CN114861038A - Live broadcast service data processing method and device, equipment and medium thereof - Google Patents
Live broadcast service data processing method and device, equipment and medium thereof Download PDFInfo
- Publication number
- CN114861038A CN114861038A CN202210345862.2A CN202210345862A CN114861038A CN 114861038 A CN114861038 A CN 114861038A CN 202210345862 A CN202210345862 A CN 202210345862A CN 114861038 A CN114861038 A CN 114861038A
- Authority
- CN
- China
- Prior art keywords
- data
- live broadcast
- items
- attribute
- broadcast service
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/25—Management operations performed by the server for facilitating the content distribution or administrating data related to end-users or client devices, e.g. end-user or client device authentication, learning user preferences for recommending movies
- H04N21/258—Client or end-user data management, e.g. managing client capabilities, user preferences or demographics, processing of multiple end-users preferences to derive collaborative data
- H04N21/25866—Management of end-user data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/27—Server based end-user applications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/45—Management operations performed by the client for facilitating the reception of or the interaction with the content or administrating data related to the end-user or to the client device itself, e.g. learning user preferences for recommending movies, resolving scheduling conflicts
- H04N21/4508—Management of client data or end-user data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/47—End-user applications
- H04N21/478—Supplemental services, e.g. displaying phone caller identification, shopping application
- H04N21/4788—Supplemental services, e.g. displaying phone caller identification, shopping application communicating with other users, e.g. chatting
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computer Graphics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本申请涉及网络直播技术领域,公开一种直播业务数据处理方法及其装置、设备、介质,所述方法包括:获取直播业务相对应的数据定义模板,其包含直播业务所需调用的分布于多个数据源的数据项和用于对该些数据项执行预定义操作的操作项,所述数据项包含主播用户的属性数据项,所述操作项包括属性标签;根据操作项,对多个数据源中相应的数据项执行所述操作项相对应的预定义操作,确定出与所述操作项中的属性标签相对应的数据集,所述数据集包括多个主播用户相对应的数据项子集;向该终端设备推送该直播业务相应的数据集。本申请通过数据定义模板实现了多直播业务调用多数据源的数据项的标准化操作,避免数据熵增,提升了系统效率,节省了系统开销。
The present application relates to the technical field of live broadcast, and discloses a method for processing data of live broadcast service and its device, equipment, and medium. data items of each data source and operation items for performing predefined operations on these data items, the data items include attribute data items of the anchor user, and the operation items include attribute tags; The corresponding data item in the source executes the predefined operation corresponding to the operation item, and determines the data set corresponding to the attribute label in the operation item, and the data set includes the data item sub-data corresponding to the multiple anchor users set; push the corresponding data set of the live broadcast service to the terminal device. The present application realizes the standardized operation of calling data items of multiple data sources by multiple live broadcast services through the data definition template, avoids the increase of data entropy, improves system efficiency, and saves system overhead.
Description
技术领域technical field
本申请涉及网络直播技术领域,尤其涉及一种直播业务数据处理方法及其相应的装置、计算机设备以及计算机可读存储介质。The present application relates to the technical field of live broadcast, and in particular, to a method for processing live broadcast service data and a corresponding device, computer equipment, and computer-readable storage medium.
背景技术Background technique
提供网络直播服务的网络直播平台,通常会在其平台的访问网站或者应用程序中植入多个直播业务,每个直播业务通常对应一个访问页面,用于针对用户提供同一类服务相对应的数据集,使得终端设备可以根据所述的数据集解析出具体数据进行界面展现。A webcasting platform that provides webcasting services usually embeds multiple livestreaming services in the access website or application of its platform. Each livestreaming service usually corresponds to an access page, which is used to provide users with data corresponding to the same type of service. set, so that the terminal device can parse out specific data according to the data set for interface display.
同一平台中,一方面,数据是多源的,数据访问协议也是多样化的,不同的数据来源于不同的数据库或数据表,可能需要通过不同协议进行调用;另一方面,直播业务也是多样化的,不同的直播业务所需求的数据项及数据加工结果不同。由是,随着平台的发展,根据熵增定律,平台数据越来越杂乱,进而降低平台的运行效率和数据访问效率,影响用户体验。In the same platform, on the one hand, the data comes from multiple sources, and the data access protocols are also diversified. Different data originate from different databases or data tables and may need to be called through different protocols; on the other hand, the live broadcast business is also diversified. Yes, different live streaming services require different data items and data processing results. Therefore, with the development of the platform, according to the law of entropy increase, the platform data becomes more and more cluttered, which reduces the operating efficiency and data access efficiency of the platform and affects the user experience.
更深入的问题在于,繁杂无序的数据,将导致新的直播业务获取其所需求的数据的难度大大增加,从而导致平台新型业务的开发难度进一步加大。The more in-depth problem is that the complicated and disordered data will greatly increase the difficulty for new live broadcast services to obtain the data they need, which will further increase the difficulty of developing new services on the platform.
有鉴于以上各方面,需要对直播平台中的直播业务所需的数据的处理方式进行改进。In view of the above aspects, it is necessary to improve the processing method of the data required by the live broadcast service in the live broadcast platform.
发明内容SUMMARY OF THE INVENTION
本申请的首要目的在于解决上述问题至少之一而提供一种直播业务数据处理方法及其相应的装置、计算机设备以及计算机可读存储介质。The primary purpose of the present application is to solve at least one of the above problems and provide a method for processing live broadcast service data and a corresponding device, computer equipment and computer-readable storage medium.
为满足本申请的各个目的,本申请采用如下技术方案:In order to meet the various purposes of the application, the application adopts the following technical solutions:
适应本申请的目的之一而提出的一种直播业务数据处理方法,包括如下步骤:A kind of live broadcast service data processing method proposed to adapt to one of the purposes of this application, comprising the following steps:
获取直播业务相对应的数据定义模板,所述数据定义模板包含所述直播业务所需调用的分布于多个数据源的数据项和用于对该些数据项执行预定义操作的操作项,所述数据项包含主播用户的属性数据项,所述操作项包括一个或多个属性标签;Acquire a data definition template corresponding to the live broadcast service, where the data definition template includes data items distributed in multiple data sources that the live broadcast service needs to call and operation items for performing predefined operations on these data items, so The data item includes the attribute data item of the anchor user, and the operation item includes one or more attribute tags;
根据数据定义模板中的操作项,对多个数据源中相应的所述数据项执行所述操作项相对应的预定义操作,确定出与所述操作项中的属性标签相对应的数据集,所述数据集包括多个主播用户相对应的数据项子集;According to the operation items in the data definition template, the predefined operations corresponding to the operation items are performed on the corresponding data items in the multiple data sources, and the data sets corresponding to the attribute labels in the operation items are determined, The data set includes a subset of data items corresponding to multiple anchor users;
响应终端设备对直播业务的数据调用指令,向该终端设备推送该直播业务相应的数据集。In response to the data calling instruction of the live broadcast service from the terminal device, the data set corresponding to the live broadcast service is pushed to the terminal device.
深化的部分实施例中,根据数据定义模板中的操作项,对多个数据源中相应的所述数据项执行所述操作项相对应的预定义操作,确定出与所述操作项中的属性标签相对应的数据集,包括如下步骤:In some further embodiments, according to the operation items in the data definition template, the predefined operations corresponding to the operation items are performed on the corresponding data items in the multiple data sources, and the attributes corresponding to the operation items are determined. The data set corresponding to the label includes the following steps:
解析所述数据定义模板,确定出其中的各个数据源中的数据项及操作项;Parse the data definition template, and determine the data items and operation items in each data source;
应用分布式锁调用获取所述各个数据源中的所述数据项,根据所述数据项关联于相同主播用户而确定出各个主播用户的数据项子集;Applying distributed lock calls to obtain the data items in the respective data sources, and determining the data item subsets of each anchor user according to the data items associated with the same anchor user;
采用预先训练至收敛状态的智能分类模型,根据各个数据项子集,确定其相应的各个主播用户的属性标签;Using an intelligent classification model pre-trained to a convergent state, according to each subset of data items, determine the attribute labels of the corresponding anchor users;
筛选出属性标签与所述操作项中的属性标签相匹配的主播用户数据项子集;Filtering out a subset of the anchor user data items whose attribute tags match the attribute tags in the operation items;
对各个主播用户的数据项子集进行格式化,构造为标准化格式的数据集。Format the subset of data items of each anchor user, and construct a data set in a standardized format.
扩展的部分实施例中,所述智能分类模型被预先迭代训练至收敛状态,其训练过程包括如下步骤:In some extended embodiments, the intelligent classification model is pre-iteratively trained to a convergent state, and the training process includes the following steps:
从训练数据集中调用单个训练样本,所述训练样本包括一个主播用户的多个属性数据项相对应的属性数据;Invoke a single training sample from the training data set, the training sample includes attribute data corresponding to multiple attribute data items of an anchor user;
将所述训练样本中的属性数据进行向量化,获得样本向量;Vectorizing the attribute data in the training sample to obtain a sample vector;
将所述样本向量输入智能分类模型中进行语义提取和分类映射,获得分类预测出的属性标签;Inputting the sample vector into an intelligent classification model to perform semantic extraction and classification mapping to obtain attribute labels predicted by classification;
根据所述训练样本相对应的属性标签计算智能分类模型预测出的属性标签的损失值;Calculate the loss value of the attribute label predicted by the intelligent classification model according to the attribute label corresponding to the training sample;
根据所述损失值对智能分类模型实施梯度更新,或继续迭代训练直至模型达至收敛状态。According to the loss value, gradient update is performed on the intelligent classification model, or the iterative training is continued until the model reaches a convergent state.
扩展的部分实施例中,筛选出属性标签与所述操作项中的属性标签相匹配的主播用户数据项子集的步骤之后,包括如下步骤:In some extended embodiments, after the step of filtering out a subset of the anchor user data items whose attribute tags match the attribute tags in the operation items, the following steps are included:
获取各个主播用户相对应确定的各个属性标签的热度数据,所述热度数据根据所述主播用户的直播间的用户行为数据统计确定;Obtaining the popularity data of each attribute tag correspondingly determined by each anchor user, and the popularity data is statistically determined according to the user behavior data of the live broadcast room of the anchor user;
根据所述热度数据对各个主播用户的数据项子集进行排序,以使后续生成的数据集保持相应的排序。The data item subsets of each anchor user are sorted according to the popularity data, so that the subsequently generated data sets maintain the corresponding sorting.
扩展的部分实施例中,获取各个主播用户相对应确定的各个属性标签的热度数据的步骤之前,包括如下步骤:In some extended embodiments, before the step of acquiring the popularity data of each attribute tag determined correspondingly by each anchor user, the following steps are included:
获取关联于每一主播用户的用户行为数据,所述用户行为数据对应该主播用户的直播间被用户关注、被用户送礼、被用户进入相对应的访问事件所产生的描述数据;Obtaining user behavior data associated with each anchor user, the user behavior data corresponding to the description data generated by the corresponding access events of the anchor user's live broadcast room being followed by the user, gifted by the user, and entered by the user;
对所述用户行为数据进行统计,获得各个主播用户相对应的用户热度,所述用户热度为多种所述的访问事件的数量的加权统计结果;Perform statistics on the user behavior data to obtain user popularity corresponding to each anchor user, where the user popularity is a weighted statistical result of the number of various access events;
对应预设的属性标签体系中的各个属性标签,将携带所述属性标签的主播用户的用户热度进行累加,获得该属性标签相对应的累加热度;Corresponding to each attribute tag in the preset attribute tag system, the user popularity of the anchor user carrying the attribute tag is accumulated to obtain the accumulated popularity corresponding to the attribute tag;
根据所述属性标签体系中的各个属性标签的累加热度进行归一化,获得各个属性标签相对应的热度数据。Normalization is performed according to the accumulated heat of each attribute label in the attribute label system to obtain heat data corresponding to each attribute label.
扩展的部分实施例中,获取直播业务相对应的数据定义模板的步骤之后,包括如下步骤:In some extended embodiments, after the step of acquiring the data definition template corresponding to the live broadcast service, the following steps are included:
根据定时任务触发而将直播业务相对应的数据定义模板中指定数据项从其相应的数据源中调度到二级缓存中以供调用;Scheduling the specified data item in the data definition template corresponding to the live broadcast service from its corresponding data source to the secondary cache for invocation according to the timing task trigger;
将根据二级缓存中的数据源的数据项执行操作所获得的数据集存储于一级缓存中。The data set obtained by performing the operation according to the data item of the data source in the second-level cache is stored in the first-level cache.
扩展的部分实施例中,获取直播业务相对应的数据定义模板的步骤之前,包括如下步骤:In some extended embodiments, before the step of acquiring the data definition template corresponding to the live broadcast service, the following steps are included:
运行数据源适配服务,向外部数据源开放接口,以实现外部数据源接入而参与为直播业务提供所述的数据集的数据。The data source adaptation service is run, and the interface is opened to the external data source, so as to realize the access of the external data source and participate in providing the data of the data set for the live broadcast service.
适应本申请的目的之一而提供的一种直播业务数据处理装置,包括模板调用模块、数据加工模块,以及数据推送模块,其中:所述模板调用模块,用于获取直播业务相对应的数据定义模板,所述数据定义模板包含所述直播业务所需调用的分布于多个数据源的数据项和用于对该些数据项执行预定义操作的操作项,所述数据项包含主播用户的属性数据项,所述操作项包括一个或多个属性标签;所述数据加工模块,用于根据数据定义模板中的操作项,对多个数据源中相应的所述数据项执行所述操作项相对应的预定义操作,确定出与所述操作项中的属性标签相对应的数据集,所述数据集包括多个主播用户相对应的数据项子集;所述数据推送模块,用于响应终端设备对直播业务的数据调用指令,向该终端设备推送该直播业务相应的数据集。A live broadcast service data processing device provided in accordance with one of the purposes of this application includes a template calling module, a data processing module, and a data push module, wherein: the template calling module is used to obtain the data definition corresponding to the live broadcast service. A template, the data definition template includes data items distributed in multiple data sources that need to be called by the live broadcast service and operation items for performing predefined operations on these data items, and the data items include the attributes of the anchor user A data item, the operation item includes one or more attribute tags; the data processing module is configured to, according to the operation item in the data definition template, execute the operation item relative to the corresponding data item in the multiple data sources. The corresponding predefined operation determines a data set corresponding to the attribute label in the operation item, and the data set includes a subset of data items corresponding to multiple anchor users; the data push module is used to respond to the terminal The data invocation instruction of the device for the live broadcast service pushes the corresponding data set of the live broadcast service to the terminal device.
深化的部分实施例中,所述数据加工模块,包括:模板解析单元,用于解析所述数据定义模板,确定出其中的各个数据源中的数据项及操作项;子集加工单元,用于应用分布式锁调用获取所述各个数据源中的所述数据项,根据所述数据项关联于相同主播用户而确定出各个主播用户的数据项子集;标签确定单元,用于采用预先训练至收敛状态的智能分类模型,根据各个数据项子集,确定其相应的各个主播用户的属性标签;主播筛选单元,用于筛选出属性标签与所述操作项中的属性标签相匹配的主播用户数据项子集;格式统一单元,用于对各个主播用户的数据项子集进行格式化,构造为标准化格式的数据集。In some further embodiments, the data processing module includes: a template parsing unit for parsing the data definition template to determine data items and operation items in each data source; a subset processing unit for Applying distributed lock calls to obtain the data items in the various data sources, and determining the data item subsets of each anchor user according to the data items associated with the same anchor user; the label determination unit is used for pre-training to The intelligent classification model of the convergence state determines the attribute labels of the corresponding anchor users according to the subsets of each data item; the anchor screening unit is used to filter out the anchor user data whose attribute tags match the attribute tags in the operation items. Item subset; the format unification unit is used to format the data item subset of each anchor user, and construct it into a standardized format data set.
扩展的部分实施例中,所述智能分类模型被置于训练模块中预先迭代训练至收敛状态,所述训练模块包括:样本调用单元,用于从训练数据集中调用单个训练样本,所述训练样本包括一个主播用户的多个属性数据项相对应的属性数据;向量编码单元,用于将所述训练样本中的属性数据进行向量化,获得样本向量;分类映射单元,用于将所述样本向量输入智能分类模型中进行语义提取和分类映射,获得分类预测出的属性标签;损失计算单元,用于根据所述训练样本相对应的属性标签计算智能分类模型预测出的属性标签的损失值;迭代决策单元,用于根据所述损失值对智能分类模型实施梯度更新,或继续迭代训练直至模型达至收敛状态。In some extended embodiments, the intelligent classification model is placed in a training module to be pre-iteratively trained to a convergent state, and the training module includes: a sample calling unit for calling a single training sample from a training data set, the training sample Including attribute data corresponding to multiple attribute data items of an anchor user; a vector encoding unit for vectorizing the attribute data in the training sample to obtain a sample vector; a classification mapping unit for converting the sample vector Input the intelligent classification model to perform semantic extraction and classification mapping, and obtain the attribute labels predicted by the classification; the loss calculation unit is used to calculate the loss value of the attribute labels predicted by the intelligent classification model according to the attribute labels corresponding to the training samples; iteration A decision-making unit, configured to implement gradient update on the intelligent classification model according to the loss value, or continue iterative training until the model reaches a convergence state.
扩展的部分实施例中,所述数据加工模块包括后于所述主播筛选单元运行的如下单元:热度调用单元,用于获取各个主播用户相对应确定的各个属性标签的热度数据,所述热度数据根据所述主播用户的直播间的用户行为数据统计确定;排序处理单元,用于根据所述热度数据对各个主播用户的数据项子集进行排序,以使后续生成的数据集保持相应的排序。In some extended embodiments, the data processing module includes the following units that run after the host screening unit: a popularity calling unit, which is used to obtain the popularity data of each attribute tag determined correspondingly by each anchor user, and the popularity data Statistically determined according to the user behavior data of the live broadcast room of the host user; the sorting processing unit is configured to sort the data item subsets of each host user according to the popularity data, so that the subsequently generated data set maintains the corresponding sorting.
扩展的部分实施例中,所述数据加工模块包括先于所述热度调用单元运行的如下单元:数据描述单元,用于获取关联于每一主播用户的用户行为数据,所述用户行为数据对应该主播用户的直播间被用户关注、被用户送礼、被用户进入相对应的访问事件所产生的描述数据;数据统计单元,用于对所述用户行为数据进行统计,获得各个主播用户相对应的用户热度,所述用户热度为多种所述的访问事件的数量的加权统计结果;热度累加单元,用于对应预设的属性标签体系中的各个属性标签,将携带所述属性标签的主播用户的用户热度进行累加,获得该属性标签相对应的累加热度;热度确定单元,用于根据所述属性标签体系中的各个属性标签的累加热度进行归一化,获得各个属性标签相对应的热度数据。In some extended embodiments, the data processing module includes the following units that run before the popularity calling unit: a data description unit, configured to acquire user behavior data associated with each anchor user, the user behavior data corresponding to the The description data generated by the corresponding access events of the live broadcast room of the anchor user being followed by the user, gifted by the user, and entered by the user; the data statistics unit is used to perform statistics on the user behavior data, and obtain the users corresponding to each anchor user. Heat, the user heat is the weighted statistical result of the number of various access events; the heat accumulating unit is used to correspond to each attribute label in the preset attribute label system, and will carry the attribute label of the anchor user's The user's heat is accumulated to obtain the accumulated heat corresponding to the attribute label; the heat determination unit is configured to normalize the accumulated heat of each attribute label in the attribute label system to obtain the heat data corresponding to each attribute label.
扩展的部分实施例中,本申请的直播业务数据处理装置,还包括后于所述模板调用模块运行的如下模块:二级缓存模块,用于根据定时任务触发而将直播业务相对应的数据定义模板中指定数据项从其相应的数据源中调度到二级缓存中以供调用;一级缓存模块,用于将根据二级缓存中的数据源的数据项执行操作所获得的数据集存储于一级缓存中。In some extended embodiments, the live broadcast service data processing device of the present application further includes the following modules that are run after the template invocation module: a second-level cache module, configured to define data corresponding to the live broadcast service according to the timing task trigger. The specified data item in the template is dispatched from its corresponding data source to the second-level cache for invocation; the first-level cache module is used to store the data set obtained by performing the operation according to the data item of the data source in the second-level cache in the second-level cache. in the first level cache.
扩展的部分实施例中,本申请的直播业务数据处理装置,还包括先于所述模板调用模块运行的数据适配模块,用于运行数据源适配服务,向外部数据源开放接口,以实现外部数据源接入而参与为直播业务提供所述的数据集的数据。In some of the extended embodiments, the live broadcast service data processing apparatus of the present application further includes a data adaptation module that runs before the template invocation module, and is used to run a data source adaptation service and open an interface to an external data source to realize The external data source accesses and participates in providing the data of the data set for the live broadcast service.
适应本申请的目的之一而提供的一种计算机设备,包括中央处理器和存储器,所述中央处理器用于调用运行存储于所述存储器中的计算机程序以执行本申请所述的直播业务数据处理方法的步骤。A computer device provided in accordance with one of the purposes of this application, comprising a central processing unit and a memory, the central processing unit is used to call and run a computer program stored in the memory to execute the live broadcast service data processing described in this application. steps of the method.
适应本申请的另一目的而提供的一种计算机可读存储介质,其以计算机可读指令的形式存储有依据所述的直播业务数据处理方法所实现的计算机程序,该计算机程序被计算机调用运行时,执行该方法所包括的步骤。A computer-readable storage medium provided for another purpose of the present application, which stores a computer program implemented according to the described live broadcast service data processing method in the form of computer-readable instructions, and the computer program is invoked by a computer to run , perform the steps included in the method.
适应本申请的另一目的而提供的一种计算机程序产品,包括计算机程序/指令,该计算机程序/指令被处理器执行时实现本申请任意一种实施例中所述方法的步骤。A computer program product provided in accordance with another object of the present application includes a computer program/instruction, when the computer program/instruction is executed by a processor, the steps of the method described in any one of the embodiments of the present application are implemented.
相对于现有技术,本申请具有多方面的技术优势,包括但不限于如下所揭示的各个方面:Compared with the prior art, the present application has many technical advantages, including but not limited to the various aspects disclosed as follows:
首先,本申请利用直播业务与数据定义模板之间的对应关系,通过数据定义模板中的数据项及操作项实现对不同直播业务所需调用的数据的标准化表示,其中数据项包括各个主播用户相对应的属性数据项,而所述操作项包括一个或多个属性标签,由此,操作项可以发挥预定义操作的作用,后续根据数据定义模板获得该直播业务相对应的相关数据项,根据所述属性数据项与所述属性标签的关联关系,确定出包含了多个主播用户的数据项子集的数据集,也即与所述属性标签存在某种预定义操作上的对应关系的主播用户相对应的数据项子集,故所述的数据项子集起到对主播用户进行关联描述的作用,在终端设备需要加载所述的直播业务相应的页面并向服务器发起请求时,便可将所述的数据集推送给相应的终端设备,使相应的终端设备根据所述数据集中的主播用户的数据项子集展示各个主播用户的关键信息。First, the present application utilizes the correspondence between the live broadcast service and the data definition template, and realizes the standardized representation of the data to be invoked for different live broadcast services through the data items and operation items in the data definition template, wherein the data items include data items related to each anchor user. The corresponding attribute data item, and the operation item includes one or more attribute tags, thus, the operation item can play the role of a predefined operation, and then obtain the relevant data item corresponding to the live broadcast service according to the data definition template. The association relationship between the attribute data item and the attribute label is determined, and the data set containing the data item subsets of multiple anchor users is determined, that is, the anchor user that has a certain predefined operation corresponding relationship with the attribute label is determined. Corresponding subset of data items, so the subset of data items plays the role of associating description for the anchor user. When the terminal device needs to load the corresponding page of the live broadcast service and initiate a request to the server, it can The data set is pushed to the corresponding terminal device, so that the corresponding terminal device displays the key information of each anchor user according to the data item subset of the anchor user in the data set.
其次,本申请中,数据定义模板一方面实现对多个数据源的数据项的集中定义,另一方面预先与直播业务对应关联,因而实现了对数据源与直播业务的对应关系的映射梳理,对于直播平台而言,开发人员得以通过维护数据定义模板而保持有序调用多个数据源的数据项,由此服务于相应的直播业务而加工处理数据,直播业务及其所需的数据项之间始终保持有序管理,无需另行获取数据项,不仅可以有效避免各个数据源重复获取不同直播业务所需的相同数据项的情况,最小化熵增定律的影响,而且更方便开发人员对各个直播业务所需调用的数据项之间的数据逻辑进行维护。Secondly, in this application, on the one hand, the data definition template realizes the centralized definition of data items of multiple data sources, and on the other hand, it is associated with the live broadcast service in advance, thus realizing the mapping and sorting of the corresponding relationship between the data source and the live broadcast service. For the live broadcast platform, developers can maintain orderly call data items of multiple data sources by maintaining data definition templates, thereby serving the corresponding live broadcast business and processing data. The live broadcast business and its required data items It is always managed in an orderly manner, and there is no need to obtain data items separately, which can not only effectively avoid the situation where each data source repeatedly obtains the same data items required by different live broadcast services, and minimize the influence of the law of entropy increase, but also makes it easier for developers to control each live broadcast. The data logic between the data items to be called by the business is maintained.
此外,本申请由于梳理了直播业务与其所需调用的数据之间的关系,优化数据存储、访问等各个环节的资源占用,可以节省服务机群的存储和运行载荷,从而节省平台系统开销,节约平台部署成本。In addition, because the application has sorted out the relationship between the live broadcast service and the data to be called, and optimized the resource occupation of data storage, access and other links, the storage and operation load of the service cluster can be saved, thereby saving the platform system overhead and the platform. deployment cost.
附图说明Description of drawings
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present application will become apparent and readily understood from the following description of embodiments taken in conjunction with the accompanying drawings, wherein:
图1为本申请的直播业务数据处理方法的典型实施例的流程示意图;1 is a schematic flowchart of a typical embodiment of a method for processing live broadcast service data of the present application;
图2和图3均为示例性的图形用户界面,分别示出“猜您喜欢”、“热门”相对应的直播业务的界面效果;Figure 2 and Figure 3 are exemplary graphical user interfaces, respectively showing the interface effects of "guess you like" and "popular" corresponding live broadcast services;
图4为本申请的实施例中根据数据定义模板获取直播业务相对应的数据集的过程的流程示意图;4 is a schematic flowchart of a process of acquiring a data set corresponding to a live broadcast service according to a data definition template in an embodiment of the present application;
图5为本申请的实施例中,示例性的智能分类模型的训练过程的流程示意图;5 is a schematic flowchart of a training process of an exemplary intelligent classification model in an embodiment of the present application;
图6为本申请的实施例中,确定各个属性标签的热度数据的过程的流程示意图;FIG. 6 is a schematic flowchart of a process of determining the popularity data of each attribute tag in an embodiment of the present application;
图7为本申请的直播业务数据处理装置的原理框图;Fig. 7 is the principle block diagram of the live broadcast service data processing apparatus of the present application;
图8为本申请所采用的一种计算机设备的结构示意图;8 is a schematic structural diagram of a computer device used in the application;
具体实施方式Detailed ways
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本申请的限制。The following describes in detail the embodiments of the present application, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary and are only used to explain the present application, but not to be construed as a limitation on the present application.
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本申请的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。It will be understood by those skilled in the art that the singular forms "a", "an", "the" and "the" as used herein can include the plural forms as well, unless expressly stated otherwise. It should be further understood that the word "comprising" used in the specification of this application refers to the presence of stated features, integers, steps, operations, elements and/or components, but does not preclude the presence or addition of one or more other features, Integers, steps, operations, elements, components and/or groups thereof. It will be understood that when we refer to an element as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or intervening elements may also be present. Furthermore, "connected" or "coupled" as used herein may include wirelessly connected or wirelessly coupled. As used herein, the term "and/or" includes all or any element and all combination of one or more of the associated listed items.
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。It will be understood by those skilled in the art that, unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs. It should also be understood that terms, such as those defined in a general dictionary, should be understood to have meanings consistent with their meanings in the context of the prior art and, unless specifically defined as herein, should not be interpreted in idealistic or overly formal meaning to explain.
本技术领域技术人员可以理解,这里所使用的“客户端”、“终端”、“终端设备”既包括无线信号接收器的设备,其仅具备无发射能力的无线信号接收器的设备,又包括接收和发射硬件的设备,其具有能够在双向通信链路上,进行双向通信的接收和发射硬件的设备。这种设备可以包括:蜂窝或其他诸如个人计算机、平板电脑之类的通信设备,其具有单线路显示器或多线路显示器或没有多线路显示器的蜂窝或其他通信设备;PCS(PersonalCommunications Service,个人通信系统),其可以组合语音、数据处理、传真和/或数据通信能力;PDA(Personal Digital Assistant,个人数字助理),其可以包括射频接收器、寻呼机、互联网/内联网访问、网络浏览器、记事本、日历和/或GPS(Global PositioningSystem,全球定位系统)接收器;常规膝上型和/或掌上型计算机或其他设备,其具有和/或包括射频接收器的常规膝上型和/或掌上型计算机或其他设备。这里所使用的“客户端”、“终端”、“终端设备”可以是便携式、可运输、安装在交通工具(航空、海运和/或陆地)中的,或者适合于和/或配置为在本地运行,和/或以分布形式,运行在地球和/或空间的任何其他位置运行。这里所使用的“客户端”、“终端”、“终端设备”还可以是通信终端、上网终端、音乐/视频播放终端,例如可以是PDA、MID(Mobile Internet Device,移动互联网设备)和/或具有音乐/视频播放功能的移动电话,也可以是智能电视、机顶盒等设备。Those skilled in the art can understand that the "client", "terminal" and "terminal device" used herein include both a wireless signal receiver device that only has a wireless signal receiver without transmission capability, and a wireless signal receiver device. A device with receive and transmit hardware that has receive and transmit hardware capable of two-way communication over a two-way communication link. Such devices may include: cellular or other communication devices such as personal computers, tablet computers, which have a single-line display or a multi-line display or a cellular or other communication device without a multi-line display; PCS (Personal Communications Service, Personal Communications System) ), which can combine voice, data processing, fax and/or data communication capabilities; PDA (Personal Digital Assistant), which can include radio frequency receivers, pagers, Internet/Intranet access, web browsers, notepads , calendar and/or GPS (Global Positioning System) receivers; conventional laptop and/or palmtop computers or other devices having and/or conventional laptop and/or palmtop radio frequency receivers computer or other device. As used herein, "client", "terminal", "terminal device" may be portable, transportable, mounted in a vehicle (air, marine and/or land), or adapted and/or configured to be locally operate, and/or in distributed form, operate at any other location on Earth and/or space. The "client", "terminal" and "terminal device" used here can also be a communication terminal, an Internet terminal, and a music/video playing terminal, such as a PDA, MID (Mobile Internet Device) and/or A mobile phone with music/video playback function, or a smart TV, set-top box, etc.
本申请所称的“服务器”、“客户端”、“服务节点”等名称所指向的硬件,本质上是具备个人计算机等效能力的电子设备,为具有中央处理器(包括运算器和控制器)、存储器、输入设备以及输出设备等冯诺依曼原理所揭示的必要构件的硬件装置,计算机程序存储于其存储器中,中央处理器将存储在外存中的程序调入内存中运行,执行程序中的指令,与输入输出设备交互,借此完成特定的功能。The hardware referred to by names such as "server", "client" and "service node" in this application is essentially an electronic device with the equivalent capability of a personal computer, which is a central processing unit (including an arithmetic unit and a controller). ), memory, input device and output device and other necessary components disclosed by the Von Neumann principle, the computer program is stored in its memory, and the central processing unit transfers the program stored in the external memory into the memory to run, and executes the program. The instructions in the interface interact with input and output devices to complete specific functions.
需要指出的是,本申请所称的“服务器”这一概念,同理也可扩展到适用于服务器机群的情况。依据本领域技术人员所理解的网络部署原理,所述各服务器应是逻辑上的划分,在物理空间上,这些服务器既可以是互相独立但可通过接口调用的,也可以是集成到一台物理计算机或一套计算机机群的。本领域技术人员应当理解这一变通,而不应以此约束本申请的网络部署方式的实施方式。It should be pointed out that the concept of "server" referred to in this application can also be extended to the case of server clusters in the same way. According to the principles of network deployment understood by those skilled in the art, the servers should be logically divided. In physical space, these servers can be independent from each other but can be called through interfaces, or can be integrated into a physical server. A computer or a group of computers. Those skilled in the art should understand this modification, but should not limit the implementation of the network deployment manner of the present application.
本申请的一个或数个技术特征,除非明文指定,既可部署于服务器实施而由客户端远程调用获取服务器提供的在线服务接口来实施访问,也可直接部署并运行于客户端来实施访问。Unless explicitly specified, one or more technical features of the present application can be deployed on the server and remotely invoked by the client to obtain the online service interface provided by the server to implement access, or can be directly deployed and run on the client to implement access.
本申请中所引用或可能引用到的神经网络模型,除非明文指定,既可部署于远程服务器且在客户端实施远程调用,也可部署于设备能力胜任的客户端直接调用,某些实施例中,当其运行于客户端时,其相应的智能可通过迁移学习来获得,以便降低对客户端硬件运行资源的要求,避免过度占用客户端硬件运行资源。The neural network model cited or possibly cited in this application, unless specified in plain text, can either be deployed on a remote server and invoked remotely on the client, or deployed on a client with competent device capabilities to directly invoke, in some embodiments , when it runs on the client, its corresponding intelligence can be obtained through transfer learning, so as to reduce the requirements on the client hardware running resources and avoid excessively occupying the client hardware running resources.
本申请所涉及的各种数据,除非明文指定,既可远程存储于服务器,也可存储于本地终端设备,只要其适于被本申请的技术方案所调用即可。All kinds of data involved in this application, unless specified in plain text, can be stored in a server remotely or in a local terminal device, as long as it is suitable for being called by the technical solution of this application.
本领域技术人员对此应当知晓:本申请的各种方法,虽然基于相同的概念而进行描述而使其彼此间呈现共通性,但是,除非特别说明,否则这些方法都是可以独立执行的。同理,对于本申请所揭示的各个实施例而言,均基于同一发明构思而提出,因此,对于相同表述的概念,以及尽管概念表述不同但仅是为了方便而适当变换的概念,应被等同理解。Those skilled in the art should know that: although the various methods of the present application are described based on the same concept to show commonality with each other, unless otherwise specified, these methods can be independently executed. Similarly, for the various embodiments disclosed in this application, they are all proposed based on the same inventive concept. Therefore, the concepts expressed in the same way, and the concepts that are appropriately transformed for convenience even though the concept expressions are different, should be regarded as equivalent. understand.
本申请即将揭示的各个实施例,除非明文指出彼此之间的相互排斥关系,否则,各个实施例所涉的相关技术特征可以交叉结合而灵活构造出新的实施例,只要这种结合不背离本申请的创造精神且可满足现有技术中的需求或解决现有技术中的某方面的不足即可。对此变通,本领域技术人员应当知晓。In the various embodiments to be disclosed in this application, unless the mutually exclusive relationship between each other is clearly indicated, the related technical features involved in the various embodiments can be cross-combined to flexibly construct new embodiments, as long as the combination does not deviate from the present invention. The creative spirit of the application can meet the needs in the prior art or solve a certain aspect of the deficiencies in the prior art. Variations on this will be known to those skilled in the art.
本申请的一种直播业务数据处理方法,可被编程为计算机程序产品,部署于计算机设备中运行而实现,藉此可以通过访问该计算机程序产品运行后开放的接口,通过图形用户界面与该计算机程序产品的进程进行人机交互而执行该方法。A method for processing live broadcast service data of the present application can be programmed into a computer program product, which can be implemented by being deployed in a computer device to run, whereby by accessing an interface opened after the computer program product runs, it can communicate with the computer through a graphical user interface. The process of the program product performs human-computer interaction to execute the method.
请参阅图1,本申请的直播业务数据处理方法在其典型实施例中,包括如下步骤:Please refer to FIG. 1 , in a typical embodiment of the method for processing live broadcast service data of the present application, the method includes the following steps:
步骤S1100、获取直播业务相对应的数据定义模板,所述数据定义模板包含所述直播业务所需调用的分布于多个数据源的数据项和用于对该些数据项执行预定义操作的操作项,所述数据项包含主播用户的属性数据项,所述操作项包括一个或多个属性标签:Step S1100: Acquire a data definition template corresponding to the live broadcast service, where the data definition template includes data items distributed in multiple data sources that the live broadcast service needs to call and operations for performing predefined operations on these data items item, the data item includes the attribute data item of the host user, and the operation item includes one or more attribute tags:
网络直播平台中,统一调度平台内外多种数据源内数据项的采集、存储、调用,并通过开发团队所实现的直播业务相应的页面代码对相应的数据项进行展现。In the web live broadcast platform, the collection, storage, and invocation of data items in various data sources inside and outside the platform are unified and displayed, and the corresponding data items are displayed through the corresponding page codes of the live broadcast service realized by the development team.
所述数据源包括各式各样的适于数据库引擎提供的数据库,例如HBase、MySQL、MongoDB,对于大型网络直播平台而言,所述的数据库通常是支持分布式存储的数据库。每个数据库中可以包含多个预先定义的数据表,每个数据表用于存储多个数据项,跨数据库、跨数据表之间可以通过数据项对应关系实现数据的连接,例如通过设备或用户的UID,或者关联于相同属性标签来对应。因而,网络平台中,一个主播用户相关的个人信息,可能分布于多个数据源的多个数据表的多个数据项中,可以是一个相对复杂的树状或网状关系。所述个人信息相对的部分数据项为属性数据项,用于存储相对应的主播用户相对应的属性数据,例如,存储该主播用户的年龄、性别、直播主题描述信息、个人爱好关键词等等。The data sources include various databases suitable for database engines, such as HBase, MySQL, and MongoDB. For large-scale webcast platforms, the databases are usually databases that support distributed storage. Each database can contain multiple pre-defined data tables, each data table is used to store multiple data items, and cross-database and cross-data tables can realize data connection through data item correspondence, such as through devices or users UID, or associated with the same attribute tag to correspond. Therefore, in the network platform, personal information related to an anchor user may be distributed in multiple data items of multiple data tables of multiple data sources, and may be a relatively complex tree or network relationship. Some data items relative to the personal information are attribute data items, which are used to store attribute data corresponding to the corresponding anchor user, for example, store the anchor user's age, gender, live broadcast theme description information, personal hobby keywords, etc. .
所述直播业务通常与网络直播平台的用户可以访问的一个页面相对应,例如,用户在终端设备通过网络直播平台的网站或应用程序,访问如图2所示的“猜您喜欢”页面时,便调用一个对应的直播业务,此时,这一直播业务用于根据用户个人喜好推荐多个主播用户的视频封面,以便用户快速进入其中某个主播用户的直播间。而在用户访问如图3所示的“热门”页面时,也同理,对应访问一个向用户推送当前较为受欢迎的主播用户的视频封面,方便用户进入其中之一的直播间。The live broadcast service usually corresponds to a page that can be accessed by users of the web live broadcast platform. For example, when the user accesses the "guess you like" page as shown in A corresponding live broadcast service is called. At this time, the live broadcast service is used to recommend video covers of multiple anchor users according to the user's personal preference, so that the user can quickly enter the live broadcast room of one of the anchor users. When the user accesses the "Popular" page as shown in Figure 3, the same is true, and correspondingly accesses a video cover that pushes the currently popular anchor user to the user, so that the user can enter one of the live broadcast rooms.
网络直播平台往往提供多个网站以及多个应用程序为平台用户开放各种服务,并且,一个网站或者一个应用程序中,往往对应提供多个直播业务,所有这些直播业务,其底层数据均由平台所维护或可触及访问的数据源来提供,因而,建立起直播业务与数据源之间的桥梁,实现对直播业务与复杂分布的数据项之间的关系的维护,有助于提升开发效率及数据维护效果。因此可以通过一个数据维护平台来为各个直播业务的开发提供定制服务,通过该定制服务,开发团队可以自行创建和编辑某个直播业务所需采用的数据项,形成相应的数据定义模板,后续实现相应的直播业务时,调用这一数据定义模板,便可获得期望的数据集。Online live broadcast platforms often provide multiple websites and multiple applications to open various services for platform users, and one website or one application often provides multiple live broadcast services, and the underlying data of all these live broadcast services are provided by the platform. Therefore, building a bridge between the live broadcast service and the data source to maintain the relationship between the live broadcast service and the complex distributed data items is helpful to improve the development efficiency and Data maintenance effect. Therefore, a data maintenance platform can be used to provide customized services for the development of each live broadcast business. Through this customized service, the development team can create and edit the data items required by a live broadcast business, form a corresponding data definition template, and implement it later. In the corresponding live broadcast service, the desired data set can be obtained by calling this data definition template.
所述的数据定义模板,本申请中,不仅包含对所述直播业务所需采用的数据项的指定,而且包含用于指示对该些数据项实施指定的预定义操作的操作项,所述的数据项可以是分布于多个不同数据源的,所述操作项可以通过各种预协议的方式指定其所包含的信息。本申请示例的一种方式中,所述的操作项,可以通过包含一个或多个属性标签而被本申请解析为对各个主播用户相关联的所述数据项预测其相应的属性标签,然后利用操作项的属性标签与预测的属性标签之间的映射关系,匹配出其中的部分主播用户的数据项子集用于构造数据集。根据这一示例可知,所述的预定义操作,已事先协议好,可被解析为一种对数据项的匹配操作。The data definition template, in this application, not only includes the specification of the data items that the live broadcast service needs to use, but also includes the operation items used to instruct the implementation of the specified predefined operations on these data items. The data items may be distributed in a number of different data sources, and the operation items may specify the information they contain in various pre-protocol ways. In an example of this application, the operation item can be parsed by the application by including one or more attribute tags to predict the corresponding attribute tag for the data item associated with each anchor user, and then use The mapping relationship between the attribute labels of the operation items and the predicted attribute labels matches the subset of data items of some of the anchor users to construct the data set. According to this example, the predefined operation, which has been agreed in advance, can be parsed as a matching operation for data items.
如前所述,每个主播用户相关联的数据项中,其中一部分为属性数据项,该部分数据项尤其适于参与操作项所定义的操作,而其余部分可为其他类型的数据项,可服务于直播业务后台实现所需,包括参与所述操作项所定义的操作,不受本申请所限制。As mentioned above, among the data items associated with each anchor user, some of them are attribute data items, which are particularly suitable for participating in the operations defined by the operation items, while the rest can be other types of data items, which can be Serving the needs of the background implementation of the live broadcast service, including participating in the operations defined by the operation items, is not limited by this application.
网络直播平台需要为各个直播业务预备数据集时,便根据预定的触发机制,获取各个直播业务相对应的数据定义模板,然后对该数据定义模板进行预协议的解析,从而确定其中的数据项和操作项,以备后用。When the online live broadcast platform needs to prepare data sets for each live broadcast service, it will obtain the data definition template corresponding to each live broadcast service according to the predetermined trigger mechanism, and then perform pre-protocol analysis on the data definition template to determine the data items and Action items for later use.
步骤S1200、根据数据定义模板中的操作项,对多个数据源中相应的所述数据项执行所述操作项相对应的预定义操作,确定出与所述操作项中的属性标签相对应的数据集,所述数据集包括多个主播用户相对应的数据项子集:Step S1200: According to the operation items in the data definition template, perform predefined operations corresponding to the operation items on the corresponding data items in the multiple data sources, and determine the operation items corresponding to the attribute labels. A data set, the data set includes a subset of data items corresponding to multiple anchor users:
如前所述,操作项可通过包含一个或多个属性标签表示一个被解析为对所述数据定义模板中的数据项执行匹配的预定义操作,因而,根据所述直播业务相对应的数据定义模板中的操作项,也即其中的一个或多个属性标签,分析匹配各个主播用户的数据项是否关联于所述的一个或多个属性标签,当存在这种关联关系时,便将该主播用户相对应的数据项构成的数据项子集筛选出来,最后将各个筛选出来的数据项子集构成为数据集。As mentioned above, the operation item may include one or more attribute tags to indicate a predefined operation that is parsed as performing matching on the data item in the data definition template. Therefore, according to the data definition corresponding to the live broadcast service The operation items in the template, that is, one or more attribute tags, analyze whether the data items matching each anchor user are related to the one or more attribute tags. The data item subsets formed by the data items corresponding to the user are filtered out, and finally each filtered data item subset is formed into a data set.
操作项与主播用户的数据项中关联于所述属性标签的匹配关系,可以通过分析主播用户的数据项中是否包含操作项所指定的相同属性标签来确认两者相匹配,也可以借助预训练至收敛状态的神经网络模型对各个主播用户的数据项做分类映射以预测出属性标签,再分析所预测出的属性标签与操作项中的属性标签是否相对应来确认。实现这种匹配操作的方式较为灵活,本领域技术人员可根据本申请所揭示的原理及示例,灵活选用其他手段替代之,均不影响本申请的创造精神的体现。The matching relationship between the operation item and the data item of the anchor user associated with the attribute tag can be confirmed by analyzing whether the data item of the anchor user contains the same attribute tag specified by the operation item, or pre-training can be used to confirm the matching relationship between the two. The neural network model in the convergent state performs classification mapping on the data items of each anchor user to predict the attribute labels, and then analyzes whether the predicted attribute labels correspond to the attribute labels in the operation items to confirm. The manner of realizing this matching operation is relatively flexible, and those skilled in the art can flexibly choose other means to replace them according to the principles and examples disclosed in the present application, which will not affect the embodiment of the inventive spirit of the present application.
确定出所述的数据集后,该数据集便包含多个主播用户相对应的数据项子集,所述的数据项子集中,包括一个或多个属性数据项,所述的属性数据项一般是适于被直接展示于直播业务相对应的页面的数据项。After the data set is determined, the data set includes a subset of data items corresponding to multiple anchor users, and the subset of data items includes one or more attribute data items, and the attribute data items generally It is a data item suitable for being directly displayed on the page corresponding to the live broadcast service.
为方便采用统一的代码对所述的数据集进行解析和调用,所述的数据集可以按照预先设定的统一格式进行格式化。In order to facilitate the parsing and calling of the data set using a unified code, the data set may be formatted according to a preset unified format.
步骤S1300、响应终端设备对直播业务的数据调用指令,向该终端设备推送该直播业务相应的数据集:Step S1300: In response to the terminal device's data calling instruction for the live broadcast service, push the corresponding data set of the live broadcast service to the terminal device:
通过前述的步骤完成对各个直播业务的数据集的准备后,所述的数据集便处于可调用的状态,后续可以循环执行步骤S1100、S1200以便实现对所述的数据集的动态更新。After the data sets of each live broadcast service are prepared through the foregoing steps, the data sets are in a callable state, and steps S1100 and S1200 can be executed cyclically subsequently to realize dynamic update of the data sets.
当海量的平台用户在其各自的终端设备登录网络直播平台的网站或应用程序而需要加载或预加载直播业务相对应的页面时,便可向服务器发起直播业务加载请求,响应于该请求,服务器便根据该直播业务与所述数据集的对应关系,调用相应的数据集,将其推送至触发该请求的终端设备处,由此得以在该终端设备的图形用户界面中展示所述数据集内的各个数据项子集所描述的主播用户信息,包含该主播用户的个人信息等,于是,如图2和图3所示的页面,便得以展现多个主播用户相对应的视频封面。When a large number of platform users log in to the website or application of the web live broadcast platform on their respective terminal devices and need to load or preload the page corresponding to the live broadcast service, they can initiate a live broadcast service loading request to the server. In response to the request, the server Then according to the corresponding relationship between the live broadcast service and the data set, the corresponding data set is called and pushed to the terminal device that triggered the request, so that the data set can be displayed in the graphical user interface of the terminal device. The anchor user information described by each data item subset of , including the personal information of the anchor user, etc., thus, as shown in Figures 2 and 3, the video covers corresponding to multiple anchor users can be displayed.
在所述数据集以统一格式封装的情况下,只要终端设备中的页面相对应的后台代码根据统一格式对所述的数据集进行解析,便可获得相同的主播用户数据项子集,而与用于加载该页面的应用程序类别、网站类别无关,因此,对于网络直播平台所开发的多个网络、多个应用程序而言,只要遵守相同格式协议,便可根据各自的业务逻辑利用所述统一格式的数据集,做出个性化的数据展现,由此使得终端设备相对应的直播业务页面的代码实现过程中,无需直接面对底层数据,无需直接操作底层数据源,便可实现高效的数据访问和调用操作。In the case where the data set is encapsulated in a unified format, as long as the background code corresponding to the page in the terminal device parses the data set according to the unified format, the same subset of anchor user data items can be obtained, and the same subset of data items of the host can be obtained. The application category and website category used to load the page are irrelevant. Therefore, for multiple networks and multiple applications developed by the webcast platform, as long as they comply with the same format protocol, they can use the described information according to their business logic. Data sets in a unified format can make personalized data presentation, so that in the process of code realization of the live service page corresponding to the terminal device, there is no need to directly face the underlying data, and there is no need to directly operate the underlying data source. Data access and call operations.
根据本典型实施例,不难理解,相对于现有技术,本申请具有多方面的技术优势,包括但不限于如下所揭示的各个方面:According to the present exemplary embodiment, it is not difficult to understand that, compared with the prior art, the present application has many technical advantages, including but not limited to the various aspects disclosed as follows:
首先,本申请利用直播业务与数据定义模板之间的对应关系,通过数据定义模板中的数据项及操作项实现对不同直播业务所需调用的数据的标准化表示,其中数据项包括各个主播用户相对应的属性数据项,而所述操作项包括一个或多个属性标签,由此,操作项可以发挥预定义操作的作用,后续根据数据定义模板获得该直播业务相对应的相关数据项,根据所述属性数据项与所述属性标签的关联关系,确定出包含了多个主播用户的数据项子集的数据集,也即与所述属性标签存在某种预定义操作上的对应关系的主播用户相对应的数据项子集,故所述的数据项子集起到对主播用户进行关联描述的作用,在终端设备需要加载所述的直播业务相应的页面并向服务器发起请求时,便可将所述的数据集推送给相应的终端设备,使相应的终端设备根据所述数据集中的主播用户的数据项子集展示各个主播用户的关键信息。First, the present application utilizes the correspondence between the live broadcast service and the data definition template, and realizes the standardized representation of the data to be invoked for different live broadcast services through the data items and operation items in the data definition template, wherein the data items include data items related to each anchor user. The corresponding attribute data item, and the operation item includes one or more attribute tags, thus, the operation item can play the role of a predefined operation, and then obtain the relevant data item corresponding to the live broadcast service according to the data definition template. The association relationship between the attribute data item and the attribute label is determined, and the data set containing the data item subsets of multiple anchor users is determined, that is, the anchor user that has a certain predefined operation corresponding relationship with the attribute label is determined. Corresponding subset of data items, so the subset of data items plays the role of associating description for the anchor user. When the terminal device needs to load the corresponding page of the live broadcast service and initiate a request to the server, it can The data set is pushed to the corresponding terminal device, so that the corresponding terminal device displays the key information of each anchor user according to the data item subset of the anchor user in the data set.
其次,本申请中,数据定义模板一方面实现对多个数据源的数据项的集中定义,另一方面预先与直播业务对应关联,因而实现了对数据源与直播业务的对应关系的映射梳理,对于直播平台而言,开发人员得以通过维护数据定义模板而保持有序调用多个数据源的数据项,由此服务于相应的直播业务而加工处理数据,直播业务及其所需的数据项之间始终保持有序管理,无需另行获取数据项,不仅可以有效避免各个数据源重复获取不同直播业务所需的相同数据项的情况,最小化熵增定律的影响,而且更方便开发人员对各个直播业务所需调用的数据项之间的数据逻辑进行维护。Secondly, in this application, on the one hand, the data definition template realizes the centralized definition of data items of multiple data sources, and on the other hand, it is associated with the live broadcast service in advance, thus realizing the mapping and sorting of the corresponding relationship between the data source and the live broadcast service. For the live broadcast platform, developers can maintain orderly call data items of multiple data sources by maintaining data definition templates, thereby serving the corresponding live broadcast business and processing data. The live broadcast business and its required data items It is always managed in an orderly manner, and there is no need to obtain data items separately, which can not only effectively avoid the situation where each data source repeatedly obtains the same data items required by different live broadcast services, and minimize the influence of the law of entropy increase, but also makes it easier for developers to control each live broadcast. The data logic between the data items to be called by the business is maintained.
此外,本申请由于梳理了直播业务与其所需调用的数据之间的关系,优化数据存储、访问等各个环节的资源占用,可以节省服务机群的存储和运行载荷,从而节省平台系统开销,节约平台部署成本。In addition, because the application has sorted out the relationship between the live broadcast service and the data to be called, and optimized the resource occupation of data storage, access and other links, the storage and operation load of the service cluster can be saved, thereby saving the platform system overhead and the platform. deployment cost.
请参阅图4,深化的部分实施例中,所述步骤S1200、根据数据定义模板中的操作项,对多个数据源中相应的所述数据项执行所述操作项相对应的预定义操作,确定出与所述操作项中的属性标签相对应的数据集,包括如下步骤:Referring to FIG. 4, in some further embodiments, in step S1200, according to the operation items in the data definition template, perform predefined operations corresponding to the operation items on the corresponding data items in the multiple data sources, Determining the data set corresponding to the attribute label in the operation item includes the following steps:
步骤S1210、解析所述数据定义模板,确定出其中的各个数据源中的数据项及操作项:Step S1210, parse the data definition template, and determine the data items and operation items in each data source:
对于根据直播业务调用获取的数据定义模板,可以根据预协议对其进行相应的解析,从而确定出其中的操作项及分布在各个数据源中的各个数据项,对于服务器来说,从数据定义模板中解析出的各个数据项,其所对应的数据源中数据表、数据字段等,均是预先定义而明确的。For the data definition template obtained according to the live service call, it can be parsed correspondingly according to the pre-protocol, so as to determine the operation items and data items distributed in each data source. For the server, the data definition template Each data item parsed in the data source, the corresponding data table, data field, etc. in the data source are all predefined and clear.
步骤S1220、应用分布式锁调用获取所述各个数据源中的所述数据项,根据所述数据项关联于相同主播用户而确定出各个主播用户的数据项子集:Step S1220, applying a distributed lock call to obtain the data items in the respective data sources, and determining the data item subsets of each anchor user according to the data items associated with the same anchor user:
为了实现对具体数据项的调用,确定出直播业务所需的数据项后,便可从各个数据源中调用出相应的数据项,也即获得相应的数据。如前所述,由于数据项所存储的数据通常关联主播用户而存储,因而,可以主播用户为聚类单位为每个主播用户构造一个数据项子集,这一子集由该主播用户相对应的数据项中的数据构成。在实施对数据源中的数据项的调用时,考虑到数据访问冲突的风险,可以对所访问的数据项应用分布式锁进行原子操作,从而确保数据调用过程中不会引起数据紊乱。In order to realize the invocation of specific data items, after the data items required by the live broadcast service are determined, the corresponding data items can be invoked from each data source, that is, the corresponding data can be obtained. As mentioned above, since the data stored in the data items are usually stored in association with the anchor user, the anchor user can be the clustering unit to construct a data item subset for each anchor user, and this subset corresponds to the anchor user The data composition in the data item. When implementing a call to a data item in a data source, taking into account the risk of data access conflict, a distributed lock can be applied to the accessed data item to perform atomic operations, thereby ensuring that the data call process will not cause data disorder.
步骤S1230、采用预先训练至收敛状态的智能分类模型,根据各个数据项子集,确定其相应的各个主播用户的属性标签:Step S1230, adopting the intelligent classification model pre-trained to the convergence state, according to each data item subset, determine the attribute label of each corresponding anchor user:
本实施例借助一个预先训练至收敛状态的智能分类模型对各个主播用户的数据项子集做分类映射,从而预测出各个主播用户相对应的属性标签。所述的智能分类模型的训练过程将在本申请的后续实施例中揭示,此处暂且不表。In this embodiment, an intelligent classification model pre-trained to a convergent state is used to classify and map the data item subsets of each anchor user, so as to predict the attribute label corresponding to each anchor user. The training process of the intelligent classification model will be disclosed in the subsequent embodiments of this application, and will not be shown here for the time being.
所述的智能分类模型,经训练至收敛状态后,便习得从主播用户的数据项子集中准确提取出深层语义特征的表示学习能力,在此基础上对深层语义特征做分类映射,便可获得该主播用户所归属的各个属性标签。例如,场景性示例中,所述的属性标签可以是“热门主播”、“舞蹈主播”、“体育主播”、“知识主播”等。所述的智能分类模型所预测出的属性标签,可以被确认出一个或多个,例如允许一个主播用户同时既是“热门主播”,又是“知识主播”,视为属性标签的是否为多层级体系而灵活实施即可。The intelligent classification model, after being trained to a convergent state, acquires the representation learning ability of accurately extracting deep semantic features from the data item subset of the anchor user. On this basis, the deep semantic features are classified and mapped to Obtain each attribute tag to which the anchor user belongs. For example, in a scenario example, the attribute tag may be "popular anchor", "dance anchor", "sports anchor", "knowledge anchor" and so on. One or more attribute labels predicted by the intelligent classification model can be confirmed. For example, if a host user is allowed to be both a "popular host" and a "knowledge host" at the same time, whether the attribute labels are multi-level The system can be implemented flexibly.
所述智能分类模型的输入,根据其被预训练时所采用的作为模型训练样本的数据项而定,一种实施例中,由于所述属性数据项具有对主播用户的个人信息进行描述的对应性,可以仅采用主播用户相对应的属性数据项来构造其输入。当然,本领域技术人员也可采用主播用户的其他数据项来参与构造所述智能分类模型的输入。The input of the intelligent classification model is determined according to the data items used as model training samples when it is pre-trained. properties, and only the attribute data items corresponding to the host user can be used to construct its input. Of course, those skilled in the art may also use other data items of the host user to participate in constructing the input of the intelligent classification model.
步骤S1240、筛选出属性标签与所述操作项中的属性标签相匹配的主播用户数据项子集:Step S1240, filtering out a subset of anchor user data items whose attribute tags match the attribute tags in the operation items:
对于一个主播用户,当操作项的属性标签与智能分类模型预测出的属性标签是一对一的关系且完全相同时,可视为实现操作项所预定义的匹配关系,可将该主播用户的数据项子集筛选出来用于构造数据集。For an anchor user, when the attribute label of the operation item is in a one-to-one relationship with the attribute label predicted by the intelligent classification model and is exactly the same, it can be regarded as realizing the predefined matching relationship of the operation item. A subset of data items is filtered out to construct the dataset.
对于一个主播用户,当操作项中存在多个属性标签而智能分类模型只预测出单个属性标签时,且所预测的属性标签为操作项中的多个属性标签其中之一时,可视为实现操作项所预定义的匹配关系,可将该主播用户的数据项子集筛选出来用于构造数据集。For an anchor user, when there are multiple attribute labels in the operation item and the intelligent classification model only predicts a single attribute label, and the predicted attribute label is one of the multiple attribute labels in the operation item, it can be regarded as the operation. The predefined matching relationship of the item can be used to filter the data item subset of the host user to construct the data set.
对于一个主播用户,当操作项中存在单个属性标签而智能分类模型预测出多个属性标签时,若所述多个属性标签其中之一与操作项中的单个属性标签相同,即可视为实现操作项所定义的匹配关系,可将该主播用户的数据项子集筛选出来用于构造数据集。For a host user, when there is a single attribute label in the operation item and the intelligent classification model predicts multiple attribute labels, if one of the multiple attribute labels is the same as the single attribute label in the operation item, it can be regarded as the realization of the The matching relationship defined by the operation item can be used to filter the data item subset of the host user to construct the data set.
对于一个主播用户,当操作项中包含多个属性标签,且智能分类模型也预测出多个属性标签时,可利用集合关系确认两者是否实现匹配,具体示例如考察操作项中的多个属性标签是否构成预测出的多个属性标签的子集,如是,即可视为两者实现操作项所预定义的匹配关系,可将该主播用户的数据项子集筛选出来用于构造数据集。For an anchor user, when the operation item contains multiple attribute tags and the intelligent classification model also predicts multiple attribute tags, the set relationship can be used to confirm whether the two match. A specific example is to examine multiple attributes in the operation item. Whether the tag constitutes a subset of the predicted multiple attribute tags, if so, it can be regarded as the predefined matching relationship between the two implementation operation items, and the data item subset of the anchor user can be filtered out to construct the data set.
可见,对于主播用户的数据项子集是否实现了操作项所预定义的匹配关系所规定的匹配,其实施方式是灵活多样的,本领域技术人员根据此处的多种示例,可以灵活实施,并不影响本申请的创造精神的体现。It can be seen that whether the subset of data items of the anchor user achieves the matching specified by the matching relationship predefined by the operation item, the implementation is flexible and diverse, and those skilled in the art can flexibly implement according to the various examples here, It does not affect the embodiment of the inventive spirit of the present application.
步骤S1250、对各个主播用户的数据项子集进行格式化,构造为标准化格式的数据集:Step S1250, formatting the data item subsets of each anchor user, and constructing a data set in a standardized format:
当经过前述步骤处理,匹配出满足直播业务所需的各个主播用户的数据项子集后,便可将这些数据项子集构造为标准化格式的数据集。为了实现标准化格式的统一,可根据预设的格式协议,对各个主播用户相对应的数据项子集进行统一格式的封装,以便后续可根据所述的格式协议进行统一的解析,然后再将封装好的数据项子集构造所述的数据集。After the foregoing steps are processed to match the data item subsets of each anchor user required by the live broadcast service, these data item subsets can be constructed into a standardized format data set. In order to achieve the unification of standardized formats, the subset of data items corresponding to each anchor user can be encapsulated in a unified format according to the preset format protocol, so that subsequent unified analysis can be performed according to the format protocol, and then the encapsulation can be performed in a unified format. A subset of good data items constructs the data set.
本实施例中,揭示了数据定义模板通过其操作项中封装属性标签而实现预定义操作,从而指示对从数据源调用的数据项子集进行智能分类映射预测出相应的属性标签,再根据操作项预定义操作所指示的匹配操作,根据预测出的属性标签与操作项的属性标签之间是否匹配而优选出直播业务所需的主播用户的数据项子集构造为统一格式的数据集,据此,丰富了数据定义模板的功能,使数据定义模板不仅可以实现对多源的数据项的梳理,而且可以体现出更为复杂的业务逻辑,指示服务器对各个主播用户的数据项子集进行智能分析和匹配,从而获得精准对应直播业务的数据需求的数据集,免除开发人员重复开发复杂业务逻辑的繁冗,却又提供了更为丰富的技术支持,大大提升了软件工程开发效率。In this embodiment, it is disclosed that the data definition template implements predefined operations by encapsulating attribute labels in its operation items, thereby instructing to perform intelligent classification and mapping on the subset of data items called from the data source to predict the corresponding attribute labels, and then according to the operation The matching operation indicated by the predefined operation of the item, according to whether the predicted attribute label matches the attribute label of the operation item, the data item subset of the anchor user required by the live broadcast service is selected and constructed as a unified format data set. In this way, the functions of the data definition template are enriched, so that the data definition template can not only realize the sorting of data items from multiple sources, but also reflect more complex business logic, instructing the server to intelligently carry out the data item subsets of each anchor user. Through analysis and matching, a data set that accurately corresponds to the data requirements of the live broadcast business can be obtained, which avoids the tediousness of developers repeatedly developing complex business logic, but also provides richer technical support, which greatly improves the efficiency of software engineering development.
请参阅图5,扩展的部分实施例中,所述智能分类模型被预先迭代训练至收敛状态,其训练过程包括如下步骤:Referring to FIG. 5, in some extended embodiments, the intelligent classification model is pre-iteratively trained to a convergent state, and the training process includes the following steps:
步骤S2100、从训练数据集中调用单个训练样本,所述训练样本包括一个主播用户的多个属性数据项相对应的属性数据:Step S2100, calling a single training sample from the training data set, where the training sample includes attribute data corresponding to multiple attribute data items of an anchor user:
在对本申请的智能分类模型进行训练之前,预备一个训练数据集,所述训练数据集包括大量的训练样本,训练样本的数量以适于将模型训练至收敛状态为限。Before training the intelligent classification model of the present application, prepare a training data set, the training data set includes a large number of training samples, and the number of training samples is limited to be suitable for training the model to a convergent state.
所述的训练样本,由采集自各个主播用户的多个属性数据项的属性数据构成,具体数据项可由本领域技术人员根据模型所需实现的预测能力灵活确定。每个训练样本预先对应一个属性标签,以便用于监督模型的输出。The training samples are composed of attribute data collected from a plurality of attribute data items of each anchor user, and the specific data items can be flexibly determined by those skilled in the art according to the prediction capability required by the model. Each training sample corresponds to an attribute label in advance so that it can be used to supervise the output of the model.
步骤S2200、将所述训练样本中的属性数据进行向量化,获得样本向量:Step S2200, vectorize the attribute data in the training sample to obtain a sample vector:
对于每个即将输入智能分类模型以实施对模型的训练的训练样本,通过查询词表将其各个相关属性数据进行向量化,从而获得嵌入向量,作为样本向量。For each training sample that is about to be input into the intelligent classification model to implement the training of the model, each relevant attribute data is vectorized by querying the vocabulary, so as to obtain an embedding vector as a sample vector.
步骤S2300、将所述样本向量输入智能分类模型中进行语义提取和分类映射,获得分类预测出的属性标签:Step S2300, inputting the sample vector into the intelligent classification model to perform semantic extraction and classification mapping, and obtain the attribute label predicted by classification:
所述的样本向量被输入智能分类模型中进行处理。智能分类模型内置一个文本特征提取模型,用于对样本向量提取深层语义特征信息,实现对训练样本的表示学习。所述的文本特征提取模型可采用诸如Bert、TextCNN、LSTM等神经网络模型来实施。通过文本特征提取模型对样本向量提取深层语义特征信息后,获得相应的综合向量,该综合向量被进一步输入模型中的全连接层进行全连接,从而映射到预设的分类空间,由分类器进行分类而预测出相应的属性标签。所述分类空间包含多个预先给出的属性标签相对应的分类,当针对一个综合向量预测出各个分类的分类概率时,其中分类概率最大的分类所对应的属性标签,即为模型为所述的训练样本预测出的属性标签。The sample vector is input into the intelligent classification model for processing. The intelligent classification model has a built-in text feature extraction model, which is used to extract deep semantic feature information from sample vectors and realize the representation learning of training samples. The text feature extraction model can be implemented using neural network models such as Bert, TextCNN, and LSTM. After the deep semantic feature information is extracted from the sample vector by the text feature extraction model, the corresponding comprehensive vector is obtained, and the comprehensive vector is further input into the fully connected layer in the model for full connection, so as to map to the preset classification space, and the classifier performs Classification and predict the corresponding attribute labels. The classification space includes a plurality of classifications corresponding to the attribute labels given in advance. When the classification probability of each classification is predicted for a comprehensive vector, the attribute label corresponding to the classification with the largest classification probability is the model for the described classification. The attribute labels predicted from the training samples.
步骤S2400、根据所述训练样本相对应的属性标签计算智能分类模型预测出的属性标签的损失值:Step S2400: Calculate the loss value of the attribute label predicted by the intelligent classification model according to the attribute label corresponding to the training sample:
对于模型预测出的属性标签,可调用所述训练样本相对应的属性标签计算其模型损失值,由于模型采用了分类器来实现,因此,在计算损失值时,可采用交叉熵函数作为损失函数计算所述的损失值。For the attribute label predicted by the model, the attribute label corresponding to the training sample can be called to calculate the model loss value. Since the model is implemented by a classifier, the cross entropy function can be used as the loss function when calculating the loss value. Calculate the stated loss value.
步骤S2500、根据所述损失值对智能分类模型实施梯度更新,或继续迭代训练直至模型达至收敛状态:Step S2500, implement gradient update to the intelligent classification model according to the loss value, or continue iterative training until the model reaches a convergence state:
确定所述的损失值后,可将该损失值与一个用于识别模型是否达致收敛状态的预设阈值进行比较,当该损失值达致该预设阈值时,视为模型被训练至收敛状态,从而可以终止模型的训练,将模型投入用于预测主播用户的数据项子集相对应的属性标签。当该损失值未达到所述预设阈值时,此时模型并未收敛,于是,根据该损失值对模型实施梯度更新,通过反向传播修正模型的权重,使模型进一步逼近收敛,然后,从所述的训练数据集中调用下一训练样本,循环本实施例的各个步骤继续对模型实施迭代训练,直至模型被训练至收敛状态即可。After determining the loss value, the loss value can be compared with a preset threshold for identifying whether the model has reached a convergence state, and when the loss value reaches the preset threshold, it is considered that the model has been trained to converge. state, so that the training of the model can be terminated, and the model can be put into the attribute label corresponding to the subset of data items used to predict the anchor user. When the loss value does not reach the preset threshold, the model has not converged at this time. Therefore, the gradient update is performed on the model according to the loss value, and the weight of the model is corrected by backpropagation, so that the model is further approached and converged. Then, from The next training sample is called in the training data set, and the steps of this embodiment are repeated to continue to perform iterative training on the model until the model is trained to a convergent state.
本实施例中,提供本申请的智能分类模型的训练过程,根据该训练过程可知,原来分布于多个数据源的数据项通过数据定义模型进行集中调用后,被用于训练智能分类模型,使智能分类模型获得根据主播用户的数据项子集确定主播用户相对应的属性标签的能力,从而可以服务于各个数据项子集的属性标签的预测,形成一个对数据定义模板所指定的数据项的数据清洗机制,因而,通过数据定义模板可以实现对数据项子集的优选,从而提升了直播业务相对应的数据集的获取效率,并且由于智能分类模型的人工智能因素的存在,可以提升为直播业务匹配主播用户的数据项子集的精准度。In this embodiment, the training process of the intelligent classification model of the present application is provided. According to the training process, the data items originally distributed in multiple data sources are called centrally through the data definition model, and then used to train the intelligent classification model, so that the The intelligent classification model obtains the ability to determine the attribute label corresponding to the anchor user according to the data item subset of the anchor user, so that it can serve the prediction of the attribute label of each data item subset, and form a data item specified by the data definition template. Data cleaning mechanism, therefore, through the data definition template, the selection of data item subsets can be realized, thereby improving the acquisition efficiency of the data set corresponding to the live broadcast business, and due to the existence of the artificial intelligence factor of the intelligent classification model, it can be upgraded to live broadcast The accuracy with which the service matches the data item subset of the anchor user.
扩展的部分实施例中,所述步骤S1240、筛选出属性标签与所述操作项中的属性标签相匹配的主播用户数据项子集的步骤之后,包括如下步骤:In some extended embodiments, the step S1240, after the step of filtering out a subset of the anchor user data items whose attribute tags match the attribute tags in the operation items, includes the following steps:
步骤S1245、获取各个主播用户相对应确定的各个属性标签的热度数据,所述热度数据根据所述主播用户的直播间的用户行为数据统计确定:Step S1245: Acquire the popularity data of each attribute tag correspondingly determined by each anchor user, and the popularity data is statistically determined according to the user behavior data of the live broadcast room of the anchor user:
针对本申请中所采用的属性标签体系中的各个属性标签,可以预先形成表征各个属性标签的被访问热度的热度数据,通过该热度数据反映相应的属性标签的受欢迎程度。每个属性标签的热度数据可以根据携带该属性标签的主播用户被访问的次数进行统计确定,确定主播用户被用户访问的次数则可通过访问该主播用户的用户行为数据来统计确定,本申请后续的实施例对此将进一步示例,此处暂按。For each attribute tag in the attribute tag system adopted in this application, popularity data representing the visited popularity of each attribute tag can be pre-formed, and the popularity of the corresponding attribute tag can be reflected through the popularity data. The popularity data of each attribute tag can be statistically determined according to the number of visits of the anchor user carrying the attribute tag, and the number of times the anchor user has been visited by the user can be determined by accessing the user behavior data of the anchor user. This will be further exemplified by the embodiment of , which will be temporarily clicked here.
在存在各个属性标签的热度数据的基础上,为各个主播用户关联其属性标签相对应的热度数据,以用于排序。On the basis of the popularity data of each attribute tag, associate the popularity data corresponding to the attribute tag for each anchor user for sorting.
步骤S1246、根据所述热度数据对各个主播用户的数据项子集进行排序,以使后续生成的数据集保持相应的排序:Step S1246, sorting the data item subsets of each anchor user according to the popularity data, so that the subsequently generated data sets maintain the corresponding sorting:
继而,根据所述热度数据,对各个主播用户的数据项子集进行自高到低的排序,使热度越高排序越靠前,从而根据这些数据项子集构造出的数据集中,实际上完成了对各个相应的主播用户的热度排序。Then, according to the popularity data, the data item subsets of each anchor user are sorted from high to low, so that the higher the popularity, the higher the sorting, so that the data set constructed according to these data item subsets is actually completed. The popularity of each corresponding anchor user is sorted.
本实施例进一步完善了对直播业务所需的数据集中各个主播用户的排序关系的处理,使得直播业务获得所述的数据集进行解析展示后,在终端设备的图形用户界面中,可以有序展示各个主播用户,使主播用户的排列顺序与直播业务所指定的属性标签之间建立起关联性,从而突出直播业务的功能专注性。This embodiment further improves the processing of the sorting relationship of each anchor user in the data set required by the live broadcast service, so that after the live broadcast service obtains the data set for analysis and display, it can be displayed in an orderly manner on the graphical user interface of the terminal device Each anchor user establishes a correlation between the arrangement order of the anchor users and the attribute labels specified by the live broadcast service, thereby highlighting the functional focus of the live broadcast service.
请参阅图6,扩展的部分实施例中,所述步骤S1245、获取各个主播用户相对应确定的各个属性标签的热度数据的步骤之前,包括如下步骤:Referring to FIG. 6, in some extended embodiments, the step S1245, before the step of acquiring the popularity data of each attribute tag correspondingly determined by each anchor user, includes the following steps:
步骤S1241、获取关联于每一主播用户的用户行为数据,所述用户行为数据对应该主播用户的直播间被用户关注、被用户送礼、被用户进入相对应的访问事件所产生的描述数据:Step S1241, obtain the user behavior data associated with each anchor user, the user behavior data corresponds to the description data generated by the user's attention, the user's gift, and the user's entry into the corresponding access event in the anchor user's live broadcast room:
每个主播用户的直播间,当其被网络直播平台用户访问时,将产生相应的用户行为数据,例如,当平台用户进入直播间时,或向主播用户送礼时,或分享直播间时,便会触发相应的访问事件,而在后台产生相应的用户行为记录并上传到服务器。因此,可以对这些用户行为数据进行数据挖掘以便获得更高语义的信息即所述的热度数据服务于本申请的数据定义模板相对应的数据集的优化。The live broadcast room of each anchor user will generate corresponding user behavior data when it is accessed by the users of the live broadcast platform. Corresponding access events will be triggered, and corresponding user behavior records will be generated in the background and uploaded to the server. Therefore, data mining can be performed on these user behavior data so as to obtain higher semantic information, that is, the popularity data serves to optimize the data set corresponding to the data definition template of the present application.
步骤S1242、对所述用户行为数据进行统计,获得各个主播用户相对应的用户热度,所述用户热度为多种所述的访问事件的数量的加权统计结果:Step S1242: Counting the user behavior data to obtain user popularity corresponding to each anchor user, where the user popularity is a weighted statistical result of the number of various access events:
获得所述的用户行为数据后,可以根据这些用户行为数据所对应的访问事件的数量,逐一针对各个主播用户进行统计,以统计出各个主播用户相对应的用户热度。推荐的实施方式中,采用预设的加权公式对不同访问事件的数量进行统计,例如,对于主播用户被用户关注、被用户送礼、被用户进入这三个不同访问事件的统计数量,分别关联不同权重,将权重与统计数量对应相乘后相加,即可获得加权统计结果,作为一个主播用户的热度。加权统计公式示例如下:After obtaining the user behavior data, statistics can be performed for each anchor user one by one according to the number of access events corresponding to the user behavior data, so as to calculate the user popularity corresponding to each anchor user. In the recommended implementation, the preset weighting formula is used to count the number of different access events. For example, for the statistics of the three different access events of the anchor user being followed by the user, being given a gift by the user, and being entered by the user, the correlation is different. Weight, multiply the weight by the corresponding number of statistics and add them together to obtain the weighted statistical result, which is used as the popularity of an anchor user. An example of a weighted statistical formula is as follows:
Si=α×Like+β×Present+γ×EnterS i =α×Like+β×Present+γ×Enter
其中,Si表示单个主播用户的用户热度,Like、Present、Enter分别表示不同访问事件,α、β、γ分别表示不同访问事件各自对应的权重,其取值可由本领域技术人员按需确定。Among them, S i represents the user popularity of a single anchor user, Like, Present, and Enter represent different access events, respectively, α, β, γ represent the respective weights corresponding to different access events, and their values can be determined by those skilled in the art as needed.
步骤S1243、对应预设的属性标签体系中的各个属性标签,将携带所述属性标签的主播用户的用户热度进行累加,获得该属性标签相对应的累加热度:Step S1243: Corresponding to each attribute label in the preset attribute label system, accumulate the user popularity of the anchor user who carries the attribute label, and obtain the accumulated popularity corresponding to the attribute label:
由于每个主播用户均可被映射出一个或多个属于预设的属性标签体系中的属性标签,因而,每个主播用户的用户热度,便视为其所携带的各个属性标签对应该主播用户所获得的用户热度,据此,对于所述属性标签体系中的各个属性标签而言,可以将其对应各个主播用户的用户热度进行统计,来获得各个属性标签相对应的累加热度。也即,属性标签体系中的每个属性标签,其对应的累加热度Sumj,为其在每个主播用户处获得的用户热度的加和结果。Since each anchor user can be mapped to one or more attribute tags belonging to the preset attribute tag system, the user popularity of each anchor user is regarded as each attribute tag carried by it corresponds to the anchor user According to the obtained user popularity, for each attribute tag in the attribute tag system, the user popularity corresponding to each anchor user can be counted to obtain the cumulative popularity corresponding to each attribute tag. That is, for each attribute tag in the attribute tag system, its corresponding cumulative popularity Sum j is the summation result of the user popularity obtained from each anchor user.
步骤S1244、根据所述属性标签体系中的各个属性标签的累加热度进行归一化,获得各个属性标签相对应的热度数据:Step S1244: Normalize the accumulated heat of each attribute label in the attribute label system to obtain heat data corresponding to each attribute label:
经过前述步骤已经确定了属性标签体系中各个属性标签相对应的累加热度Sumj,据此,可根据以下公式进行归一化,为各个属性标签的累加热度提供统一度量,从而确定出各个属性标签相对应的热度数据Hotj:After the above steps, the cumulative heating temperature Sum j corresponding to each attribute label in the attribute label system has been determined. Accordingly, it can be normalized according to the following formula to provide a unified measure for the cumulative heating temperature of each attribute label, so as to determine each attribute label. Corresponding heat data Hot j :
也即,对于一个属性标签而言,其热度数据为其对应的累加热度除以属性标签体系中所有属性标签的累加热度的总和之积。由此,各个属性标签的热度数据便可在同一度量基准上进行比较排序。That is, for an attribute tag, its heat data is the product of its corresponding accumulated heat divided by the sum of the accumulated heat of all attribute tags in the attribute tag system. In this way, the popularity data of each attribute tag can be compared and sorted on the same metric benchmark.
本实施例为实现对根据数据定义模板确定的数据集的优化,预先根据主播用户相对应的用户行为数据为属性标签体系中的各个属性标签确定了热度数据,所述热度数据的确定,参考了携带属性标签的主播用户的受欢迎程度,因而,为直播业务所优化的数据集中,其根据属性标签对各个优选出的主播用户进行排序,排序结果更能代表主播用户的流量效应,从而可以提升直播业务所需的数据的匹配精准程度。In this embodiment, in order to optimize the data set determined according to the data definition template, the popularity data is determined in advance for each attribute tag in the attribute tag system according to the user behavior data corresponding to the anchor user. The determination of the popularity data refers to The popularity of the anchor users who carry the attribute tags. Therefore, in the data set optimized for the live broadcast service, the selected anchor users are sorted according to the attribute tags. The sorting result can better represent the traffic effect of the anchor users, which can improve the The matching accuracy of the data required by the live broadcast business.
扩展的部分实施例中,所述步骤S1100、获取直播业务相对应的数据定义模板的步骤之后,包括如下步骤:In some extended embodiments, the step S1100, after the step of acquiring the data definition template corresponding to the live broadcast service, includes the following steps:
步骤S1101、根据定时任务触发而将直播业务相对应的数据定义模板中指定数据项从其相应的数据源中调度到二级缓存中以供调用:Step S1101, according to the timing task trigger, schedule the specified data item in the data definition template corresponding to the live broadcast service from its corresponding data source to the secondary cache for invocation:
服务器可以预置定时任务,例如采用Sping的定时器Schedule技术定时触发更新任务,响应于定时触发任务,将所述直播业务相对应的数据定义模板中指定的各个数据项,从其相应的多个数据源中调度到二级缓存中,以便在二级缓存中对这些数据项进行更为高效的操作,例如执行所述步骤S1200的匹配操作等。推荐的实施例中,二级缓存可以采用Redis技术实现,通过键值对存储各个主播用户的数据项,例如以主播用户的UID为键域,以其各个数据项为值域进行存储。The server may preset timing tasks, for example, using Sping's timer Schedule technology to regularly trigger update tasks, and in response to timing trigger tasks, change each data item specified in the data definition template corresponding to the live broadcast service from its corresponding multiple The data source is dispatched to the second-level cache, so that more efficient operations are performed on these data items in the second-level cache, for example, the matching operation in step S1200 is performed. In the recommended embodiment, the secondary cache can be implemented using Redis technology, and the data items of each anchor user are stored through key-value pairs. For example, the UID of the anchor user is used as the key field, and each data item is stored as the value field.
步骤S1102、将根据二级缓存中的数据源的数据项执行操作所获得的数据集存储于一级缓存中:Step S1102: Store the data set obtained by performing the operation on the data item of the data source in the second-level cache in the first-level cache:
为了进一步提升数据调度效率,缩短数据访问响应时长,对于根据步骤S1200获得的数据集,可以将其存储于相对于二级缓存更为高效的一级缓存中,后续对数据集的调用、更新,均可在一级缓存中操作。推荐的变通实施例中,可以采用Guava Cache的技术为支撑实现一级缓存以实现高效存取的效果。In order to further improve the data scheduling efficiency and shorten the data access response time, the data set obtained according to step S1200 can be stored in the first-level cache, which is more efficient than the second-level cache, and subsequent calls and updates to the data set can Both operate in the L1 cache. In the recommended alternative embodiment, the technology of Guava Cache can be used as the support to implement the first-level cache to achieve the effect of efficient access.
本实施例中,考虑到分布存储的数据项占用内存空间较多而数据逻辑更为底层,因而,将其置于二级缓存中进行操作,同时考虑到根据数据项所构造出的数据集相对高频调用,因而将其置于一级缓存中进行操作,综合兼顾了整个业务逻辑在不同阶段的实现效率的均衡,能够提升系统运行效率及其鲁棒性,保证各个终端设备高效访问各个直播业务相对应的数据集,而又能确保数据集的及时更新,且实现与各种不同数据源中的数据项相对应的底层操作的互相解耦。In this embodiment, considering that the distributed storage data items occupy more memory space and the data logic is lower level, the data items are placed in the second-level cache for operation, and the data sets constructed according to the data items are relatively It is called frequently, so it is placed in the first-level cache for operation, which comprehensively takes into account the balance of the realization efficiency of the entire business logic at different stages, which can improve the operating efficiency and robustness of the system, and ensure that each terminal device can efficiently access each live broadcast. The data set corresponding to the business can ensure the timely update of the data set, and realize the mutual decoupling of the underlying operations corresponding to the data items in various data sources.
扩展的部分实施例中,所述步骤S1100、获取直播业务相对应的数据定义模板的步骤之前,包括如下步骤:In some extended embodiments, the step S1100, before the step of acquiring the data definition template corresponding to the live broadcast service, includes the following steps:
步骤S1000、运行数据源适配服务,向外部数据源开放接口,以实现外部数据源接入而参与为直播业务提供所述的数据集的数据:Step S1000, running a data source adaptation service, opening an interface to an external data source, so as to realize the access of the external data source and participate in providing the data of the data set for the live broadcast service:
为了扩展网络直播平台对数据源的兼容性,可以在服务器中运行一个数据源适配服务,通过该服务支持不同的外部数据源访问协议,例如PB、HTTP、YYP等,向外部数据源开放相应的互访接口,从而使该数据源实现对不同数据库引擎的互访的支持,使得各个不同的数据源可以预先调用这些互访接口接入实现本申请的技术方案的系统中,以便为本申请的数据定义模板获取其数据项提供便利。In order to expand the compatibility of the webcast platform for data sources, a data source adaptation service can be run in the server, through which different external data source access protocols, such as PB, HTTP, YYP, etc., can be supported, and the corresponding data sources can be opened to external data sources. The mutual access interface, so that this data source realizes the support for mutual access of different database engines, so that each different data source can call these mutual access interfaces in advance to access the system that realizes the technical solution of the present application, so that the present application The data definition template for fetching its data items facilitates.
本实施例进一步提升了数据定义模板的数据获取能力,使直播业务可以通过其数据定义模板进一步实现对外部数据的调用,从而丰富直播业务的信息内容以及通过外部数据提升数据匹配的精准度,也使实现本申请的技术方案的系统的兼容能力大大增强。This embodiment further improves the data acquisition capability of the data definition template, so that the live broadcast service can further call external data through its data definition template, thereby enriching the information content of the live broadcast service and improving the accuracy of data matching through external data. The compatibility of the system implementing the technical solution of the present application is greatly enhanced.
请参阅图7,适应本申请的目的之一而提供的一种直播业务数据处理装置,包括模板调用模块1100、数据加工模块1200,以及数据推送模块1300,其中:所述模板调用模块1100,用于获取直播业务相对应的数据定义模板,所述数据定义模板包含所述直播业务所需调用的分布于多个数据源的数据项和用于对该些数据项执行预定义操作的操作项,所述数据项包含主播用户的属性数据项,所述操作项包括一个或多个属性标签;所述数据加工模块1200,用于根据数据定义模板中的操作项,对多个数据源中相应的所述数据项执行所述操作项相对应的预定义操作,确定出与所述操作项中的属性标签相对应的数据集,所述数据集包括多个主播用户相对应的数据项子集;所述数据推送模块1300,用于响应终端设备对直播业务的数据调用指令,向该终端设备推送该直播业务相应的数据集。Please refer to FIG. 7 , a live broadcast service data processing device provided for one of the purposes of this application includes a
深化的部分实施例中,所述数据加工模块1200,包括:模板解析单元,用于解析所述数据定义模板,确定出其中的各个数据源中的数据项及操作项;子集加工单元,用于应用分布式锁调用获取所述各个数据源中的所述数据项,根据所述数据项关联于相同主播用户而确定出各个主播用户的数据项子集;标签确定单元,用于采用预先训练至收敛状态的智能分类模型,根据各个数据项子集,确定其相应的各个主播用户的属性标签;主播筛选单元,用于筛选出属性标签与所述操作项中的属性标签相匹配的主播用户数据项子集;格式统一单元,用于对各个主播用户的数据项子集进行格式化,构造为标准化格式的数据集。In some further embodiments, the
扩展的部分实施例中,所述智能分类模型被置于训练模块中预先迭代训练至收敛状态,所述训练模块包括:样本调用单元,用于从训练数据集中调用单个训练样本,所述训练样本包括一个主播用户的多个属性数据项相对应的属性数据;向量编码单元,用于将所述训练样本中的属性数据进行向量化,获得样本向量;分类映射单元,用于将所述样本向量输入智能分类模型中进行语义提取和分类映射,获得分类预测出的属性标签;损失计算单元,用于根据所述训练样本相对应的属性标签计算智能分类模型预测出的属性标签的损失值;迭代决策单元,用于根据所述损失值对智能分类模型实施梯度更新,或继续迭代训练直至模型达至收敛状态。In some extended embodiments, the intelligent classification model is placed in a training module to be pre-iteratively trained to a convergent state, and the training module includes: a sample calling unit for calling a single training sample from a training data set, the training sample Including attribute data corresponding to multiple attribute data items of an anchor user; a vector encoding unit for vectorizing the attribute data in the training sample to obtain a sample vector; a classification mapping unit for converting the sample vector Input the intelligent classification model to perform semantic extraction and classification mapping, and obtain the attribute labels predicted by the classification; the loss calculation unit is used to calculate the loss value of the attribute labels predicted by the intelligent classification model according to the attribute labels corresponding to the training samples; iteration A decision-making unit, configured to implement gradient update on the intelligent classification model according to the loss value, or continue iterative training until the model reaches a convergence state.
扩展的部分实施例中,所述数据加工模块1200包括后于所述主播筛选单元运行的如下单元:热度调用单元,用于获取各个主播用户相对应确定的各个属性标签的热度数据,所述热度数据根据所述主播用户的直播间的用户行为数据统计确定;排序处理单元,用于根据所述热度数据对各个主播用户的数据项子集进行排序,以使后续生成的数据集保持相应的排序。In some extended embodiments, the
扩展的部分实施例中,所述数据加工模块1200包括先于所述热度调用单元运行的如下单元:数据描述单元,用于获取关联于每一主播用户的用户行为数据,所述用户行为数据对应该主播用户的直播间被用户关注、被用户送礼、被用户进入相对应的访问事件所产生的描述数据;数据统计单元,用于对所述用户行为数据进行统计,获得各个主播用户相对应的用户热度,所述用户热度为多种所述的访问事件的数量的加权统计结果;热度累加单元,用于对应预设的属性标签体系中的各个属性标签,将携带所述属性标签的主播用户的用户热度进行累加,获得该属性标签相对应的累加热度;热度确定单元,用于根据所述属性标签体系中的各个属性标签的累加热度进行归一化,获得各个属性标签相对应的热度数据。In some extended embodiments, the
扩展的部分实施例中,本申请的直播业务数据处理装置,还包括后于所述模板调用模块1100运行的如下模块:二级缓存模块,用于根据定时任务触发而将直播业务相对应的数据定义模板中指定数据项从其相应的数据源中调度到二级缓存中以供调用;一级缓存模块,用于将根据二级缓存中的数据源的数据项执行操作所获得的数据集存储于一级缓存中。In some extended embodiments, the live broadcast service data processing apparatus of the present application further includes the following modules that are run after the template calling module 1100: a second-level cache module, which is used for triggering the data corresponding to the live broadcast service according to the timing task. The specified data item in the definition template is dispatched from its corresponding data source to the second-level cache for invocation; the first-level cache module is used to store the data set obtained by performing operations on the data items of the data source in the second-level cache in the first level cache.
扩展的部分实施例中,本申请的直播业务数据处理装置,还包括先于所述模板调用模块1100运行的数据适配模块,用于运行数据源适配服务,向外部数据源开放接口,以实现外部数据源接入而参与为直播业务提供所述的数据集的数据。In some extended embodiments, the live broadcast service data processing apparatus of the present application further includes a data adaptation module that runs before the
为解决上述技术问题,本申请实施例还提供计算机设备。如图8所示,计算机设备的内部结构示意图。该计算机设备包括通过系统总线连接的处理器、计算机可读存储介质、存储器和网络接口。其中,该计算机设备的计算机可读存储介质存储有操作系统、数据库和计算机可读指令,数据库中可存储有控件信息序列,该计算机可读指令被处理器执行时,可使得处理器实现一种直播业务数据处理方法。该计算机设备的处理器用于提供计算和控制能力,支撑整个计算机设备的运行。该计算机设备的存储器中可存储有计算机可读指令,该计算机可读指令被处理器执行时,可使得处理器执行本申请的直播业务数据处理方法。该计算机设备的网络接口用于与终端连接通信。本领域技术人员可以理解,图8中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。To solve the above technical problems, the embodiments of the present application also provide computer equipment. As shown in FIG. 8 , a schematic diagram of the internal structure of the computer equipment. The computer device includes a processor, a computer-readable storage medium, a memory, and a network interface connected by a system bus. Wherein, the computer-readable storage medium of the computer device stores an operating system, a database and computer-readable instructions, the database may store a control information sequence, and when the computer-readable instructions are executed by the processor, the processor can be made to implement a A data processing method for live broadcast services. The processor of the computer device is used to provide computing and control capabilities and support the operation of the entire computer device. Computer-readable instructions may be stored in the memory of the computer device, and when the computer-readable instructions are executed by the processor, the processor may execute the method for processing live broadcast service data of the present application. The network interface of the computer equipment is used for communication with the terminal connection. Those skilled in the art can understand that the structure shown in FIG. 8 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied. Include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
本实施方式中处理器用于执行图7中的各个模块及其子模块的具体功能,存储器存储有执行上述模块或子模块所需的程序代码和各类数据。网络接口用于向用户终端或服务器之间的数据传输。本实施方式中的存储器存储有本申请的直播业务数据处理装置中执行所有模块/子模块所需的程序代码及数据,服务器能够调用服务器的程序代码及数据执行所有子模块的功能。In this embodiment, the processor is used to execute the specific functions of each module and its sub-modules in FIG. 7 , and the memory stores program codes and various types of data required to execute the above-mentioned modules or sub-modules. The network interface is used for data transmission between user terminals or servers. The memory in this embodiment stores the program codes and data required to execute all modules/sub-modules in the live broadcast service data processing apparatus of the present application, and the server can call the server's program codes and data to execute the functions of all sub-modules.
本申请还提供一种存储有计算机可读指令的存储介质,计算机可读指令被一个或多个处理器执行时,使得一个或多个处理器执行本申请任一实施例的直播业务数据处理方法的步骤。The present application further provides a storage medium storing computer-readable instructions. When the computer-readable instructions are executed by one or more processors, the one or more processors execute the method for processing live broadcast service data according to any embodiment of the present application. A step of.
本申请还提供一种计算机程序产品,包括计算机程序/指令,该计算机程序/指令被一个或多个处理器执行时实现本申请任一实施例所述方法的步骤。The present application also provides a computer program product, including computer programs/instructions, when the computer program/instructions are executed by one or more processors, to implement the steps of the method described in any embodiment of the present application.
本领域普通技术人员可以理解实现本申请上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,该计算机程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,前述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等计算机可读存储介质,或随机存储记忆体(Random Access Memory,RAM)等。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above-mentioned embodiments of the present application can be implemented by instructing relevant hardware through a computer program, and the computer program can be stored in a computer-readable storage medium. When the program is executed, it may include the flow of the embodiments of the above-mentioned methods. The aforementioned storage medium may be a computer-readable storage medium such as a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM).
综上所述,本申请通过数据定义模板实现了多直播业务调用多数据源的数据项的标准化操作,避免数据熵增,提升了系统效率,节省了系统开销。To sum up, the present application realizes the standardized operation of calling data items of multiple data sources by multiple live broadcast services through the data definition template, avoids the increase of data entropy, improves system efficiency, and saves system overhead.
本技术领域技术人员可以理解,本申请中已经讨论过的各种操作、方法、流程中的步骤、措施、方案可以被交替、更改、组合或删除。进一步地,具有本申请中已经讨论过的各种操作、方法、流程中的其他步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。进一步地,现有技术中的具有与本申请中公开的各种操作、方法、流程中的步骤、措施、方案也可以被交替、更改、重排、分解、组合或删除。Those skilled in the art can understand that various operations, methods, steps, measures, and solutions in the process discussed in this application may be alternated, modified, combined or deleted. Further, other steps, measures, and solutions in the various operations, methods, and processes that have been discussed in this application may also be alternated, modified, rearranged, decomposed, combined, or deleted. Further, steps, measures and solutions in the prior art with various operations, methods, and processes disclosed in this application may also be alternated, modified, rearranged, decomposed, combined or deleted.
以上所述仅是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。The above are only part of the embodiments of the present application. It should be pointed out that for those skilled in the art, without departing from the principles of the present application, several improvements and modifications can also be made. It should be regarded as the protection scope of this application.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210345862.2A CN114861038A (en) | 2022-03-31 | 2022-03-31 | Live broadcast service data processing method and device, equipment and medium thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210345862.2A CN114861038A (en) | 2022-03-31 | 2022-03-31 | Live broadcast service data processing method and device, equipment and medium thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114861038A true CN114861038A (en) | 2022-08-05 |
Family
ID=82630152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210345862.2A Pending CN114861038A (en) | 2022-03-31 | 2022-03-31 | Live broadcast service data processing method and device, equipment and medium thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114861038A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116192815A (en) * | 2023-04-27 | 2023-05-30 | 工福(北京)科技发展有限公司 | Online live broadcast and voice interaction job conference management method for staff members |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130091164A1 (en) * | 2011-10-11 | 2013-04-11 | Microsoft Corporation | Recommending data based on user and data attributes |
CN108052591A (en) * | 2017-12-11 | 2018-05-18 | 广东欧珀移动通信有限公司 | Information recommendation method, device, mobile terminal and computer-readable storage medium |
CN110971918A (en) * | 2018-09-28 | 2020-04-07 | 广州虎牙信息科技有限公司 | Live broadcast data sorting method, server and device |
US20200142981A1 (en) * | 2018-11-01 | 2020-05-07 | Oracle International Corporation | Validation of data values contained in responses from server systems |
WO2021000843A1 (en) * | 2019-07-04 | 2021-01-07 | 广州虎牙科技有限公司 | Method for processing live broadcast data, system, electronic device, and storage medium |
CN113505275A (en) * | 2021-07-30 | 2021-10-15 | 北京中网易企秀科技有限公司 | Subscription processing method and device for multimedia object and electronic equipment |
CN113608737A (en) * | 2021-01-18 | 2021-11-05 | 腾讯科技(深圳)有限公司 | Page generation method, device, equipment and medium |
CN114025176A (en) * | 2021-08-24 | 2022-02-08 | 广州方硅信息技术有限公司 | Anchor recommendation method and device, electronic equipment and storage medium |
CN114048258A (en) * | 2021-11-12 | 2022-02-15 | 广州方硅信息技术有限公司 | Live broadcast data scheduling and accessing method and device, equipment, medium and product thereof |
WO2022037086A1 (en) * | 2020-08-18 | 2022-02-24 | 广州华多网络科技有限公司 | Network live broadcast transaction order execution method and apparatus therefor, network live broadcast transaction order control method and apparatus therefor, and device and medium |
WO2022041734A1 (en) * | 2020-08-24 | 2022-03-03 | 广州华多网络科技有限公司 | Cooperative control method and apparatus for multiple livestreaming rooms, device, and storage medium |
-
2022
- 2022-03-31 CN CN202210345862.2A patent/CN114861038A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130091164A1 (en) * | 2011-10-11 | 2013-04-11 | Microsoft Corporation | Recommending data based on user and data attributes |
CN108052591A (en) * | 2017-12-11 | 2018-05-18 | 广东欧珀移动通信有限公司 | Information recommendation method, device, mobile terminal and computer-readable storage medium |
CN110971918A (en) * | 2018-09-28 | 2020-04-07 | 广州虎牙信息科技有限公司 | Live broadcast data sorting method, server and device |
US20200142981A1 (en) * | 2018-11-01 | 2020-05-07 | Oracle International Corporation | Validation of data values contained in responses from server systems |
WO2021000843A1 (en) * | 2019-07-04 | 2021-01-07 | 广州虎牙科技有限公司 | Method for processing live broadcast data, system, electronic device, and storage medium |
WO2022037086A1 (en) * | 2020-08-18 | 2022-02-24 | 广州华多网络科技有限公司 | Network live broadcast transaction order execution method and apparatus therefor, network live broadcast transaction order control method and apparatus therefor, and device and medium |
WO2022041734A1 (en) * | 2020-08-24 | 2022-03-03 | 广州华多网络科技有限公司 | Cooperative control method and apparatus for multiple livestreaming rooms, device, and storage medium |
CN113608737A (en) * | 2021-01-18 | 2021-11-05 | 腾讯科技(深圳)有限公司 | Page generation method, device, equipment and medium |
CN113505275A (en) * | 2021-07-30 | 2021-10-15 | 北京中网易企秀科技有限公司 | Subscription processing method and device for multimedia object and electronic equipment |
CN114025176A (en) * | 2021-08-24 | 2022-02-08 | 广州方硅信息技术有限公司 | Anchor recommendation method and device, electronic equipment and storage medium |
CN114048258A (en) * | 2021-11-12 | 2022-02-15 | 广州方硅信息技术有限公司 | Live broadcast data scheduling and accessing method and device, equipment, medium and product thereof |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116192815A (en) * | 2023-04-27 | 2023-05-30 | 工福(北京)科技发展有限公司 | Online live broadcast and voice interaction job conference management method for staff members |
CN116192815B (en) * | 2023-04-27 | 2023-08-01 | 工福(北京)科技发展有限公司 | Online live broadcast and voice interaction job conference management method for staff members |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12400081B2 (en) | Named entity recognition method and apparatus, device, and storage medium | |
US20230102337A1 (en) | Method and apparatus for training recommendation model, computer device, and storage medium | |
US12086548B2 (en) | Event extraction from documents with co-reference | |
US20220100772A1 (en) | Context-sensitive linking of entities to private databases | |
US10496452B2 (en) | Natural language interface to web API | |
CN110032632A (en) | Intelligent customer service answering method, device and storage medium based on text similarity | |
US20230386238A1 (en) | Data processing method and apparatus, computer device, and storage medium | |
CN114328807A (en) | A text processing method, device, device and storage medium | |
CN114912433A (en) | Text-level multi-label classification method, device, electronic device, and storage medium | |
CN114818674A (en) | Product title keyword extraction method and device, equipment, medium and product | |
CN114708539A (en) | Image type identification method and device, equipment, medium and product thereof | |
US20220100967A1 (en) | Lifecycle management for customized natural language processing | |
CN107832426A (en) | A kind of APP recommendation method and system based on using sequence context | |
CN113887237A (en) | Slot position prediction method and device for multi-intention text and computer equipment | |
CN114218426A (en) | Music video recommendation method and device, equipment, medium and product therefor | |
CN114663155A (en) | Advertisement putting and selecting method and device, equipment, medium and product thereof | |
CN114663164A (en) | E-commerce site promotion configuration method and its device, equipment, medium and product | |
CN115131052A (en) | A data processing method, computer equipment and storage medium | |
CN106250391A (en) | A kind of API based on service aggregating with function information recommends method | |
KR20250030760A (en) | Method for generating image in consideration of context of conversation | |
CN116881462A (en) | Text data processing, text representation and text clustering method and equipment | |
CN114861038A (en) | Live broadcast service data processing method and device, equipment and medium thereof | |
CN115129902A (en) | Media data processing method, device, equipment and storage medium | |
CN117493013A (en) | Prompt text generation method, device, equipment and medium thereof | |
US12136413B1 (en) | Domain-specific parameter pre-fixes for tuning automatic speech recognition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |