数。After determining the division ratio of the second training sample set and the test sample set in the sample set, train and test the initial complaint user prediction model according to the second training sample set and the test sample set in the divided ratio, and perform training and testing during the training and testing process. , adjust the number of neural network layers and training parameters in the initial complaint user prediction model.
将所述预测准确率最高的投诉用户预测模型确定为已训练的投诉用户预测模型。The complaint user prediction model with the highest prediction accuracy is determined as the trained complaint user prediction model.
可选地,所述获取对初始投诉用户预测模型进行训练及测试的样本集之前,还包括:Optionally, before obtaining the sample set for training and testing the initial complaint user prediction model, the method further includes:
获取原始数据集。Get the original dataset.
采用结构化查询SQL语句从所述原始数据集中提取目标用户个人信息和使用行为数据,并对所述目标用户个人信息及所述使用行为数据进行预处理后存储到对应的样本集表格中。A structured query SQL statement is used to extract the target user's personal information and usage behavior data from the original data set, and the target user's personal information and the usage behavior data are preprocessed and stored in a corresponding sample set table.
可选地,所述方法还包括:Optionally, the method further includes:
将预测出的后续时间范围内的投诉量与后续时间范围内的真实投诉量进行对比,以获得对比结果。Compare the predicted volume of complaints in the follow-up time range with the actual volume of complaints in the follow-up time range to obtain a comparison result.
若确定所述对比结果满足序列预测模型的调参条件,则对所述已训练的序列预测模型进行调参处理。If it is determined that the comparison result satisfies the parameter adjustment condition of the sequence prediction model, the parameter adjustment process is performed on the trained sequence prediction model.
第二方面,本申请提供一种用户投诉行为预测装置,包括:In a second aspect, the present application provides a user complaint behavior prediction device, including:
获取模块,用于获取目标用户个人信息、最近预设时间范围内目标用户对目标产品的真实投诉量及使用行为数据。The acquisition module is used to acquire the personal information of the target user, the actual amount of complaints of the target user about the target product within the most recent preset time range, and the usage behavior data.
第一预测模块,用于基于所述真实投诉量及已训练的序列预测模型对目标用户后续时间范围内的投诉量进行预测,并从所述后续时间范围内的投诉量中确定当前预测投诉量。The first prediction module is used to predict the complaint volume of the target user within the subsequent time range based on the real complaint volume and the trained sequence prediction model, and determine the current predicted complaint volume from the complaint volume within the subsequent time range .
第二预测模块,用于基于所述当前预测投诉量、目标用户个人信息及所述使用行为数据对所述目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户。The second prediction module is configured to predict the complaint probability of the target user based on the current predicted complaint volume, the target user's personal information and the usage behavior data, so as to obtain the predicted complaints that match the predicted complaint volume in quantity user.
第三方面,本申请提供一种电子设备,包括:In a third aspect, the application provides an electronic device, comprising:
处理器,以及与所述处理器通信连接的存储器。a processor, and a memory in communication with the processor.
所述存储器存储计算机执行指令。The memory stores computer-executable instructions.
所述处理器执行所述存储器存储的计算机执行指令,以实现第一方面中任一项所述的方法。The processor executes computer-executable instructions stored in the memory to implement the method of any one of the first aspects.
第四方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,所述计算机执行指令被处理器执行时用于实现第一方面中任一项所述的方法。In a fourth aspect, the present application provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, are used to implement any one of the first aspect. method described.
本申请提供的用户投诉行为预测方法,获取目标用户个人信息、最近预设时间范围内目标用户对目标产品的真实投诉量及使用行为数据。基于所述真实投诉量及已训练的序列预测模型对目标用户后续时间范围内的投诉量进行预测,并从所述后续时间范围内的投诉量中确定当前预测投诉量。基于所述当前预测投诉量、目标用户个人信息及所述使用行为数据对所述目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户。由于采用了已训练的序列预测模型能够对后续时间范围内的投诉量进行预测,所以能够从后续时间范围内确定出未来某时段对应的当前投诉量。并且在对投诉量进行预测时,考虑了目标产品的真实投诉量,所以提高了预测当前投诉量的准确性。由于在对投诉用户进行预测时,综合考虑了当前预测投诉量、目标用户个人信息、使用行为数据的影响,所以能够准确预测出与预测投诉量在数量上相匹配的未来某个时段的潜在投诉用户。能够对潜在投诉用户进行及时处理,有效降低用户投诉率,提升用户满意度及对产品的使用体验。The user complaint behavior prediction method provided in this application obtains the personal information of the target user, the actual amount of complaints of the target user against the target product within the most recent preset time range, and the data on usage behavior. Based on the real complaint volume and the trained sequence prediction model, the target user's complaint volume in the subsequent time range is predicted, and the current predicted complaint volume is determined from the complaint volume in the subsequent time range. The complaint probability of the target user is predicted based on the current predicted complaint volume, the target user's personal information and the usage behavior data, so as to obtain the predicted complaining users matching the predicted complaint volume in quantity. Since the trained sequence prediction model can predict the volume of complaints in the subsequent time range, the current volume of complaints corresponding to a certain period in the future can be determined from the subsequent time range. And when predicting the complaint volume, the real complaint volume of the target product is considered, so the accuracy of predicting the current complaint volume is improved. Since the impact of the current predicted complaint volume, the personal information of the target user, and the use behavior data is comprehensively considered when predicting the complaining users, it is possible to accurately predict the potential complaints in a certain period of time in the future that match the predicted number of complaints. user. It can deal with potential complaint users in a timely manner, effectively reduce the user complaint rate, and improve user satisfaction and product experience.
附图说明Description of drawings
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the application and together with the description serve to explain the principles of the application.
图1为本申请实施例提供的用户投诉行为预测方法的应用场景图;1 is an application scenario diagram of a method for predicting user complaint behavior provided by an embodiment of the present application;
图2为本申请实施例一提供的用户投诉行为预测方法的方法流程图;2 is a method flow chart of a method for predicting a user complaint behavior provided in
图3为本申请实施例二提供的用户投诉行为预测方法的方法流程图;3 is a method flow chart of a method for predicting a user complaint behavior provided in
图4为本申请实施例四提供的用户投诉行为预测方法的方法流程图;4 is a method flow chart of a method for predicting a user complaint behavior provided in Embodiment 4 of the present application;
图5为本申请实施例五提供的用户投诉行为预测方法的方法流程图;5 is a method flow chart of a method for predicting a user complaint behavior provided in Embodiment 5 of the present application;
图6为本申请实施例六提供的用户投诉行为预测方法的方法流程图;6 is a method flow chart of a method for predicting a user complaint behavior provided in Embodiment 6 of the present application;
图7为本申请实施例七提供的用户投诉行为预测方法的方法流程图;FIG. 7 is a method flow chart of a method for predicting a user complaint behavior provided in Embodiment 7 of the present application;
图8为本申请实施例八提供的用户投诉行为预测方法的方法流程图;FIG. 8 is a method flow chart of a method for predicting a user complaint behavior provided in Embodiment 8 of the present application;
图9为本申请实施例一提供的用户投诉行为预测装置的结构示意图;FIG. 9 is a schematic structural diagram of a user complaint behavior prediction device provided in
图10为本申请实施例一提供的电子设备的结构示意图。FIG. 10 is a schematic structural diagram of an electronic device provided in
具体实施方式Detailed ways
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。Exemplary embodiments will be described in detail herein, examples of which are illustrated in the accompanying drawings. Where the following description refers to the drawings, the same numerals in different drawings refer to the same or similar elements unless otherwise indicated. The implementations described in the illustrative examples below are not intended to represent all implementations consistent with this disclosure. Rather, they are merely examples of apparatus and methods consistent with some aspects of the present disclosure as recited in the appended claims.
为了清楚理解本申请的技术方案,首先对现有技术的方案进行详细介绍。In order to clearly understand the technical solutions of the present application, the solutions of the prior art are first introduced in detail.
现有投诉预测方案只涵盖了静态用户数据,如用户个人信息,无法全面体现用户可能产生的投诉行为,因而对用户投诉行为预测不够准确,而且现有技术无法预测未来时段每日投诉量,导致无法准确筛选出每日预测投诉量数目的潜在投诉用户,进而无法对产品及时进行改进,导致用户投诉率较高、产品体验较低。The existing complaint prediction scheme only covers static user data, such as user personal information, and cannot fully reflect the user's possible complaint behavior, so the prediction of user complaint behavior is not accurate enough, and the existing technology cannot predict the daily complaint volume in the future period, resulting in It is impossible to accurately screen out the potential complaining users who predict the number of complaints per day, so that the product cannot be improved in a timely manner, resulting in a higher user complaint rate and a lower product experience.
基于现有技术对用户投诉行为预测不准确,不能准确筛选出预测数目的潜在投诉用户的问题,发明人经过创造性研究发现,利用基于时序的模型,可以对未来时段的投诉量进行预测,并且为了提高对未来时段的投诉量的准确性,再采用时序的模型对未来时段的投诉量进行预测时,可以采用最近预设时间范围内目标用户对目标产品的真实投诉量来预测目标用户后续时间范围内的投诉量,进而能够从后续时间范围内的投诉量中确定出未来某时段对应的当前投诉量。为了能够准确预测出与预测投诉量在数量上相匹配的未来某个时段的潜在投诉用户,需要综合考虑当前预测投诉量、目标用户个人信息、使用行为数据的影响,所以可综合考虑上述影响因素,预测出未来某个时段的潜在投诉用户。其中时序的模型可以为已训练的序列预测模型。通过本申请实施例能够准确预测出与预测投诉量在数量上相匹配的未来某个时段的潜在投诉用户,降低用户投诉率,提升用户满意度及对产品的使用体验。Based on the inaccurate prediction of user complaint behavior in the prior art, and the problem that the predicted number of potential complaining users cannot be accurately screened, the inventor found through creative research that the time series-based model can be used to predict the amount of complaints in the future period, and in order to Improve the accuracy of the amount of complaints in the future period, and then use the time series model to predict the amount of complaints in the future period, you can use the target user's real complaints about the target product within the most recent preset time range to predict the target user's follow-up time range The current complaint volume corresponding to a certain period in the future can be determined from the complaint volume in the subsequent time range. In order to accurately predict the potential complaint users in a certain period of time in the future that matches the predicted number of complaints, it is necessary to comprehensively consider the influence of the current predicted complaint volume, the personal information of the target users, and the usage behavior data, so the above influencing factors can be comprehensively considered. , to predict the potential complaining users at a certain time in the future. The time series model can be a trained sequence prediction model. Through the embodiments of the present application, potential complaining users in a certain period in the future that match the predicted amount of complaints can be accurately predicted, the user complaint rate can be reduced, and the user satisfaction and the experience of using the product can be improved.
下面对本申请提供的用户投诉行为预测方法的网络架构及应用场景进行介绍。The following introduces the network architecture and application scenarios of the user complaint behavior prediction method provided by the present application.
图1为本申请提供的用户投诉行为预测方法的应用场景图。本申请实施例提供的用户投诉行为预测方法对应的网络结构中可包括:数据库1、电子设备2,用户终端3。电子设备2可以是服务器。电子设备2周期性地从数据库1读取目标用户对目标产品的真实投诉量、用户个人信息及使用行为数据,将最近预设时间范围内的真实投诉量输入已训练的序列预测模型中,得到后续时间范围的预测投诉量,确定当前预测投诉量,将当前预测投诉量、用户个人信息和用户使用行为数据输入已训练的投诉用户预测模型中,得到与当前预测投诉量相同数目的潜在投诉用户。用户终端3在投诉预测页面显示某产品后续时间范围的预测投诉量及潜在投诉用户名单。FIG. 1 is an application scenario diagram of the user complaint behavior prediction method provided by the present application. The network structure corresponding to the user complaint behavior prediction method provided in the embodiment of the present application may include: a
本申请提供的用户投诉行为预测方法具体可应用于各种移动业务产品的投诉预测。如用户订购了一种流量包产品。电子设备2每周从数据库1中获取最近半年流量包产品用户投诉量数据,将其输入到时序预测模型中,预测未来一周每日用户投诉量。确定当前预测投诉量,在当前预测投诉量对应日期获取随心享产品用户个人信息及使用行为数据,将其输入到投诉用户预测模型中,预测流量包产品用户的投诉概率。将投诉概率按照从大到小的顺序排序,筛选出排在前面的数量与当前预测投诉量相匹配的潜在投诉用户。The user complaint behavior prediction method provided by the present application can be specifically applied to the complaint prediction of various mobile service products. For example, the user ordered a traffic pack product. The
下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例中不再赘述。下面将结合附图,对本申请的实施例进行描述。The technical solutions of the present application and how the technical solutions of the present application solve the above-mentioned technical problems will be described in detail below with specific examples. The following specific embodiments may be combined with each other, and the same or similar concepts or processes may not be repeated in some embodiments. The embodiments of the present application will be described below with reference to the accompanying drawings.
实施例一Example 1
图2为本申请实施例一提供的用户投诉行为预测方法的方法流程图。本实施例针对现有技术无法预测未来某个时段的投诉量,导致无法动态筛选出某个时段的潜在投诉用户,导致用户投诉率高、对产品的使用体验较低的问题,提供一种用户投诉行为预测方法。本实施例中的方法应用于用户投诉行为预测装置,用户投诉行为预测装置可以位于电子设备中。其中,电子设备可以为表示各种形式的数字计算机。诸如,蜂窝电话、智能电话、膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。如图2所示,本申请实施例的用户投诉行为预测方法包括以下步骤:FIG. 2 is a method flowchart of a method for predicting a user complaint behavior according to
步骤S101、获取目标用户个人信息、最近预设时间范围内目标用户对目标产品的真实投诉量及使用行为数据。Step S101 , acquiring the personal information of the target user, the actual amount of complaints of the target user about the target product within the most recent preset time range, and the data on usage behavior.
其中,用户个人信息,是指用户个人基本信息。例如性别、年龄、号码、省份等信息。Among them, the user's personal information refers to the user's personal basic information. Such as gender, age, number, province and other information.
其中,使用行为数据,是指用户在产品使用过程中的行为数据。包括用户网络数据、用户产品使用数据、用户埋点行为数据、用户投诉数据、用户衍生标签数据等。示例性地,用户网络数据可以包括总话费、总流量、是否出账等。用户产品使用数据可以包括订购时间、订购渠道、会员领取情况等信息。用户埋点行为数据可以包括用户在订购页面的一系列点击事件,可以包括点击时间、点击次数、以及浏览时长等信息。用户投诉数据可以包括用户的投诉时间、投诉原因、处理结果等数据。用户衍生标签数据可以包括用户退订概率、用户产品偏好等数据。最近预设时间范围不限定范围。可以为最近半年或最近一年等。Among them, the usage behavior data refers to the behavior data of the user in the process of using the product. Including user network data, user product usage data, user tracking behavior data, user complaint data, user-derived tag data, etc. Exemplarily, the user network data may include total call charges, total traffic, whether to bill or not. User product usage data may include information such as order time, order channels, and membership status. The user tracking behavior data may include a series of click events of the user on the order page, and may include information such as click time, number of clicks, and browsing time. User complaint data may include the user's complaint time, complaint reason, processing result and other data. User-derived tag data may include data such as user unsubscribe probability, user product preference, and the like. The most recent preset time range is not limited. It can be the last half year or the last year, etc.
具体地,可将目标用户个人信息、最近预设时间范围内目标用户对目标产品的真实投诉量及使用行为数据存储到预设数据库的数据表中,通过访问数据表获取全国范围内或某个省份范围内目标产品的目标用户个人信息及最近预设时间范围内目标产品用户每日使用行为数据。Specifically, the target user's personal information, the target user's real complaints about the target product within the most recent preset time range, and the use behavior data can be stored in the data table of the preset database, and the data can be obtained by accessing the data table nationwide or in a certain country. The personal information of the target user of the target product within the province and the daily usage behavior data of the target product user within the most recent preset time range.
步骤S102、基于真实投诉量及已训练的序列预测模型对目标用户后续时间范围内的投诉量进行预测,并从后续时间范围内的投诉量中确定当前预测投诉量。Step S102: Predict the complaint volume of the target user in the subsequent time range based on the real complaint volume and the trained sequence prediction model, and determine the current predicted complaint volume from the complaint volume in the subsequent time range.
其中,已训练的序列预测模型不限定范围,可以为各种时间序列模型,例如AR模型、MA模型等。后续时间范围不限定范围。可以为未来一周或未来一个月。Wherein, the trained sequence prediction model is not limited in scope, and can be various time series models, such as AR model, MA model, and the like. The follow-up time range is not limited. Can be for the next week or the next month.
具体地,定期将全国或某省份的最近预设时间范围内的真实投诉量输入已训练的时间序列模型,得到目标用户后续时间范围内的预测投诉量。示例性的,将后续时间范围内的某日确定为当前日期,确定当前预测投诉量为当天预测投诉量。Specifically, the real complaint volume in the latest preset time range of the whole country or a certain province is regularly input into the trained time series model, and the predicted complaint volume in the subsequent time range of the target user is obtained. Exemplarily, a certain day in the subsequent time range is determined as the current date, and the current predicted complaint volume is determined as the current predicted complaint volume.
示例性地,将近半年的每日真实投诉量输入到时间序列模型中,得到5月24日-5月30日未来一周的预测投诉量,可以将5月24日的预测投诉量确定为当前预测投诉量。Exemplarily, the daily real complaint volume for nearly half a year is input into the time series model, and the predicted complaint volume for the next week from May 24 to May 30 is obtained, and the predicted complaint volume on May 24 can be determined as the current forecast. volume of complaints.
步骤S103、基于当前预测投诉量、目标用户个人信息及使用行为数据对目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户。Step S103: Predict the complaint probability of the target user based on the current predicted complaint volume, the target user's personal information and the usage behavior data, so as to obtain the predicted complaint users matching the predicted complaint volume in quantity.
具体地,在当前预测投诉量对应日期,根据当前预测投诉量、目标用户个人信息及最近预设时间范围的目标用户使用行为数据对目标用户的投诉概率进行预测。预测方法不做具体限定。将预测投诉概率按照由大到小的顺序进行排序,进而确定与当前预测投诉量在数量上一致的预测投诉用户。本申请实施例中,获取目标用户个人信息、最近预设时间范围内目标用户对目标产品的真实投诉量及使用行为数据。基于真实投诉量及已训练的序列预测模型对目标用户后续时间范围内的投诉量进行预测,并从后续时间范围内的投诉量中确定当前预测投诉量。基于当前预测投诉量、目标用户个人信息及使用行为数据对目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户。由于采用了基于时序的预测模型,能够对后续时间范围的投诉量进行预测,并确定当前预测投诉量。在对当前预测投诉量进行预测时,由于是以真实投诉量作为数据基础,所以提高了当前预测投诉量的准确度。由于综合考虑了当前预测投诉量、目标用户个人信息、使用行为数据的影响,所以能够得到与预测投诉量在数量上相匹配的潜在投诉用户,进而督促供应商针对潜在投诉用户进行处理,并改进产品质量,以降低投诉率,提升用户满意度和用户的产品体验。Specifically, on the date corresponding to the current predicted complaint volume, the target user's complaint probability is predicted according to the current predicted complaint volume, the target user's personal information, and the target user's usage behavior data within the most recent preset time range. The prediction method is not specifically limited. Sort the predicted complaint probabilities in descending order, and then determine the predicted complaint users whose number is consistent with the current predicted complaint volume. In the embodiment of the present application, the personal information of the target user, the actual amount of complaints of the target user about the target product within the most recent preset time range, and the usage behavior data are obtained. Based on the real complaint volume and the trained sequence prediction model, the target user's complaint volume in the subsequent time range is predicted, and the current predicted complaint volume is determined from the complaint volume in the subsequent time range. Predict the complaint probability of the target user based on the current predicted complaint volume, the target user's personal information and usage behavior data, so as to obtain the predicted complaint users that match the predicted complaint volume in quantity. Due to the use of a time series-based forecasting model, it is possible to predict the volume of complaints in the subsequent time range and determine the current forecast volume of complaints. When predicting the current predicted complaint volume, since the real complaint volume is used as the data basis, the accuracy of the current predicted complaint volume is improved. Due to the comprehensive consideration of the impact of the current forecasted complaint volume, target users’ personal information, and usage behavior data, it is possible to obtain potential complaining users that match the predicted complaint volume, and then urge suppliers to deal with potential complaining users and improve Product quality, in order to reduce the complaint rate, improve user satisfaction and user product experience.
实施例二
图3为本申请实施例二提供的用户投诉行为预测方法流程图,如图3所示,基于以上实施例,本申请实施例涉及步骤S102基于真实投诉量及已训练的序列预测模型对目标用户后续时间范围内的投诉量进行预测的一种具体实现方式,其中,已训练的序列预测模型为季节性时间序列模型ISARIMA模型。基于真实投诉量及已训练的序列预测模型对目标用户后续时间范围内的投诉量进行预测,包括以下步骤:FIG. 3 is a flowchart of a method for predicting user complaint behavior provided by the second embodiment of the present application. As shown in FIG. 3 , based on the above embodiment, the embodiment of the present application involves step S102 based on the actual amount of complaints and the trained sequence prediction model. A specific implementation method for predicting the amount of complaints in the subsequent time range, wherein the trained sequence prediction model is the seasonal time series model ISARIMA model. Based on the real complaint volume and the trained sequence prediction model, the target user's complaint volume in the follow-up time range is predicted, including the following steps:
步骤S201、将真实投诉量输入到季节性时间序列模型ISARIMA模型中。Step S201, input the real complaint volume into the seasonal time series model ISARIMA model.
其中,SARIMA模型是一种季节时间序列模型,用于描述具有季节性变化的时间序列。ISARIMA为改进的季节时间序列模型。Among them, SARIMA model is a seasonal time series model used to describe time series with seasonal variation. ISARIMA is an improved seasonal time series model.
具体地,将最近预设时间范围的每日真实投诉量输入到季节性时间序列模型ISARIMA模型中,以预测后续时间范围的投诉量。Specifically, the daily real complaint volume of the most recent preset time range is input into the seasonal time series model ISARIMA model to predict the complaint volume of the subsequent time range.
步骤S202、采用季节性时间序列模型ISARIMA模型根据真实投诉量对目标用户后续时间范围内的投诉量进行预测,并输出后续时间范围内的投诉量。Step S202 , using the seasonal time series model ISARIMA model to predict the amount of complaints of the target user within the subsequent time range according to the actual amount of complaints, and output the amount of complaints within the subsequent time range.
其中,后续时间范围不做限定,可以为未来一周或未来一个月。The follow-up time range is not limited, and can be a week or a month in the future.
具体地,季节性时间序列模型ISARIMA模型接收最近预设时间范围的每日真实投诉量,基于最近预设时间范围的每日真实投诉量对后续时间范围内的每日投诉量进行预测,输出后续时间范围的每日预测投诉量。Specifically, the seasonal time series model ISARIMA model receives the daily real complaint volume in the latest preset time range, predicts the daily complaint volume in the subsequent time range based on the daily real complaint volume in the latest preset time range, and outputs the subsequent Daily forecast complaint volume for the time frame.
本申请实施例中,已训练的序列预测模型为季节性时间序列模型ISARIMA模型。将真实投诉量输入到季节性时间序列模型ISARIMA模型中。采用季节性时间序列模型ISARIMA模型根据真实投诉量对目标用户后续时间范围内的投诉量进行预测,并输出后续时间范围内的投诉量。由于用户投诉量具有周期性变化,而季节性时间序列模型SARIMA是用于描述具有季节性或周期性变化的时间序列,因此,采用改进的季节性时间序列模型ISARIMA,能够提高预测后续时间范围内的每日投诉量的准确性,并且该ISARIMA是经过训练的,所以进一步提高了每日投诉量预测的准确性。In the embodiment of the present application, the trained sequence prediction model is the seasonal time series model ISARIMA model. Input the true complaint volume into the seasonal time series model ISARIMA model. The seasonal time series model ISARIMA model is used to predict the complaint volume of the target user in the subsequent time range according to the real complaint volume, and output the complaint volume in the subsequent time range. Since the amount of user complaints has periodic changes, and the seasonal time series model SARIMA is used to describe the time series with seasonal or periodic changes, therefore, the use of the improved seasonal time series model ISARIMA can improve the forecast in the subsequent time range. The accuracy of the daily complaint volume, and the ISARIMA is trained, so further improves the accuracy of the daily complaint volume prediction.
实施例三
基于实施例一或实施例二的内容,本申请实施例涉及步骤S103基于当前预测投诉量、目标用户个人信息及使用行为数据对目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户的一种具体可实现方式,具体包括:Based on the content of
基于当前预测投诉量、目标用户个人信息、使用行为数据及已训练的投诉用户预测模型对目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户。Based on the current predicted complaint volume, the target user's personal information, usage behavior data and the trained complaint user prediction model, the target user's complaint probability is predicted to obtain the predicted complaint users that match the predicted complaint volume in quantity.
其中,本申请使用的已训练的投诉用户预测模型是误差反向传播的BP模型,已训练的投诉用户预测模型不做具体限定,示例性地,可以为LSTM模型,或迭代决策树模型、逻辑回归模型、随机森林模型中的任一模型。Among them, the trained complaint user prediction model used in this application is a BP model of error back propagation, and the trained complaint user prediction model is not specifically limited, and can be exemplarily an LSTM model, or an iterative decision tree model, logic Either regression model or random forest model.
具体地,在当前预测投诉量对应日期,将当前预测投诉量、目标用户个人信息及最近预设时间范围的目标用户使用行为数据输入已训练的投诉用户预测模型中,输出目标用户的预测投诉概率。将预测投诉概率按照由大到小的顺序进行排序,进而确定与当前预测投诉量在数量上一致的预测投诉用户。Specifically, on the date corresponding to the current predicted complaint volume, input the current predicted complaint volume, the target user's personal information and the target user's usage behavior data in the most recent preset time range into the trained complaint user prediction model, and output the target user's predicted complaint probability . Sort the predicted complaint probabilities in descending order, and then determine the predicted complaint users whose number is consistent with the current predicted complaint volume.
本申请实施例中,基于当前预测投诉量、目标用户个人信息、使用行为数据及已训练的投诉用户预测模型对目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户。在对当前预测投诉量进行预测时,由于是以真实投诉量作为数据基础,所以提高了当前预测投诉量的准确度。由于使用了已训练的投诉用户预测模型,所以能够准确预测用户投诉概率。由于综合考虑了当前预测投诉量、目标用户个人信息、使用行为数据的影响,所以能够得到与预测投诉量在数量上相匹配的潜在投诉用户,进而督促供应商针对潜在投诉用户进行处理,并改进产品质量,以降低投诉率,提升用户满意度和用户的产品体验。In the embodiment of the present application, the complaint probability of the target user is predicted based on the current predicted complaint volume, the target user's personal information, usage behavior data and the trained complaint user prediction model, so as to obtain a prediction that matches the predicted complaint volume in quantity. Complain about the user. When predicting the current predicted complaint volume, since the real complaint volume is used as the data basis, the accuracy of the current predicted complaint volume is improved. Since the trained complaint user prediction model is used, the user complaint probability can be accurately predicted. Due to the comprehensive consideration of the impact of the current forecasted complaint volume, target users’ personal information, and usage behavior data, it is possible to obtain potential complaining users that match the predicted complaint volume, and then urge suppliers to deal with potential complaining users and improve Product quality, in order to reduce the complaint rate, improve user satisfaction and user product experience.
实施例四Embodiment 4
图4为本申请实施例四提供的用户投诉行为预测方法流程图,如图4所示,基于实施例三的内容,本申请实施例涉及实施例三基于当前预测投诉量、目标用户个人信息、使用行为数据及已训练的投诉用户预测模型对目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户的一种具体可实现方式。基于当前预测投诉量、目标用户个人信息、使用行为数据及已训练的投诉用户预测模型对目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户,包括以下步骤:FIG. 4 is a flowchart of a method for predicting user complaint behavior provided by Embodiment 4 of the present application. As shown in FIG. 4 , based on the content of
步骤S301、将当前预测投诉量、目标用户个人信息及使用行为数据输入到已训练的投诉用户预测模型中。Step S301 , input the current predicted amount of complaints, the target user's personal information and usage behavior data into the trained complaint user prediction model.
具体地,将当前预测投诉量,目标用户个人信息及最近预设时间范围内目标用户的使用行为数据输入到已训练的投诉用户预测模型中,以预测目标用户的投诉概率。Specifically, the current predicted complaint volume, the target user's personal information and the target user's usage behavior data within the most recent preset time range are input into the trained complaint user prediction model to predict the target user's complaint probability.
步骤S302、采用已训练的投诉用户预测模型根据目标用户个人信息及使用行为数据对目标用户的投诉概率进行预测。Step S302, using the trained complaint user prediction model to predict the complaint probability of the target user according to the target user's personal information and usage behavior data.
具体地,已训练的投诉用户预测模型接收目标用户个人信息、当前预测投诉量,预设时间范围内目标用户的使用行为数据,采用对应的网络层对目标用户个人信息、当前预测投诉量、预设时间范围内目标用户的使用行为数据进行特征提取、预测等处理,输出目标用户的投诉概率。Specifically, the trained complaint user prediction model receives the personal information of the target user, the current predicted volume of complaints, and the usage behavior data of the target user within a preset time range, and uses the corresponding network layer to analyze the personal information of the target user, the current predicted volume of complaints, and the predicted volume of complaints. Set the use behavior data of the target user within the time range for feature extraction, prediction and other processing, and output the complaint probability of the target user.
步骤S303、采用已训练的投诉用户预测模型根据当前预测投诉量及目标用户的投诉概率筛选出与预测投诉量相等的预测投诉用户。Step S303 , using the trained complaint user prediction model to screen out the predicted complaint users equal to the predicted complaint volume according to the current predicted complaint volume and the target user's complaint probability.
具体地,将目标用户的投诉概率按照从大到小排序,将排在前N个的投诉概率对应的目标用户确定为预测投诉用户。Specifically, the complaint probabilities of the target users are sorted in descending order, and the target users corresponding to the top N complaint probabilities are determined as the predicted complaining users.
其中,N为预测投诉量,也为预测投诉用户数量。Among them, N is the predicted number of complaints, and it is also the predicted number of complaining users.
本申请实施例中,将当前预测投诉量、目标用户个人信息及使用行为数据输入到已训练的投诉用户预测模型中。采用已训练的投诉用户预测模型根据目标用户个人信息及使用行为数据对目标用户的投诉概率进行预测。采用已训练的投诉用户预测模型根据当前预测投诉量及目标用户的投诉概率筛选出与预测投诉量相等的预测投诉用户。由于考虑了目标用户个人信息及用户使用行为数据,能够更加准确的预测用户投诉概率,由于使用了当前预测投诉量,所以能够准确筛选出当前预测投诉量数目的潜在投诉用户。In the embodiment of the present application, the current predicted complaint volume, the target user's personal information and the usage behavior data are input into the trained complaint user prediction model. The trained complaint user prediction model is used to predict the target user's complaint probability based on the target user's personal information and usage behavior data. The trained complaint user prediction model is used to screen out the predicted complaint users equal to the predicted complaint volume according to the current predicted complaint volume and the target user's complaint probability. Since the personal information of the target users and the user behavior data are considered, the probability of user complaints can be more accurately predicted. Since the current predicted number of complaints is used, the potential complaining users with the current predicted number of complaints can be accurately screened.
实施例五Embodiment 5
图5为本申请实施例五提供的用户投诉行为预测方法流程图,如图5所示,基于实施例一到实施例四任一实施例的内容,本申请实施例在步骤S102基于真实投诉量及已训练的序列预测模型对目标用户后续时间范围内的投诉量进行预测之前,还包括对序列预测模型进行训练的步骤,则对序列预测模型进行训练的过程包括以下步骤:FIG. 5 is a flowchart of a method for predicting user complaint behavior provided in Embodiment 5 of the present application. As shown in FIG. 5 , based on the content of any one of
步骤S401、获取对初始序列预测模型进行训练的第一训练样本集。Step S401: Obtain a first training sample set for training the initial sequence prediction model.
其中,第一训练样本集,是指初始序列预测模型的训练样本集。The first training sample set refers to the training sample set of the initial sequence prediction model.
具体地,将目标产品最近预设时间范围内的每日用户投诉量作为第一训练样本集,从数据库中获取最近预设时间范围内的每日用户投诉量。Specifically, the daily user complaint volume within the most recent preset time range of the target product is used as the first training sample set, and the daily user complaint volume within the most recent preset time range is obtained from the database.
其中,最近预设时间范围不限定具体范围,可以是最近半年或最近一年。The most recent preset time range is not limited to a specific range, and may be the most recent half year or the most recent year.
步骤S402、确定对初始序列预测模型进行训练的每个训练参数的取值范围。Step S402: Determine the value range of each training parameter for training the initial sequence prediction model.
其中,初始序列预测模型具有两类参数,分别是趋势性参数和季节性参数。趋势类参数包括趋势自回归的最大滞后阶数ps、趋势性的差分次数d、趋势的移动平均的最大滞后阶数qs,季节性参数包括季节性自回归的最大滞后阶数Ps、季节性的差分次数D、季节性移动平均的最大滞后阶数Qs、单个季节性周期的时间步数s。Among them, the initial series prediction model has two types of parameters, namely trend parameters and seasonal parameters. The trend parameters include the maximum lag order ps of the trend autoregression, the number of differences in the trend d, and the maximum lag order qs of the moving average of the trend. The seasonal parameters include the maximum lag order Ps of the seasonal autoregression, the seasonal The number of differences D, the maximum lag order Qs of the seasonal moving average, and the number of time steps of a single seasonal cycle s.
具体地,通过随机函数设置初始序列预测模型每个训练参数的取值范围。Specifically, the value range of each training parameter of the initial sequence prediction model is set by a random function.
步骤S403、对每个训练参数的取值范围进行遍历,以确定由训练参数组成的训练参数组的所有可能的取值。Step S403: Traverse the value range of each training parameter to determine all possible values of the training parameter group composed of the training parameters.
具体地,每个训练参数组中的训练参数类型是一致的,但不同训练参数组中有至少一个训练参数的取值是不同的。那么在确定每个训练参数组时,遍历每个参数的取值范围,并对不同训练参数的取值进行组合,以能够以训练参数组的形式体现每个训练参数的所有可能的取值。Specifically, the training parameter types in each training parameter group are consistent, but the value of at least one training parameter in different training parameter groups is different. Then, when each training parameter group is determined, the value range of each parameter is traversed, and the values of different training parameters are combined, so that all possible values of each training parameter can be reflected in the form of a training parameter group.
步骤S404、遍历训练参数组所有可能的取值,采用第一训练样本集对初始序列预测模型进行训练,以获得拟合优良性指标AIC最小的序列预测模型。Step S404 , traverse all possible values of the training parameter group, and use the first training sample set to train the initial sequence prediction model to obtain the sequence prediction model with the smallest fitting goodness index AIC.
具体地,将第一训练样本集输入初始序列预测模型,并以每个训练参数组为维度,将对应训练参数组中每个训练参数的取值带入初始序列预测模型对初始序列预测模型进行训练。Specifically, the first training sample set is input into the initial sequence prediction model, and with each training parameter group as a dimension, the value of each training parameter in the corresponding training parameter group is brought into the initial sequence prediction model to perform the initial sequence prediction model. train.
步骤S405、将拟合优良性指标AIC最小的序列预测模型确定为已训练的序列预测模型。Step S405: Determine the sequence prediction model with the smallest fitting goodness index AIC as the trained sequence prediction model.
其中,拟合优良性指标AIC,是衡量统计模型拟合优良性的一种标准。AIC鼓励数据拟合的优良性但是尽量避免出现过度拟合的情况。所以优先考虑的模型应是AIC值最小的那一个。Among them, the goodness of fit index AIC is a standard to measure the goodness of fit of statistical models. AIC encourages goodness of fit to the data but tries to avoid overfitting. So the preferred model should be the one with the smallest AIC value.
具体地,确定模型评价值AIC,确定模型评价值最小时对应的序列预测模型为最优已训练模型。Specifically, the model evaluation value AIC is determined, and the sequence prediction model corresponding to the smallest model evaluation value is determined as the optimal trained model.
本申请实施例中,获取对初始序列预测模型进行训练的第一训练样本集。确定对初始序列预测模型进行训练的每个训练参数的取值范围。对每个训练参数的取值范围进行遍历,以确定由训练参数组成的训练参数组的所有可能的取值。遍历训练参数组所有可能的取值,采用第一训练样本集对初始序列预测模型进行训练,以获得拟合优良性指标AIC最小的序列预测模型。将拟合优良性指标AIC最小的序列预测模型确定为已训练的序列预测模型。由于采用了基于循环的方式实现序列预测模型的自动调参,有效提高了初始序列预测模型的调参效率,由于遍历了参数的所有取值可能,并采用拟合优良性指标对序列预测模型进行评价,确定了最优模型,所以提高了模型参数选取的准确度。In the embodiment of the present application, the first training sample set for training the initial sequence prediction model is obtained. Determine the range of values for each training parameter used to train the initial sequence prediction model. The value range of each training parameter is traversed to determine all possible values of the training parameter group composed of the training parameters. Traverse all possible values of the training parameter group, and use the first training sample set to train the initial sequence prediction model to obtain the sequence prediction model with the smallest fitting goodness index AIC. The sequence prediction model with the smallest fit goodness index AIC was determined as the trained sequence prediction model. Since the automatic parameter adjustment of the sequence prediction model is realized based on the cycle, the parameter adjustment efficiency of the initial sequence prediction model is effectively improved. Since all the possible values of the parameters are traversed, the sequence prediction model is evaluated by the fit goodness index. After the evaluation, the optimal model is determined, so the accuracy of model parameter selection is improved.
实施例六Embodiment 6
图6为本申请实施例六提供的用户投诉行为预测方法流程图,如图6所示,基于实施例三到实施例五任一实施例的内容,本申请实施例中,已训练的投诉用户预测模型为误差反向传播的BP模型。在本申请实施例三基于当前预测投诉量、目标用户个人信息、使用行为数据及已训练的投诉用户预测模型对目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户之前,还包括对初始投诉用户预测模型进行训练的步骤,则对初始投诉用户预测模型进行训练的过程以下步骤:FIG. 6 is a flowchart of a method for predicting user complaint behavior provided by Embodiment 6 of the present application. As shown in FIG. 6 , based on the content of any one of
步骤S501、获取对初始投诉用户预测模型进行训练及测试的样本集,样本集中的第二训练样本集及测试样本集划分比例是按照预测准确率确定的。Step S501: Obtain a sample set for training and testing the initial complaint user prediction model, and the division ratio of the second training sample set and the test sample set in the sample set is determined according to the prediction accuracy.
其中,第二训练样本集是指初始投诉用户预测模型的训练样本集。The second training sample set refers to the training sample set of the initial complaint user prediction model.
具体地,将预设时间范围内的已投诉用户作为正样本,设置投诉用户标签。将预设时间范围内的未投诉用户作为负样本,设置未投诉用户标签。Specifically, users who have complained within a preset time range are used as positive samples, and a complaint user label is set. Take the uncomplained users within the preset time range as negative samples, and set the uncomplained user label.
将第二训练样本集及测试样本集分别按照9:1、8:2、7:3、6:4的划分比例进行分配。基于循环的方式,遍历第二训练样本集及测试集的每种划分比例,将第二训练样本集输入初始投诉用户预测模型进行训练,并用测试样本集进行测试,确定预测准确率最高的划分比例为第二训练样本集和测试样本集的比例。The second training sample set and the test sample set are allocated according to the division ratios of 9:1, 8:2, 7:3, and 6:4, respectively. Based on the loop method, traverse each division ratio of the second training sample set and the test set, input the second training sample set into the initial complaint user prediction model for training, and use the test sample set for testing to determine the division ratio with the highest prediction accuracy is the ratio of the second training sample set and the test sample set.
步骤S502、在确定样本集中的第二训练样本集及测试样本集划分比例后,按照划分比例的第二训练样本集及测试样本集对初始投诉用户预测模型进行训练及测试,并在训练及测试过程中,调整初始投诉用户预测模型中神经网络层级数及训练参数。Step S502: After determining the division ratio of the second training sample set and the test sample set in the sample set, train and test the initial complaint user prediction model according to the divided ratio of the second training sample set and the test sample set, and perform training and testing. During the process, adjust the number of neural network layers and training parameters in the initial complaint user prediction model.
具体地,在步骤S501中获得每种划分比例后的第二训练样本集及测试样本集后,基于循环的方式,遍历神经网络的不同层级数,对初始投诉用户预测模型进行训练,获取预测准确率最高时的神经网络层级数。Specifically, after obtaining the second training sample set and the test sample set after each division ratio in step S501, traverse different levels of the neural network in a circular manner, train the initial complaint user prediction model, and obtain accurate predictions The number of neural network layers at the highest rate.
基于网格搜索法遍历初始投诉用户预测模型的训练参数的取值,确定预测准确率最高时的训练参数取值为已训练参数。Based on the grid search method, the values of the training parameters of the initial complaint user prediction model are traversed, and the value of the training parameters when the prediction accuracy is the highest is determined as the trained parameters.
步骤S503、将预测准确率最高的投诉用户预测模型确定为已训练的投诉用户预测模型。Step S503: Determine the complaint user prediction model with the highest prediction accuracy as the trained complaint user prediction model.
具体地,将经过上述步骤对初始投诉用户预测模型进行训练后,获取预测准确率最高的投诉用户预测模型作为已训练的投诉用户预测模型。Specifically, after the initial complaint user prediction model is trained through the above steps, the complaint user prediction model with the highest prediction accuracy is obtained as the trained complaint user prediction model.
本申请实施例中,获取对初始投诉用户预测模型进行训练及测试的样本集,样本集中的第二训练样本集及测试样本集划分比例是按照预测准确率确定的。在确定样本集中的第二训练样本集及测试样本集划分比例后,按照划分比例的第二训练样本集及测试样本集对初始投诉用户预测模型进行训练及测试,并在训练及测试过程中,调整初始投诉用户预测模型中神经网络层级数及训练参数。将预测准确率最高的投诉用户预测模型确定为已训练的投诉用户预测模型。由于使用了基于循环的方式实现自动化调参,提高了初始投诉用户预测模型调参的效率,通过反复调整参数,解决了初始投诉用户预测模型过拟合问题,提高了识别潜在投诉用户的准确率。In the embodiment of the present application, a sample set for training and testing the initial complaint user prediction model is obtained, and the division ratio of the second training sample set and the test sample set in the sample set is determined according to the prediction accuracy. After determining the division ratio of the second training sample set and the test sample set in the sample set, train and test the initial complaint user prediction model according to the divided ratio of the second training sample set and the test sample set, and during the training and testing process, Adjust the number of neural network layers and training parameters in the initial complaint user prediction model. Determine the complaint user prediction model with the highest prediction accuracy as the trained complaint user prediction model. Due to the use of a loop-based method to realize automatic parameter adjustment, the efficiency of parameter adjustment of the initial complaint user prediction model is improved. By repeatedly adjusting the parameters, the overfitting problem of the initial complaint user prediction model is solved, and the accuracy of identifying potential complaining users is improved. .
实施例七Embodiment 7
图7为本申请实施例七提供的用户投诉行为预测方法流程图,如图7所示,基于实施例六的内容,本申请实施例提供的用户投诉行为预测方法中,获取对初始投诉用户预测模型进行训练及测试的样本集之前,还包括以下步骤:FIG. 7 is a flow chart of the method for predicting user complaint behavior provided by Embodiment 7 of the present application. As shown in FIG. 7 , based on the content of Embodiment 6, in the method for predicting user complaint behavior provided by the embodiment of the present application, the prediction of the initial complaint user is obtained. Before the model is trained and tested on the sample set, it also includes the following steps:
步骤S601、获取原始数据集。Step S601, acquiring an original data set.
其中,原始数据集,是指用户投诉预测模型的原始来源数据构成的数据集。在原始数据集中包括用户个人信息、用户流量信息、用户订购和使用产品信息、用户在产品订购和使用页面的埋点信息以及用户投诉信息。从数据库中获取原始数据集。Among them, the original data set refers to the data set composed of the original source data of the user complaint prediction model. In the original data set, it includes user personal information, user traffic information, user ordering and using product information, user tracking information on product ordering and using pages, and user complaint information. Get the raw dataset from the database.
步骤S602、采用结构化查询SQL语句从原始数据集中提取目标用户个人信息和使用行为数据,并对目标用户个人信息及使用行为数据进行预处理后存储到对应的样本集表格中。Step S602, using structured query SQL statement to extract the target user's personal information and usage behavior data from the original data set, and store the target user's personal information and usage behavior data in the corresponding sample set table after preprocessing.
其中,目标用户个人信息,包括性别、年龄、号码、省份等。使用行为数据,包括用户网络数据、用户产品使用数据、用户埋点行为数据、用户投诉数据、用户衍生标签数据。用户网络数据包括总话费、总流量、是否出账、总视频流量、观看视频应用、手机型号、手机品牌。用户产品使用数据包括免流流量、订购时间、订购渠道、会员领取情况、应用使用情况。用户埋点行为数据包括订购页面点击事件、点击时间、点击次数、浏览时长、产品大类、产品名称。用户投诉数据包括投诉时间、投诉类型、投诉产品、投诉原因、处理结果、是否退费、退费金额。用户衍生标签数据包括用户退订概率、用户产品偏好、用户VIP级别。Among them, the personal information of the target user, including gender, age, number, province, etc. Usage behavior data, including user network data, user product usage data, user tracking behavior data, user complaint data, and user-derived tag data. User network data includes total call charges, total traffic, whether billing, total video traffic, video applications watched, mobile phone model, and mobile phone brand. User product usage data includes free flow, order time, order channel, membership status, and application usage. User tracking behavior data includes click events on the order page, click time, number of clicks, browsing time, product categories, and product names. User complaint data includes complaint time, complaint type, complaint product, complaint reason, processing result, whether to refund, and refund amount. User-derived tag data includes user unsubscribe probability, user product preference, and user VIP level.
具体地,第一步建立样本数据集表格。采用结构化查询SQL语句在数据库中建表。第二步进行数据抽取。根据数据指标体系,采用结构化查询SQL语句从数据库中提取需要的数据。第三步进行数据整合。通过数据库连接操作对用户数据进行整合,形成完整的数据集合。第四步进行数据清洗。对于空缺值,用预设时间范围的平均值或中位数替代。对于异常值,通过绘制箱型图或分布图进行识别,排除异常值。对于数值型字段,进行归一化处理,以降低因数据量级差距过大造成的模型准确度降低的风险。对于类别型变量,采用ONE-HOT编码方式,将类别型变量与数字标识进行一一映射。第五步进行数据质量检验。对每个字段特征进行一一检验工作,以使样本数据符合模型输入数据的标准。最后将经过数据处理后的符合模型输入数据标准的样本数据存入建立的样本数据集表格中。完成数据建模工作。Specifically, the first step is to create a sample data set table. Use structured query SQL statements to create tables in the database. The second step is data extraction. According to the data index system, the required data is extracted from the database using structured query SQL statements. The third step is data integration. Integrate user data through database connection operations to form a complete data set. The fourth step is data cleaning. For missing values, substitute the mean or median of the preset time range. For outliers, identify them by drawing box plots or distribution plots, and exclude outliers. For numeric fields, normalization is performed to reduce the risk of model accuracy being reduced due to large data magnitude gaps. For categorical variables, the ONE-HOT coding method is used to map categorical variables and digital identifiers one by one. The fifth step is to check the data quality. Check each field feature one by one to make the sample data meet the standard of the model input data. Finally, the sample data that meets the model input data standard after data processing are stored in the established sample data set table. Complete data modeling work.
本申请实施例中,获取原始数据集。采用结构化查询SQL语句从数据库中提取目标用户个人信息和使用行为数据,并对目标用户个人信息及使用行为数据进行预处理后存储到对应的样本集表格中。通过建表时即采用结构化查询SQL语句对数据进行整合、清洗,简化了数据预处理过程,有效提高了数据处理效率。In this embodiment of the present application, the original data set is obtained. The target user's personal information and usage behavior data are extracted from the database using structured query SQL statements, and the target user's personal information and usage behavior data are preprocessed and stored in the corresponding sample set table. The structured query SQL statement is used to integrate and clean the data when the table is built, which simplifies the data preprocessing process and effectively improves the data processing efficiency.
实施例八Embodiment 8
图8为本申请实施例八提供的用户投诉行为预测方法流程图,如图8所示,基于实施例二到实施例七任一实施例的内容,本申请实施例提供的用户投诉行为预测方法中,还包括以下步骤:FIG. 8 is a flowchart of the method for predicting user complaint behavior provided by Embodiment 8 of the present application. As shown in FIG. 8 , based on the contents of any one of
步骤S701、将预测出的后续时间范围内的投诉量与后续时间范围内的真实投诉量进行对比,以获得对比结果。Step S701: Compare the predicted volume of complaints within the subsequent time range with the actual volume of complaints within the subsequent time range to obtain a comparison result.
具体地,当用户后续时间范围的预测投诉量确定后,将预测投诉量与对应日期的真实投诉量进行对比,将两者差值与实际投诉量做比值,得到一个比例值。Specifically, after the predicted amount of complaints in the user's subsequent time range is determined, the predicted amount of complaints is compared with the actual amount of complaints on the corresponding date, and the difference between the two is compared with the actual amount of complaints to obtain a proportional value.
步骤S702、若确定对比结果满足序列预测模型的调参条件,则对已训练的序列预测模型进行调参处理。Step S702: If it is determined that the comparison result satisfies the parameter adjustment condition of the sequence prediction model, perform parameter adjustment processing on the trained sequence prediction model.
具体地,当上述步骤得到的比例值大于预设比例阈值时,满足序列预测模型的调参条件。则自动对序列预测模型调整参数,以使该比例值小于预设比例阈值。Specifically, when the ratio value obtained in the above steps is greater than the preset ratio threshold value, the parameter adjustment condition of the sequence prediction model is satisfied. Then the parameters of the sequence prediction model are automatically adjusted so that the ratio value is smaller than the preset ratio threshold value.
本申请实施例中,将预测出的后续时间范围内的投诉量与后续时间范围内的真实投诉量进行对比,以获得对比结果。若确定对比结果满足序列预测模型的调参条件,则对已训练的序列预测模型进行调参处理。通过预测投诉量与真实投诉量的对比,得到序列预测模型的反馈信息,判断反馈信息与调参条件的关系,决定是否调整序列预测模型的参数。实现了序列预测模型的自动反馈调参,提高了序列预测模型参数的准确度。In the embodiment of the present application, the predicted amount of complaints in the subsequent time range is compared with the actual amount of complaints in the subsequent time range to obtain a comparison result. If it is determined that the comparison result satisfies the parameter adjustment conditions of the sequence prediction model, the parameter adjustment process is performed on the trained sequence prediction model. By comparing the predicted amount of complaints with the actual amount of complaints, the feedback information of the sequence prediction model is obtained, the relationship between the feedback information and the parameter adjustment conditions is judged, and it is decided whether to adjust the parameters of the sequence prediction model. The automatic feedback parameter adjustment of the sequence prediction model is realized, and the accuracy of the parameters of the sequence prediction model is improved.
实施例九Embodiment 9
图9为本申请实施例九提供的用户投诉行为预测装置结构图。如图9所示,用户投诉行为预测装置80包括:获取模块81,第一预测模块82,第二预测模块83。FIG. 9 is a structural diagram of an apparatus for predicting user complaint behavior according to Embodiment 9 of the present application. As shown in FIG. 9 , the
获取模块81,用于获取目标用户个人信息、最近预设时间范围内目标用户对目标产品的真实投诉量及使用行为数据。The obtaining
第一预测模块82,用于基于真实投诉量及已训练的序列预测模型对目标用户后续时间范围内的投诉量进行预测,并从后续时间范围内的投诉量中确定当前预测投诉量。The
第二预测模块83,用于基于当前预测投诉量、目标用户个人信息及使用行为数据对目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户。The
可选地,第一预测模块82,已训练的序列预测模型为季节性时间序列模型ISARIMA模型。在基于真实投诉量及已训练的序列预测模型对目标用户后续时间范围内的投诉量进行预测中,具体用于:Optionally, in the
将真实投诉量输入到季节性时间序列模型ISARIMA模型中。采用季节性时间序列模型ISARIMA模型根据真实投诉量对目标用户后续时间范围内的投诉量进行预测,并输出后续时间范围内的投诉量。Input the true complaint volume into the seasonal time series model ISARIMA model. The seasonal time series model ISARIMA model is used to predict the complaint volume of the target user in the subsequent time range according to the real complaint volume, and output the complaint volume in the subsequent time range.
可选地,第二预测模块83,在基于当前预测投诉量、目标用户个人信息及使用行为数据对目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户中,具体用于:Optionally, the
基于当前预测投诉量、目标用户个人信息、使用行为数据及已训练的投诉用户预测模型对目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户。Based on the current predicted complaint volume, the target user's personal information, usage behavior data and the trained complaint user prediction model, the target user's complaint probability is predicted to obtain the predicted complaint users that match the predicted complaint volume in quantity.
可选地,第二预测模块83,在基于当前预测投诉量、目标用户个人信息、使用行为数据及已训练的投诉用户预测模型对目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户时,具体用于:Optionally, the
将当前预测投诉量、目标用户个人信息及使用行为数据输入到已训练的投诉用户预测模型中。采用已训练的投诉用户预测模型根据目标用户个人信息及使用行为数据对目标用户的投诉概率进行预测。采用已训练的投诉用户预测模型根据当前预测投诉量及目标用户的投诉概率筛选出与预测投诉量相等的预测投诉用户。Input the current predicted complaint volume, target user's personal information and usage behavior data into the trained complaint user prediction model. The trained complaint user prediction model is used to predict the target user's complaint probability based on the target user's personal information and usage behavior data. The trained complaint user prediction model is used to screen out the predicted complaint users equal to the predicted complaint volume according to the current predicted complaint volume and the target user's complaint probability.
可选地,本实施例提供的用户投诉行为预测装置80还包括第一训练模块。在第一预测模块82基于真实投诉量及已训练的序列预测模型对目标用户后续时间范围内的投诉量进行预测之前,第一训练模块具体用于:Optionally, the
获取对初始序列预测模型进行训练的第一训练样本集。确定对初始序列预测模型进行训练的每个训练参数的取值范围。对每个训练参数的取值范围进行遍历,以确定由训练参数组成的训练参数组的所有可能的取值。遍历训练参数组所有的可能取值,采用第一训练样本集对初始序列预测模型进行训练,以获得拟合优良性指标AIC最小的序列预测模型。将拟合优良性指标AIC最小的序列预测模型确定为已训练的序列预测模型。Obtain the first training sample set for training the initial sequence prediction model. Determine the range of values for each training parameter used to train the initial sequence prediction model. The value range of each training parameter is traversed to determine all possible values of the training parameter group composed of the training parameters. All possible values of the training parameter group are traversed, and the first training sample set is used to train the initial sequence prediction model to obtain the sequence prediction model with the smallest fitting goodness index AIC. The sequence prediction model with the smallest fit goodness index AIC was determined as the trained sequence prediction model.
可选地,本实施例提供的用户投诉行为预测装置80还包括第二训练模块。在第二预测模块83基于当前预测投诉量、目标用户个人信息、使用行为数据及已训练的投诉用户预测模型对目标用户的投诉概率进行预测,以获得与预测投诉量在数量上相匹配的预测投诉用户之前,第二训练模块具体用于:Optionally, the
获取对初始投诉用户预测模型进行训练及测试的样本集,样本集中的第二训练样本集及测试样本集划分比例是按照预测准确率确定的。在确定样本集中的第二训练样本集及测试样本集划分比例后,按照划分比例的第二训练样本集及测试样本集对初始投诉用户预测模型进行训练及测试,并在训练及测试过程中,调整初始投诉用户预测模型中神经网络层级数及训练参数。将预测准确率最高的投诉用户预测模型确定为已训练的投诉用户预测模型。其中,已训练的投诉用户预测模型为误差反向传播的BP模型。A sample set for training and testing the initial complaint user prediction model is obtained, and the division ratio of the second training sample set and the test sample set in the sample set is determined according to the prediction accuracy. After determining the division ratio of the second training sample set and the test sample set in the sample set, train and test the initial complaint user prediction model according to the divided ratio of the second training sample set and the test sample set, and during the training and testing process, Adjust the number of neural network layers and training parameters in the initial complaint user prediction model. Determine the complaint user prediction model with the highest prediction accuracy as the trained complaint user prediction model. Among them, the trained complaint user prediction model is the BP model of error back propagation.
可选地,本实施例提供的用户投诉行为预测装置80还包括数据处理模块。在获取模块81获取对初始投诉用户预测模型进行训练及测试的样本集之前,数据处理模块,具体用于:Optionally, the
获取原始数据集。采用结构化查询SQL语句从数据库中提取目标用户个人信息和使用行为数据,并对目标用户个人信息及使用行为数据进行预处理后存储到对应的样本集表格中。Get the original dataset. The target user's personal information and usage behavior data are extracted from the database using structured query SQL statements, and the target user's personal information and usage behavior data are preprocessed and stored in the corresponding sample set table.
可选地,本实施例提供的用户投诉行为预测装置80还包括调参模块。具体用于:Optionally, the
将预测出的后续时间范围内的投诉量与后续时间范围内的真实投诉量进行对比,以获得对比结果。若确定对比结果满足序列预测模型的调参条件,则对已训练的序列预测模型进行调参处理。Compare the predicted volume of complaints in the follow-up time range with the actual volume of complaints in the follow-up time range to obtain a comparison result. If it is determined that the comparison result satisfies the parameter adjustment conditions of the sequence prediction model, the parameter adjustment process is performed on the trained sequence prediction model.
实施例十Embodiment ten
图10为本申请实施例一提供的电子设备结构图,如图10所示,电子设备90包括:处理器91,存储器92。FIG. 10 is a structural diagram of an electronic device provided in
存储器92存储计算机执行指令。
处理器91执行存储器92存储的计算机执行指令,以实现实施例一至实施例七中任一实施例的方法。The
本实施例中,存储器92与处理器91通过总线93连接。In this embodiment, the
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,计算机执行指令被处理器执行时实现上述任一方法实施例提供的方法。Embodiments of the present application further provide a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when the computer-executable instructions are executed by a processor, the method provided by any of the foregoing method embodiments is implemented.
本申请实施例还提供一种计算机程序产品,包括计算机程序,计算机程序被处理器执行时实现本申请任意一个实施例提供的方法。An embodiment of the present application further provides a computer program product, including a computer program, and when the computer program is executed by a processor, the method provided by any one of the embodiments of the present application is implemented.
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in this application, it should be understood that the disclosed apparatus and method may be implemented in other manners. For example, the device embodiments described above are only illustrative. For example, the division of modules is only a logical function division. In actual implementation, there may be other division methods, for example, multiple modules or components may be combined or integrated. to another system, or some features can be ignored, or not implemented. On the other hand, the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。Modules described as separate components may or may not be physically separated, and components shown as modules may or may not be physical modules, that is, they may be located in one place, or may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。In addition, each functional module in each embodiment of the present application may be integrated into one processing module, or each module may exist physically alone, or two or more modules may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware, or can be implemented in the form of hardware plus software function modules.
用于实施本申请的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程合规检测装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。Program code for implementing the methods of the present application may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable compliance detection device, such that the program codes, when executed by the processor or controller, perform the functions specified in the flowcharts and/or block diagrams /Operation is implemented. The program code may execute entirely on the machine, partly on the machine, partly on the machine and partly on a remote machine as a stand-alone software package or entirely on the remote machine or server.
在本申请的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。In the context of this application, a machine-readable medium may be a tangible medium that may contain or store the program for use by or in connection with the instruction execution system, apparatus or device. The machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium. Machine-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, or devices, or any suitable combination of the foregoing. More specific examples of machine-readable storage media would include one or more wire-based electrical connections, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), fiber optics, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
此外,虽然采用特定次序描绘了各操作,但是这应当理解为要求这样操作以所示出的特定次序或以顺序次序执行,或者要求所有图示的操作应被执行以取得期望的结果。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本申请的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实现中。相反地,在单个实现的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实现中。Additionally, although operations are depicted in a particular order, this should be understood to require that such operations be performed in the particular order shown or in a sequential order, or that all illustrated operations should be performed to achieve desirable results. Under certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while the above discussion contains several implementation-specific details, these should not be construed as limitations on the scope of the application. Certain features that are described in the context of separate embodiments can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination.
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求书指出。Other embodiments of the present application will readily occur to those skilled in the art upon consideration of the specification and practice of the invention disclosed herein. This application is intended to cover any variations, uses or adaptations of this application that follow the general principles of this application and include common knowledge or conventional techniques in the technical field not disclosed in this application . The specification and examples are to be regarded as exemplary only, with the true scope and spirit of the application being indicated by the following claims.
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求书来限制。It is to be understood that the present application is not limited to the precise structures described above and illustrated in the accompanying drawings and that various modifications and changes may be made without departing from the scope thereof. The scope of the application is limited only by the appended claims.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210769602.8A CN115062858B (en) | 2022-07-01 | 2022-07-01 | User complaint behavior prediction method, device, equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210769602.8A CN115062858B (en) | 2022-07-01 | 2022-07-01 | User complaint behavior prediction method, device, equipment and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115062858A true CN115062858A (en) | 2022-09-16 |
CN115062858B CN115062858B (en) | 2024-08-23 |
Family
ID=83203784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210769602.8A Active CN115062858B (en) | 2022-07-01 | 2022-07-01 | User complaint behavior prediction method, device, equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115062858B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119006000A (en) * | 2024-07-01 | 2024-11-22 | 潍坊市潍城区博路电子商务有限公司 | Dispute processing method and system based on big data |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108039977A (en) * | 2017-12-21 | 2018-05-15 | 广州市申迪计算机系统有限公司 | A kind of telecommunication user attrition prediction method and device based on user's internet behavior |
CN110889526A (en) * | 2018-09-07 | 2020-03-17 | 中国移动通信集团有限公司 | Method and system for predicting user upgrade complaint behavior |
WO2022041403A1 (en) * | 2020-08-26 | 2022-03-03 | 中山世达模型制造有限公司 | Sales order prediction method |
CN114548470A (en) * | 2020-11-26 | 2022-05-27 | 顺丰科技有限公司 | Prediction method and device of user complaint amount, computer equipment and storage medium |
-
2022
- 2022-07-01 CN CN202210769602.8A patent/CN115062858B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108039977A (en) * | 2017-12-21 | 2018-05-15 | 广州市申迪计算机系统有限公司 | A kind of telecommunication user attrition prediction method and device based on user's internet behavior |
CN110889526A (en) * | 2018-09-07 | 2020-03-17 | 中国移动通信集团有限公司 | Method and system for predicting user upgrade complaint behavior |
WO2022041403A1 (en) * | 2020-08-26 | 2022-03-03 | 中山世达模型制造有限公司 | Sales order prediction method |
CN114548470A (en) * | 2020-11-26 | 2022-05-27 | 顺丰科技有限公司 | Prediction method and device of user complaint amount, computer equipment and storage medium |
Non-Patent Citations (1)
Title |
---|
叶进 等: "基于贝叶斯网络的电信客户流失预测分析", 《计算机工程与应用》, no. 14, 11 May 2005 (2005-05-11), pages 212 - 214 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119006000A (en) * | 2024-07-01 | 2024-11-22 | 潍坊市潍城区博路电子商务有限公司 | Dispute processing method and system based on big data |
Also Published As
Publication number | Publication date |
---|---|
CN115062858B (en) | 2024-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11372896B2 (en) | Method and apparatus for grouping data records | |
EP3043447B1 (en) | Distribution transformer heavy loading and overloading mid-term and short-term pre-warning analytics model | |
US10963541B2 (en) | Systems, methods, and apparatuses for implementing a related command with a predictive query interface | |
US8533235B2 (en) | Infrastructure and architecture for development and execution of predictive models | |
US11823072B2 (en) | Customer behavior predictive modeling | |
US11860905B2 (en) | Scanning for information according to scan objectives | |
CN115062858B (en) | User complaint behavior prediction method, device, equipment and storage medium | |
CN117635185A (en) | Big data-based manufacturing cost online management method and server | |
US20200342302A1 (en) | Cognitive forecasting | |
CN119166827A (en) | Business object analysis method, device and equipment | |
CN120045430A (en) | User behavior path construction method and system | |
CN120542903A (en) | Method, device and electronic equipment for determining audit plan | |
CN113570381A (en) | An information recommendation method, system, electronic device and storage medium | |
Parekkat et al. | Operational comparison of Logistic regression, Decision trees & Neural networks in modelling mobile service churn. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |