CN115022213B - Method for identifying request abnormality and storage medium - Google Patents
Method for identifying request abnormality and storage medium Download PDFInfo
- Publication number
- CN115022213B CN115022213B CN202210755690.6A CN202210755690A CN115022213B CN 115022213 B CN115022213 B CN 115022213B CN 202210755690 A CN202210755690 A CN 202210755690A CN 115022213 B CN115022213 B CN 115022213B
- Authority
- CN
- China
- Prior art keywords
- information
- tracking
- request
- node
- abnormal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/10—Active monitoring, e.g. heartbeat, ping or trace-route
- H04L43/106—Active monitoring, e.g. heartbeat, ping or trace-route using time related information in packets, e.g. by adding timestamps
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer And Data Communications (AREA)
- Debugging And Monitoring (AREA)
- Maintenance And Management Of Digital Transmission (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及计算机技术领域,特别涉及一种请求异常识别的方法与存储介质。The present invention relates to the field of computer technology, and in particular to a method and storage medium for request exception identification.
背景技术Background technique
在分布式系统,尤其是微服务系统中,一次外部请求往往需要内部多个模块,多个中间件,多台机器的相互调用才能完成。在这一系列的调用中,可能有些是串行的,而有些是并行的。在这种情况下,如何才能确定这整个请求调用了哪些应用?哪些模块?哪些节点?以及它们的先后顺序、各部分的性能如何以及是否存在异常呢?In distributed systems, especially microservice systems, an external request often requires multiple internal modules, multiple middleware, and multiple machines to call each other to complete. In this series of calls, some may be serial and some may be parallel. In this case, how can we determine which applications, modules, and nodes are called by the entire request? And their order, the performance of each part, and whether there are any exceptions?
发明内容Summary of the invention
本发明所要解决的技术问题是:提供一种请求异常识别的方法与存储介质,能够有效追踪请求的数据流转路径并记录执行情况和性能。The technical problem to be solved by the present invention is to provide a method and storage medium for request anomaly identification, which can effectively track the data flow path of the request and record the execution status and performance.
为了解决上述技术问题,本发明采用的技术方案为:In order to solve the above technical problems, the technical solution adopted by the present invention is:
一种请求异常识别的方法,包括步骤:A method for requesting abnormality identification, comprising the steps of:
S1、请求发起方作为初始的调用方建立跟踪链路,并存入预设数据库;S1. The request initiator, as the initial caller, establishes a tracking link and stores it in a preset database;
S2、请求执行的每个调用过程中,由调用方在所述跟踪链路中新建一个跟踪节点,并在所述跟踪节点中插入调用时间戳、自身信息、上级跟踪节点信息以及被调用方信息,并在调用完成时补入完成时间戳;S2. During each call process of the request execution, the caller creates a new tracking node in the tracking link, inserts the call timestamp, its own information, the upper tracking node information and the called party information into the tracking node, and adds the completion timestamp when the call is completed;
S3、向所述预设数据库获取追踪链路信息,根据所述追踪链路信息中的各个追踪节点的数据,判断请求是否存在异常,并定位异常的业务节点。S3. Obtain the tracking link information from the preset database, determine whether the request is abnormal based on the data of each tracking node in the tracking link information, and locate the abnormal service node.
为了解决上述技术问题,本发明采用的另一种技术方案为:In order to solve the above technical problems, another technical solution adopted by the present invention is:
一种请求异常识别的存储介质,其内存储有计算机程序,所述计算机程序被执行时实现以下步骤:A storage medium for requesting abnormality identification stores a computer program, which, when executed, implements the following steps:
S1、请求发起方作为初始的调用方建立跟踪链路,并存入预设数据库;S1. The request initiator, as the initial caller, establishes a tracking link and stores it in a preset database;
S2、请求执行的每个调用过程中,由调用方在所述跟踪链路中新建一个跟踪节点,并在所述跟踪节点中插入调用时间戳、自身信息、上级跟踪节点信息以及被调用方信息,并在调用完成时补入完成时间戳;S2. During each call process of the request execution, the caller creates a new tracking node in the tracking link, inserts the call timestamp, its own information, the upper tracking node information and the called party information into the tracking node, and adds the completion timestamp when the call is completed;
S3、向所述预设数据库获取追踪链路信息,根据所述追踪链路信息中的各个追踪节点的数据,判断请求是否存在异常,并定位异常的业务节点。S3. Obtain the tracking link information from the preset database, determine whether the request is abnormal based on the data of each tracking node in the tracking link information, and locate the abnormal service node.
本发明的有益效果在于:本发明的一种请求异常识别的方法与存储介质,通过建立追踪链路,并在追踪链路中的每个节点中对应记录每次调用的调用方、被调用方、时间戳以及上一节点信息,从而能够有效实现对一个请求的完整调用链路追踪,并能够通过其中记录的时间戳来获取每个被调用服务的执行和响应时间,从而反映请求的执行情况和服务性能,判断请求是否存在异常,并实现异常业务节点的定位,便于开发人员对异常业务节点的修正和改进。The beneficial effects of the present invention are as follows: a method and storage medium for request anomaly identification of the present invention, by establishing a tracing link and recording the caller, callee, timestamp and previous node information of each call in each node in the tracing link, can effectively realize the complete call link tracing of a request, and can obtain the execution and response time of each called service through the timestamp recorded therein, thereby reflecting the execution status and service performance of the request, judging whether the request has an abnormality, and locating the abnormal business node, which is convenient for developers to correct and improve the abnormal business node.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明实施例的一种请求异常识别的方法的流程图;FIG1 is a flow chart of a method for requesting abnormality identification according to an embodiment of the present invention;
图2为本发明实施例的一种请求异常识别的方法的请求和响应示意图;FIG2 is a schematic diagram of a request and response of a method for requesting abnormality identification according to an embodiment of the present invention;
图3为本发明实施例的一种请求异常识别的方法的请求调用示意图。FIG. 3 is a schematic diagram of a request call of a method for requesting exception identification according to an embodiment of the present invention.
具体实施方式Detailed ways
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。In order to explain the technical content, achieved objectives and effects of the present invention in detail, the following is an explanation in conjunction with the implementation modes and the accompanying drawings.
请参照图1以及图2,一种请求异常识别的方法,包括步骤:Referring to FIG. 1 and FIG. 2 , a method for requesting abnormality identification includes the following steps:
S1、请求发起方作为初始的调用方建立跟踪链路,并存入预设数据库;S1. The request initiator, as the initial caller, establishes a tracking link and stores it in a preset database;
S2、请求执行的每个调用过程中,由调用方在所述跟踪链路中新建一个跟踪节点,并在所述跟踪节点中插入调用时间戳、自身信息、上级跟踪节点信息以及被调用方信息,并在调用完成时补入完成时间戳;S2. During each call process of the request execution, the caller creates a new tracking node in the tracking link, inserts the call timestamp, its own information, the upper tracking node information and the called party information into the tracking node, and adds the completion timestamp when the call is completed;
S3、向所述预设数据库获取追踪链路信息,根据所述追踪链路信息中的各个追踪节点的数据,判断请求是否存在异常,并定位异常的业务节点。S3. Obtain the tracking link information from the preset database, determine whether the request is abnormal based on the data of each tracking node in the tracking link information, and locate the abnormal service node.
从上述描述可知,本发明的有益效果在于:本发明的一种请求异常识别的方法与存储介质,通过建立追踪链路,并在追踪链路中的每个节点中对应记录每次调用的调用方、被调用方、时间戳以及上一节点信息,从而能够有效实现对一个请求的完整调用链路追踪,并能够通过其中记录的时间戳来获取每个被调用服务的执行和响应时间,从而反映请求的执行情况和服务性能,判断请求是否存在异常,并实现异常业务节点的定位,便于开发人员对异常业务节点的修正和改进。From the above description, it can be seen that the beneficial effects of the present invention are: a method and storage medium for request anomaly identification of the present invention, by establishing a tracing link, and recording the caller, callee, timestamp and previous node information of each call in each node in the tracing link, can effectively realize the complete call link tracking of a request, and can obtain the execution and response time of each called service through the timestamp recorded therein, thereby reflecting the execution status and service performance of the request, judging whether the request has an abnormality, and locating the abnormal business node, which is convenient for developers to correct and improve the abnormal business node.
进一步地,所述步骤S2包括步骤:Furthermore, the step S2 comprises the steps of:
S21、建立调用请求,并于所述跟踪链路中新建一个所述跟踪节点,在所述跟踪节点中插入时间戳、自身信息、上级跟踪节点信息以及被调用方信息,并将所述跟踪链路存入或更新至预设数据库中;S21, establishing a call request, and creating a new tracking node in the tracking link, inserting a timestamp, its own information, upper tracking node information and called party information into the tracking node, and storing or updating the tracking link into a preset database;
S22、调用方将所述跟踪链路的唯一标识和所述跟踪节点的唯一标识存入请求头部,并向被调用方发送所述调用请求;S22, the caller stores the unique identifier of the tracking link and the unique identifier of the tracking node in the request header, and sends the call request to the called party;
S23、被调用方接收所述调用请求,根据请求头部获取跟踪链路的唯一标识,并将请求头部中的所述跟踪节点的唯一标识作为上级跟踪节点信息;S23: The called party receives the call request, obtains the unique identifier of the tracking link according to the request header, and uses the unique identifier of the tracking node in the request header as the upper-level tracking node information;
S24、被调用方执行所述调用请求,以自身作为新的调用方,判断是否存在下一业务节点,若存在下一业务节点,则将下一业务节点作为新的被调用方,执行所述步骤S21和步骤S22,否则向上一业务节点返回执行结果,由上一业务节点在其创建的追踪节点中补入完成时间戳;S24, the called party executes the call request, takes itself as the new caller, and determines whether there is a next service node. If there is a next service node, the next service node is taken as the new called party, and steps S21 and S22 are executed. Otherwise, the execution result is returned to the previous service node, and the previous service node fills the completion timestamp in the tracking node created by it.
其中,请求发起方作为初始的调用方,请求起始方创建的所述跟踪节点中的上级跟踪节点信息为空,且每个调用方可以同时有多个被调用方,对应创建多个所述跟踪节点。The request initiator is the initial caller, and the upper-level tracking node information in the tracking node created by the request initiator is empty. Each caller can have multiple callees at the same time, and multiple tracking nodes are created accordingly.
由上述描述可知,业务执行的每一个节点均作为调用方,建立跟踪节点,且同一个调用方可以有多个被调用方,能够适应业务请求可能存在多个并行业务的场景,从而能够完整地记录业务执行的流转链路。From the above description, it can be seen that each node of business execution acts as a caller and establishes a tracking node, and the same caller can have multiple callees, which can adapt to the scenario where there may be multiple parallel businesses in a business request, thereby being able to fully record the flow link of business execution.
进一步地,在执行所述步骤S22中向被调用方发送所述调用请求时,若出现异常信息,则获取其中的异常代码,根据异常代码自动识别属于网络通信问题还是代码错误;Furthermore, when executing the step S22 and sending the call request to the called party, if abnormal information appears, the abnormal code is obtained, and whether it is a network communication problem or a code error is automatically identified according to the abnormal code;
若为网络通信问题,则自动重试所述调用请求的发送,并在重试次数超过预设阈值后,记录异常代码以及所述调用请求中的调用方信息和被调用方信息,并与所述追踪链路关联;If it is a network communication problem, the sending of the call request is automatically retried, and after the number of retries exceeds a preset threshold, the abnormal code and the caller information and the callee information in the call request are recorded and associated with the tracking link;
若为代码错误,则直接记录异常代码、调用请求中的调用方信息,并与所述追踪链路关联;If it is a code error, the exception code and the caller information in the call request are directly recorded and associated with the tracking link;
返回错误信息,在所述追踪节点中补入请求中断信息,并对应将追踪链路标记为异常链路;Return error information, add request interruption information in the tracking node, and mark the tracking link as an abnormal link accordingly;
所述步骤S3还包括步骤:The step S3 further comprises the steps of:
S31、获取预设时间段内的所有异常链路,根据所述异常链路关联的信息以及异常链路中的中断信息,定位异常的业务节点。S31. Acquire all abnormal links within a preset time period, and locate abnormal service nodes according to information associated with the abnormal links and interruption information in the abnormal links.
由上述描述可知,在业务执行过程中,若出现异常信息,则能够根据异常信息识别导致异常的原因,从而采用不同的处理方式,更加有效地处理异常,并最终根据预设时间段内的所有异常链路中的中断信息,有效判断异常的业务节点。From the above description, it can be seen that during the business execution process, if abnormal information appears, the cause of the abnormality can be identified based on the abnormal information, so that different processing methods can be adopted to more effectively handle the abnormality, and finally the abnormal business node can be effectively judged based on the interruption information in all abnormal links within the preset time period.
进一步地,若所述调用方为客户端,则所述自身信息包括设备标识、网络信息、用户Id和IP地址,若所述调用方为服务器中的服务接口,则所述自身信息包括域名、方法名称和参数信息;Furthermore, if the caller is a client, the self-information includes device identification, network information, user ID and IP address; if the caller is a service interface in a server, the self-information includes domain name, method name and parameter information;
若所述被调用方为客户端,则所述被调用方信息包括设备标识、网络信息、用户Id和IP地址,若所述被调用方为服务器中的服务接口,则所述被调用方信息包括域名、方法名称和参数信息。If the called party is a client, the called party information includes device identification, network information, user ID and IP address. If the called party is a service interface in a server, the called party information includes domain name, method name and parameter information.
由上述描述可知,根据调用端或被调用端的不同可能性,所记录的信息也存在不同,能够有效定位到调用方和被调用端的具体身份,保证记录信息的有效。It can be seen from the above description that the recorded information is different according to the different possibilities of the calling end or the called end, which can effectively locate the specific identities of the caller and the called end, thereby ensuring the validity of the recorded information.
进一步地,所述预设数据库为ElasticSearch数据库;Furthermore, the preset database is an ElasticSearch database;
所述步骤S2之后还包括步骤:The step S2 further includes the following steps:
S3、服务器通过Elasticsearch数据分析引擎对所述Elasticsearch数据库中的跟踪链路中的各个跟踪节点的数据进行分析,生成完整的调用链。S3. The server analyzes the data of each tracking node in the tracking link in the Elasticsearch database through the Elasticsearch data analysis engine to generate a complete call chain.
由上述描述可知,采用ElasticSearch数据库进行跟踪链路数据的存储,并能够通过Elasticsearch数据分析引擎进行分析,从而生成完整的调用链,有效提高的请求调用的可复现性,进而提高了请求执行过程中出现的问题的可复现性。From the above description, it can be seen that the ElasticSearch database is used to store the tracking link data, and it can be analyzed through the Elasticsearch data analysis engine to generate a complete call chain, which effectively improves the reproducibility of the request call, and further improves the reproducibility of problems that occur during the request execution process.
一种请求异常识别的存储介质,其内存储有计算机程序,所述计算机程序被执行时实现以下步骤:A storage medium for requesting abnormality identification stores a computer program, which, when executed, implements the following steps:
S1、请求发起方作为初始的调用方建立跟踪链路,并存入预设数据库;S1. The request initiator, as the initial caller, establishes a tracking link and stores it in a preset database;
S2、请求执行的每个调用过程中,由调用方在所述跟踪链路中新建一个跟踪节点,并在所述跟踪节点中插入调用时间戳、自身信息、上级跟踪节点信息以及被调用方信息,并在调用完成时补入完成时间戳;S2. During each call process of the request execution, the caller creates a new tracking node in the tracking link, inserts the call timestamp, its own information, the upper tracking node information and the called party information into the tracking node, and adds the completion timestamp when the call is completed;
S3、向所述预设数据库获取追踪链路信息,根据所述追踪链路信息中的各个追踪节点的数据,判断请求是否存在异常,并定位异常的业务节点。S3. Obtain the tracking link information from the preset database, determine whether the request is abnormal based on the data of each tracking node in the tracking link information, and locate the abnormal service node.
从上述描述可知,本发明的有益效果在于:本发明的一种请求异常识别的方法与存储介质,通过建立追踪链路,并在追踪链路中的每个节点中对应记录每次调用的调用方、被调用方、时间戳以及上一节点信息,从而能够有效实现对一个请求的完整调用链路追踪,并能够通过其中记录的时间戳来获取每个被调用服务的执行和响应时间,从而反映请求的执行情况和服务性能,判断请求是否存在异常,并实现异常业务节点的定位,便于开发人员对异常业务节点的修正和改进。From the above description, it can be seen that the beneficial effects of the present invention are: a method and storage medium for request anomaly identification of the present invention, by establishing a tracing link, and recording the caller, callee, timestamp and previous node information of each call in each node in the tracing link, can effectively realize the complete call link tracking of a request, and can obtain the execution and response time of each called service through the timestamp recorded therein, thereby reflecting the execution status and service performance of the request, judging whether the request has an abnormality, and locating the abnormal business node, which is convenient for developers to correct and improve the abnormal business node.
进一步地,所述步骤S2包括步骤:Furthermore, the step S2 comprises the steps of:
S21、建立调用请求,并于所述跟踪链路中新建一个所述跟踪节点,在所述跟踪节点中插入时间戳、自身信息、上级跟踪节点信息以及被调用方信息,并将所述跟踪链路存入或更新至预设数据库中;S21, establishing a call request, and creating a new tracking node in the tracking link, inserting a timestamp, its own information, upper tracking node information and called party information into the tracking node, and storing or updating the tracking link into a preset database;
S22、调用方将所述跟踪链路的唯一标识和所述跟踪节点的唯一标识存入请求头部,并向被调用方发送所述调用请求;S22, the caller stores the unique identifier of the tracking link and the unique identifier of the tracking node in the request header, and sends the call request to the called party;
S23、被调用方接收所述调用请求,根据请求头部获取跟踪链路的唯一标识,并将请求头部中的所述跟踪节点的唯一标识作为上级跟踪节点信息;S23: The called party receives the call request, obtains the unique identifier of the tracking link according to the request header, and uses the unique identifier of the tracking node in the request header as the upper-level tracking node information;
S24、被调用方执行所述调用请求,以自身作为新的调用方,判断是否存在下一业务节点,若存在下一业务节点,则将下一业务节点作为新的被调用方,执行所述步骤S21和步骤S22,否则向上一业务节点返回执行结果,由上一业务节点在其创建的追踪节点中补入完成时间戳;S24, the called party executes the call request, takes itself as the new caller, and determines whether there is a next service node. If there is a next service node, the next service node is taken as the new called party, and steps S21 and S22 are executed. Otherwise, the execution result is returned to the previous service node, and the previous service node fills the completion timestamp in the tracking node created by it.
其中,请求发起方作为初始的调用方,请求起始方创建的所述跟踪节点中的上级跟踪节点信息为空,且每个调用方可以同时有多个被调用方,对应创建多个所述跟踪节点。The request initiator is the initial caller, and the upper-level tracking node information in the tracking node created by the request initiator is empty. Each caller can have multiple callees at the same time, and multiple tracking nodes are created accordingly.
由上述描述可知,业务执行的每一个节点均作为调用方,建立跟踪节点,且同一个调用方可以有多个被调用方,能够适应业务请求可能存在多个并行业务的场景,从而能够完整地记录业务执行的流转链路。From the above description, it can be seen that each node of business execution acts as a caller and establishes a tracking node, and the same caller can have multiple callees, which can adapt to the scenario where there may be multiple parallel businesses in a business request, thereby being able to fully record the flow link of business execution.
进一步地,在执行所述步骤S22中向被调用方发送所述调用请求时,若出现异常信息,则获取其中的异常代码,根据异常代码自动识别属于网络通信问题还是代码错误;Furthermore, when executing the step S22 and sending the call request to the called party, if abnormal information appears, the abnormal code is obtained, and whether it is a network communication problem or a code error is automatically identified according to the abnormal code;
若为网络通信问题,则自动重试所述调用请求的发送,并在重试次数超过预设阈值后,记录异常代码以及所述调用请求中的调用方信息和被调用方信息,并与所述追踪链路关联;If it is a network communication problem, the sending of the call request is automatically retried, and after the number of retries exceeds a preset threshold, the abnormal code and the caller information and the callee information in the call request are recorded and associated with the tracking link;
若为代码错误,则直接记录异常代码、调用请求中的调用方信息,并与所述追踪链路关联;If it is a code error, the exception code and the caller information in the call request are directly recorded and associated with the tracking link;
返回错误信息,在所述追踪节点中补入请求中断信息,并对应将追踪链路标记为异常链路;Return error information, add request interruption information in the tracking node, and mark the tracking link as an abnormal link accordingly;
所述步骤S3还包括步骤:The step S3 further comprises the steps of:
S31、获取预设时间段内的所有异常链路,根据所述异常链路关联的信息以及异常链路中的中断信息,定位异常的业务节点。S31. Acquire all abnormal links within a preset time period, and locate abnormal service nodes according to information associated with the abnormal links and interruption information in the abnormal links.
由上述描述可知,在业务执行过程中,若出现异常信息,则能够根据异常信息识别导致异常的原因,从而采用不同的处理方式,更加有效地处理异常,并最终根据预设时间段内的所有异常链路中的中断信息,有效判断异常的业务节点。From the above description, it can be seen that during the business execution process, if abnormal information appears, the cause of the abnormality can be identified based on the abnormal information, so that different processing methods can be adopted to more effectively handle the abnormality, and finally the abnormal business node can be effectively judged based on the interruption information in all abnormal links within the preset time period.
进一步地,若所述调用方为客户端,则所述自身信息包括设备标识、网络信息、用户Id和IP地址,若所述调用方为服务器中的服务接口,则所述自身信息包括域名、方法名称和参数信息;Furthermore, if the caller is a client, the self-information includes device identification, network information, user ID and IP address; if the caller is a service interface in a server, the self-information includes domain name, method name and parameter information;
若所述被调用方为客户端,则所述被调用方信息包括设备标识、网络信息、用户Id和IP地址,若所述被调用方为服务器中的服务接口,则所述被调用方信息包括域名、方法名称和参数信息。If the called party is a client, the called party information includes device identification, network information, user ID and IP address. If the called party is a service interface in a server, the called party information includes domain name, method name and parameter information.
由上述描述可知,根据调用端或被调用端的不同可能性,所记录的信息也存在不同,能够有效定位到调用方和被调用端的具体身份,保证记录信息的有效。It can be seen from the above description that the recorded information is different according to the different possibilities of the calling end or the called end, which can effectively locate the specific identities of the caller and the called end, thereby ensuring the validity of the recorded information.
进一步地,所述预设数据库为ElasticSearch数据库;Furthermore, the preset database is an ElasticSearch database;
所述步骤S2之后还包括步骤:The step S2 further includes the following steps:
S3、服务器通过Elasticsearch数据分析引擎对所述Elasticsearch数据库中的跟踪链路中的各个跟踪节点的数据进行分析,生成完整的调用链。S3. The server analyzes the data of each tracking node in the tracking link in the Elasticsearch database through the Elasticsearch data analysis engine to generate a complete call chain.
由上述描述可知,采用ElasticSearch数据库进行跟踪链路数据的存储,并能够通过Elasticsearch数据分析引擎进行分析,从而生成完整的调用链,有效提高的请求调用的可复现性,进而提高了请求执行过程中出现的问题的可复现性。From the above description, it can be seen that the ElasticSearch database is used to store the tracking link data, and it can be analyzed through the Elasticsearch data analysis engine to generate a complete call chain, which effectively improves the reproducibility of the request call, and further improves the reproducibility of problems that occur during the request execution process.
本发明的一种请求异常识别的方法与存储介质,适用于业务系统需要追踪业务请求执行过程,从而发现系统中可能存在的问题的场景。A method and storage medium for identifying request anomalies of the present invention are applicable to scenarios where a business system needs to track the execution process of a business request to discover possible problems in the system.
请参照图1至图3,本发明的实施例一为:Please refer to Figures 1 to 3, the first embodiment of the present invention is:
一种请求异常识别的方法,包括以下步骤:A method for requesting anomaly identification, comprising the following steps:
S1、请求发起方作为初始的调用方建立跟踪链路,并存入预设数据库。S1. The request initiator, as the initial caller, establishes a tracking link and stores it in a preset database.
本实施例中,以客户端作为请求发起方为例,客户端调用SDK的StartTrace开始一个新的跟踪链路Trace。In this embodiment, taking the client as the request initiator as an example, the client calls StartTrace of the SDK to start a new tracing link Trace.
S2、请求执行的每个调用过程中,由调用方在所述跟踪链路中新建一个跟踪节点,并在所述跟踪节点中插入调用时间戳、自身信息、上级跟踪节点信息以及被调用方信息,所述上级跟踪节点信息和所述被调用方信息可为空;S2. In each call process of the request execution, the caller creates a new tracking node in the tracking link, and inserts the call timestamp, its own information, the upper tracking node information and the called party information into the tracking node. The upper tracking node information and the called party information may be empty.
所述步骤S2包括步骤:The step S2 comprises the steps of:
S21、建立调用请求,并于所述跟踪链路中新建一个所述跟踪节点,在所述跟踪节点中插入时间戳、自身信息、上级跟踪节点信息以及被调用方信息,并将所述跟踪链路存入或更新至预设数据库中;S21, establishing a call request, and creating a new tracking node in the tracking link, inserting a timestamp, its own information, upper tracking node information and called party information into the tracking node, and storing or updating the tracking link into a preset database;
若所述调用方为客户端,则所述自身信息包括设备标识、网络信息、用户Id和IP地址,若所述调用方为服务器中的服务接口,则所述自身信息包括域名、方法名称和参数信息;If the caller is a client, the self-information includes device identification, network information, user ID and IP address; if the caller is a service interface in a server, the self-information includes domain name, method name and parameter information;
若所述被调用方为客户端,则所述被调用方信息包括设备标识、网络信息、用户Id和IP地址,若所述被调用方为服务器中的服务接口,则所述被调用方信息包括域名、方法名称和参数信息。If the called party is a client, the called party information includes device identification, network information, user ID and IP address. If the called party is a service interface in a server, the called party information includes domain name, method name and parameter information.
本实施例中,客户端建立跟踪链路Trace后,生成一个Span结构,即跟踪节点,填充调用方的相关信息(设备标识,网络信息,用户Id,IP地址等用于标志用户身份数据相关信息),填充被调用方的相关信息(域名,方法,参数等用于辅助标志用户身份数据相关信息),填充当前时间戳,把填充好的信息通过调用收集器提供的SDK里面的方法收集到ElasticSearch数据库中。In this embodiment, after the client establishes the tracking link Trace, it generates a Span structure, i.e., a tracking node, fills in the relevant information of the caller (device identification, network information, user ID, IP address, etc. used to mark the relevant information of the user identity data), fills in the relevant information of the called party (domain name, method, parameters, etc. used to assist in marking the relevant information of the user identity data), fills in the current timestamp, and collects the filled information into the ElasticSearch database by calling the method in the SDK provided by the collector.
由于客户端作为请求的发起方,并不存在上级调用,因此不需要收集上级跟踪节点信息。Since the client is the initiator of the request and there is no superior call, there is no need to collect the superior tracking node information.
S22、调用方将所述跟踪链路的唯一标识和所述跟踪节点的唯一标识存入请求头部,并向被调用方发送所述调用请求。S22: The caller stores the unique identifier of the tracking link and the unique identifier of the tracking node in a request header, and sends the call request to the called party.
本实施例中,客户端将跟踪节点的唯一标识SpanId以及跟踪链路的唯一标识TraceId附加到请求头部Http Header里面,这样下游的被调用方的服务就能通过HttpHeader获取到TraceId以及调用方的SpanId。In this embodiment, the client attaches the unique identifier SpanId of the tracking node and the unique identifier TraceId of the tracking link to the request header Http Header, so that the downstream called party service can obtain the TraceId and the caller's SpanId through the HttpHeader.
所述步骤S22中向被调用方发送所述调用请求时,若出现异常信息,则获取其中的异常代码,根据异常代码自动识别属于网络通信问题还是代码错误;When sending the call request to the called party in step S22, if abnormal information appears, the abnormal code is obtained, and whether it is a network communication problem or a code error is automatically identified according to the abnormal code;
若为网络通信问题则自动重试所述调用请求的发送,并在重试次数超过预设阈值后上报人工处理;If it is a network communication problem, the sending of the call request will be automatically retried, and after the number of retries exceeds a preset threshold, it will be reported to manual processing;
若为代码错误则直接上报人工处理。If it is a code error, report it directly for manual processing.
本实施例中,在调用下游服务的过程中,捕获调用过程中的产生的异常信息,通过异常信息自动判断该异常是网络通信问题还是代码错误,如果是网络通信问题,则自动重试该服务调用,并在重试次数超过预设次数阈值后,通过钉钉上报人工处理,如果是代码错误,直接通过钉钉报给人工处理。In this embodiment, in the process of calling downstream services, the exception information generated in the calling process is captured, and the exception information is used to automatically determine whether the exception is a network communication problem or a code error. If it is a network communication problem, the service call is automatically retried, and after the number of retries exceeds the preset threshold, it is reported to manual processing through DingTalk. If it is a code error, it is directly reported to manual processing through DingTalk.
网络通信问题和代码错误可以由异常信息中的包含的异常代码来判断,例如通过HTTP状态码来进行部分识别,例如504表示网关超时,属于网络通信问题,414表示请求的URL太长,属于代码错误。Network communication problems and code errors can be judged by the exception codes contained in the exception information, for example, partial identification can be performed through the HTTP status code, for example, 504 indicates a gateway timeout, which is a network communication problem, and 414 indicates that the requested URL is too long, which is a code error.
S23、被调用方接收所述调用请求,根据请求头部获取跟踪链路的唯一标识,并将请求头部中的所述跟踪节点的唯一标识作为上级跟踪节点信息;S23: The called party receives the call request, obtains the unique identifier of the tracking link according to the request header, and uses the unique identifier of the tracking node in the request header as the upper-level tracking node information;
S24、被调用方执行所述调用请求,以自身作为新的调用方,判断是否存在下一业务节点,若存在下一业务节点,则将下一业务节点作为新的被调用方,执行所述步骤S21和步骤S22,否则向上一业务节点返回执行结果,由上一业务节点在其创建的追踪节点中补入完成时间戳;S24, the called party executes the call request, takes itself as the new caller, and determines whether there is a next service node. If there is a next service node, the next service node is taken as the new called party, and steps S21 and S22 are executed. Otherwise, the execution result is returned to the previous service node, and the previous service node fills the completion timestamp in the tracking node created by it.
其中,请求发起方作为初始的调用方,请求起始方创建的所述跟踪节点中的上级跟踪节点信息为空,且每个调用方可以同时有多个被调用方,对应创建多个所述跟踪节点。The request initiator is the initial caller, and the upper-level tracking node information in the tracking node created by the request initiator is empty. Each caller can have multiple callees at the same time, and multiple tracking nodes are created accordingly.
本实施例中,被调用方服务收到请求的时候,从Http Header(Http Header是一个字典数据结构,直接拿TraceId和SpanId做key就能解析查出来数据)中解析出TraceId以及调用方的SpanId,该信息以及时间戳将通过收集器收集到Elastic Search数据库中。被调用方同样生成一个Span,并将上文解析出来的SpanId填充到当前Span的ParentSpanId,表示当前Span的父节点的SpanId,即上级跟踪节点信息。In this embodiment, when the called party service receives the request, it parses the TraceId and the caller's SpanId from the Http Header (Http Header is a dictionary data structure, and the data can be parsed and found directly by taking TraceId and SpanId as keys), and this information and timestamp will be collected into the Elastic Search database through the collector. The called party also generates a Span, and fills the SpanId parsed above into the ParentSpanId of the current Span, indicating the SpanId of the parent node of the current Span, that is, the parent tracking node information.
如果该服务还要继续调用其他服务,那么在同一追踪链路中再创建一个Span,将Span的SpanId以及TraceId附加到Http Header里面进行调用其他服务。当被调用方的服务完成的时候,该Span的信息以及时间戳通过收集器收集到Elastic Search数据库中。If the service continues to call other services, then create another Span in the same tracing link, attach the SpanId and TraceId of the Span to the Http Header to call other services. When the called service is completed, the information and timestamp of the Span are collected into the Elastic Search database through the collector.
本实施例中,每个调用方在接收到下级的返回信息后,才能完成请求执行,可参照图2,每个下级业务节点均需向上级业务节点的请求进行响应。完成请求执行后,同样将此时的时间戳收集至Elastic Search数据库中。In this embodiment, each caller can complete the request execution only after receiving the return information from the subordinate. Referring to Figure 2, each subordinate business node needs to respond to the request of the superior business node. After the request execution is completed, the timestamp at this time is also collected into the Elastic Search database.
以如图3所示的调用关系为例,Elastic Search数据库中的部分数据记录示例如下表1:Taking the call relationship shown in Figure 3 as an example, some data records in the Elastic Search database are shown in Table 1:
表1Table 1
S25、重复执行以上步骤S21至步骤S24,直至所有调用方均无下一业务节点;S25, repeat the above steps S21 to S24 until all callers have no next service node;
其中,请求发起方作为初始的调用方,请求起始方创建的所述跟踪节点中的上级跟踪节点信息为空,且每个调用方可以同时有多个被调用方,所述跟踪节点中的所述被调用方信息可以为多个。Among them, the request initiator is the initial caller, the upper tracking node information in the tracking node created by the request initiator is empty, and each caller can have multiple callees at the same time, and the callee information in the tracking node can be multiple.
这样,我们通过TraceId就能找到一次调用的所有被调用服务的路径,并且从ParentSpanId可以知道调用的顺序关系,从记录的时间戳可以知道每个被调用服务的响应时间。In this way, we can find the path of all called services in one call through TraceId, know the order of calls from ParentSpanId, and know the response time of each called service from the recorded timestamp.
S3、向所述预设数据库获取追踪链路信息,根据所述追踪链路信息中的个追踪节点的数据,判断请求是否存在异常。S3. Obtain the tracking link information from the preset database, and determine whether the request is abnormal based on the data of each tracking node in the tracking link information.
S4、服务器通过Elasticsearch数据分析引擎对所述Elasticsearch数据库中的跟踪链路中的各个跟踪节点的数据进行分析,生成完整的调用链。S4. The server analyzes the data of each tracking node in the tracking link in the Elasticsearch database through the Elasticsearch data analysis engine to generate a complete call chain.
本实施例中,我们通过Elasticsearch数据分析引擎对所述Elasticsearch数据库中的追踪链路进行分析,产生完整的调用链,有了请求的完整调用链,请求执行过程出现的问题就有很大概率可复现。In this embodiment, we use the Elasticsearch data analysis engine to analyze the tracking links in the Elasticsearch database to generate a complete call chain. With the complete call chain of the request, problems that occur during the request execution process are likely to be reproducible.
本发明实现了:The present invention achieves:
数据自动采集;Automatic data collection;
分析数据,产生完整调用链:有了请求的完整调用链,问题有很大概率可复现;Analyze the data and generate a complete call chain: With the complete call chain of the request, the problem is likely to be reproducible;
数据可视化,每个组件的性能可视化,能帮助我们很好地定位系统的瓶颈,及时找出问题所在。Data visualization and performance visualization of each component can help us locate the bottleneck of the system and find out the problem in time.
从而能很好地定位请求的每条具体请求链路,从而轻易地实现请求链路追踪,进而定位和分析每个模块的性能瓶颈。This makes it possible to locate each specific request link of the request, thereby easily implementing request link tracking, and then locating and analyzing the performance bottleneck of each module.
请参照图3,本发明的实施例二为:Please refer to FIG. 3 , the second embodiment of the present invention is:
一种请求异常识别的方法,与实施例一的区别在于:A method for requesting abnormality identification, which differs from the first embodiment in that:
本实施例中,步骤S3具体为通过Elasticsearch数据分析引擎对Elasticsearch数据库中的跟踪链路中的各个跟踪节点的数据进行分析,根据请求的完成时间,判断系统服务可能存在的短板或瓶颈。In this embodiment, step S3 specifically analyzes the data of each tracking node in the tracking link in the Elasticsearch database through the Elasticsearch data analysis engine, and determines the possible shortcomings or bottlenecks of the system service according to the completion time of the request.
通过请求执行的开始时间和完成时间,统计请求执行的时长,并根据其中的调用关系,罗列异常的请求执行情况(例如,请求执行的时长是否超过预设的阈值,或超过系统中请求执行的平均时长等),从而得到系统可能存在的短板或瓶颈。The start time and completion time of the request execution are used to count the execution time of the request, and based on the calling relationship, the abnormal request execution situations are listed (for example, whether the request execution time exceeds the preset threshold, or exceeds the average execution time of the request in the system, etc.), so as to obtain the possible shortcomings or bottlenecks of the system.
例如,以图3为例的请求调用,其Elasticsearch数据库中部分数据如下表2:For example, in the request call shown in Figure 3, some of the data in the Elasticsearch database is as follows in Table 2:
本实施例中,以系统中请求执行完成的平均时长为异常识别的判断标准,本系统中请求执行的平均时长为5s,则由表2可知,请求a的执行时长达到了11秒,a调用b的执行时长达到了8秒,a调用c的执行时长达到了9秒,均超过了平均时长。根据请求的调用关系可知,请求a的时长超过平均值是由a调用b和a调用c这两个子调用请求导致的,而b和c节点并未存在下级调用或并未存在异常的下级调用,因此可以判断出是b和c节点存在业务执行异常,为系统业务执行可能存在的短板或瓶颈。输出分析结果为:In this embodiment, the average time required to complete the execution of requests in the system is used as the judgment standard for abnormal identification. The average time required to execute requests in this system is 5s. It can be seen from Table 2 that the execution time of request a reaches 11 seconds, the execution time of a calling b reaches 8 seconds, and the execution time of a calling c reaches 9 seconds, all of which exceed the average time. According to the calling relationship of the requests, it can be seen that the duration of request a exceeds the average value because of the two sub-call requests of a calling b and a calling c, while the b and c nodes do not have lower-level calls or abnormal lower-level calls. Therefore, it can be judged that there are business execution anomalies in the b and c nodes, which may be shortcomings or bottlenecks in the system business execution. The output analysis results are:
同时输出b和c两个服务的服务接口名称以及对应所属的服务器名称,以便开发人员进一步地分析原因,进行问题的排查和修正。At the same time, the service interface names of services b and c and the corresponding server names are output, so that developers can further analyze the causes, troubleshoot and correct the problems.
本发明的实施例三为:Embodiment 3 of the present invention is:
一种请求异常识别的方法,与实施例二的区别在于:A method for requesting abnormality identification, which differs from the second embodiment in that:
所述步骤S22中向被调用方发送所述调用请求时,若出现异常信息,则获取其中的异常代码,根据异常代码自动识别属于网络通信问题还是代码错误;When sending the call request to the called party in step S22, if abnormal information appears, the abnormal code is obtained, and whether it is a network communication problem or a code error is automatically identified according to the abnormal code;
若为网络通信问题,则自动重试所述调用请求的发送,并在重试次数超过预设阈值后,记录异常代码以及所述调用请求中的调用方信息和被调用方信息,并与所述追踪链路关联;If it is a network communication problem, the sending of the call request is automatically retried, and after the number of retries exceeds a preset threshold, the abnormal code and the caller information and the callee information in the call request are recorded and associated with the tracking link;
若为代码错误,则直接记录异常代码、调用请求中的调用方信息,并与所述追踪链路关联;If it is a code error, the exception code and the caller information in the call request are directly recorded and associated with the tracking link;
返回错误信息,在所述追踪节点中补入请求中断信息,并对应将追踪链路标记为异常链路。Return error information, add request interruption information in the tracking node, and mark the tracking link as an abnormal link accordingly.
本实施例中,在调用下游服务的过程中,捕获调用过程中的产生的异常信息,通过异常信息自动判断该异常是网络通信问题还是代码错误,如果是网络通信问题,则自动重试该服务调用,并在重试次数超过预设次数阈值后,记录异常代码以及所述调用请求中的调用方信息和被调用方信息,并与所述追踪链路关联,如果是代码错误,则直接记录异常代码、调用请求中的调用方信息,并与所述追踪链路关联。In this embodiment, in the process of calling a downstream service, the exception information generated in the calling process is captured, and it is automatically determined whether the exception is a network communication problem or a code error through the exception information. If it is a network communication problem, the service call is automatically retried, and after the number of retries exceeds a preset threshold, the exception code and the caller information and the callee information in the call request are recorded and associated with the tracking link. If it is a code error, the exception code and the caller information in the call request are directly recorded and associated with the tracking link.
网络通信问题和代码错误可以由异常信息中的包含的异常代码来判断,例如通过HTTP状态码来进行部分识别,例如504表示网关超时,属于网络通信问题,414表示请求的URL太长,属于代码错误。Network communication problems and code errors can be judged by the exception codes contained in the exception information, for example, partial identification can be performed through the HTTP status code, for example, 504 indicates a gateway timeout, which is a network communication problem, and 414 indicates that the requested URL is too long, which is a code error.
在记录完异常信息后,当前业务节点向上一业务节点返回错误信息,并在对应上一节点调用当前节点的追踪节点中补入请求中断信息,将当前的追踪链路标记为异常链路。After recording the abnormal information, the current business node returns error information to the previous business node, and adds request interruption information to the tracking node corresponding to the previous node calling the current node, marking the current tracking link as an abnormal link.
步骤S3还包括步骤:Step S3 also includes the steps of:
S31、获取所有异常链路,根据所述异常链路关联的信息以及异常链路中的中断信息,定位异常的业务节点。S31. Acquire all abnormal links, and locate abnormal service nodes according to information associated with the abnormal links and interruption information in the abnormal links.
本实施例中,获取预设时间段内预设数据库中的异常链路信息,例如获取3天内的所有异常链路信息,根据其中的中断信息,判断是哪个业务节点发生的中断,并统计各业务节点发生中断的次数。例如,三天内,a节点中断1次,b节点中断10次,c节点中断2次。通过对各业务节点发生中断的次数与预设值进行比较,来判断业务节点是否存在异常。例如本实施例中预设值为3,即3天内发生中断次数超过3次,则认为节点存在异常,否则认为是偶发性中断,不作处理。In this embodiment, the abnormal link information in the preset database within the preset time period is obtained, for example, all abnormal link information within 3 days is obtained, and based on the interruption information therein, it is determined which service node the interruption occurred, and the number of interruptions of each service node is counted. For example, within three days, node a was interrupted once, node b was interrupted 10 times, and node c was interrupted 2 times. By comparing the number of interruptions of each service node with the preset value, it is determined whether the service node is abnormal. For example, in this embodiment, the preset value is 3, that is, the number of interruptions exceeds 3 times within 3 days, then it is considered that the node is abnormal, otherwise it is considered to be an occasional interruption and no processing is performed.
对于识别到的存在异常的业务节点,根据发生中断时,所及路的节点信息,来获取其发生的每次中断所记录的信息,进行分析。例如,在出现网络通信问题时,记录了调用方信息(当前业务节点)和被调用方信息(下一业务节点),由于网络通信问题可能为上游节点原因也可能为下游节点原因,因此在统计异常代码时,即使中断节点记为被调用方信息,也将会计入当次的异常代码。For the business nodes with abnormalities identified, the information recorded for each interruption is obtained and analyzed based on the node information of the path when the interruption occurs. For example, when a network communication problem occurs, the caller information (current business node) and the called party information (next business node) are recorded. Since the network communication problem may be caused by the upstream node or the downstream node, when counting the abnormal code, even if the interrupted node is recorded as the called party information, it will also be counted in the abnormal code of that time.
统计其中网络通信问题出现的次数以及代码错误发生的次数,以及对应各个异常代码的出现次数,生成异常分析表并输出。Count the number of network communication problems and code errors, as well as the number of occurrences of each exception code, generate an exception analysis table and output it.
例如:For example:
本发明的实施例四为:Embodiment 4 of the present invention is:
一种请求异常识别的方法,与实施例二的区别在于:A method for requesting abnormality identification, which differs from the second embodiment in that:
本实施例的步骤S3中,在识别到某些服务节点(如b和c节点)存在异常后,并不会直接输出分析结果,而是通过一个异常次数标识记录其出现异常的次数,当出现异常的次数达到预设的次数阈值时,则调取所有异常请求自动进行共性分析。In step S3 of this embodiment, after identifying that some service nodes (such as nodes b and c) have anomalies, the analysis results are not output directly. Instead, the number of times the anomalies occur is recorded through an anomaly count identifier. When the number of anomalies reaches a preset threshold, all abnormal requests are retrieved to automatically perform common analysis.
本实施例中,我们在b和c的异常次数达到200次时,调取这200次请求的具体内容进行共性分析。以b节点为例,假设本实施例中b节点实现的是读取用户指定文档文件(包含doc、docx、pdf和txt等)的内容,我们通过对调用请求的数据内容的比对,发现其存在的共性为请求读取的文件均为pdf文件,只要在请求读取.pdf文件时,均会出现处理时长较久。因此,系统输出请求中的共性数据参数:In this embodiment, when the number of exceptions in b and c reaches 200, we retrieve the specific content of these 200 requests for commonality analysis. Taking node b as an example, assuming that node b in this embodiment implements reading the content of user-specified document files (including doc, docx, pdf, and txt, etc.), we compare the data content of the call request and find that the commonality is that the files requested to be read are all pdf files. As long as a .pdf file is requested to be read, the processing time will be long. Therefore, the common data parameters in the system output request are:
例如:For example:
FileNameFileName
a.pdfa.pdf
13.pdf13.pdf
第33章.pdfChapter 33.pdf
共性:.pdf。Commonality: .pdf.
根据系统输出的内容,开发人员能够容易发现极可能是对于pdf文件的读取造成处理缓慢,因此能够针对性地进行问题排查和修正,提高工作效率。Based on the content output by the system, developers can easily find that the slow processing is most likely caused by the reading of PDF files, so they can conduct targeted troubleshooting and correction to improve work efficiency.
本发明的实施例五为:Embodiment 5 of the present invention is:
一种请求异常识别的存储介质,其内存储有计算机程序,所述计算机程序被执行时实现以上实施例一至三中的一种请求异常识别的方法中的步骤。A storage medium for requesting abnormality identification stores a computer program therein, and when the computer program is executed, the steps in a method for requesting abnormality identification in the above embodiments one to three are implemented.
综上所述,本发明提供的一种请求异常识别的方法与存储介质,通过建立追踪链路,并在追踪链路中的每个节点中对应记录每次调用的调用方、被调用方、时间戳以及上一节点信息,从而能够有效实现对一个请求的完整调用链路追踪,并能够通过其中记录的时间戳来获取每个被调用服务的执行和响应时间,从而反映请求的执行情况和服务性能,判断请求是否存在异常,并实现异常业务节点的定位,便于开发人员对异常业务节点的修正和改进;并能够分析请求执行过程中出现的异常情况,并作出相应的处理。In summary, the present invention provides a method and storage medium for request anomaly identification, which establishes a tracing link and records the caller, callee, timestamp and previous node information of each call in each node in the tracing link, thereby effectively realizing the complete call link tracing of a request, and can obtain the execution and response time of each called service through the timestamp recorded therein, thereby reflecting the execution status and service performance of the request, judging whether there is an abnormality in the request, and locating the abnormal business node, which is convenient for developers to correct and improve the abnormal business node; and can analyze the abnormal situation occurring during the request execution process and make corresponding processing.
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。The above descriptions are merely embodiments of the present invention and are not intended to limit the patent scope of the present invention. Any equivalent transformations made using the contents of the present invention's specification and drawings, or directly or indirectly applied in related technical fields, are also included in the patent protection scope of the present invention.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410331180.5A CN118138512A (en) | 2022-06-30 | 2022-06-30 | Method for identifying and analyzing request abnormality and storage medium |
CN202210755690.6A CN115022213B (en) | 2022-06-30 | 2022-06-30 | Method for identifying request abnormality and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210755690.6A CN115022213B (en) | 2022-06-30 | 2022-06-30 | Method for identifying request abnormality and storage medium |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410331180.5A Division CN118138512A (en) | 2022-06-30 | 2022-06-30 | Method for identifying and analyzing request abnormality and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115022213A CN115022213A (en) | 2022-09-06 |
CN115022213B true CN115022213B (en) | 2024-04-05 |
Family
ID=83078313
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410331180.5A Pending CN118138512A (en) | 2022-06-30 | 2022-06-30 | Method for identifying and analyzing request abnormality and storage medium |
CN202210755690.6A Active CN115022213B (en) | 2022-06-30 | 2022-06-30 | Method for identifying request abnormality and storage medium |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410331180.5A Pending CN118138512A (en) | 2022-06-30 | 2022-06-30 | Method for identifying and analyzing request abnormality and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN118138512A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115665118A (en) * | 2022-10-31 | 2023-01-31 | 电子科技大学 | Application-level call chain generation method based on HTTP (hyper text transport protocol) header extension |
CN115865723A (en) * | 2022-11-25 | 2023-03-28 | 维恩贝特科技有限公司 | Full-link health examination method, terminal and medium based on distributed system application |
CN116205476A (en) * | 2022-12-08 | 2023-06-02 | 博泰车联网科技(上海)股份有限公司 | Workflow problem analysis method, electronic equipment and storage medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108183927A (en) * | 2017-11-22 | 2018-06-19 | 链家网(北京)科技有限公司 | The monitoring method and system that a kind of distributed system link calls |
CN112612675A (en) * | 2020-12-25 | 2021-04-06 | 山东经伟晟睿数据技术有限公司 | Distributed big data log link tracking method and system under micro-service architecture |
CN112615753A (en) * | 2020-12-30 | 2021-04-06 | 中国工商银行股份有限公司 | Link abnormity tracking method, first node, second node and link |
CN113452607A (en) * | 2020-03-24 | 2021-09-28 | 华为技术有限公司 | Distributed link acquisition method and device, computing equipment and storage medium |
CN113760636A (en) * | 2020-09-24 | 2021-12-07 | 北京沃东天骏信息技术有限公司 | Method, device and storage medium for detecting fault in micro-service architecture |
CN113986669A (en) * | 2021-10-28 | 2022-01-28 | 北京航天云路有限公司 | Call chain tracking and business analysis method based on AOP annotation |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7539746B2 (en) * | 2001-02-01 | 2009-05-26 | Emc Corporation | Highly available transaction failure detection and recovery for electronic commerce transactions |
-
2022
- 2022-06-30 CN CN202410331180.5A patent/CN118138512A/en active Pending
- 2022-06-30 CN CN202210755690.6A patent/CN115022213B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108183927A (en) * | 2017-11-22 | 2018-06-19 | 链家网(北京)科技有限公司 | The monitoring method and system that a kind of distributed system link calls |
CN113452607A (en) * | 2020-03-24 | 2021-09-28 | 华为技术有限公司 | Distributed link acquisition method and device, computing equipment and storage medium |
CN113760636A (en) * | 2020-09-24 | 2021-12-07 | 北京沃东天骏信息技术有限公司 | Method, device and storage medium for detecting fault in micro-service architecture |
CN112612675A (en) * | 2020-12-25 | 2021-04-06 | 山东经伟晟睿数据技术有限公司 | Distributed big data log link tracking method and system under micro-service architecture |
CN112615753A (en) * | 2020-12-30 | 2021-04-06 | 中国工商银行股份有限公司 | Link abnormity tracking method, first node, second node and link |
CN113986669A (en) * | 2021-10-28 | 2022-01-28 | 北京航天云路有限公司 | Call chain tracking and business analysis method based on AOP annotation |
Non-Patent Citations (1)
Title |
---|
基于微服务架构的应用监控系统设计与实现;丁学英;刘迪;邱镇;;电力信息与通信技术(第07期);第75-79页 * |
Also Published As
Publication number | Publication date |
---|---|
CN118138512A (en) | 2024-06-04 |
CN115022213A (en) | 2022-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN115022213B (en) | Method for identifying request abnormality and storage medium | |
US8578017B2 (en) | Automatic correlation of service level agreement and operating level agreement | |
US9740991B2 (en) | Calculating in-flight metrics for non-interruptible business transactions | |
CN109885496B (en) | Test log management method and system | |
US8667147B2 (en) | Monitoring related content requests | |
CN112612675A (en) | Distributed big data log link tracking method and system under micro-service architecture | |
WO2019019394A1 (en) | Client abnormality locating method and apparatus, computer device and storage medium | |
CN111078447B (en) | An exception locating method, device, equipment and medium in a microservice architecture | |
CN112235128B (en) | Transaction path analysis method, device, server and storage medium | |
CN107239381A (en) | The processing method of crash info, apparatus and system | |
CN107977473B (en) | Logback-based distributed system log retrieval method and system | |
CN109947641A (en) | Automated testing method and device | |
CN105577411B (en) | Cloud service monitoring method and device based on service origin | |
CN110083581B (en) | Log tracing method and device, storage medium and computer equipment | |
CN112711496A (en) | Log information full link tracking method and device, computer equipment and storage medium | |
CN111176941A (en) | Data processing method, device and storage medium | |
CN118427557A (en) | Fault root cause determination method, device, equipment, storage medium and program product | |
CN108650123B (en) | Fault information recording method, device, equipment and storage medium | |
CN115328734A (en) | Cross-service log processing method and device and server | |
US7653742B1 (en) | Defining and detecting network application business activities | |
CN116719750B (en) | Software testing method and device, server equipment and storage medium | |
CN117221098A (en) | Link tracking method and system | |
CN114610689B (en) | Recording and analyzing method for request log in distributed environment | |
CN116991724A (en) | Interface testing method and device based on monitoring log, electronic equipment and storage medium | |
CN113419924B (en) | Database operation risk prompt processing method and device based on session maintenance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |