[go: up one dir, main page]

CN114898063A - High-precision map abnormal data processing method, device, equipment and storage medium - Google Patents

High-precision map abnormal data processing method, device, equipment and storage medium Download PDF

Info

Publication number
CN114898063A
CN114898063A CN202210708891.0A CN202210708891A CN114898063A CN 114898063 A CN114898063 A CN 114898063A CN 202210708891 A CN202210708891 A CN 202210708891A CN 114898063 A CN114898063 A CN 114898063A
Authority
CN
China
Prior art keywords
array
data
abnormal data
preset
precision map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210708891.0A
Other languages
Chinese (zh)
Inventor
赵飞翔
朱磊
李正旭
贾双成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhidao Network Technology Beijing Co Ltd
Original Assignee
Zhidao Network Technology Beijing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhidao Network Technology Beijing Co Ltd filed Critical Zhidao Network Technology Beijing Co Ltd
Priority to CN202210708891.0A priority Critical patent/CN114898063A/en
Publication of CN114898063A publication Critical patent/CN114898063A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/21Design, administration or maintenance of databases
    • G06F16/215Improving data quality; Data cleansing, e.g. de-duplication, removing invalid entries or correcting typographical errors
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Remote Sensing (AREA)
  • Software Systems (AREA)
  • Quality & Reliability (AREA)
  • Computer Graphics (AREA)
  • Traffic Control Systems (AREA)

Abstract

The application relates to a high-precision map abnormal data processing method, device, equipment and storage medium. The method comprises the following steps: acquiring a plurality of data extracted by an image about a certain road element, and importing the plurality of data into the same array; and when the array meets the preset screening condition, removing abnormal data in the array according to a preset filtering rule until the array does not meet the preset screening condition any more, and taking the current array as a target array, wherein the abnormal data is the data with the maximum deviation degree from the current array. By locking the data with the maximum deviation from the current array and removing the abnormal data from the current array, the data in the target array can keep the accuracy, so that the manufacturing accuracy of the high-precision map can be well kept when the high-precision map is built by using the data in the target array subsequently.

Description

高精地图异常数据处理方法、装置、设备及存储介质High-precision map abnormal data processing method, device, equipment and storage medium

技术领域technical field

本申请涉及高精地图技术领域,尤其涉及一种高精地图异常数据处理方法、装置、设备及存储介质。The present application relates to the technical field of high-precision maps, and in particular, to a method, device, device, and storage medium for processing abnormal data of high-precision maps.

背景技术Background technique

高精地图是对道路环境的重建,高精地图含有大量的道路元素,道路元素如车道线、交通信号灯、交通标志等。高精地图形成是对路网精确的三维表征,无人驾驶、车辆定位、路径规划、车辆控制等技术都十分依赖高精地图。The high-precision map is a reconstruction of the road environment. The high-precision map contains a large number of road elements, such as lane lines, traffic lights, and traffic signs. High-precision map formation is an accurate three-dimensional representation of the road network, and technologies such as unmanned driving, vehicle positioning, path planning, and vehicle control all rely heavily on high-precision maps.

相关技术中,为了尽可量提高对高精地图的制作精度,会对车载相机拍摄的N张照片进行识别和解析,从N张照片中提取出构建某一道路元素的多个数据。但由于误匹配、识别精度、解析算法等原因,部分提取的数据可能与其余数据偏差较大,若此类异常数据后续引入对道路元素的构建,势必会影响高精地图的制作精度。In the related art, in order to improve the production accuracy of the high-precision map as much as possible, N photos taken by the vehicle-mounted camera are identified and analyzed, and multiple data for constructing a certain road element are extracted from the N photos. However, due to reasons such as mismatching, recognition accuracy, and parsing algorithms, some of the extracted data may deviate greatly from the rest of the data. If such abnormal data is subsequently introduced into the construction of road elements, it will inevitably affect the production accuracy of high-precision maps.

发明内容SUMMARY OF THE INVENTION

为解决或部分解决相关技术中存在的问题,本申请提供一种高精地图异常数据处理方法、装置、设备及存储介质,能够提高高精地图的制作精度。In order to solve or partially solve the problems existing in the related art, the present application provides a method, device, equipment and storage medium for processing abnormal data of a high-precision map, which can improve the production accuracy of a high-precision map.

本申请的第一方面提供了一种高精地图异常数据处理方法,包括:A first aspect of the present application provides a method for processing abnormal data in a high-precision map, including:

获取图像关于某一道路元素所提取的多个数据,并将多个所述数据导入同一数组中;Acquiring a plurality of data extracted from an image about a certain road element, and importing a plurality of the data into the same array;

当所述数组满足预设筛选条件时,按照预设过滤规则去除掉所述数组中的异常数据,直至所述数组不再满足所述预设筛选条件时,将当前的所述数组作为目标数组,其中所述异常数据是与当前的所述数组偏离度最大的所述数据。When the array satisfies the preset filtering conditions, remove abnormal data in the array according to the preset filtering rules, and use the current array as the target array until the array no longer meets the preset filtering conditions , wherein the abnormal data is the data with the largest deviation from the current array.

优选的,所述当所述数组满足预设筛选条件时之前,还包括:Preferably, before the said array satisfies the preset filtering conditions, it further includes:

统计所述数组的数组长度,并计算出所述数组对应的数组均值和数组方差;Count the array length of the array, and calculate the array mean and array variance corresponding to the array;

所述预设筛选条件,包括:The preset filter conditions include:

所述数组对应的所述数组长度大于预设长度值;和The array length corresponding to the array is greater than a preset length value; and

所述数组对应的所述数组方差大于预设方差阈值。The array variance corresponding to the array is greater than a preset variance threshold.

优选的,所述按照预设过滤规则去除掉所述数组中的异常数据,包括:Preferably, removing abnormal data in the array according to preset filtering rules includes:

计算所述数组中每一所述数据与所述数组对应的所述数组均值的差值,得到若干差值;Calculate the difference between each of the data in the array and the mean value of the array corresponding to the array to obtain a number of differences;

对若干所述差值的绝对值进行排序,基于排序结果筛选出需要去除掉的异常数据。Sort the absolute values of several of the differences, and filter out abnormal data to be removed based on the sorting results.

优选的,所述对若干所述差值的绝对值进行排序,基于排序结果筛选出需要去除掉的异常数据,包括:Preferably, sorting the absolute values of several of the differences, and filtering out abnormal data that needs to be removed based on the sorting results, including:

以升序排序的方式对若干所述差值的绝对值进行排序,将最大的所述差值的绝对值对应的所述数据锁定为异常数据,将所述异常数据从所述数组中去除掉。Sort the absolute values of a number of the difference values in ascending order, lock the data corresponding to the absolute value of the largest difference value as abnormal data, and remove the abnormal data from the array.

优选的,所述获取图像关于某一道路元素所提取的多个数据,包括:Preferably, a plurality of data extracted from the acquired image about a certain road element include:

获取图像关于交通标志牌所述提取的多个数据。Obtain the image with respect to the extracted multiple data of the traffic sign.

本申请的第二方面提供了一种高精地图异常数据处理装置,包括:A second aspect of the present application provides a high-precision map abnormal data processing device, including:

获取模块,用于获取图像关于某一道路元素所提取的多个数据,并将多个所述数据导入同一数组中;an acquisition module, used for acquiring multiple data extracted from the image about a certain road element, and importing the multiple data into the same array;

过滤模块,用于当所述数组满足预设筛选条件时,按照预设过滤规则去除掉所述数组中的异常数据,直至所述数组不再满足所述预设筛选条件时,将当前的所述数组作为目标数组,其中所述异常数据是与当前的所述数组偏离度最大的所述数据。The filtering module is used to remove abnormal data in the array according to the preset filtering rules when the array satisfies the preset filtering conditions, until the array no longer meets the preset filtering conditions, the current all The array is used as the target array, wherein the abnormal data is the data with the largest deviation from the current array.

优选的,所述过滤模块还用于统计所述数组的数组长度,并计算出所述数组对应的数组均值和数组方差;Preferably, the filtering module is further configured to count the array length of the array, and calculate the array mean and array variance corresponding to the array;

所述预设筛选条件,包括:The preset filter conditions include:

所述数组对应的所述数组长度大于预设长度值;和The array length corresponding to the array is greater than a preset length value; and

所述数组对应的所述数组方差大于预设方差阈值。The array variance corresponding to the array is greater than a preset variance threshold.

优选的,所述过滤模块按照预设过滤规则去除掉所述数组中的异常数据,包括:Preferably, the filtering module removes abnormal data in the array according to preset filtering rules, including:

计算所述数组中每一所述数据与所述数组对应的所述数组均值的差值,得到若干差值;Calculate the difference between each of the data in the array and the mean value of the array corresponding to the array to obtain a number of differences;

对若干所述差值的绝对值进行排序,基于排序结果筛选出需要去除掉的异常数据。Sort the absolute values of several of the differences, and filter out abnormal data to be removed based on the sorting results.

本申请的第三方面提供了一种电子设备,包括:A third aspect of the present application provides an electronic device, comprising:

处理器;以及processor; and

存储器,其上存储有可执行代码,当所述可执行代码被所述处理器执行时,使所述处理器执行如上所述的高精地图异常数据处理方法。The memory has executable codes stored thereon, and when the executable codes are executed by the processor, causes the processor to execute the above-mentioned method for processing abnormal data of a high-precision map.

本申请的第四方面提供了一种计算机可读存储介质,其上存储有可执行代码,当所述可执行代码被电子设备的处理器执行时,使所述处理器执行如上所述的高精地图异常数据处理方法。A fourth aspect of the present application provides a computer-readable storage medium on which executable codes are stored, and when the executable codes are executed by a processor of an electronic device, the processor is caused to execute the above-mentioned high-level functions. The method of processing abnormal data of precise map.

本申请提供的技术方案可以包括以下有益效果:The technical solution provided by this application can include the following beneficial effects:

本申请的技术方案,获取图像关于某一道路元素所提取的多个数据,并将多个数据导入同一数组中;当数组满足预设筛选条件时,按照预设过滤规则去除掉数组中的异常数据,直至数组不再满足预设筛选条件,将当前的数组作为目标数组,其中异常数据是与当前的数组偏离度最大的数据。通过将锁定与当前的数组偏离度最大的数据,并对异常数据从当前的数组中去除,能够使得目标数组中的数据能够保持精确度,使得后续使用目标数组中的数据构建高精地图时,也能够很好地保持高精地图的制作精度。The technical solution of the present application is to obtain multiple data extracted from an image about a certain road element, and import the multiple data into the same array; when the array satisfies the preset filtering conditions, the anomalies in the array are removed according to the preset filtering rules Data until the array no longer meets the preset filter conditions, the current array is used as the target array, and the abnormal data is the data with the largest deviation from the current array. By locking the data with the largest deviation from the current array, and removing abnormal data from the current array, the data in the target array can be kept accurate, so that when the data in the target array is used to build a high-precision map later, It can also well maintain the production accuracy of high-precision maps.

应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not limiting of the present application.

附图说明Description of drawings

通过结合附图对本申请示例性实施方式进行更详细地描述,本申请的上述以及其它目的、特征和优势将变得更加明显,其中,在本申请示例性实施方式中,相同的参考标号通常代表相同部件。The above and other objects, features and advantages of the present application will become more apparent from the more detailed description of the exemplary embodiments of the present application in conjunction with the accompanying drawings, wherein the same reference numerals generally represent the exemplary embodiments of the present application. same parts.

图1示出了本申请实施例中的一种高精地图异常数据处理方法的流程示意图;1 shows a schematic flowchart of a method for processing abnormal data of a high-precision map in an embodiment of the present application;

图2示出了本申请另一实施例中的一种高精地图异常数据处理方法的流程示意图;FIG. 2 shows a schematic flowchart of a method for processing abnormal data of a high-precision map in another embodiment of the present application;

图3示出了本申请实施例中的一种高精地图异常数据处理方法的流程框图;3 shows a flowchart of a method for processing abnormal data of a high-precision map in an embodiment of the present application;

图4示出了本申请实施例中的一种高精地图异常数据处理装置的结构示意图;FIG. 4 shows a schematic structural diagram of an apparatus for processing abnormal data of a high-precision map in an embodiment of the present application;

图5示出了本申请另一实施例中的一种高精地图异常数据处理装置的结构示意图;FIG. 5 shows a schematic structural diagram of an apparatus for processing abnormal data of a high-precision map in another embodiment of the present application;

图6是本申请实施例示出的电子设备的结构示意图。FIG. 6 is a schematic structural diagram of an electronic device shown in an embodiment of the present application.

具体实施方式Detailed ways

下面将参照附图更详细地描述本申请的实施方式。虽然附图中显示了本申请的实施方式,然而应该理解,可以以各种形式实现本申请而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了使本申请更加透彻和完整,并且能够将本申请的范围完整地传达给本领域的技术人员。Embodiments of the present application will be described in more detail below with reference to the accompanying drawings. Although embodiments of the present application are shown in the drawings, it should be understood that the present application may be implemented in various forms and should not be limited by the embodiments set forth herein. Rather, these embodiments are provided so that this application will be thorough and complete, and will fully convey the scope of this application to those skilled in the art.

在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。The terminology used in this application is for the purpose of describing particular embodiments only and is not intended to limit the application. As used in this application and the appended claims, the singular forms "a," "the," and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It will also be understood that the term "and/or" as used herein refers to and includes any and all possible combinations of one or more of the associated listed items.

应当理解,尽管在本申请可能采用术语“第一”、“第二”、“第三”等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。It should be understood that although the terms "first", "second", "third", etc. may be used in this application to describe various information, such information should not be limited by these terms. These terms are only used to distinguish the same type of information from each other. For example, the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information without departing from the scope of the present application. Thus, a feature defined as "first" or "second" may expressly or implicitly include one or more of that feature. In the description of the present application, "plurality" means two or more, unless otherwise expressly and specifically defined.

目前在相关技术中,由于误匹配、识别精度、解析算法等原因,从图像提取的部分数据可能与其余数据偏差较大,若此类异常数据后续引入对道路元素的构建,势必会影响高精地图的制作精度。At present, in related technologies, due to reasons such as mismatching, recognition accuracy, parsing algorithm, etc., some data extracted from images may deviate greatly from the rest of the data. If such abnormal data is subsequently introduced into the construction of road elements, it will inevitably affect high-precision The precision of the map.

因此,为了解决上述技术问题,本申请提供了一种高精地图异常数据处理方法、装置、设备及存储介质,能够提高高精地图的制作精度。Therefore, in order to solve the above technical problems, the present application provides a method, device, device and storage medium for processing abnormal data of a high-precision map, which can improve the production accuracy of a high-precision map.

以下结合附图详细说明本申请的技术原理。The technical principles of the present application will be described in detail below with reference to the accompanying drawings.

图1示出了本申请实施例中的一种高精地图异常数据处理方法的流程示意图。FIG. 1 shows a schematic flowchart of a method for processing abnormal data of a high-precision map in an embodiment of the present application.

请参阅图1,一种高精地图异常数据处理方法,包括如下步骤:Please refer to Figure 1, a method for processing abnormal data of high-precision map, including the following steps:

步骤S111、获取图像关于道路元素所提取的多个数据,并将多个数据导入同一数组中。Step S111: Acquire multiple pieces of data extracted from the image about road elements, and import the multiple pieces of data into the same array.

图像是车载相机所拍摄的照片,图像包含有大量的道路元素,道路元素如交通标志牌(路牌)、车道线、行车停止线等。将获取图像关于某一道路元素同一维度的多个数据导入同一数组中,数组是集合某一个道路元素中多个数据的集合体。对于数组而言,数组具有长度这一特征,数组长度即当前数组所包含的数据个数。The image is a photo taken by a vehicle-mounted camera, and the image contains a large number of road elements, such as traffic signs (street signs), lane lines, and stop lines. Import multiple data of the same dimension of a certain road element from the acquired image into the same array, and the array is a collection of multiple data in a certain road element. For an array, the array has the characteristic of length, and the length of the array is the number of data contained in the current array.

步骤S112、当数组满足预设筛选条件时,按照预设过滤规则去除掉数组中的异常数据,直至数组不再满足预设筛选条件时,将当前的数组作为目标数组,其中异常数据是与当前的数组偏离度最大的数据。Step S112, when the array satisfies the preset filtering conditions, remove the abnormal data in the array according to the preset filtering rules, until the array no longer meets the preset filtering conditions, take the current array as the target array, wherein the abnormal data is the same as the current array. The data with the largest deviation in the array.

由于误匹配、识别精度、解析算法等原因,数组中的每个数据可能都无法很精确地反映出道路元素。具体表现是数组中包含的每个数据,每个数据都有各自的对应的数值,每个数据与数组之间都具有一定的偏离度。为了保证后续使用数组中的数据构建道路元素的准确性。将满足预设筛选条件的数组按照预设过滤规则去除掉数组中的异常数据。即针对与数组偏离度较大的数据(此类数据称为异常数据),在数组中将此类异常数据过滤掉,使得过滤后的数组数据与数据之间不会有明显的偏差。Due to mismatches, recognition accuracy, parsing algorithms, etc., each data in the array may not reflect road elements very accurately. The specific performance is that each data contained in the array has its own corresponding value, and each data has a certain degree of deviation from the array. In order to ensure the accuracy of building road elements using the data in the array subsequently. The abnormal data in the array is removed from the array that meets the preset filter conditions according to the preset filter rules. That is, for data with a large deviation from the array (such data is called abnormal data), such abnormal data is filtered out in the array, so that there is no obvious deviation between the filtered array data and the data.

本实施例的技术方案通过锁定与当前的数组偏离度最大的数据,并对异常数据从当前的数组中去除,能够使得目标数组中的数据能够保持精确度,使得后续使用目标数组中的数据构建高精地图时,也能够很好地保持高精地图的制作精度。The technical solution of this embodiment can maintain the accuracy of the data in the target array by locking the data with the largest deviation from the current array and removing the abnormal data from the current array, so that the data in the target array can be used to construct the When using high-precision maps, the production accuracy of high-precision maps can also be well maintained.

图2示出了本申请另一实施例中的一种高精地图异常数据处理方法的流程示意图,图2相对图1而言,详细说明了预设筛选条件和预设过滤规则。FIG. 2 shows a schematic flowchart of a method for processing abnormal data of a high-precision map in another embodiment of the present application. Compared with FIG. 1 , FIG. 2 illustrates the preset filtering conditions and the preset filtering rules in detail.

请参阅图2,一种高精地图异常数据处理方法,包括如下步骤:Please refer to Figure 2, a method for processing abnormal data of high-precision map, including the following steps:

步骤S211、获取图像关于某一道路元素所提取的多个数据,并将多个数据导入同一数组中。Step S211: Acquire multiple pieces of data extracted from the image about a certain road element, and import the multiple pieces of data into the same array.

图像是车载相机所拍摄的照片,图像包含有大量的道路元素,道路元素如交通标志牌(路牌)、车道线、行车停止线等。将获取图像关于某一道路元素的多个数据导入同一数组中,数组是集合某一个道路元素中多个数据的集合体。对于数组而言,数组具有长度这一特征,数组长度即当前数组所包含的数据个数。The image is a photo taken by a vehicle-mounted camera, and the image contains a large number of road elements, such as traffic signs (street signs), lane lines, and stop lines. Import multiple data of a certain road element from the acquired image into the same array, and the array is a collection of multiple data in a certain road element. For an array, the array has the characteristic of length, and the length of the array is the number of data contained in the current array.

步骤S212、统计数组的数组长度,并计算出数组对应的数组均值和数组方差,当满足数组对应的数组长度大于预设长度值和数组对应的数组方差大于预设方差阈值时,按照预设过滤规则去除掉数组中的异常数据,直至数组不再满足数组对应的数组长度大于预设长度值或者数组对应的数组方差小于预设方差阈值时,将当前的数组作为目标数组,其中异常数据是与当前的数组偏离度最大的数据。Step S212: Count the array lengths of the arrays, and calculate the array mean value and the array variance corresponding to the arrays. When it is satisfied that the array length corresponding to the array is greater than the preset length value and the array variance corresponding to the array is greater than the preset variance threshold, filter according to the preset The rule removes abnormal data in the array until the array no longer satisfies that the array length corresponding to the array is greater than the preset length value or the array variance corresponding to the array is less than the preset variance threshold, the current array is used as the target array, where the abnormal data is the same as the target array. The data with the largest deviation in the current array.

需要说明的是,数组的数组长度即数据包含的数据个数,同时因为数组包含的数据都有各自的数值,因此可以计算出数组对应的数组均值和数组方差。It should be noted that the array length of the array is the number of data contained in the data, and because the data contained in the array has its own value, the array mean and array variance corresponding to the array can be calculated.

数组均值的计算公式如下:The formula for calculating the mean of an array is as follows:

Figure BDA0003706990720000061
Figure BDA0003706990720000061

其中,mean表示的是数组均值,Xi表示的是数组中的第i个数据,N为数组长度。Among them, mean represents the mean of the array, X i represents the ith data in the array, and N is the length of the array.

数组方差的计算公式如下:The formula for calculating the variance of an array is as follows:

Figure BDA0003706990720000062
Figure BDA0003706990720000062

其中,std表示的是数组方差,Xi表示的是数组中的第i个数据,mean表示的是数组均值,N为数组长度。Among them, std represents the variance of the array, X i represents the ith data in the array, mean represents the mean of the array, and N is the length of the array.

通过公式(1)和公式(2),就可以计算出数组对应的数值均值和数组方差。Through formula (1) and formula (2), the numerical mean and array variance corresponding to the array can be calculated.

判断数组是否满足预设筛选条件,当满足数组对应的数组长度N大于预设长度值len和数组对应的数组方差std大于预设方差阈值STD时,判定数组满足预设筛选条件,需要对数组中的数据进行过滤。Determine whether the array satisfies the preset filter conditions. When the array length N corresponding to the satisfied array is greater than the preset length value len and the array variance std corresponding to the array is greater than the preset variance threshold STD, it is determined that the array meets the preset filter conditions. data is filtered.

按照预设过滤规则去除掉数组中的异常数据,其中预设过滤规则包括:计算数组中每一数据与数组对应的数组均值的差值,得到若干差值;对若干差值的绝对值进行排序,基于排序结果筛选出需要去除掉的异常数据。例如,可以以升序排序的方式对若干差值的绝对值进行排序,将最大的差值的绝对值对应的数据锁定为异常数据,将异常数据从数组中去除掉。Remove abnormal data in the array according to preset filtering rules, wherein the preset filtering rules include: calculating the difference between each data in the array and the mean value of the array corresponding to the array to obtain several differences; sorting the absolute values of several differences , based on the sorting results to filter out the abnormal data that needs to be removed. For example, the absolute values of several differences can be sorted in ascending order, the data corresponding to the absolute value of the largest difference can be locked as abnormal data, and the abnormal data can be removed from the array.

通过上述过程,就能够快速锁定数组中异常数据,并将异常数据进行过滤(即把锁定出来的异常数据从数组中移除掉),更新数组。并且会基于更新后的数组,会重新对数组的数组长度、数组均值、数组方差进行统计、计算。直至数组不再满足数组对应的数组长度大于预设长度值或者数组对应的数组方差小于预设方差阈值时,将当前的数组作为目标数组。此时得到的目标数组就是移除掉异常数据的数组。Through the above process, the abnormal data in the array can be quickly locked, the abnormal data can be filtered (that is, the locked abnormal data can be removed from the array), and the array can be updated. And based on the updated array, the array length, array mean, and array variance of the array will be counted and calculated again. Until the array no longer satisfies that the array length corresponding to the array is greater than the preset length value or the array variance corresponding to the array is less than the preset variance threshold, the current array is used as the target array. The target array obtained at this time is the array with the exception data removed.

本实施例的技术方案通过锁定与当前的数组偏离度最大的数据,并对异常数据从当前的数组中去除,能够使得目标数组中的数据能够保持精确度,使得后续使用目标数组中的数据构建高精地图时,也能够很好地保持高精地图的制作精度。The technical solution of this embodiment can maintain the accuracy of the data in the target array by locking the data with the largest deviation from the current array and removing the abnormal data from the current array, so that the data in the target array can be used to construct the When using high-precision maps, the production accuracy of high-precision maps can also be well maintained.

图3示出了本申请实施例中的一种高精地图异常数据处理方法的流程框图。图3以处理道路元素—交通标志牌的应用场景作具体展开。FIG. 3 shows a flowchart of a method for processing abnormal data of a high-precision map in an embodiment of the present application. Figure 3 expands on the application scenario of processing road elements—traffic signs.

请参阅图3,一种高精地图异常处理方法,包括如下步骤:Please refer to Figure 3, a high-precision map exception handling method, including the following steps:

步骤S311、将关于交通标志牌的多个数据Xi导入数组data中,进入步骤S312。Step S311, import multiple data X i about the traffic sign into the array data, and go to step S312.

步骤S312、统计数组data对应的数组长度N,并计算数组data对应的数组均值mean和数组方差std,进入步骤S313。In step S312, the array length N corresponding to the array data is counted, and the array mean mean and the array variance std corresponding to the array data are calculated, and the process proceeds to step S313.

步骤S313、判断数组长度N是否大于预设长度值len以及数组方差std是否大于预设方差阈值SRTD,若是,则进入步骤S314;若否,则进入步骤S317。Step S313: Determine whether the array length N is greater than the preset length value len and whether the array variance std is greater than the preset variance threshold SRTD, if yes, go to step S314; if not, go to step S317.

步骤S314、计算数组data中每一数据与数组均值mean的差值,得到若干差值Di,进入步骤S315。Step S314: Calculate the difference between each data in the array data and the mean value of the array to obtain several difference values D i , and then go to step S315.

步骤S315、以升序排序的方式对若干差值Di的绝对值进行排序,将最大的差值的绝对值对应的数据Xi锁定为异常数据Xerror,并将异常数据Xerror从数组data中移除,进入步骤S316。Step S315, sort the absolute values of several differences Di in ascending order, lock the data X i corresponding to the absolute value of the largest difference as the abnormal data X error , and move the abnormal data X error from the array data. remove, and proceed to step S316.

步骤S316、更新数组data,返回步骤S313。Step S316, update the array data, and return to step S313.

步骤S317、将当前的数组data作为目标数组data。Step S317, taking the current array data as the target array data.

通过上述步骤,基于数组方差快速锁定与当前的数组偏离度最大的数据,并对异常数据从当前的数组中去除,能够使得目标数组中的数据能够保持精确度,使得后续使用目标数组中的数据构建高精地图时,也能够很好地保持高精地图的制作精度。Through the above steps, the data with the largest deviation from the current array is quickly locked based on the variance of the array, and the abnormal data is removed from the current array, so that the data in the target array can maintain the accuracy, so that the data in the target array can be used subsequently. When building a high-precision map, the production accuracy of the high-precision map can also be well maintained.

与前述的功能方法实施例相对应,本申请还提供了一种高精地图异常数据处理装置及相应的实施例。Corresponding to the foregoing functional method embodiments, the present application further provides a high-precision map abnormal data processing apparatus and corresponding embodiments.

图4示出了本申请实施例中的一种高精地图异常数据处理装置的结构示意图。FIG. 4 shows a schematic structural diagram of an apparatus for processing abnormal data of a high-precision map in an embodiment of the present application.

请参阅图4,一种高精地图异常数据处理装置40,包括:获取模块410及过滤模块420。Referring to FIG. 4 , a high-precision map abnormal data processing apparatus 40 includes an acquisition module 410 and a filtering module 420 .

获取模块410用于获取图像关于某一道路元素所提取的多个数据,并将多个数据导入同一数组中。The acquiring module 410 is used for acquiring multiple data extracted from the image about a certain road element, and importing the multiple data into the same array.

图像是车载相机所拍摄的照片,图像包含有大量的道路元素,道路元素如交通标志牌(路牌)、车道线、行车停止线等。将获取图像关于某一道路元素同一维度的的多个数据导入同一数组中,数组是集合某一个道路元素中多个数据的集合体。对于数组而言,数组具有长度这一特征,数组长度即当前数组所包含的数据个数。The image is a photo taken by a vehicle-mounted camera, and the image contains a large number of road elements, such as traffic signs (street signs), lane lines, and stop lines. Import multiple data of the same dimension of a certain road element from the acquired image into the same array, and the array is a collection of multiple data in a certain road element. For an array, the array has the characteristic of length, and the length of the array is the number of data contained in the current array.

过滤模块420用于当数组满足预设筛选条件时,按照预设过滤规则去除掉数组中的异常数据,直至数组不再满足预设筛选条件,将当前的数组作为目标数组,其中异常数据是与当前的数组偏离度最大的数据。The filtering module 420 is used to remove the abnormal data in the array according to the preset filtering rules when the array satisfies the preset filtering conditions, until the array no longer meets the preset filtering conditions, and the current array is used as the target array, wherein the abnormal data is the same as the target array. The data with the largest deviation in the current array.

由于误匹配、识别精度、解析算法等原因,数组中的每个数据可能都无法很精确地反映出道路元素。具体表现是数组中包含的每个数据,每个数据都有各自的对应的数值,每个数据与数组之间都具有一定的偏离度。为了保证后续使用数组中的数据构建道路元素的准确性。将满足预设筛选条件的数组按照预设过滤规则去除掉数组中的异常数据。即针对与数组偏离度较大的数据(此类数据称为异常数据),在数组中将此类异常数据过滤掉,使得过滤后的数组数据与数据之间不会有明显的偏差。Due to mismatches, recognition accuracy, parsing algorithms, etc., each data in the array may not reflect road elements very accurately. The specific performance is that each data contained in the array has its own corresponding value, and each data has a certain degree of deviation from the array. In order to ensure the accuracy of building road elements using the data in the array subsequently. The abnormal data in the array is removed from the array that meets the preset filter conditions according to the preset filter rules. That is, for data with a large deviation from the array (such data is called abnormal data), such abnormal data is filtered out in the array, so that there is no obvious deviation between the filtered array data and the data.

本实施例的装置,获取模块410获取图像关于某一道路元素所提取的多个数据,并将多个数据导入同一数组中;过滤模块420当数组满足预设筛选条件时,按照预设过滤规则去除掉数组中的异常数据,直至数组不再满足预设筛选条件,将当前的数组作为目标数组,其中异常数据是与当前的数组偏离度最大的数据。通过将锁定与当前的数组偏离度最大的数据,并对异常数据从当前的数组中去除,能够使得目标数组中的数据能够保持精确度,使得后续使用目标数组中的数据构建高精地图时,也能够很好地保持高精地图的制作精度。In the device of this embodiment, the acquiring module 410 acquires multiple data extracted from the image about a certain road element, and imports the multiple data into the same array; the filtering module 420, when the array satisfies the preset filtering conditions, follows the preset filtering rules Remove the abnormal data in the array until the array no longer meets the preset filter conditions, and use the current array as the target array, where the abnormal data is the data with the largest deviation from the current array. By locking the data with the largest deviation from the current array, and removing abnormal data from the current array, the data in the target array can be kept accurate, so that when the data in the target array is used to build a high-precision map later, It can also well maintain the production accuracy of high-precision maps.

图5示出了本申请另一实施例中的一种高精地图异常数据处理装置的结构示意图。FIG. 5 shows a schematic structural diagram of an apparatus for processing abnormal data of a high-precision map in another embodiment of the present application.

请参阅图5,一种高精地图异常数据处理装置50,包括:获取模块510及过滤模块520。Referring to FIG. 5 , a high-precision map abnormal data processing apparatus 50 includes an acquisition module 510 and a filtering module 520 .

获取模块510、过滤模块520的功能详细请参阅图4中的相关描述,此处不再赘述。For details of the functions of the acquiring module 510 and the filtering module 520, please refer to the relevant description in FIG. 4, and details are not repeated here.

其中,过滤模块520还用于统计数组的数组长度,并计算出数组对应的数组均值和数组方差。The filtering module 520 is also used to count the array length of the array, and calculate the array mean and the array variance corresponding to the array.

相应地,预设筛选条件,包括:数组对应的数组长度大于预设长度值;和数组对应的数组方差大于预设方差阈值。Correspondingly, the preset screening conditions include: the array length corresponding to the array is greater than the preset length value; and the array variance corresponding to the array is greater than the preset variance threshold.

相应地,过滤模块520按照预设过滤规则去除掉数组中的异常数据,包括:计算数组中每一数据与数组对应的数组均值的差值,得到若干差值;对若干差值的绝对值进行排序,基于排序结果筛选出需要去除掉的异常数据。Correspondingly, the filtering module 520 removes abnormal data in the array according to the preset filtering rules, including: calculating the difference between each data in the array and the mean value of the array corresponding to the array to obtain several differences; Sort, filter out the abnormal data that needs to be removed based on the sorting results.

关于上述实施例中的装置,其中各个模块及单元执行操作的具体方式已经在有关该装置所对应的方法实施例中进行了详细描述,此处将不再做详细阐述说明。Regarding the apparatus in the above-mentioned embodiment, the specific manner in which each module and unit performs operations has been described in detail in the method embodiment corresponding to the apparatus, and will not be described in detail here.

请参阅图6,电子设备600包括处理器610和存储器620。Referring to FIG. 6 , the electronic device 600 includes a processor 610 and a memory 620 .

处理器610可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。The processor 610 may be a central processing unit (Central Processing Unit, CPU), other general-purpose processors, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field-available processor Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc. A general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.

存储器620可以包括各种类型的存储单元,例如系统内存、只读存储器(ROM)和永久存储装置。其中,ROM可以存储处理器610或者计算机的其他模块需要的静态数据或者指令。永久存储装置可以是可读写的存储装置。永久存储装置可以是即使计算机断电后也不会失去存储的指令和数据的非易失性存储设备。在一些实施方式中,永久性存储装置采用大容量存储装置(例如磁或光盘、闪存)作为永久存储装置。另外一些实施方式中,永久性存储装置可以是可移除的存储设备(例如软盘、光驱)。系统内存可以是可读写存储设备或者易失性可读写存储设备,例如动态随机访问内存。系统内存可以存储一些或者所有处理器在运行时需要的指令和数据。此外,存储器620可以包括任意计算机可读存储媒介的组合,包括各种类型的半导体存储芯片(例如DRAM,SRAM,SDRAM,闪存,可编程只读存储器),磁盘和/或光盘也可以采用。存储器620上存储有可执行代码,当可执行代码被处理器610处理时,可以使处理器610执行上文述及的方法中的部分或全部。Memory 620 may include various types of storage units, such as system memory, read only memory (ROM), and persistent storage. The ROM may store static data or instructions required by the processor 610 or other modules of the computer. Persistent storage devices may be readable and writable storage devices. Permanent storage may be a non-volatile storage device that does not lose stored instructions and data even if the computer is powered off. In some embodiments, persistent storage devices employ mass storage devices (eg, magnetic or optical disks, flash memory) as persistent storage devices. In other embodiments, persistent storage may be a removable storage device (eg, a floppy disk, an optical drive). System memory can be a readable and writable storage device or a volatile readable and writable storage device, such as dynamic random access memory. System memory can store some or all of the instructions and data that the processor needs at runtime. Additionally, memory 620 may include any combination of computer-readable storage media, including various types of semiconductor memory chips (eg, DRAM, SRAM, SDRAM, flash memory, programmable read only memory), and magnetic and/or optical disks may also be employed. Executable codes are stored on the memory 620, and when the executable codes are processed by the processor 610, the processor 610 can be caused to execute some or all of the above-mentioned methods.

此外,根据本申请的方法还可以实现为一种计算机程序或计算机程序产品,该计算机程序或计算机程序产品包括用于执行本申请的上述方法中部分或全部步骤的计算机程序代码指令。Furthermore, the method according to the present application can also be implemented as a computer program or computer program product comprising computer program code instructions for performing some or all of the steps in the above method of the present application.

或者,本申请还可以实施为一种计算机可读存储介质(或非暂时性机器可读存储介质或机器可读存储介质),其上存储有可执行代码(或计算机程序或计算机指令代码),当可执行代码(或计算机程序或计算机指令代码)被电子设备(或服务器等)的处理器执行时,使处理器执行根据本申请的上述方法的各个步骤的部分或全部。Alternatively, the present application can also be implemented as a computer-readable storage medium (or a non-transitory machine-readable storage medium or a machine-readable storage medium) on which executable codes (or computer programs or computer instruction codes) are stored, When the executable code (or computer program or computer instruction code) is executed by the processor of the electronic device (or server, etc.), the processor is caused to perform some or all of the steps of the above method according to the present application.

以上已经描述了本申请的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其他普通技术人员能理解本文披露的各实施例。Various embodiments of the present application have been described above, and the foregoing descriptions are exemplary, not exhaustive, and not limiting of the disclosed embodiments. Numerous modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or improvement over the technology in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.

Claims (10)

1.一种高精地图异常数据处理方法,其特征在于,包括:1. a high-precision map abnormal data processing method, is characterized in that, comprises: 获取图像关于某一道路元素所提取的多个数据,并将多个所述数据导入同一数组中;Acquiring a plurality of data extracted from an image about a certain road element, and importing a plurality of the data into the same array; 当所述数组满足预设筛选条件时,按照预设过滤规则去除掉所述数组中的异常数据,直至所述数组不再满足所述预设筛选条件时,将当前的所述数组作为目标数组,其中所述异常数据是与当前的所述数组偏离度最大的所述数据。When the array satisfies the preset filtering conditions, remove abnormal data in the array according to the preset filtering rules, and use the current array as the target array until the array no longer meets the preset filtering conditions , wherein the abnormal data is the data with the largest deviation from the current array. 2.根据权利要求1所述的高精地图异常数据处理方法,其特征在于,所述当所述数组满足预设筛选条件时之前,还包括:2. The abnormal data processing method for high-precision maps according to claim 1, wherein, before the array satisfies a preset screening condition, the method further comprises: 统计所述数组的数组长度,并计算出所述数组对应的数组均值和数组方差;Count the array length of the array, and calculate the array mean and array variance corresponding to the array; 所述预设筛选条件,包括:The preset filter conditions include: 所述数组对应的所述数组长度大于预设长度值;和The array length corresponding to the array is greater than a preset length value; and 所述数组对应的所述数组方差大于预设方差阈值。The array variance corresponding to the array is greater than a preset variance threshold. 3.根据权利要求2所述的高精地图异常数据处理方法,其特征在于,所述按照预设过滤规则去除掉所述数组中的异常数据,包括:3. The method for processing abnormal data in high-precision maps according to claim 2, wherein the abnormal data in the array is removed according to a preset filtering rule, comprising: 计算所述数组中每一所述数据与所述数组对应的所述数组均值的差值,得到若干差值;Calculate the difference between each of the data in the array and the mean value of the array corresponding to the array to obtain a number of differences; 对若干所述差值的绝对值进行排序,基于排序结果筛选出需要去除掉的异常数据。Sort the absolute values of several of the differences, and filter out abnormal data to be removed based on the sorting results. 4.根据权利要求3所述的高精地图异常数据处理方法,其特征在于,所述对若干所述差值的绝对值进行排序,基于排序结果筛选出需要去除掉的异常数据,包括:4. The method for processing abnormal data in a high-precision map according to claim 3, wherein the absolute values of some of the differences are sorted, and the abnormal data that needs to be removed is filtered out based on the sorting result, comprising: 以升序排序的方式对若干所述差值的绝对值进行排序,将最大的所述差值的绝对值对应的所述数据锁定为异常数据,将所述异常数据从所述数组中去除掉。Sorting the absolute values of a plurality of the difference values in ascending order, locking the data corresponding to the absolute value of the largest difference value as abnormal data, and removing the abnormal data from the array. 5.根据权利要求1至4中任意一项所述的高精地图异常数据处理方法,其特征在于,所述获取图像关于某一道路元素所提取的多个数据,包括:5. The method for processing abnormal data in a high-precision map according to any one of claims 1 to 4, wherein the acquired image is about a plurality of data extracted from a certain road element, comprising: 获取图像关于交通标志牌所述提取的多个数据。Obtain the image with respect to the extracted multiple data of the traffic sign. 6.一种高精地图异常数据处理装置,其特征在于,包括:6. A high-precision map abnormal data processing device, characterized in that, comprising: 获取模块,用于获取图像关于某一道路元素所提取的多个数据,并将多个所述数据导入同一数组中;an acquisition module, used for acquiring multiple data extracted from the image about a certain road element, and importing the multiple data into the same array; 过滤模块,用于当所述数组满足预设筛选条件时,按照预设过滤规则去除掉所述数组中的异常数据,直至所述数组不再满足所述预设筛选条件时,将当前的所述数组作为目标数组,其中所述异常数据是与当前的所述数组偏离度最大的所述数据。The filtering module is used to remove abnormal data in the array according to the preset filtering rules when the array satisfies the preset filtering conditions, until the array no longer meets the preset filtering conditions, the current all The array is used as the target array, wherein the abnormal data is the data with the largest deviation from the current array. 7.根据权利要求6所述的高精地图异常数据处理装置,其特征在于,所述过滤模块还用于统计所述数组的数组长度,并计算出所述数组对应的数组均值和数组方差;7. The high-precision map abnormal data processing device according to claim 6, wherein the filtering module is also used to count the array length of the array, and calculate the array mean and the array variance corresponding to the array; 所述预设筛选条件,包括:The preset filter conditions include: 所述数组对应的所述数组长度大于预设长度值;和The array length corresponding to the array is greater than a preset length value; and 所述数组对应的所述数组方差大于预设方差阈值。The array variance corresponding to the array is greater than a preset variance threshold. 8.根据权利要求7所述的高精地图异常数据处理装置,其特征在于,所述过滤模块按照预设过滤规则去除掉所述数组中的异常数据,包括:8. The high-precision map abnormal data processing device according to claim 7, wherein the filtering module removes abnormal data in the array according to preset filtering rules, comprising: 计算所述数组中每一所述数据与所述数组对应的所述数组均值的差值,得到若干差值;Calculate the difference between each of the data in the array and the mean value of the array corresponding to the array to obtain a number of differences; 对若干所述差值的绝对值进行排序,基于排序结果筛选出需要去除掉的异常数据。Sort the absolute values of several of the differences, and filter out abnormal data to be removed based on the sorting results. 9.一种电子设备,其特征在于,包括:9. An electronic device, characterized in that, comprising: 处理器;以及processor; and 存储器,其上存储有可执行代码,当所述可执行代码被所述处理器执行时,使所述处理器执行如权利要求1至5中任一项所述的高精地图异常数据处理方法。A memory having executable codes stored thereon, and when the executable codes are executed by the processor, the processor is caused to execute the abnormal data processing method for a high-precision map according to any one of claims 1 to 5 . 10.一种计算机可读存储介质,其上存储有可执行代码,当所述可执行代码被电子设备的处理器执行时,使所述处理器执行如权利要求1至5中任一项所述的高精地图异常数据处理方法。10. A computer-readable storage medium on which executable codes are stored, and when the executable codes are executed by a processor of an electronic device, the processor is caused to execute as claimed in any one of claims 1 to 5. The abnormal data processing method of the high-precision map described above.
CN202210708891.0A 2022-06-22 2022-06-22 High-precision map abnormal data processing method, device, equipment and storage medium Pending CN114898063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210708891.0A CN114898063A (en) 2022-06-22 2022-06-22 High-precision map abnormal data processing method, device, equipment and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210708891.0A CN114898063A (en) 2022-06-22 2022-06-22 High-precision map abnormal data processing method, device, equipment and storage medium

Publications (1)

Publication Number Publication Date
CN114898063A true CN114898063A (en) 2022-08-12

Family

ID=82729126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210708891.0A Pending CN114898063A (en) 2022-06-22 2022-06-22 High-precision map abnormal data processing method, device, equipment and storage medium

Country Status (1)

Country Link
CN (1) CN114898063A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116246409A (en) * 2022-12-12 2023-06-09 浙江华消科技有限公司 Smoke detection alarm method, device, computer equipment and readable storage medium
CN119758245A (en) * 2024-07-31 2025-04-04 广州信邦智能装备股份有限公司 Positioning accuracy correction method and related system and storage medium and computer program

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876929B2 (en) * 1999-06-17 2005-04-05 Robert Nadon Process for removing systematic error and outlier data and for estimating random error in chemical and biological assays
CN109598525A (en) * 2017-09-30 2019-04-09 北京国双科技有限公司 Data processing method and device
CN109631917A (en) * 2018-12-11 2019-04-16 斑马网络技术有限公司 Processing method, device, electronic equipment and the storage medium of map datum
CN110069585A (en) * 2017-12-05 2019-07-30 腾讯科技(深圳)有限公司 Treating method and apparatus, storage medium and the electronic device of track point data
CN110770793A (en) * 2018-12-29 2020-02-07 深圳市瑞立视多媒体科技有限公司 Abnormal value processing method and optical motion capturing method for three-dimensional trajectory data
CN111325986A (en) * 2019-04-04 2020-06-23 北京嘀嘀无限科技发展有限公司 Abnormal parking monitoring method and device, electronic equipment and storage medium
CN114036248A (en) * 2021-11-05 2022-02-11 阿波罗智能技术(北京)有限公司 High-precision map data processing method, device and electronic device
CN114244748A (en) * 2021-12-23 2022-03-25 国网辽宁省电力有限公司信息通信分公司 Detection method and detection system for abnormal data quality of power information communication
CN114623050A (en) * 2022-03-16 2022-06-14 华能大理风力发电有限公司洱源分公司 Method, system and medium for abnormal detection of operating data of wind turbines

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6876929B2 (en) * 1999-06-17 2005-04-05 Robert Nadon Process for removing systematic error and outlier data and for estimating random error in chemical and biological assays
CN109598525A (en) * 2017-09-30 2019-04-09 北京国双科技有限公司 Data processing method and device
CN110069585A (en) * 2017-12-05 2019-07-30 腾讯科技(深圳)有限公司 Treating method and apparatus, storage medium and the electronic device of track point data
CN109631917A (en) * 2018-12-11 2019-04-16 斑马网络技术有限公司 Processing method, device, electronic equipment and the storage medium of map datum
CN110770793A (en) * 2018-12-29 2020-02-07 深圳市瑞立视多媒体科技有限公司 Abnormal value processing method and optical motion capturing method for three-dimensional trajectory data
WO2020133447A1 (en) * 2018-12-29 2020-07-02 深圳市瑞立视多媒体科技有限公司 Abnormal value processing method for three-dimensional trajectory data and optical motion capture method
CN111325986A (en) * 2019-04-04 2020-06-23 北京嘀嘀无限科技发展有限公司 Abnormal parking monitoring method and device, electronic equipment and storage medium
CN114036248A (en) * 2021-11-05 2022-02-11 阿波罗智能技术(北京)有限公司 High-precision map data processing method, device and electronic device
CN114244748A (en) * 2021-12-23 2022-03-25 国网辽宁省电力有限公司信息通信分公司 Detection method and detection system for abnormal data quality of power information communication
CN114623050A (en) * 2022-03-16 2022-06-14 华能大理风力发电有限公司洱源分公司 Method, system and medium for abnormal detection of operating data of wind turbines

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116246409A (en) * 2022-12-12 2023-06-09 浙江华消科技有限公司 Smoke detection alarm method, device, computer equipment and readable storage medium
CN119758245A (en) * 2024-07-31 2025-04-04 广州信邦智能装备股份有限公司 Positioning accuracy correction method and related system and storage medium and computer program

Similar Documents

Publication Publication Date Title
Sattler et al. Efficient & effective prioritized matching for large-scale image-based localization
JP7038151B2 (en) Trajectory classification model training method and equipment, electronic equipment
WO2020048152A1 (en) Method and system for extracting parking space in underground parking lot in high-precision map making
US20210333124A1 (en) Method and system for detecting changes in road-layout information
CN111444294B (en) Track complement method and device and electronic equipment
CN111445472A (en) Laser point cloud ground segmentation method and device, computing equipment and storage medium
CN113421192B (en) Training method of object statistical model, and statistical method and device of target object
CN117710243B (en) Point cloud denoising method and device, electronic equipment and readable storage medium
CN114708333A (en) Method and device for generating external reference model of automatic calibration camera
CN114898063A (en) High-precision map abnormal data processing method, device, equipment and storage medium
CN116126982B (en) A high-precision map lane line updating method and system
CN114170582B (en) Road sign corner point recognition method, device, equipment and storage medium
CN111177190A (en) Data processing method and device, electronic equipment and readable storage medium
CN105447869A (en) Particle swarm optimization algorithm based camera self-calibration method and apparatus
CN111371818B (en) Data request verification method, device and equipment
CN116184344B (en) An adaptive vehicle-mounted millimeter-wave radar DBSCAN clustering method and device
JP2022510963A (en) Human body orientation detection method, device, electronic device and computer storage medium
CN114332174B (en) Trajectory image alignment method, device, computer equipment and storage medium
CN116486270A (en) Method, device, electronic device and storage medium for detecting building changes
CN116258793A (en) Lane line fitting method, lane line fitting equipment and computer readable storage medium
CN112504290A (en) Method, apparatus, device and storage medium for determining nearest road boundary
CN114595304A (en) Lane line changing interrupting method, electronic device and storage medium
CN114926510A (en) Search-based multi-view point cloud registration method and device
CN115235484A (en) Method and device for generating stop line in high-precision map
CN115409865A (en) Method and device for object tracking

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination