CN114880416A - Road network map processing method, device, computer equipment and storage medium - Google Patents
Road network map processing method, device, computer equipment and storage medium Download PDFInfo
- Publication number
- CN114880416A CN114880416A CN202210420512.8A CN202210420512A CN114880416A CN 114880416 A CN114880416 A CN 114880416A CN 202210420512 A CN202210420512 A CN 202210420512A CN 114880416 A CN114880416 A CN 114880416A
- Authority
- CN
- China
- Prior art keywords
- road
- elevation
- data
- network map
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/29—Geographical information databases
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/38—Electronic maps specially adapted for navigation; Updating thereof
- G01C21/3804—Creation or updating of map data
- G01C21/3807—Creation or updating of map data characterised by the type of data
- G01C21/3815—Road data
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/26—Visual data mining; Browsing structured data
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Theoretical Computer Science (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Processing Or Creating Images (AREA)
Abstract
本申请涉及一种路网地图处理方法、装置、计算机设备和存储介质。所述方法包括:获取二维路网地图;对二维路网地图中各路段单元进行平面特征提取;根据提取的各路段单元的平面特征以及预先训练的道路高程模型,预测各路段单元的高程数据;其中,道路高程模型为用于表征路段单元的平面特征与高程数据之间关联关系的模型;根据预测的各高程数据将二维路网地图转换为三维路网地图。采用本方法能够提高路网地图各道路高程状况的三维可视化效率。
The present application relates to a road network map processing method, device, computer equipment and storage medium. The method includes: acquiring a two-dimensional road network map; extracting plane features of each road section unit in the two-dimensional road network map; predicting the elevation of each road section unit according to the extracted plane features of each road section unit and a pre-trained road elevation model data; wherein, the road elevation model is a model used to represent the relationship between the plane features of the road segment unit and the elevation data; the two-dimensional road network map is converted into a three-dimensional road network map according to the predicted elevation data. The method can improve the three-dimensional visualization efficiency of the elevation status of each road in the road network map.
Description
技术领域technical field
本申请涉及计算机技术领域,特别是涉及一种路网地图处理方法、装置、计算机设备和存储介质。The present application relates to the field of computer technology, and in particular, to a road network map processing method, device, computer equipment and storage medium.
背景技术Background technique
随着计算机技术的发展,智能驾驶在不同业务场景应用落地,然而,各种道路状况层出不穷,因此需要更为直观且可视化的三维路网地图。With the development of computer technology, intelligent driving has been applied in different business scenarios. However, various road conditions emerge in an endless stream, so a more intuitive and visualized 3D road network map is required.
然而,道路信息复杂交错,而且实际情况中很难准确地采集到路网中各道路(包括高架桥、立交桥等)的高程数据,因此,无法快速、准确地将路网中各道路之间的高程状况以三维可视化形式进行展示。However, the road information is complex and interlaced, and it is difficult to accurately collect the elevation data of each road in the road network (including viaducts, overpasses, etc.) The situation is displayed in a 3D visualization.
发明内容SUMMARY OF THE INVENTION
基于此,有必要针对上述技术问题,提供一种能够提高路网地图各道路高程状况三维可视化效率的路网地图处理方法、装置、计算机设备和存储介质。Based on this, it is necessary to provide a road network map processing method, device, computer equipment and storage medium that can improve the three-dimensional visualization efficiency of the elevation conditions of each road in the road network map in view of the above technical problems.
一种路网地图处理方法,该方法包括:A road network map processing method, comprising:
获取二维路网地图;Obtain a 2D road network map;
对二维路网地图中各路段单元进行平面特征提取;Extract the plane feature of each road section unit in the two-dimensional road network map;
根据提取的各路段单元的平面特征以及预先训练的道路高程模型,预测各路段单元的高程数据;其中,道路高程模型为用于表征路段单元的平面特征与高程数据之间关联关系的模型;According to the extracted plane features of each road segment unit and the pre-trained road elevation model, the elevation data of each road segment unit is predicted; wherein, the road elevation model is a model used to characterize the relationship between the plane feature of the road segment unit and the elevation data;
根据预测的各高程数据将二维路网地图转换为三维路网地图。The two-dimensional road network map is converted into a three-dimensional road network map according to the predicted elevation data.
在一个实施例中,道路高程模型的训练方法,包括:In one embodiment, the training method of the road elevation model includes:
获取样本二维路网地图;Obtain a sample 2D road network map;
对样本二维路网地图中各样本路段单元进行平面特征提取;Extracting plane features for each sample road segment unit in the sample two-dimensional road network map;
获取样本二维路网地图对应的实际道路状况数据;Obtain the actual road condition data corresponding to the sample two-dimensional road network map;
根据各样本路段单元的平面特征以及实际道路状况数据对道路高程模型进行训练。The road elevation model is trained according to the plane features of each sample road segment unit and the actual road condition data.
在一个实施例中,根据各样本路段单元的平面特征以及实际道路状况数据对道路高程模型进行训练,包括:In one embodiment, the road elevation model is trained according to the plane features of each sample road segment unit and actual road condition data, including:
根据预设的高程取值范围生成各样本路段单元的当前高程数据;Generate the current elevation data of each sample road segment unit according to the preset elevation value range;
根据实际道路状况数据对各个当前高程数据进行评分;Scoring each current elevation data based on actual road condition data;
根据各个当前高程数据的评分对道路高程模型进行训练。The road elevation model is trained based on the scores of each current elevation data.
在一个实施例中,根据各个当前高程数据的评分对道路高程模型进行训练,包括:In one embodiment, the road elevation model is trained according to the scores of each current elevation data, including:
将评分大于预设阈值的各样本路段单元与其当前高程数据关联;Associating each sample road segment unit with a score greater than a preset threshold with its current elevation data;
对评分小于预设阈值的各样本路段单元的当前高程数据进行调整,并将调整后的数据作为当前高程数据,进入根据实际道路状况数据对各个当前高程数据进行评分的步骤。Adjust the current elevation data of each sample road segment unit whose score is less than the preset threshold, and use the adjusted data as the current elevation data, and enter the step of scoring each current elevation data according to the actual road condition data.
在一个实施例中,实际道路状况数据包括各样本路段单元之间的层压关系数据、各样本路段单元的坡度数据之中的至少一种。In one embodiment, the actual road condition data includes at least one of lamination relationship data between sample road segment units and gradient data of each sample road segment unit.
在一个实施例中,预测的高程数据包括路段单元的高程值、路段单元的高程范围值、路段单元之间的相对高程值和路段单元之间的相对高程范围值之中的至少一种。In one embodiment, the predicted elevation data includes at least one of elevation values for road segment units, elevation range values for road segment units, relative elevation values between road segment units, and relative elevation range values between road segment units.
在一个实施例中,该方法还包括:In one embodiment, the method further includes:
将三维路网地图在显示界面进行展示;Display the 3D road network map on the display interface;
响应于对三维路网地图中指定路段单元的高程数据的调整操作,将调整后的高程数据返回道路高程模型以进行模型优化。In response to the adjustment operation on the elevation data of the specified road segment unit in the three-dimensional road network map, the adjusted elevation data is returned to the road elevation model for model optimization.
一种路网地图处理装置,该装置包括:A road network map processing device comprising:
二维地图获取模块,用于获取二维路网地图;A two-dimensional map acquisition module for acquiring a two-dimensional road network map;
平面特征提取模块,用于对二维路网地图中各路段单元进行平面特征提取;The plane feature extraction module is used to extract plane features for each road section unit in the two-dimensional road network map;
高程数据预测模块,用于根据提取的各路段单元的平面特征以及预先训练的道路高程模型,预测各路段单元的高程数据;其中,道路高程模型为用于表征路段单元的平面特征与高程数据之间关联关系的模型;The elevation data prediction module is used to predict the elevation data of each road segment unit according to the extracted plane features of each road segment unit and the pre-trained road elevation model; wherein, the road elevation model is used to characterize the plane feature of the road segment unit and the elevation data. A model of the relationship between the
三维地图生成模块,用于根据预测的各高程数据将二维路网地图转换为三维路网地图。The three-dimensional map generation module is used to convert the two-dimensional road network map into a three-dimensional road network map according to the predicted elevation data.
一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的路网地图处理方法的步骤。A computer device includes a memory, a processor and a computer program stored in the memory and running on the processor, the processor implements the steps of the above-mentioned road network map processing method when the processor executes the computer program.
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述的路网地图处理方法的步骤。A computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, implements the steps of the above-mentioned road network map processing method.
上述路网地图处理方法、装置、计算机设备和存储介质,通过对二维路网地图的数据进行特征提取,并基于预先训练的道路高程模型得到二维路网地图中各路段单元所对应的高程数据,并根据得到的高程数据将二维路网地图转换为三维可视化地图,从而能够提高对二维平面路网地图中各道路间高程状况的三维可视化效率。The above-mentioned road network map processing method, device, computer equipment and storage medium, through the feature extraction of the data of the two-dimensional road network map, and based on the pre-trained road elevation model to obtain the elevation corresponding to each road section unit in the two-dimensional road network map The two-dimensional road network map is converted into a three-dimensional visualization map according to the obtained elevation data, so that the three-dimensional visualization efficiency of the elevation status of each road in the two-dimensional plane road network map can be improved.
附图说明Description of drawings
图1为一个实施例中路网地图处理方法的流程示意图;1 is a schematic flowchart of a method for processing a road network map in one embodiment;
图2为一个实施例中训练道路高程模型的步骤的流程示意图;2 is a schematic flowchart of steps of training a road elevation model in one embodiment;
图3为一个实施例中路网地图处理装置的结构框图;Fig. 3 is a structural block diagram of a road network map processing apparatus in one embodiment;
图4为一个应用实例中高程模型训练模块的结构框图;Fig. 4 is the structural block diagram of the elevation model training module in an application example;
图5为一个实施例中计算机设备的内部结构图。FIG. 5 is a diagram of the internal structure of a computer device in one embodiment.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solutions and advantages of the present application more clearly understood, the present application will be described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application.
在一个实施例中,本申请提供的路网地图处理方法,可以应用于终端。其中,终端可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑、车载终端、终端服务器和便携式可穿戴设备等。具体地,终端获取二维路网地图;对二维路网地图中各路段单元进行平面特征提取;根据提取的各路段单元的平面特征以及预先训练的道路高程模型,预测各路段单元的高程数据;其中,道路高程模型为用于表征路段单元的平面特征与高程数据之间关联关系的模型;根据预测的各高程数据将二维路网地图转换为三维路网地图。In one embodiment, the road network map processing method provided in this application can be applied to a terminal. The terminal may be, but is not limited to, various personal computers, notebook computers, smart phones, tablet computers, vehicle-mounted terminals, terminal servers, portable wearable devices, and the like. Specifically, the terminal obtains a two-dimensional road network map; extracts plane features of each road section unit in the two-dimensional road network map; predicts the elevation data of each road section unit according to the extracted plane features of each road section unit and the pre-trained road elevation model ; wherein, the road elevation model is a model used to characterize the relationship between the plane features of the road segment unit and the elevation data; the two-dimensional road network map is converted into a three-dimensional road network map according to the predicted elevation data.
在一个实施例中,如图1所示,提供了一种路网地图处理方法,以该方法应用于终端为例进行说明,包括以下步骤:In one embodiment, as shown in FIG. 1 , a method for processing a road network map is provided, which is described by taking the method applied to a terminal as an example, including the following steps:
步骤S102:获取二维路网地图。Step S102: Obtain a two-dimensional road network map.
其中,二维路网地图是指包括二维平面路网数据的地图。路网是指由多条道路交错构成的道路网络。一条道路可以被划分为包括至少一个路段单元,二维路网地图中可以包括至少一条道路的至少一个路段单元的二维数据。这里的道路包括但不限于城市道路、高速公路、辅路、高架桥、立交桥等。The two-dimensional road network map refers to a map including two-dimensional plane road network data. A road network refers to a road network composed of multiple roads interlaced. A road may be divided into at least one road segment unit, and the two-dimensional road network map may include two-dimensional data of at least one road segment unit of the at least one road. The roads here include but are not limited to urban roads, expressways, auxiliary roads, viaducts, overpasses, and the like.
具体地,终端可以实时或周期性地获取指定范围内的道路网络所对应的二维路网地图数据。Specifically, the terminal may acquire the two-dimensional road network map data corresponding to the road network within the specified range in real time or periodically.
步骤S104:对二维路网地图中各路段单元进行平面特征提取。Step S104 : extracting plane features for each road section unit in the two-dimensional road network map.
其中,平面特征是指从二维路网地图数据中识别到的二维平面数据,即能够表征各路段单元属性的二维的特征数据,例如,可以包括各路段单元之间的层压关系数据、各路段单元的倾斜度数据、各路段单元的起始位置和结束位置数据等。Among them, the plane feature refers to the two-dimensional plane data identified from the two-dimensional road network map data, that is, the two-dimensional feature data that can characterize the attributes of each road section unit, for example, may include the lamination relationship data between each road section unit. , the inclination data of each road section unit, the start position and end position data of each road section unit, etc.
具体地,终端根据获取的二维路网地图,以二维路网地图中的各路段单元作为特征提取单位,分别基于各路段单元的二维平面数据进行特征提取,得到各路段单元对应的平面特征。Specifically, according to the acquired two-dimensional road network map, the terminal uses each road section unit in the two-dimensional road network map as a feature extraction unit, and performs feature extraction based on the two-dimensional plane data of each road section unit respectively, and obtains the plane corresponding to each road section unit. feature.
步骤S106:根据提取的各路段单元的平面特征以及预先训练的道路高程模型,预测各路段单元的高程数据;其中,道路高程模型为用于表征路段单元的平面特征与高程数据之间关联关系的模型。Step S106: Predict the elevation data of each road segment unit according to the extracted plane features of each road segment unit and the pre-trained road elevation model; wherein, the road elevation model is used to characterize the relationship between the plane feature of the road segment unit and the elevation data. Model.
其中,道路高程模型是指预先训练的用于输出高程数据的预测模型,道路高程模型能够表征二维路网地图的各路段单元的平面特征与各路段单元的高程数据之间的关联关系。高程数据是指表征某路段单元沿铅垂线方向到目标基面的距离数据。The road elevation model refers to a pre-trained prediction model for outputting elevation data, and the road elevation model can represent the relationship between the plane features of each road segment unit in the two-dimensional road network map and the elevation data of each road segment unit. Elevation data refers to the data representing the distance from a certain road section unit to the target base along the vertical line direction.
示例性地,高程数据可以包括各路段单元的高程值、各路段单元的高程范围值、各路段单元之间的相对高程值、各路段单元之间的相对高程范围值之中的至少一种。Exemplarily, the elevation data may include at least one of an elevation value of each road segment unit, an elevation range value of each road segment unit, a relative elevation value between each road segment unit, and a relative elevation range value between each road segment unit.
具体地,终端可以从内存或者数据库中调用预先训练的道路高程模型,并将提取的各路段单元的平面特征作为该道路高程模型的输入参数,得到该道路高程模型预测并输出的输出参数,即,各路段单元分别对应的高程数据。Specifically, the terminal can call the pre-trained road elevation model from the memory or database, and use the extracted plane features of each road segment unit as the input parameters of the road elevation model, and obtain the output parameters predicted and output by the road elevation model, that is, , the elevation data corresponding to each road segment unit respectively.
步骤S108:根据预测的各高程数据将二维路网地图转换为三维路网地图。Step S108: Convert the two-dimensional road network map into a three-dimensional road network map according to the predicted elevation data.
其中,三维路网地图是指包括三维空间路网数据的立体可视化地图。三维路网地图能够立体地呈现各道路的各路段单元及其之间的高程状况。The three-dimensional road network map refers to a three-dimensional visualization map including three-dimensional spatial road network data. The three-dimensional road network map can present three-dimensionally the elevation status of each road segment unit of each road and the interval between them.
具体地,终端得到基于道路高程模型预测并输出的各路段单元的高程数据之后,基于二维路网地图数据以及各路段单元对应的高程数据进行三维建模,从而得到三维空间路网地图。Specifically, after obtaining the elevation data of each road segment unit predicted and output based on the road elevation model, the terminal performs 3D modeling based on the 2D road network map data and the elevation data corresponding to each road segment unit, thereby obtaining a 3D spatial road network map.
上述路网地图处理方法,通过对二维路网地图的数据进行特征提取,并基于预先训练的道路高程模型得到二维路网地图中各路段单元所对应的高程数据,并根据得到的高程数据将二维路网地图转换为三维可视化地图,从而能够提高对二维平面路网地图中各道路间高程状况的三维可视化效率。尤其是对于高架桥、立交桥等具有高程概念的路况,能够在三维地图中更真实、清晰地展示其高度信息,为智能驾驶提供更可靠、更贴近真实、更美观的三维可视化路网数据。The above-mentioned road network map processing method obtains the elevation data corresponding to each road segment unit in the two-dimensional road network map based on the feature extraction of the data of the two-dimensional road network map, and obtains the elevation data corresponding to each road section unit in the two-dimensional road network map based on the pre-trained road elevation model. Converting the two-dimensional road network map into a three-dimensional visualization map can improve the three-dimensional visualization efficiency of the elevation status of each road in the two-dimensional plane road network map. Especially for road conditions with an elevation concept, such as viaducts and overpasses, the height information can be displayed more realistically and clearly in the 3D map, providing more reliable, closer to the real, and more beautiful 3D visual road network data for intelligent driving.
在一个实施例中,可参考图2所示,图2示出了一个实施例中训练道路高程模型的步骤的流程示意图。道路高程模型的训练方法,可以包括:In one embodiment, reference may be made to FIG. 2 , which shows a schematic flowchart of the steps of training a road elevation model in one embodiment. The training method of the road elevation model can include:
S1:获取样本二维路网地图。S1: Obtain a sample two-dimensional road network map.
S2:对样本二维路网地图中各样本路段单元进行平面特征提取。S2: Extracting plane features for each sample road segment unit in the sample two-dimensional road network map.
S3:获取样本二维路网地图对应的实际道路状况数据。S3: Obtain actual road condition data corresponding to the sample two-dimensional road network map.
S4:根据各样本路段单元的平面特征以及实际道路状况数据对道路高程模型进行训练。S4: Train the road elevation model according to the plane features of each sample road segment unit and the actual road condition data.
在本实施例中,可以使用历史生成的任意一个或多个二维路网地图作为样本以进行道路高程模型的训练。样本二维路网地图中包括至少一条道路的至少一个样本路段单元的二维数据。样本二维路网地图的实际道路状况数据是指该样本二维路网地图所对应路网中各路段单元的实测的真实数据。示例性地,实际道路状况数据可以包括各路段单元之间的层压关系数据、各路段单元的坡度数据等。In this embodiment, any one or more two-dimensional road network maps generated historically may be used as samples to train the road elevation model. The sample two-dimensional road network map includes two-dimensional data of at least one sample road segment unit of at least one road. The actual road condition data of the sample two-dimensional road network map refers to the actual measured real data of each road section unit in the road network corresponding to the sample two-dimensional road network map. Exemplarily, the actual road condition data may include lamination relationship data between each road segment unit, gradient data of each road segment unit, and the like.
具体地,终端可以选取历史生成的任意一个或多个二维路网地图作为训练样本,并可以通过请求第三方的应用服务等调取该样本二维路网地图对应的实际道路状况数据,将各样本路段单元的平面特征作为模型输入变量,将各样本路段单元对应的实际道路状况数据作为模型目标变量,通过机器学习的方式对道路高程模型进行训练。Specifically, the terminal can select any one or more two-dimensional road network maps generated historically as training samples, and can retrieve the actual road condition data corresponding to the sample two-dimensional road network map by requesting a third-party application service, etc. The plane feature of each sample road segment unit is used as the model input variable, and the actual road condition data corresponding to each sample road segment unit is used as the model target variable, and the road elevation model is trained by means of machine learning.
在一个实施例中,参考图2所示,根据各样本路段单元的平面特征以及实际道路状况数据对道路高程模型进行训练,包括:In one embodiment, referring to FIG. 2 , the road elevation model is trained according to the plane features of each sample road segment unit and the actual road condition data, including:
S41:根据预设的高程取值范围生成各样本路段单元的当前高程数据。S41: Generate current elevation data of each sample road segment unit according to a preset elevation value range.
S42:根据实际道路状况数据对各个当前高程数据进行评分。S42: Scoring each current elevation data according to the actual road condition data.
S43:根据各个当前高程数据的评分对道路高程模型进行训练。S43: Train the road elevation model according to the scores of each current elevation data.
在本实施例中,作业人员可以根据业务需求自定义设置高程取值范围的上限值和下限值。具体地,终端在各样本路段单元对应的预设高程取值范围内随机生成至少一个高程值或高程范围值以作为该路段单元所对应的当前高程数据,终端根据各样本路段单元的当前高程数据进行三维建模,并根据各样本路段单元所对应的实际道路状况数据判断当前所建三维建模是否符合真实路况,从而为各样本路段单元所对应的当前高程数据进行评分。终端根据评分结果可以进一步进行高程数据的调整,从而得到能够生成符合要求的道路高程数据的模型。In this embodiment, the operator can set the upper limit value and the lower limit value of the elevation value range according to business requirements. Specifically, the terminal randomly generates at least one elevation value or an elevation range value within the preset elevation value range corresponding to each sample road segment unit as the current elevation data corresponding to the road segment unit, and the terminal generates according to the current elevation data of each sample road segment unit. Three-dimensional modeling is performed, and according to the actual road condition data corresponding to each sample road section unit, it is judged whether the currently built three-dimensional model conforms to the real road conditions, so as to score the current elevation data corresponding to each sample road section unit. The terminal can further adjust the elevation data according to the scoring results, so as to obtain a model capable of generating road elevation data that meets the requirements.
在一个实施例中,根据各个当前高程数据的评分对道路高程模型进行训练,包括:In one embodiment, the road elevation model is trained according to the scores of each current elevation data, including:
S431:将评分大于预设阈值的各样本路段单元与其当前高程数据关联。S431: Associate each sample road segment unit with a score greater than a preset threshold with its current elevation data.
S432:对评分小于预设阈值的各样本路段单元的当前高程数据进行调整,并将调整后的数据作为当前高程数据,进入根据实际道路状况数据对各个当前高程数据进行评分的步骤(S42)。S432: Adjust the current elevation data of each sample road segment unit whose score is less than the preset threshold, and use the adjusted data as the current elevation data, and enter the step of scoring each current elevation data according to the actual road condition data (S42).
在本实施例中,评分大于预设阈值的当前高程数据表示其接近或符合真实路况,评分小于预设阈值的当前高程数据表示其不符合真实路况。具体地,终端可以根据当前高程数据的评分筛选评分小于预设阈值的样本路段单元,针对筛选出的样本路段单元通过修改其高程数据取值或缩小其高程数据取值范围等方式,调整并优化其对应的高程数据。对于评分大于预设阈值的样本路段单元可以直接将该样本路段单元的当前高程数据保留,并完成该当前高程数据与该样本路段单元的平面特征的关联。In this embodiment, the current elevation data with a score greater than the preset threshold indicates that it is close to or conforms to the real road conditions, and the current elevation data with a score less than the preset threshold indicates that it does not conform to the real road conditions. Specifically, the terminal can filter out the sample road segment units whose scores are less than the preset threshold according to the current elevation data score, and adjust and optimize the selected sample road segment units by modifying the value of the elevation data or narrowing the range of the value of the elevation data. its corresponding elevation data. For a sample road segment unit with a score greater than a preset threshold, the current elevation data of the sample road segment unit can be directly retained, and the association between the current elevation data and the plane feature of the sample road segment unit is completed.
通过本实施例,可以根据高程数据的评分动态筛选需要进行调整的样本路段单元,评分大于预设阈值的样本路段单元不需要进行重复处理,从而减少了数据处理量,因此,能够实现以路段单元为单位的针对性训练和调整。Through this embodiment, the sample road segment units that need to be adjusted can be dynamically screened according to the score of the elevation data, and the sample road segment units whose scores are greater than the preset threshold do not need to be repeatedly processed, thereby reducing the amount of data processing. Targeted training and adjustment for the unit.
进一步地,对评分小于预设阈值的各样本路段单元的当前高程数据进行调整,并将调整后的高程数据再次作为当前高程数据进入评分的步骤。通过不断循环进行评分、筛选、调整,最终当所有样本路段单元的高程数据都符合预期要求时,能够得到最优的道路高程模型。Further, the current elevation data of each sample road segment unit whose score is less than the preset threshold is adjusted, and the adjusted elevation data is used again as the current elevation data to enter the scoring step. Through the continuous cycle of scoring, screening, and adjustment, the optimal road elevation model can be obtained when the elevation data of all sample road sections meet the expected requirements.
在一个实施例中,该方法还包括:将三维路网地图在显示界面进行展示;响应于对三维路网地图中指定路段单元的高程数据的调整操作,将调整后的高程数据返回道路高程模型以进行模型优化。In one embodiment, the method further includes: displaying the three-dimensional road network map on the display interface; in response to the adjustment operation on the elevation data of the specified road segment unit in the three-dimensional road network map, returning the adjusted elevation data to the road elevation model for model optimization.
在本实施例中,终端可以通过显示屏幕等显示设备将转化后的三维路网地图进行展示,且支持与用户交互的数据修改和微调,在响应于用户对指定路段单元的高程数据的调整操作后,可以将调整后的数据作为模型优化数据进一步反馈至道路高程模型,从而实现模型的优化。In this embodiment, the terminal can display the converted three-dimensional road network map through a display device such as a display screen, and supports data modification and fine-tuning interacted with the user. Afterwards, the adjusted data can be further fed back to the road elevation model as model optimization data, so as to realize model optimization.
应该理解的是,虽然图1-2的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图1-2中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that although the steps in the flowcharts of FIGS. 1-2 are shown in sequence according to the arrows, these steps are not necessarily executed in the sequence shown by the arrows. Unless explicitly stated herein, the execution of these steps is not strictly limited to the order, and these steps may be performed in other orders. Moreover, at least a part of the steps in FIGS. 1-2 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but may be executed at different times. These sub-steps or stages are not necessarily completed at the same time. The order of execution of the steps is not necessarily sequential, but may be performed alternately or alternately with other steps or at least a part of sub-steps or stages of other steps.
在一个实施例中,如图3所示,提供了一种路网地图处理装置,包括:二维地图获取模块310、平面特征提取模块320、高程数据预测模块330和三维地图生成模块340,其中:In one embodiment, as shown in FIG. 3, a road network map processing device is provided, including: a two-dimensional
二维地图获取模块310,用于获取二维路网地图;A two-dimensional
平面特征提取模块320,用于对所述二维路网地图中各路段单元进行平面特征提取;a plane
高程数据预测模块330,用于根据提取的各所述路段单元的平面特征以及预先训练的道路高程模型,预测各所述路段单元的高程数据;其中,所述道路高程模型为用于表征路段单元的平面特征与高程数据之间关系的模型;The elevation
三维地图生成模块340,用于根据预测的各所述高程数据将所述二维路网地图转换为三维路网地图。The three-dimensional
在一个实施例中,还包括高程模型训练模块350,高程模型训练模块350用于获取样本二维路网地图;对样本二维路网地图中各样本路段单元进行平面特征提取;获取样本二维路网地图对应的实际道路状况数据;根据各样本路段单元的平面特征以及实际道路状况数据对道路高程模型进行训练。In one embodiment, an elevation
在一个实施例中,高程模型训练模块350根据预设的高程取值范围生成各样本路段单元的当前高程数据;根据实际道路状况数据对各个当前高程数据进行评分;根据各个当前高程数据的评分对道路高程模型进行训练。In one embodiment, the elevation
在一个实施例中,高程模型训练模块350将评分大于预设阈值的各样本路段单元与其当前高程数据关联;对评分小于预设阈值的各样本路段单元的当前高程数据进行调整,并将调整后的数据作为当前高程数据,进入根据实际道路状况数据对各个当前高程数据进行评分的步骤。In one embodiment, the elevation
在一个实施例中,三维地图生成模块340,还用于将三维路网地图在显示界面进行展示;响应于对三维路网地图中指定路段单元的高程数据的调整操作,将调整后的高程数据返回道路高程模型以进行模型优化。In one embodiment, the three-dimensional
关于路网地图处理装置的具体限定可以参见上文中对于路网地图处理方法的限定,在此不再赘述。上述路网地图处理装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。For the specific limitation of the road network map processing apparatus, please refer to the above limitation on the road network map processing method, which will not be repeated here. Each module in the above-mentioned road network map processing apparatus may be implemented in whole or in part by software, hardware and combinations thereof. The above modules can be embedded in or independent of the processor in the computer device in the form of hardware, or stored in the memory in the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
下面,结合一个应用实例对本申请的路网地图处理方法进行进一步说明,参考图4所示,图4示出了一个应用实例的高程模型训练模块的结构框图。其中,高程模型训练模块350可以包括训练组件3502、评价组件3504和循环调节组件3506。Hereinafter, the road network map processing method of the present application will be further described with reference to an application example. Referring to FIG. 4 , FIG. 4 shows a structural block diagram of an elevation model training module of an application example. The elevation
更为具体地,基于高程模型训练模块350可以实现如下步骤:More specifically, the
步骤1:训练组件3502获取样本二维路网地图,该样本二维地图中包括多条道路,各条道路又被划分为包括至少一个样本路段单元。训练组件3502根据样本二维路网地图中的各样本路段单元为单位,根据各样本路段单元的平面特征生成表征路段之间立体高程的三维路网地图,训练组件3502在三维路网地图构建过程中,在预设的高程取值范围内随机给出各样本路段单元的高程数据。Step 1: The
步骤2:循环调节组件3506将训练组件3502输出的各样本路段单元的高程数据输入评价组件3504中进行评分。Step 2: The
步骤3:评价组件3504根据输入的二维路网地图所对应的实际道路状况数据(例如,包括各样本路段单元之间的层压关系、各样本路段单元的坡度值等)对三维路网地图中各样本路段单元的高程数据进行打分。Step 3: The
步骤4:循环调节组件3506将评分结果反馈训练组件3502。其中,高程数据评分越高说明该样本路段单元的三维可视化越接近真实状况,训练组件3502保留其高程数据。Step 4: The
步骤5:训练组件3502根据循环调节组件3506返回的评分结果对初步生成三维路网地图进行参数调整。调整时,保留评分大于阈值的样本路段单元的高程数据不变,将评分没有达到阈值的样本路段单元的高程数据进行优化或调整。Step 5: The
步骤6:将调整后的样本路段单元的高程数据再次输入评价组件3504以进行评分。以此类推进行循环,直到所有样本路段单元的高程数据的评分都符合预设要求。Step 6: Input the adjusted elevation data of the sample road segment unit into the
步骤7:根据上述步骤1~6,得到训练后的道路高程模型。Step 7: According to the above steps 1 to 6, a trained road elevation model is obtained.
步骤8:高程数据预测模块330利用训练后的道路高程模型预测任意一个或多个待转化的目标二维路网地图中各路段单元的高程数据,并通过三维地图生成模块340将目标二维路网地图转化为三维可视化地图。Step 8: The elevation
在一个实施例中,还提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图5所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种路网地图处理方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。In an embodiment, a computer device is also provided, the computer device may be a terminal, and the internal structure diagram thereof may be as shown in FIG. 5 . The computer equipment includes a processor, memory, a network interface, a display screen, and an input device connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes a non-volatile storage medium, an internal memory. The nonvolatile storage medium stores an operating system and a computer program. The internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium. The network interface of the computer device is used to communicate with an external terminal through a network connection. When the computer program is executed by the processor, a method for processing a road network map is realized. The display screen of the computer equipment may be a liquid crystal display screen or an electronic ink display screen, and the input device of the computer equipment may be a touch layer covered on the display screen, or a button, a trackball or a touchpad set on the shell of the computer equipment , or an external keyboard, trackpad, or mouse.
本领域技术人员可以理解,图5中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。Those skilled in the art can understand that the structure shown in FIG. 5 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied. Include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
在一个实施例中,提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现以下步骤:获取二维路网地图;对二维路网地图中各路段单元进行平面特征提取;根据提取的各路段单元的平面特征以及预先训练的道路高程模型,预测各路段单元的高程数据;其中,道路高程模型为用于表征路段单元的平面特征与高程数据之间关联关系的模型;根据预测的各高程数据将二维路网地图转换为三维路网地图。In one embodiment, a computer device is provided, which includes a memory, a processor, and a computer program stored in the memory and running on the processor. When the processor executes the computer program, the following steps are implemented: acquiring a two-dimensional road network map ; Perform plane feature extraction on each road section unit in the two-dimensional road network map; according to the extracted plane features of each road section unit and the pre-trained road elevation model, predict the elevation data of each road section unit; wherein, the road elevation model is used to represent The model of the relationship between the plane features of the road section unit and the elevation data; the two-dimensional road network map is converted into a three-dimensional road network map according to the predicted elevation data.
在一个实施例中,处理器执行计算机程序时还实现训练道路高程模型的步骤,具体实现以下步骤:获取样本二维路网地图;对样本二维路网地图中各样本路段单元进行平面特征提取;获取样本二维路网地图对应的实际道路状况数据;根据各样本路段单元的平面特征以及实际道路状况数据对道路高程模型进行训练。In one embodiment, the processor also implements the step of training the road elevation model when executing the computer program, and specifically implements the following steps: acquiring a sample two-dimensional road network map; performing plane feature extraction on each sample road segment unit in the sample two-dimensional road network map ; Obtain the actual road condition data corresponding to the sample two-dimensional road network map; train the road elevation model according to the plane features of each sample road segment unit and the actual road condition data.
在一个实施例中,处理器执行计算机程序实现根据各样本路段单元的平面特征以及实际道路状况数据对道路高程模型进行训练时,具体实现以下步骤:根据预设的高程取值范围生成各样本路段单元的当前高程数据;根据实际道路状况数据对各个当前高程数据进行评分;根据各个当前高程数据的评分对道路高程模型进行训练。In one embodiment, when the processor executes the computer program to implement the training of the road elevation model according to the plane features of each sample road segment unit and the actual road condition data, the following steps are specifically implemented: generating each sample road segment according to a preset elevation value range The current elevation data of the unit; each current elevation data is scored according to the actual road condition data; the road elevation model is trained according to the score of each current elevation data.
在一个实施例中,处理器执行计算机程序实现根据各个当前高程数据的评分对道路高程模型进行训练时,具体实现以下步骤:将评分大于预设阈值的各样本路段单元与其当前高程数据关联;对评分小于预设阈值的各样本路段单元的当前高程数据进行调整,并将调整后的数据作为当前高程数据,进入根据实际道路状况数据对各个当前高程数据进行评分的步骤。In one embodiment, when the processor executes the computer program to implement the training of the road elevation model according to the scores of each current elevation data, the following steps are specifically implemented: associating each sample road segment unit with a score greater than a preset threshold with its current elevation data; The current elevation data of each sample road segment unit whose score is less than the preset threshold is adjusted, and the adjusted data is used as the current elevation data, and the step of scoring each current elevation data according to the actual road condition data is entered.
在一个实施例中,处理器执行计算机程序时还实现以下步骤:将三维路网地图在显示界面进行展示;响应于对三维路网地图中指定路段单元的高程数据的调整操作,将调整后的高程数据返回道路高程模型以进行模型优化。In one embodiment, the processor further implements the following steps when executing the computer program: displaying the three-dimensional road network map on the display interface; The elevation data is returned to the road elevation model for model optimization.
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:获取二维路网地图;对二维路网地图中各路段单元进行平面特征提取;根据提取的各路段单元的平面特征以及预先训练的道路高程模型,预测各路段单元的高程数据;其中,道路高程模型为用于表征路段单元的平面特征与高程数据之间关联关系的模型;根据预测的各高程数据将二维路网地图转换为三维路网地图。In one embodiment, a computer-readable storage medium is provided, on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented: acquiring a two-dimensional road network map; The unit performs plane feature extraction; according to the extracted plane features of each road section unit and the pre-trained road elevation model, the elevation data of each road section unit is predicted; wherein, the road elevation model is used to characterize the plane feature of the road section unit and the elevation data. The model of the relationship; according to the predicted elevation data, the two-dimensional road network map is converted into a three-dimensional road network map.
在一个实施例中,计算机程序被处理器执行时还实现训练道路高程模型的步骤,具体实现以下步骤:获取样本二维路网地图;对样本二维路网地图中各样本路段单元进行平面特征提取;获取样本二维路网地图对应的实际道路状况数据;根据各样本路段单元的平面特征以及实际道路状况数据对道路高程模型进行训练。In one embodiment, when the computer program is executed by the processor, it also implements the step of training the road elevation model, and specifically implements the following steps: obtaining a sample two-dimensional road network map; Extraction; obtain the actual road condition data corresponding to the sample two-dimensional road network map; train the road elevation model according to the plane features of each sample road segment unit and the actual road condition data.
在一个实施例中,计算机程序被处理器执行实现根据各样本路段单元的平面特征以及实际道路状况数据对道路高程模型进行训练时,具体实现以下步骤:根据预设的高程取值范围生成各样本路段单元的当前高程数据;根据实际道路状况数据对各个当前高程数据进行评分;根据各个当前高程数据的评分对道路高程模型进行训练。In one embodiment, when the computer program is executed by the processor to implement the training of the road elevation model according to the plane features of each sample road segment unit and the actual road condition data, the following steps are specifically implemented: generating each sample according to a preset elevation value range The current elevation data of the road segment unit; each current elevation data is scored according to the actual road condition data; the road elevation model is trained according to the score of each current elevation data.
在一个实施例中,计算机程序被处理器执行实现根据各个当前高程数据的评分对道路高程模型进行训练时,具体实现以下步骤:将评分大于预设阈值的各样本路段单元与其当前高程数据关联;对评分小于预设阈值的各样本路段单元的当前高程数据进行调整,并将调整后的数据作为当前高程数据,进入根据实际道路状况数据对各个当前高程数据进行评分的步骤。In one embodiment, when the computer program is executed by the processor to implement the training of the road elevation model according to the score of each current elevation data, the following steps are specifically implemented: associating each sample road segment unit with a score greater than a preset threshold with its current elevation data; Adjust the current elevation data of each sample road segment unit whose score is less than the preset threshold, and use the adjusted data as the current elevation data, and enter the step of scoring each current elevation data according to the actual road condition data.
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:将三维路网地图在显示界面进行展示;响应于对三维路网地图中指定路段单元的高程数据的调整操作,将调整后的高程数据返回道路高程模型以进行模型优化。In one embodiment, when the computer program is executed by the processor, the following steps are further implemented: displaying the three-dimensional road network map on the display interface; The elevation data is returned to the road elevation model for model optimization.
本领域普通技术人员可以理解实现上述实施例的方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。Those of ordinary skill in the art can understand that all or part of the process in the method for implementing the above embodiments can be completed by instructing the relevant hardware through a computer program, and the computer program can be stored in a non-volatile computer readable In the storage medium, when the computer program is executed, it may include the processes of the above-mentioned method embodiments. Wherein, any reference to memory, storage, database or other medium used in the various embodiments provided in this application may include non-volatile and/or volatile memory. Nonvolatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory. Volatile memory may include random access memory (RAM) or external cache memory. By way of illustration and not limitation, RAM is available in various forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Road (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined arbitrarily. In order to simplify the description, all possible combinations of the technical features in the above embodiments are not described. However, as long as there is no contradiction in the combination of these technical features, all It is considered to be the range described in this specification.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only represent several embodiments of the present application, and the descriptions thereof are specific and detailed, but should not be construed as a limitation on the scope of the invention patent. It should be pointed out that for those skilled in the art, without departing from the concept of the present application, several modifications and improvements can be made, which all belong to the protection scope of the present application. Therefore, the scope of protection of the patent of the present application shall be subject to the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210420512.8A CN114880416A (en) | 2022-04-20 | 2022-04-20 | Road network map processing method, device, computer equipment and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210420512.8A CN114880416A (en) | 2022-04-20 | 2022-04-20 | Road network map processing method, device, computer equipment and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114880416A true CN114880416A (en) | 2022-08-09 |
Family
ID=82671611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210420512.8A Pending CN114880416A (en) | 2022-04-20 | 2022-04-20 | Road network map processing method, device, computer equipment and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114880416A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024199208A1 (en) * | 2023-03-30 | 2024-10-03 | 北京罗克维尔斯科技有限公司 | Elevation data interpolation method and apparatus, and device and medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020070934A1 (en) * | 1997-10-27 | 2002-06-13 | Kiyomi Sakamoto | Storage medium for use with a three-dimensional map display device |
EP2530433A1 (en) * | 2011-06-01 | 2012-12-05 | Harman Becker Automotive Systems GmbH | Method of generating a database for a navigation device, method of outputting a three-dimensional map, and navigation device |
US20140362082A1 (en) * | 2011-05-03 | 2014-12-11 | Google Inc. | Automated Overpass Extraction from Aerial Imagery |
CN107830869A (en) * | 2017-11-16 | 2018-03-23 | 百度在线网络技术(北京)有限公司 | Information output method and device for vehicle |
US20210389149A1 (en) * | 2020-06-10 | 2021-12-16 | Baidu Online Network Technology (Beijing) Co., Ltd. | Method and device for drawing a three-dimensional road network map, apparatus and medium |
CN113920260A (en) * | 2021-09-29 | 2022-01-11 | 北京搜狗科技发展有限公司 | Three-dimensional road network construction method and device, electronic equipment and storage medium |
-
2022
- 2022-04-20 CN CN202210420512.8A patent/CN114880416A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020070934A1 (en) * | 1997-10-27 | 2002-06-13 | Kiyomi Sakamoto | Storage medium for use with a three-dimensional map display device |
US20140362082A1 (en) * | 2011-05-03 | 2014-12-11 | Google Inc. | Automated Overpass Extraction from Aerial Imagery |
EP2530433A1 (en) * | 2011-06-01 | 2012-12-05 | Harman Becker Automotive Systems GmbH | Method of generating a database for a navigation device, method of outputting a three-dimensional map, and navigation device |
CN107830869A (en) * | 2017-11-16 | 2018-03-23 | 百度在线网络技术(北京)有限公司 | Information output method and device for vehicle |
US20210389149A1 (en) * | 2020-06-10 | 2021-12-16 | Baidu Online Network Technology (Beijing) Co., Ltd. | Method and device for drawing a three-dimensional road network map, apparatus and medium |
CN113920260A (en) * | 2021-09-29 | 2022-01-11 | 北京搜狗科技发展有限公司 | Three-dimensional road network construction method and device, electronic equipment and storage medium |
Non-Patent Citations (2)
Title |
---|
王建培 等: "基于几何特征约束的地图匹配方法", 《中国优秀硕士学位论文全文数据库 工程科技II辑》, 15 June 2021 (2021-06-15) * |
陈云波: "《大型机场中三维地理信息系统技术的应用》", 31 December 2013, 云南大学出版社, pages: 19 - 23 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024199208A1 (en) * | 2023-03-30 | 2024-10-03 | 北京罗克维尔斯科技有限公司 | Elevation data interpolation method and apparatus, and device and medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7157154B2 (en) | Neural Architecture Search Using Performance Prediction Neural Networks | |
US20230401828A1 (en) | Method for training image recognition model, electronic device and storage medium | |
CN109255772B (en) | License plate image generation method, device, equipment and medium based on style migration | |
CN110991649A (en) | Deep learning model building method, device, equipment and storage medium | |
CN109886719B (en) | Data mining processing method and device based on grid and computer equipment | |
CN110008251A (en) | Data processing method, device and computer equipment based on time series data | |
CN110427970A (en) | Image classification method, device, computer equipment and storage medium | |
CN112001399B (en) | Image scene classification method and device based on local feature saliency | |
CN110827236B (en) | Brain tissue layering method, device and computer equipment based on neural network | |
WO2017143326A1 (en) | System and method for generating a schedule to extract a resource fluid from a reservoir | |
CN111062324A (en) | Face detection method and device, computer equipment and storage medium | |
CN112015378A (en) | Skeleton screen page generation method and device, computer equipment and storage medium | |
CN112184687A (en) | Road crack detection method based on capsule characteristic pyramid and storage medium | |
US20240037898A1 (en) | Method for predicting reconstructabilit, computer device and storage medium | |
CN114880416A (en) | Road network map processing method, device, computer equipment and storage medium | |
CN110781887A (en) | License plate screw detection method and device and computer equipment | |
CN118072281A (en) | Target object detection method, device, computer equipment and storage medium | |
US20230289402A1 (en) | Joint perception model training method, joint perception method, device, and storage medium | |
DE102022130634A1 (en) | OPTIMIZED OPERATING PLAN FOR AN ENERGY SYSTEM | |
CN111242167A (en) | Distributed image annotation method and device, computer equipment and storage medium | |
CN117540915B (en) | Big data technology-based selection scheme generation method, device, equipment and medium | |
CN114372862A (en) | Data processing method, data processing device, computer equipment and storage medium | |
CN117334247B (en) | Training method of antigen-antibody affinity prediction model and antibody screening method | |
US20240257901A1 (en) | Information processing device, information processing method, and non- transitory computer-readable storage medium stored with information processing program | |
CN115953330B (en) | Texture optimization method, device, equipment and storage medium for virtual scene image |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |