CN114780830A - Content recommendation method, device, electronic device and storage medium - Google Patents
Content recommendation method, device, electronic device and storage medium Download PDFInfo
- Publication number
- CN114780830A CN114780830A CN202210302023.2A CN202210302023A CN114780830A CN 114780830 A CN114780830 A CN 114780830A CN 202210302023 A CN202210302023 A CN 202210302023A CN 114780830 A CN114780830 A CN 114780830A
- Authority
- CN
- China
- Prior art keywords
- user
- content
- recommended
- determining
- time range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9535—Search customisation based on user profiles and personalisation
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9538—Presentation of query results
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
Landscapes
- Engineering & Computer Science (AREA)
- Databases & Information Systems (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
技术领域technical field
本申请涉及云计算、互联网大数据技术领域,尤其涉及一种内容推荐方法、装置、电子设备及存储介质。The present application relates to the technical fields of cloud computing and Internet big data, and in particular, to a content recommendation method, device, electronic device and storage medium.
背景技术Background technique
随着网络技术和移动通信技术的发展,人们越来越习惯通过互联网获取各种信息,满足日常生活的需要。由此,很多内容发布平台应运而生。With the development of network technology and mobile communication technology, people are more and more accustomed to obtaining various information through the Internet to meet the needs of daily life. As a result, many content publishing platforms have emerged.
内容发布平台通过获取到用户可能需要的信息,向用户进行推荐。目前,一般的内容发布平台主要通过用户的历史操作行为进行内容推送。然而,对于知识内容平台,可以获取到的用户历史操作行为较少,从而导致向用户推荐的内容与用户匹配度不高,影响内容推荐的效果。The content publishing platform recommends to users by acquiring information that users may need. At present, the general content publishing platform mainly pushes content through the user's historical operation behavior. However, for the knowledge content platform, there are few historical operation behaviors of users that can be obtained, so that the content recommended to users is not highly matched with the user, which affects the effect of content recommendation.
发明内容SUMMARY OF THE INVENTION
本申请提供了一种内容推荐方法、装置、电子设备及存储介质,以提高推荐内容与用户的匹配度,进而提升推荐效果。The present application provides a content recommendation method, device, electronic device, and storage medium, so as to improve the matching degree between the recommended content and the user, thereby improving the recommendation effect.
一方面,本申请提供了一种内容推荐方法,包括:On the one hand, the present application provides a content recommendation method, including:
获取用户的特征信息,根据特征信息确定用户的角色类型;Obtain the user's characteristic information, and determine the user's role type according to the characteristic information;
基于角色类型对应的数据召回方式,确定向用户推荐的第一推荐内容。Based on the data recall method corresponding to the role type, the first recommended content to be recommended to the user is determined.
可选地,特征信息包括第一时间范围的历史操作内容的内容数量,根据特征信息确定用户的角色类型,包括:Optionally, the characteristic information includes the content quantity of the historical operation content in the first time range, and the role type of the user is determined according to the characteristic information, including:
若内容数量超过预设的数量阈值,则将用户确定为第一角色类型的用户。If the quantity of content exceeds the preset quantity threshold, the user is determined as a user of the first role type.
可选地,基于角色类型对应的数据召回方式,确定向用户推荐的第一推荐内容,包括:Optionally, based on the data recall method corresponding to the role type, determine the first recommended content recommended to the user, including:
若用户为第一角色类型的用户,基于第一时间范围的历史操作内容,确定向用户推荐的第一推荐内容。If the user is a user of the first role type, the first recommended content to be recommended to the user is determined based on the historical operation content in the first time range.
可选地,基于第一时间范围的历史操作内容,确定向用户推荐的第一推荐内容,包括:Optionally, determining the first recommended content recommended to the user based on the historical operation content in the first time range, including:
确定第一时间范围的历史操作内容的内容属性,内容属性包括用户兴趣或用户需求;determining the content attribute of the historical operation content in the first time range, and the content attribute includes user interests or user needs;
基于内容属性,确定向用户推荐的第一推荐内容。Based on the content attribute, the first recommended content to be recommended to the user is determined.
可选地,确定第一时间范围的历史操作内容的内容属性,包括:Optionally, determining the content attribute of the historical operation content of the first time range, including:
若第一时间范围的历史操作内容满足预设条件,则确定内容属性为用户兴趣;If the historical operation content of the first time range satisfies the preset condition, the content attribute is determined to be the user's interest;
其中,预设条件包括以下至少一项:The preset conditions include at least one of the following:
第一时间范围的历史操作内容为用户的订阅内容;The historical operation content of the first time range is the user's subscription content;
第一时间范围的历史操作内容与用户的第二时间范围的历史操作内容之间的相似度超过第一相似度阈值;其中,第二时间范围基于第一时间范围确定;The similarity between the historical operation content of the first time range and the user's historical operation content of the second time range exceeds a first similarity threshold; wherein the second time range is determined based on the first time range;
第一时间范围的历史操作内容与用户对应的角色类型的相关度不超过相关度阈值。The correlation between the historical operation content in the first time range and the role type corresponding to the user does not exceed the correlation threshold.
可选地,基于内容属性,确定向用户推荐的第一推荐内容,包括:Optionally, based on the content attribute, determine the first recommended content recommended to the user, including:
若内容属性为用户兴趣,则基于用户的第三时间范围的历史操作内容,确定向用户推荐的第一推荐内容;If the content attribute is the user's interest, determining the first recommended content to be recommended to the user based on the user's historical operation content in the third time range;
若内容属性为用户需求,则基于用户的第四时间范围的历史操作内容,确定向用户推荐的第一推荐内容;If the content attribute is the user's requirement, determining the first recommended content to be recommended to the user based on the user's historical operation content in the fourth time range;
其中,第三时间范围大于第四时间范围。Wherein, the third time range is greater than the fourth time range.
可选地,根据特征信息确定用户的角色类型,包括:Optionally, determine the role type of the user according to the feature information, including:
若内容数量不超过预设的数量阈值,则将用户确定为第二角色类型的用户。If the quantity of the content does not exceed the preset quantity threshold, the user is determined as a user of the second role type.
可选地,基于角色类型对应的数据召回方式,确定向用户推荐的第一推荐内容,包括:Optionally, based on the data recall method corresponding to the role type, determine the first recommended content recommended to the user, including:
若用户为第二角色类型的用户,则基于用户的用户标签,确定向用户推荐的第一推荐内容。If the user is a user of the second role type, the first recommended content to be recommended to the user is determined based on the user tag of the user.
可选地,用户标签与用户所属的知识领域具有对应关系;或者用户标签包括用户所属的知识领域的下位知识领域对应的用户标签。Optionally, the user label has a corresponding relationship with the knowledge domain to which the user belongs; or the user label includes a user label corresponding to a lower knowledge domain of the knowledge domain to which the user belongs.
可选地,基于角色类型对应的数据召回方式,确定向用户推荐的第一推荐内容,包括:Optionally, based on the data recall method corresponding to the role type, determine the first recommended content recommended to the user, including:
基于角色类型对应的数据召回方式,确定角色类型对应的待推荐基础数据;Based on the data recall method corresponding to the role type, determine the basic data to be recommended corresponding to the role type;
将待推荐基础数据中的多个内容按照数据类别或者数据召回优先级中的至少一项进行排序,根据排序结果在多个内容中确定向用户推荐的第一推荐内容。The multiple contents in the basic data to be recommended are sorted according to at least one of the data category or the data recall priority, and the first recommended content to be recommended to the user is determined from the multiple contents according to the sorting result.
可选地,该方法还包括:Optionally, the method further includes:
基于用户的相关信息,确定向用户推荐的第二推荐内容;Determine the second recommended content recommended to the user based on the relevant information of the user;
其中,相关信息包括以下至少一项:The relevant information includes at least one of the following:
用户的订阅内容、用户的相似用户的历史操作内容、用户对应的行业信息;相似用户为与用户的相似度超过第二相似度阈值的用户。The user's subscription content, the user's similar user's historical operation content, and the user's corresponding industry information; the similar user is a user whose similarity with the user exceeds the second similarity threshold.
另一方面,本申请提供了一种内容推荐装置,包括:On the other hand, the present application provides a content recommendation device, comprising:
类型确定模块,用于获取用户的特征信息,根据特征信息确定用户的角色类型;The type determination module is used to obtain the characteristic information of the user, and determine the role type of the user according to the characteristic information;
内容推荐模块,用于基于角色类型对应的数据召回方式,确定向用户推荐的第一推荐内容。The content recommendation module is configured to determine the first recommended content to be recommended to the user based on the data recall method corresponding to the role type.
另一方面,本申请提供了一种电子设备,包括:On the other hand, the present application provides an electronic device, comprising:
至少一个处理器;以及at least one processor; and
与该至少一个处理器通信连接的存储器;其中,a memory communicatively coupled to the at least one processor; wherein,
该存储器存储有可被该至少一个处理器执行的指令,该指令被该至少一个处理器执行,以使该至少一个处理器能够执行本申请任一实施例中的方法。The memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform the method in any of the embodiments of the present application.
另一方面,本申请提供了一种存储有计算机指令的非瞬时计算机可读存储介质,该计算机指令用于使计算机执行本申请任一实施例中的方法。In another aspect, the present application provides a non-transitory computer-readable storage medium storing computer instructions for causing a computer to perform the method in any of the embodiments of the present application.
本申请提供了一种内容推荐方法、装置、电子设备及存储介质,根据特征信息确定用户的角色类型,基于角色类型对应的数据召回方式,确定向用户推荐的内容:对于第一角色类型的用户,由于历史操作内容数量较多,可以根据历史操作内容确定推荐内容;对于第二角色类型的用户,由于历史操作内容数量较少,根据用户标签确定推荐内容,可以避免在历史操作内容较少的情况下,推荐效果差的问题,如此可以提高推荐内容和用户的匹配度。进一步的,在根据历史操作内容确定推荐内容时,由于用户兴趣长期稳定,用户需求变化较快,因此,若内容属性为用户兴趣,则根据用户的较长时间的历史操作内容,确定推荐内容;若内容属性为用户需求,则根据用户的较短时间的历史操作内容,确定推荐内容,如此,可以进一步提高推荐内容和用户的匹配度,从而提升推荐效果。The present application provides a content recommendation method, device, electronic device, and storage medium. The user's role type is determined according to feature information, and the content recommended to the user is determined based on the data recall method corresponding to the role type: for users of the first role type , due to the large number of historical operation content, the recommended content can be determined according to the historical operation content; for users of the second role type, due to the small number of historical operation content, the recommended content is determined according to the user tag, which can avoid the need for historical operation content. In this case, the recommendation effect is poor, so that the matching degree between the recommended content and the user can be improved. Further, when the recommended content is determined according to the historical operation content, since the user's interest is stable for a long time and the user's demand changes rapidly, if the content attribute is the user's interest, the recommended content is determined according to the user's long-term historical operation content; If the content attribute is the user's requirement, the recommended content is determined according to the user's short-term historical operation content. In this way, the matching degree between the recommended content and the user can be further improved, thereby improving the recommendation effect.
应当理解,本部分所描述的内容并非旨在标识本申请的实施例的关键或重要特征,也不用于限制本申请的范围。本申请的其它特征将通过以下的说明书而变得容易理解。It should be understood that the content described in this section is not intended to identify key or critical features of the embodiments of the application, nor is it intended to limit the scope of the application. Other features of the present application will become readily understood from the following description.
附图说明Description of drawings
附图用于更好地理解本方案,不构成对本申请的限定。其中:The accompanying drawings are used for better understanding of the present solution, and do not constitute a limitation to the present application. in:
图1为本申请一实施例中内容推荐方法的系统架构的示意图;FIG. 1 is a schematic diagram of a system architecture of a content recommendation method in an embodiment of the present application;
图2为本申请一实施例中内容推荐方法的流程图;FIG. 2 is a flowchart of a content recommendation method in an embodiment of the present application;
图3为本申请一实施例中内容推荐方法的流程图;3 is a flowchart of a content recommendation method in an embodiment of the present application;
图4为本申请一实施例中内容推荐方法的示意图;4 is a schematic diagram of a content recommendation method in an embodiment of the present application;
图5为本申请一实施例中内容推荐装置的示意图;FIG. 5 is a schematic diagram of a content recommendation apparatus in an embodiment of the present application;
图6为用来实现本申请实施例的电子设备的框图。FIG. 6 is a block diagram of an electronic device used to implement an embodiment of the present application.
具体实施方式Detailed ways
以下结合附图对本申请的示范性实施例做出说明,其中包括本申请实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本申请的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。Exemplary embodiments of the present application are described below with reference to the accompanying drawings, which include various details of the embodiments of the present application to facilitate understanding, and should be considered as exemplary only. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the embodiments described herein can be made without departing from the scope and spirit of the present application. Also, descriptions of well-known functions and constructions are omitted from the following description for clarity and conciseness.
为了更清楚地展示本申请实施例中提供的内容推荐方法,首先介绍一下本申请实施例中提供的内容推荐方法的应用场景。In order to more clearly demonstrate the content recommendation method provided in the embodiment of the present application, an application scenario of the content recommendation method provided in the embodiment of the present application is first introduced.
本申请提供的内容推荐方法,可以应用到新闻资讯内容发布平台、专业知识内容发布平台、电子商务平台、社交媒体平台、企业内部供各部门员工获取相应信息的平台等各种内容发布平台的内容推荐中。可以通过内容发布平台的服务器获取平台用户的特征信息,根据特征信息确定用户的角色类型,基于角色类型对应的数据召回方式,确定推荐内容,并推荐给用户。The content recommendation method provided in this application can be applied to the content of various content publishing platforms, such as news information content publishing platforms, professional knowledge content publishing platforms, e-commerce platforms, social media platforms, and platforms within the enterprise for employees of various departments to obtain corresponding information. Recommended. The feature information of the platform user can be obtained through the server of the content publishing platform, the user's role type can be determined according to the feature information, and the recommended content can be determined and recommended to the user based on the data recall method corresponding to the role type.
图1为本申请一实施例中内容推荐方法的系统架构的示意图;如图1所示,内容发布平台的服务器获取平台用户的特征信息,根据各用户的特征信息确定各用户的角色类型,基于各角色类型对应的数据召回方式,确定向相应的用户推荐的内容,并发送到各用户的用户终端。1 is a schematic diagram of a system architecture of a content recommendation method in an embodiment of the application; as shown in FIG. 1 , a server of a content publishing platform acquires feature information of platform users, determines the role type of each user according to the feature information of each user, and determines the role type of each user based on The data recall method corresponding to each role type determines the content recommended to the corresponding user, and sends it to the user terminal of each user.
本申请实施例提供了一种内容推荐方法,图2是本申请一实施例的内容推荐方法的流程图,该方法可以应用于内容推荐装置,该装置可以部署于服务器或其它处理设备中。在一些可能的实现方式中,该方法还可以通过处理器调用存储器中存储的计算机可读指令的方式来实现。如图2所示,包括:An embodiment of the present application provides a content recommendation method. FIG. 2 is a flowchart of a content recommendation method according to an embodiment of the present application. The method can be applied to a content recommendation apparatus, and the apparatus can be deployed in a server or other processing device. In some possible implementations, the method may also be implemented by the processor invoking computer-readable instructions stored in the memory. As shown in Figure 2, including:
步骤S201,获取用户的特征信息,根据特征信息确定用户的角色类型。In step S201, characteristic information of the user is acquired, and the role type of the user is determined according to the characteristic information.
本申请实施例以服务器为执行主体进行介绍。服务器获取用户的特征信息,其中,特征信息可以是表征用户特有的属性的信息,包括但不限于用户的基础信息、职业类别、工作岗位特征、用户历史操作内容相关信息等。This embodiment of the present application introduces a server as an execution subject. The server obtains the user's feature information, where the feature information may be information that represents the user's unique attributes, including but not limited to the user's basic information, occupation category, job position characteristics, information related to the user's historical operation content, and the like.
获取用户的特征信息的具体方式可以是接收用户终端发送的特征信息,也可以是从预设数据库中根据用户的标识查询到的用户的特征信息,还可以是根据用户的历史操作行为,进行统计分析得到的特征信息,特征信息的获取方式可以根据特征信息的具体内容来确定,本申请对此不做限定。The specific method of acquiring the user's feature information may be receiving the feature information sent by the user terminal, or may be the user's feature information queried from a preset database according to the user's identity, or may be statistics based on the user's historical operation behavior. The characteristic information obtained by the analysis and the acquisition method of the characteristic information may be determined according to the specific content of the characteristic information, which is not limited in this application.
根据特征信息确定用户的角色类型的具体实现方式可以包括:服务器预先将特征信息与角色类型建立关联关系,根据特征信息和关联关系,可以得到用户的角色类型。另外,服务器还可以预先配置多种角色类型,获取到用户的特征信息之后,将特征信息分别与多种角色类型进行匹配计算,根据匹配结果,确定特征信息对应的角色类型。A specific implementation manner of determining the user's role type according to the feature information may include: the server establishes an association relationship between the feature information and the role type in advance, and can obtain the user's role type according to the feature information and the association relationship. In addition, the server can also pre-configure multiple role types, and after acquiring the user's feature information, the feature information is matched and calculated with multiple role types respectively, and the character type corresponding to the feature information is determined according to the matching result.
其中,角色类型可以是根据多个用户的特征信息预先划分的类型。例如,可以根据用户的工作岗位特征,将用户划分为研发、销售、产品、运营等不同的角色类型。The role type may be a type that is pre-divided according to the characteristic information of multiple users. For example, users can be divided into different role types such as R&D, sales, products, and operations according to their job characteristics.
步骤S202,基于角色类型对应的数据召回方式,确定向用户推荐的第一推荐内容。Step S202: Determine the first recommended content to be recommended to the user based on the data recall method corresponding to the role type.
预先配置角色类型和数据召回方式之间的关联关系,确定了用户的角色类型之后,根据角色类型和关联关系,可以得到对应的数据召回方式。根据数据召回方式得到召回依据,召回与召回依据相似的数据,作为第一推荐内容,或者对与召回依据相似的数据进行筛选,得到第一推荐内容,发送到用户终端。The relationship between the role type and the data recall method is pre-configured, and after the user's role type is determined, the corresponding data recall method can be obtained according to the role type and the relationship. The recall basis is obtained according to the data recall method, and the data similar to the recall basis is recalled as the first recommended content, or the data similar to the recall basis is screened to obtain the first recommended content and sent to the user terminal.
其中,数据召回可以是根据已有的数据的特征,在海量的数据中召回与已有的数据相似的数据,将这些相似的数据推荐给用户。本申请实施例中的数据召回方式可以是获取召回依据的具体实现方式。不同的数据召回方式可以得到不同的召回依据,根据不同的召回依据召回数据推荐给用户。Among them, the data recall may be to recall data similar to the existing data in the massive data according to the characteristics of the existing data, and recommend these similar data to the user. The data recall method in the embodiment of the present application may be a specific implementation manner of obtaining the recall basis. Different data recall methods can obtain different recall basis, and the recall data is recommended to users according to different recall basis.
相关技术中,对于推荐内容为物品信息的场景中,基于用户对物品的历史行为确定用户感兴趣的物品,进行推荐。但是,在文档、视频等知识内容平台的推荐场景下该算法并不适用。首先,对于知识内容平台中的用户,例如,技术研发相关的用户,其历史行为可能很少,因此会造成用户与物品的共现矩阵非常稀疏,无法进行后续的算法步骤。其次,使用知识内容平台的用户主要目的是查阅某些产品资料和应用领域的案例,因此是基于需求的。兴趣是相对稳定的,变化较慢的,而知识内容用户对资料的需求变化很快,基于快速变化的用户行为直接进行内容推荐准确性较低。另一类主要的推荐算法是基于用户行为序列的深度学习算法。这类算法通过将用户历史点击序列中的物品嵌入到固定维度的向量空间中得到固定维度向量,然后将其作为特征与其他特征拼接在一起,输入到神经网络中进行目标函数的优化。然而该类算法同样是基于用户兴趣,并且需要较多的用户点击行为,而对于知识内容平台,场景主要是偏向用户的需求,并且用户的点击行为较少,无法提供足够的训练数据进行神经网络的训练。In the related art, in a scenario where the recommended content is item information, items of interest to the user are determined based on the user's historical behavior on the items, and the recommendation is performed. However, this algorithm is not applicable in the recommendation scenarios of knowledge content platforms such as documents and videos. First, for users in the knowledge content platform, for example, users related to technology research and development, their historical behaviors may be very small, so the co-occurrence matrix of users and items is very sparse, and subsequent algorithm steps cannot be performed. Secondly, the main purpose of the users who use the knowledge content platform is to consult some product materials and cases of application fields, so it is based on needs. Interests are relatively stable and change slowly, while knowledge content users' demands for data change rapidly, and the accuracy of direct content recommendation based on rapidly changing user behavior is low. Another major class of recommendation algorithms are deep learning algorithms based on user behavior sequences. This type of algorithm obtains a fixed-dimensional vector by embedding the items in the user's historical click sequence into a fixed-dimensional vector space, and then splices it together with other features as a feature, and inputs it into the neural network to optimize the objective function. However, this type of algorithm is also based on user interests and requires more user click behaviors. For knowledge content platforms, the scene is mainly biased towards the needs of users, and users have few click behaviors, which cannot provide enough training data for neural networks. training.
本申请提供的内容推荐方法,根据特征信息确定用户的角色类型,基于角色类型对应的数据召回方式,确定向用户推荐的内容,适用于多种不同类型的内容发布平台,可以使推荐的内容与用户的匹配度更高,提升推荐效果。The content recommendation method provided by this application determines the user's role type according to the feature information, and determines the content recommended to the user based on the data recall method corresponding to the role type, which is suitable for a variety of different types of content publishing platforms. The matching degree of users is higher, and the recommendation effect is improved.
在一种可能的实现方式中,步骤S201中的特征信息包括第一时间范围的历史操作内容的内容数量,根据特征信息确定用户的角色类型,包括:In a possible implementation manner, the feature information in step S201 includes the content quantity of the historical operation content in the first time range, and the role type of the user is determined according to the feature information, including:
若内容数量超过预设的数量阈值,则将用户确定为第一角色类型的用户。If the quantity of content exceeds the preset quantity threshold, the user is determined as a user of the first role type.
在实际应用中,可以根据用户在第一时间范围的历史操作内容的内容数量的多少,来确定用户的角色类型,如果内容数量超过预设的数量阈值,则为第一角色类型的用户。In practical applications, the user's role type may be determined according to the amount of content in the user's historical operation content in the first time range, and if the amount of content exceeds a preset number threshold, it is a user of the first role type.
其中,历史操作内容可以是用户进行历史操作行为对应的内容,操作行为可以包括点击、搜索等。第一时间范围可以是当前时间之前的一个时间段,例如,当前时间之前的1个月、2个月等。内容数量可以是用户点击和搜索的内容的数量总和,也可以单独按照点击内容的数量或者搜索内容的数量确定内容数量。例如,用户在当前时间之前的1月内点击了10篇文章,搜索了20个内容,则内容数量为30;或者,用户在当前时间之前的2月内点击了25篇文章,则内容数量为25。第一时间范围、数量阈值,可以根据具体需要进行配置。The historical operation content may be content corresponding to the user's historical operation behavior, and the operation behavior may include click, search, and the like. The first time range may be a time period before the current time, for example, 1 month, 2 months, etc. before the current time. The quantity of content may be the sum of the quantity of content clicked and searched by the user, or the quantity of content may be determined solely according to the quantity of content clicked or the quantity of content searched for. For example, if the user clicked on 10 articles and searched for 20 contents in 1 month before the current time, the number of contents would be 30; or if the user clicked on 25 articles in 2 months before the current time, the number of contents would be 25. The first time range and quantity threshold can be configured according to specific needs.
在一示例中,对于知识内容平台,产品与销售相关角色的用户,其具有较丰富的搜索、点击等历史操作行为,则将产品与销售相关角色的用户确定为第一角色类型的用户。In an example, for the knowledge content platform, if a user in a product and sales related role has rich historical operation behaviors such as searching and clicking, the user in the product and sales related role is determined as a user of the first role type.
需要说明的是,除了产品与销售相关角色的用户之外,第一角色类型的用户还可以是任意的历史操作内容的内容数量较多的用户,本申请对此不作限定。It should be noted that, in addition to users in product and sales related roles, users of the first role type may also be any users with a large number of historical operation contents, which is not limited in this application.
本申请技术方案中,确定了用户的角色类型之后,对于不同的角色类型,采用不同的数据召回方式进行内容推荐,具体见如下实施例:In the technical solution of the present application, after the role type of the user is determined, different data recall methods are used for content recommendation for different role types, as shown in the following embodiments:
在一种可能的实现方式中,步骤S202,基于角色类型对应的数据召回方式,确定向用户推荐的第一推荐内容,包括:In a possible implementation, in step S202, based on the data recall method corresponding to the role type, determine the first recommended content to be recommended to the user, including:
若用户为第一角色类型的用户,基于第一时间范围的历史操作内容,确定向用户推荐的第一推荐内容。If the user is a user of the first role type, the first recommended content to be recommended to the user is determined based on the historical operation content in the first time range.
在实际应用中,若根据特征信息确定了用户为第一角色类型的用户,由于该角色类型的用户的历史操作内容数量较多,则根据历史操作内容确定第一推荐内容。可选的,根据第一时间范围的历史操作内容,得到召回依据,获取与召回依据相似的内容之后,可以将这些与召回依据相似的内容作为第一推荐内容;或者,在这些与召回依据相似的内容中选择一部分内容,作为第一推荐内容推荐给用户。In practical applications, if the user is determined to be a user of the first role type according to the feature information, since the number of historical operation contents of the user of this role type is large, the first recommended content is determined according to the historical operation contents. Optionally, the recall basis is obtained according to the historical operation content in the first time range, and after the content similar to the recall basis is obtained, the content similar to the recall basis can be used as the first recommended content; Select a part of the content, and recommend it to the user as the first recommended content.
其中,基于第一时间范围的历史操作内容,确定第一推荐内容的具体实现方式见如下实施例:Wherein, based on the historical operation content of the first time range, the specific implementation of determining the first recommended content is shown in the following embodiments:
在一种可能的实现方式中,基于第一时间范围的历史操作内容,确定向用户推荐的第一推荐内容,包括:In a possible implementation manner, the first recommended content to be recommended to the user is determined based on the historical operation content of the first time range, including:
确定第一时间范围的历史操作内容的内容属性,内容属性包括用户兴趣或用户需求;determining the content attribute of the historical operation content in the first time range, and the content attribute includes user interests or user needs;
基于内容属性,确定向用户推荐的第一推荐内容。Based on the content attribute, the first recommended content to be recommended to the user is determined.
在实际应用中,若确定了用户为第一角色类型的用户,则对第一时间范围的历史操作内容的内容属性进行判断,其中,内容属性为表征历史操作内容与用户的关系的属性,历史操作内容与用户的关系可以是用户对于历史操作内容的关注程度或者关注频次等,内容属性包括用户兴趣和用户需求。判断历史操作内容属于用户兴趣还是用户需求之后,针对不同的内容属性,则采取不同的方式确定第一推荐内容。In practical applications, if it is determined that the user is a user of the first role type, the content attribute of the historical operation content in the first time range is determined, wherein the content attribute is an attribute representing the relationship between the historical operation content and the user, and the historical operation content is an attribute representing the relationship between the historical operation content and the user. The relationship between the operation content and the user may be the user's attention level or frequency of the historical operation content, etc., and the content attributes include user interests and user needs. After judging whether the historical operation content belongs to the user's interest or the user's demand, different methods are adopted to determine the first recommended content according to different content attributes.
其中,对于如何确定历史操作内容的内容属性,见如下实施例:Wherein, for how to determine the content attribute of the historical operation content, see the following embodiments:
在一种可能的实现方式中,确定第一时间范围的历史操作内容的内容属性,包括:In a possible implementation manner, the content attribute of the historical operation content of the first time range is determined, including:
若第一时间范围的历史操作内容满足预设条件,则确定内容属性为用户兴趣;If the historical operation content of the first time range satisfies the preset condition, the content attribute is determined to be the user's interest;
其中,预设条件包括以下至少一项:The preset conditions include at least one of the following:
第一时间范围的历史操作内容为用户的订阅内容;The historical operation content of the first time range is the user's subscription content;
第一时间范围的历史操作内容与用户的第二时间范围的历史操作内容之间的相似度超过第一相似度阈值;其中,第二时间范围基于第一时间范围确定;The similarity between the historical operation content of the first time range and the user's historical operation content of the second time range exceeds a first similarity threshold; wherein the second time range is determined based on the first time range;
第一时间范围的历史操作内容与用户对应的角色类型的相关度不超过相关度阈值。The correlation between the historical operation content in the first time range and the role type corresponding to the user does not exceed the correlation threshold.
在实际应用中,通过判断第一时间范围的历史操作内容是否满足预设条件,来确定内容属性为用户兴趣还是用户需求,如果满足预设条件,则历史操作内容属于用户兴趣,否则,历史操作内容属于用户需求。In practical applications, it is determined whether the content attribute is user interest or user demand by judging whether the historical operation content in the first time range satisfies the preset conditions. Content belongs to user needs.
其中,第一时间范围的历史操作内容为用户的订阅内容,例如,用户点击的文章归属于用户订阅的专栏,用户订阅的专栏包括用户关注、用户收藏等用户具有长期关注需求的专栏内容,因此其更偏向于用户兴趣。Among them, the historical operation content of the first time range is the user's subscription content. For example, the article clicked by the user belongs to the column subscribed by the user, and the column subscribed by the user includes the content of the column that the user has long-term attention needs, such as user attention and user collection. Therefore, It is more biased towards user interests.
第一时间范围的历史操作内容与用户的第二时间范围的历史操作内容之间的相似度超过第一相似度阈值,例如,对于历史操作内容,在较长的时间间隔内,用户是否点击过相似的内容。如果用户在较长的时间段内都点击过同类的内容,这种稳定的点击行为可以表示该历史操作内容属于用户兴趣。其中,第二时间范围基于第一时间范围确定,可以是基于第一时间范围内的历史点击内容的点击时间确定。The similarity between the historical operation content of the first time range and the user's historical operation content of the second time range exceeds the first similarity threshold. For example, for the historical operation content, in a long time interval, has the user clicked similar content. If the user has clicked on similar content in a long period of time, this stable click behavior can indicate that the historical operation content belongs to the user's interest. Wherein, the second time range is determined based on the first time range, and may be determined based on the click time of the historical click content within the first time range.
第一时间范围的历史操作内容与用户对应的角色类型的相关度不超过相关度阈值,例如,用户为产品相关角色的用户,第一时间范围的历史操作内容属于组织文化类或者与产品不相关的公共内容,则历史操作内容属于用户兴趣。The correlation between the historical operation content in the first time range and the role type corresponding to the user does not exceed the correlation threshold. For example, if the user is a user in a product-related role, the historical operation content in the first time range belongs to the organizational culture category or is not related to the product. the public content, the historical operation content belongs to the user's interest.
第一时间范围的历史操作内容的内容属性不同,则确定第一推荐内容的方式不同,具体见如下实施例:If the content attributes of the historical operation content in the first time range are different, the methods for determining the first recommended content are different, as shown in the following embodiments:
在一种可能的实现方式中,基于内容属性,确定向用户推荐的第一推荐内容,包括:In a possible implementation manner, the first recommended content to be recommended to the user is determined based on the content attribute, including:
若内容属性为用户兴趣,则基于用户的第三时间范围的历史操作内容,确定向用户推荐的第一推荐内容;If the content attribute is the user's interest, determining the first recommended content to be recommended to the user based on the user's historical operation content in the third time range;
若内容属性为用户需求,则基于用户的第四时间范围的历史操作内容,确定向用户推荐的第一推荐内容;If the content attribute is the user's requirement, determining the first recommended content to be recommended to the user based on the user's historical operation content in the fourth time range;
其中,第三时间范围大于第四时间范围。Wherein, the third time range is greater than the fourth time range.
在实际应用中,在确定了内容属性之后,对于内容属性为用户需求的历史操作内容,由于用户的需求变化频率较快,因此在确定第一推荐内容时,选择距离当前时间较短的时间范围的历史操作内容,作为召回依据。例如,可以选择最近一两天点击的内容作为召回的依据。而对于内容属性为用户兴趣的历史操作内容,选择距离当前时间较长的时间范围的历史操作内容,作为召回依据。确定了召回依据之后,召回与其相似的内容并加入推荐的候选列表,在候选列表中选择内容作为第一推荐内容。In practical applications, after the content attribute is determined, for the historical operation content whose content attribute is the user's demand, since the user's demand changes rapidly, when determining the first recommended content, select the time range that is shorter from the current time. The content of the historical operation is used as the basis for recall. For example, you can choose the content clicked in the last day or two as the basis for the recall. As for the historical operation content whose content attribute is the user's interest, the historical operation content with a longer time range from the current time is selected as the recall basis. After determining the recall basis, recall similar content and add it to the recommended candidate list, and select the content in the candidate list as the first recommended content.
本申请实施例中,对用户的历史操作内容进一步细分为用户需求和用户兴趣。在确定召回依据时,由于用户需求变化很快,因此只保留最近的历史操作内容作为召回依据;而用户兴趣更加长久稳定,将被长期保留和跟踪作为召回依据。通过对用户需求和用户兴趣进行区分的方式,可以长期保留和跟踪用户兴趣的同时,又能快速对用户需求变化进行反馈,从而向用户推荐匹配度更高的内容。In this embodiment of the present application, the user's historical operation content is further subdivided into user needs and user interests. When determining the recall basis, due to the rapid changes in user needs, only the recent historical operation content is retained as the recall basis; while the user interest is more stable for a long time and will be retained and tracked for a long time as the recall basis. By distinguishing user needs and user interests, it is possible to retain and track user interests for a long time, and at the same time quickly provide feedback on changes in user needs, so as to recommend content with a higher degree of matching to users.
在一种可能的实现方式中,步骤S201中,根据特征信息确定用户的角色类型,包括:In a possible implementation manner, in step S201, the role type of the user is determined according to the feature information, including:
若内容数量不超过预设的数量阈值,则将用户确定为第二角色类型的用户。If the quantity of the content does not exceed the preset quantity threshold, the user is determined as a user of the second role type.
在实际应用中,可以根据用户在第一时间范围的历史操作内容的内容数量的多少,来确定用户的角色类型,如果内容数量不超过预设的数量阈值,则为第二角色类型的用户。In practical applications, the user's role type can be determined according to the amount of content in the user's historical operation content in the first time range, and if the amount of content does not exceed a preset number threshold, it is a user of the second role type.
在一示例中,对于知识内容平台,技术研发相关的用户,其搜索、点击行为记录很少,则将技术研发相关角色的用户确定为第二角色类型的用户。In an example, for the knowledge content platform, users related to technology research and development have few records of search and click behaviors, and users in the role related to technology research and development are determined as users of the second role type.
需要说明的是,除了技术研发相关角色的用户之外,第二角色类型的用户还可以是任意的历史操作内容的内容数量较少的用户,本申请对此不作限定。It should be noted that, in addition to the users in the related role of technology research and development, the users of the second role type may also be any users with a small number of historical operation contents, which is not limited in this application.
其中,对于第二角色类型的用户,确定第一推荐内容的方式见如下实施例:Wherein, for users of the second role type, the method for determining the first recommended content is shown in the following embodiments:
在一种可能的实现方式中,步骤S202中,基于角色类型对应的数据召回方式,确定向用户推荐的第一推荐内容,包括:In a possible implementation manner, in step S202, the first recommended content to be recommended to the user is determined based on the data recall method corresponding to the role type, including:
若用户为第二角色类型的用户,则基于用户的用户标签,确定向用户推荐的第一推荐内容。If the user is a user of the second role type, the first recommended content to be recommended to the user is determined based on the user tag of the user.
在实际应用中,若用户为第二角色类型的用户,由于第一时间范围的历史操作内容的内容数量较少,如果依据第一时间范围的历史操作内容进行推荐,可能得不到足够的召回依据,因此,基于用户标签确定第一推荐内容。可选的,根据用户标签中的关键字,查询与用户标签相匹配的内容,从中选择全部内容或者部分内容,作为第一推荐内容。In practical applications, if the user is a user of the second role type, due to the small amount of historical operation content in the first time range, if the recommendation is made based on the historical operation content in the first time range, it may not get enough recall Accordingly, the first recommended content is determined based on the user tag. Optionally, according to the keyword in the user tag, content matching the user tag is queried, and all or part of the content is selected as the first recommended content.
在一示例中,对于点击行为很少的研发相关用户,将主要依赖基于用户标签的召回方式。预先为用户设置相应的用户标签,用户标签可以是用户参与研发的产品的产品标签,由此该用户与该产品产生了关联,为用户推荐与产品相关的内容。In one example, for R&D-related users with few click behaviors, a recall method based on user tags will be mainly relied on. A corresponding user tag is set for the user in advance, and the user tag can be a product tag of a product that the user participates in research and development, whereby the user is associated with the product and recommends product-related content for the user.
其中,如何配置用户标签,具体见如下实施例:Among them, how to configure the user label, see the following examples:
在一种可能的实现方式中,用户的用户标签与用户所属的知识领域具有对应关系。In a possible implementation manner, the user tag of the user has a corresponding relationship with the knowledge domain to which the user belongs.
在实际应用中,可以根据用户所属的知识领域配置用户标签。其中,知识领域可以是与用户的角色类型相关的领域,例如,可以是用户的工作岗位所属的部门。将用户标签与用户所属的知识领域建立对应关系,基于用户标签进行内容推荐,可以是基于知识领域对用户进行内容推荐。In practical applications, user tags can be configured according to the knowledge domain to which the user belongs. The knowledge domain may be a domain related to the role type of the user, for example, may be the department to which the user's job position belongs. A corresponding relationship is established between the user tag and the knowledge domain to which the user belongs, and content recommendation is performed based on the user label, which may be content recommendation for the user based on the knowledge domain.
在一示例中,根据用户的工作岗位所属的部门进行用户标签的配置,为同一部门的用户配置相同的用户标签。这种处理方式可以使用户标签辐射更多的用户,提高标签配置的效率。In an example, user labels are configured according to the department to which the user's job position belongs, and users in the same department are configured with the same user label. This processing method can make user tags radiate more users and improve the efficiency of tag configuration.
在一种可能的实现方式中,用户的用户标签包括用户所属的知识领域的下位知识领域对应的用户标签。In a possible implementation manner, the user tag of the user includes a user tag corresponding to a subordinate knowledge field of the knowledge field to which the user belongs.
在实际应用中,用户标签除了包括用户所属的知识领域对应的用户标签之外,还可以包括用户所属的知识领域的下位知识领域对应的用户标签。例如,知识领域的下位知识领域可以是当前部门的下级部门,则上级部门的用户标签包括下级部门的用户标签。通过这样的嵌套处理,用户标签将辐射更多的用户,一个用户可以对应多个用户标签,基于多个用户标签进行内容推荐,可以增加推荐内容与用户的匹配度。In practical applications, the user tag may include, in addition to the user tag corresponding to the knowledge field to which the user belongs, a user tag corresponding to a subordinate knowledge field of the knowledge field to which the user belongs. For example, the subordinate knowledge domain of the knowledge domain may be the subordinate department of the current department, and the user label of the superior department includes the user label of the subordinate department. Through such nesting processing, user tags will radiate to more users, one user can correspond to multiple user tags, and content recommendation based on multiple user tags can increase the matching degree between the recommended content and the user.
在一种可能的实现方式中,步骤S202中,基于角色类型对应的数据召回方式,确定向用户推荐的第一推荐内容,包括:In a possible implementation manner, in step S202, the first recommended content to be recommended to the user is determined based on the data recall method corresponding to the role type, including:
基于角色类型对应的数据召回方式,确定角色类型对应的待推荐基础数据;Based on the data recall method corresponding to the role type, determine the basic data to be recommended corresponding to the role type;
将待推荐基础数据中的多个内容按照数据类别或者数据召回优先级中的至少一项进行排序,根据排序结果在多个内容中确定向用户推荐的第一推荐内容。The multiple contents in the basic data to be recommended are sorted according to at least one of the data category or the data recall priority, and the first recommended content to be recommended to the user is determined from the multiple contents according to the sorting result.
在实际应用中,基于角色类型对应的数据召回方式得到召回依据,获取与召回依据相似的内容作为待推荐基础数据,待推荐基础数据中可以包括多个类别的内容,类别可以是按照与召回依据的相似度不同划分的,也可以是按照不同的召回方式划分的,也可以通过各内容的其他特征进行划分,本申请对此不作限定。In practical applications, the recall basis is obtained based on the data recall method corresponding to the role type, and the content similar to the recall basis is obtained as the basic data to be recommended. The basic data to be recommended can include multiple categories of content. The similarity of each content is divided differently, it may be divided according to different recall methods, or it may be divided according to other features of each content, which is not limited in this application.
其中,数据召回优先级可以是每种召回方式各自对应的优先级,可以理解为,不同召回方式得到的召回依据的优先级不同,相应的,与召回依据相似的内容的优先级也就不同。将待推荐基础数据中的多个内容进行排序之后,根据排序结果在多个内容中确定第一推荐内容,可以推荐更符合用户需求的内容,提高内容推荐的效果。Among them, the data recall priority may be the priority corresponding to each recall method. It can be understood that the priority of the recall basis obtained by different recall methods is different, and accordingly, the priority of the content similar to the recall basis is also different. After sorting the multiple contents in the basic data to be recommended, the first recommended content is determined among the multiple contents according to the sorting result, so that the content more in line with the user's needs can be recommended, and the effect of the content recommendation can be improved.
在一种可能的实现方式中,该方法还包括:In a possible implementation, the method further includes:
基于用户的相关信息,确定向用户推荐的第二推荐内容;Determine the second recommended content recommended to the user based on the relevant information of the user;
其中,相关信息包括以下至少一项:The relevant information includes at least one of the following:
用户的订阅内容、用户的相似用户的历史操作内容、用户对应的行业信息;相似用户为与用户的相似度超过第二相似度阈值的用户。The user's subscription content, the user's similar user's historical operation content, and the user's corresponding industry information; the similar user is a user whose similarity with the user exceeds the second similarity threshold.
在实际应用中,除了基于角色类型对应的数据召回方式,确定向用户推荐的第一推荐内容之外,还可以根据用户的相关信息确定第二推荐内容,使推荐内容更加丰富,满足用户的多样化需求。具体的,获取与用户的订阅内容相似的内容、用户的相似用户的历史操作内容、用户对应的行业信息,将其中的至少一项作为第二推荐内容推荐给用户。其中,行业信息可以包括:该行业的经过深度加工的最新热门资料;包括该行业发展趋势信息的最新头条;该行业的最新情报信息等。In practical applications, in addition to determining the first recommended content to be recommended to the user based on the data recall method corresponding to the role type, the second recommended content can also be determined according to the relevant information of the user, so as to enrich the recommended content and meet the diverse needs of users. demand. Specifically, content similar to the user's subscription content, historical operation content of the user similar to the user, and industry information corresponding to the user are acquired, and at least one of them is recommended to the user as the second recommended content. Among them, the industry information may include: the latest hot information of the industry that has undergone deep processing; the latest headlines including the development trend information of the industry; the latest intelligence information of the industry, and the like.
图3为本申请一实施例中内容推荐方法的流程图。如图3所示,该方法包括:FIG. 3 is a flowchart of a content recommendation method in an embodiment of the present application. As shown in Figure 3, the method includes:
步骤S301,获取用户的第一时间范围的历史操作内容的内容数量。Step S301, acquiring the content quantity of the historical operation content of the user in the first time range.
步骤S302,判断内容数量是否超过预设的数量阈值。Step S302, judging whether the quantity of content exceeds a preset quantity threshold.
步骤S303,若内容数量超过预设的数量阈值,则将用户确定为第一角色类型的用户。Step S303, if the quantity of the content exceeds a preset quantity threshold, the user is determined as a user of the first role type.
步骤S304,若内容数量不超过预设的数量阈值,则将用户确定为第二角色类型的用户。Step S304, if the quantity of the content does not exceed a preset quantity threshold, the user is determined as a user of the second role type.
步骤S305,若用户为第一角色类型的用户,判断第一时间范围的历史操作内容的内容属性是用户需求还是用户兴趣。Step S305, if the user is a user of the first role type, determine whether the content attribute of the historical operation content in the first time range is a user requirement or a user interest.
步骤S306,若内容属性为用户兴趣,则基于用户的第三时间范围的历史操作内容,确定向用户推荐的第一推荐内容。Step S306, if the content attribute is the user's interest, determine the first recommended content to be recommended to the user based on the historical operation content of the user in the third time range.
步骤S307,若内容属性为用户需求,则基于用户的第四时间范围的历史操作内容,确定向用户推荐的第一推荐内容。第三时间范围大于第四时间范围。Step S307, if the content attribute is the user's requirement, determine the first recommended content to be recommended to the user based on the historical operation content of the user in the fourth time range. The third time frame is greater than the fourth time frame.
步骤S308,若用户为第二角色类型的用户,则基于用户的用户标签,确定向用户推荐的第一推荐内容。Step S308, if the user is a user of the second role type, determine the first recommended content to be recommended to the user based on the user tag of the user.
本申请提供的内容推荐方法,根据第一时间范围的历史操作内容的内容数量确定用户的角色类型,对于不同的角色类型采用不同的数据召回方式,确定向用户推荐的内容,可以使推荐的内容与用户的匹配度更高,提升推荐效果。In the content recommendation method provided by the present application, the role type of the user is determined according to the content quantity of the historical operation content in the first time range, and different data recall methods are used for different role types to determine the content recommended to the user, which can make the recommended content The matching degree with users is higher, and the recommendation effect is improved.
图4为本申请一实施例中内容推荐方法的示意图。本申请实施例中,将内容推荐方法应用到企事业的知识管理平台中。知识管理平台中存储了数量庞大的产品资料、产品动态、销售案例、组织文化等内容,为了让员工用户获取到自己所需和感兴趣的资料,提供了内容(可以是Feed流)推荐的功能。同时由于用户来自研发、销售、产品、运营等不同的岗位,具有不同的需求和访问方式。销售相关的用户,其具有较丰富的搜索、点击等历史行为记录。但是由于销售相关的用户,如售前架构师、解决方案架构师等,会变换涉及的领域及产品,其对内容的需求在快速的变化。而对于开发相关的用户,其搜索、点击等历史行为记录很少,但是这类用户由于负责某些产品的研发,则与这些产品产生了关联,为这类用户配置准确的产品标签。FIG. 4 is a schematic diagram of a content recommendation method in an embodiment of the present application. In the embodiment of the present application, the content recommendation method is applied to the knowledge management platform of enterprises and institutions. The knowledge management platform stores a large number of product information, product dynamics, sales cases, organizational culture and other content. In order to allow employees and users to obtain the information they need and are interested in, it provides a content (which can be a feed stream) recommendation function. . At the same time, because users come from different positions such as R&D, sales, products, and operations, they have different needs and access methods. Sales-related users have rich historical behavior records such as searches and clicks. However, because sales-related users, such as pre-sales architects, solution architects, etc., will change the fields and products involved, their demand for content is changing rapidly. For development-related users, there are few historical behavior records such as searches and clicks. However, because these users are responsible for the research and development of certain products, they are associated with these products, and accurate product labels are configured for such users.
如图4所示,预先构建待推荐数据的数据库,数据库中包括多个用户的历史点击内容、用户订阅信息、用户身份信息、产品信息、行业资料、行业头条、行业情报等数据。根据用户的历史点击内容的数量多少,确定用户的角色类型。对于销售相关的用户,历史行为记录较多,则对历史点击记录进行分类,即确定历史点击内容的内容属性是用户需求还是用户兴趣,根据内容属性确定数据召回方式,根据历史点击从数据库中召回,如果内容属性为用户兴趣,则将长期的历史点击内容作为召回依据从数据库中召回相似的内容;如果内容属性为用户需求,则将短期的历史点击内容作为召回依据从数据库中召回相似的内容。对于开发相关的用户,历史行为记录较少,则生成用户标签,根据用户标签从数据库中召回相似的内容。另外,无论是开发相关的用户还是销售相关的用户,都可以基于相似用户召回、基于用户订阅号召回、基于最新热门资料召回、基于最新头条召回、基于最新情报召回等方式从数据库中召回数据。将通过多种方式召回的数据作为待推荐基础数据,对待推荐基础数据按照文档类别进行排序以及重排,或者按照召回优先级进行排序,根据排序结果进行内容推荐。在进行排序和重排时,对于销售相关的用户,由于历史行为记录较多,将根据用户历史行为召回的内容排在靠前的位置。而对于开发相关的用户,由于其缺少历史点击行为,但具有较多的用户标签,因此,在排序和重排阶段,将基于用户标签召回的内容排在靠前的位置,这样进行内容推荐,推荐的内容与用户匹配度更高,推荐效果更好。As shown in Figure 4, a database of data to be recommended is constructed in advance, and the database includes historical click content of multiple users, user subscription information, user identity information, product information, industry information, industry headlines, industry intelligence and other data. Determine the role type of the user according to the number of the user's historical click content. For sales-related users who have more historical behavior records, classify the historical click records, that is, determine whether the content attribute of the historical click content is user demand or user interest, determine the data recall method according to the content attribute, and recall from the database according to the historical click. , if the content attribute is user interest, the long-term historical click content is used as the recall basis to recall similar content from the database; if the content attribute is user demand, the short-term historical click content is used as the recall basis to recall similar content from the database . For development-related users with fewer historical behavior records, user tags are generated, and similar content is recalled from the database according to the user tags. In addition, whether it is a user related to development or a user related to sales, data can be recalled from the database based on similar users, recall based on user subscription numbers, recall based on the latest popular data, recall based on the latest headlines, and recall based on the latest intelligence. The data recalled in various ways is used as the basic data to be recommended, and the basic data to be recommended is sorted and rearranged according to the document category, or sorted according to the recall priority, and the content is recommended according to the sorting result. When sorting and rearranging, for sales-related users, due to the large number of historical behavior records, the content recalled according to the user's historical behavior will be ranked at the top. For development-related users, due to the lack of historical click behavior, but with more user tags, in the sorting and rearrangement stage, the content recalled based on user tags is ranked in the top position, so that the content is recommended. The recommended content has a higher matching degree with the user, and the recommendation effect is better.
图5为本申请一实施例中内容推荐装置的示意图。如图5所示,内容推荐装置可以包括:FIG. 5 is a schematic diagram of a content recommendation apparatus according to an embodiment of the present application. As shown in FIG. 5, the content recommendation apparatus may include:
类型确定模块501,用于获取用户的特征信息,根据特征信息确定用户的角色类型;
内容推荐模块502,用于基于角色类型对应的数据召回方式,确定向用户推荐的第一推荐内容。The
本申请提供的内容推荐装置,根据特征信息确定用户的角色类型,基于角色类型对应的数据召回方式,确定向用户推荐的内容,可以使推荐的内容与用户的匹配度更高,提升推荐效果。The content recommendation device provided by the present application determines the user's role type according to the feature information, and determines the recommended content to the user based on the data recall method corresponding to the role type, which can make the recommended content more closely match the user and improve the recommendation effect.
在一种可能的实现方式中,特征信息包括第一时间范围的历史操作内容的内容数量,类型确定模块501包括类型确定单元,用于:In a possible implementation manner, the feature information includes the content quantity of the historical operation content in the first time range, and the
若内容数量超过预设的数量阈值,则将用户确定为第一角色类型的用户。If the quantity of content exceeds the preset quantity threshold, the user is determined as a user of the first role type.
在一种可能的实现方式中,内容推荐模块502,用于:In a possible implementation manner, the
若用户为第一角色类型的用户,基于第一时间范围的历史操作内容,确定向用户推荐的第一推荐内容。If the user is a user of the first role type, the first recommended content to be recommended to the user is determined based on the historical operation content in the first time range.
在一种可能的实现方式中,内容推荐模块502包括属性确定单元和内容推荐单元;In a possible implementation manner, the
属性确定单元,用于确定第一时间范围的历史操作内容的内容属性,内容属性包括用户兴趣或用户需求;an attribute determining unit, configured to determine a content attribute of the historical operation content of the first time range, where the content attribute includes user interests or user needs;
内容推荐单元,用于基于内容属性,确定向用户推荐的第一推荐内容。A content recommendation unit, configured to determine the first recommended content to be recommended to the user based on the content attribute.
在一种可能的实现方式中,属性确定单元,具体用于:In one possible implementation, the attribute determines the unit, specifically for:
若第一时间范围的历史操作内容满足预设条件,则确定内容属性为用户兴趣;If the historical operation content of the first time range satisfies the preset condition, the content attribute is determined to be the user's interest;
其中,预设条件包括以下至少一项:The preset conditions include at least one of the following:
第一时间范围的历史操作内容为用户的订阅内容;The historical operation content of the first time range is the user's subscription content;
第一时间范围的历史操作内容与用户的第二时间范围的历史操作内容之间的相似度超过第一相似度阈值;其中,第二时间范围基于第一时间范围确定;The similarity between the historical operation content of the first time range and the user's historical operation content of the second time range exceeds a first similarity threshold; wherein the second time range is determined based on the first time range;
第一时间范围的历史操作内容与用户对应的角色类型的相关度不超过相关度阈值。The correlation between the historical operation content in the first time range and the role type corresponding to the user does not exceed the correlation threshold.
在一种可能的实现方式中,内容推荐单元,具体用于:In a possible implementation manner, the content recommendation unit is specifically used for:
若内容属性为用户兴趣,则基于用户的第三时间范围的历史操作内容,确定向用户推荐的第一推荐内容;If the content attribute is the user's interest, determining the first recommended content to be recommended to the user based on the user's historical operation content in the third time range;
若内容属性为用户需求,则基于用户的第四时间范围的历史操作内容,确定向用户推荐的第一推荐内容;If the content attribute is the user's requirement, determining the first recommended content to be recommended to the user based on the user's historical operation content in the fourth time range;
其中,第三时间范围大于第四时间范围。Wherein, the third time range is greater than the fourth time range.
在一种可能的实现方式中,类型确定单元,用于:In one possible implementation, a type determination unit for:
若内容数量不超过预设的数量阈值,则将用户确定为第二角色类型的用户。If the quantity of the content does not exceed the preset quantity threshold, the user is determined as a user of the second role type.
在一种可能的实现方式中,内容推荐模块502,用于:In a possible implementation manner, the
若用户为第二角色类型的用户,则基于用户的用户标签,确定向用户推荐的第一推荐内容。If the user is a user of the second role type, the first recommended content to be recommended to the user is determined based on the user tag of the user.
在一种可能的实现方式中,用户标签与用户所属的知识领域具有对应关系;或者In a possible implementation manner, the user tag has a corresponding relationship with the knowledge domain to which the user belongs; or
用户标签包括用户所属的知识领域的下位知识领域对应的用户标签。The user tag includes the user tag corresponding to the lower knowledge field of the knowledge field to which the user belongs.
在一种可能的实现方式中,内容推荐模块502,用于:In a possible implementation manner, the
基于角色类型对应的数据召回方式,确定角色类型对应的待推荐基础数据;Based on the data recall method corresponding to the role type, determine the basic data to be recommended corresponding to the role type;
将待推荐基础数据中的多个内容按照数据类别或者数据召回优先级中的至少一项进行排序,根据排序结果在多个内容中确定向用户推荐的第一推荐内容。The multiple contents in the basic data to be recommended are sorted according to at least one of the data category or the data recall priority, and the first recommended content to be recommended to the user is determined from the multiple contents according to the sorting result.
在一种可能的实现方式中,内容推荐模块502,还用于:In a possible implementation manner, the
基于用户的相关信息,确定向用户推荐的第二推荐内容;Determine the second recommended content recommended to the user based on the relevant information of the user;
其中,相关信息包括以下至少一项:The relevant information includes at least one of the following:
用户的订阅内容、用户的相似用户的历史操作内容、用户对应的行业信息;相似用户为与用户的相似度超过第二相似度阈值的用户。The user's subscription content, the user's similar user's historical operation content, and the user's corresponding industry information; the similar user is a user whose similarity with the user exceeds the second similarity threshold.
本申请实施例各装置中的各单元、模块或子模块的功能可以参见上述内容推荐方法实施例中的对应描述,在此不再赘述。For the functions of each unit, module or sub-module in each apparatus in this embodiment of the present application, reference may be made to the corresponding description in the foregoing content recommendation method embodiment, and details are not described herein again.
根据本申请的另一方面,提供了一种电子设备,包括:According to another aspect of the present application, an electronic device is provided, comprising:
至少一个处理器;以及at least one processor; and
与该至少一个处理器通信连接的存储器;其中,a memory communicatively coupled to the at least one processor; wherein,
该存储器存储有可被该至少一个处理器执行的指令,该指令被该至少一个处理器执行,以使该至少一个处理器能够执行本申请任一实施例中的方法。The memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform the method in any of the embodiments of the present application.
根据本申请的另一方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,该计算机指令用于使计算机执行本申请任一实施例中的方法。According to another aspect of the present application, there is provided a non-transitory computer-readable storage medium storing computer instructions for causing a computer to perform the method in any of the embodiments of the present application.
图6为用来实现本申请实施例的电子设备的框图。如图6所示,该电子设备包括:存储器610和处理器620,存储器610内存储有可在处理器620上运行的计算机程序。处理器620执行该计算机程序时实现上述实施例中的方法。存储器610和处理器620的数量可以为一个或多个。FIG. 6 is a block diagram of an electronic device used to implement an embodiment of the present application. As shown in FIG. 6 , the electronic device includes: a
该电子设备还包括:The electronic equipment also includes:
通信接口630,用于与外界设备进行通信,进行数据交互传输。The
如果存储器610、处理器620和通信接口630独立实现,则存储器610、处理器620和通信接口630可以通过总线相互连接并完成相互间的通信。该总线可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral ComponentInterconnect,PCI)总线或扩展工业标准体系结构(Extended Industry StandardArchitecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图6中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。If the
可选的,在具体实现上,如果存储器610、处理器620及通信接口630集成在一块芯片上,则存储器610、处理器620及通信接口630可以通过内部接口完成相互间的通信。Optionally, in specific implementation, if the
本申请实施例提供了一种计算机可读存储介质,其存储有计算机程序,该程序被处理器执行时实现本申请实施例中提供的方法。The embodiments of the present application provide a computer-readable storage medium, which stores a computer program, and when the program is executed by a processor, implements the methods provided in the embodiments of the present application.
本申请实施例还提供了一种芯片,该芯片包括,包括处理器,用于从存储器中调用并运行存储器中存储的指令,使得安装有芯片的通信设备执行本申请实施例提供的方法。An embodiment of the present application further provides a chip, the chip includes a processor, and is configured to call and execute an instruction stored in the memory from a memory, so that a communication device with the chip installed executes the method provided by the embodiment of the present application.
本申请实施例还提供了一种芯片,包括:输入接口、输出接口、处理器和存储器,输入接口、输出接口、处理器以及存储器之间通过内部连接通路相连,处理器用于执行存储器中的代码,当代码被执行时,处理器用于执行申请实施例提供的方法。An embodiment of the present application further provides a chip, including: an input interface, an output interface, a processor, and a memory, the input interface, the output interface, the processor, and the memory are connected through an internal connection path, and the processor is used to execute codes in the memory , when the code is executed, the processor is used to execute the method provided by the embodiment of the application.
应理解的是,上述处理器可以是中央处理器(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(fieldprogrammablegate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者是任何常规的处理器等。值得说明的是,处理器可以是支持进阶精简指令集机器(advanced RISC machines,ARM)架构的处理器。It should be understood that the above-mentioned processor may be a central processing unit (Central Processing Unit, CPU), and may also be other general-purpose processors, digital signal processors (digital signal processing, DSP), application specific integrated circuits (application specific integrated circuits, ASIC), field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and the like. A general purpose processor may be a microprocessor or any conventional processor or the like. It should be noted that the processor may be a processor supporting an advanced RISC machines (ARM) architecture.
进一步地,可选的,上述存储器可以包括只读存储器和随机存取存储器,还可以包括非易失性随机存取存储器。该存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以包括只读存储器(read-onlymemory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以包括随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用。例如,静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic random access memory,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data date SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhancedSDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。Further, optionally, the above-mentioned memory may include read-only memory and random access memory, and may also include non-volatile random access memory. The memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory. Wherein, the non-volatile memory may include read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable memory Except programmable read-only memory (electrically EPROM, EEPROM) or flash memory. Volatile memory may include random access memory (RAM), which acts as an external cache. By way of example and not limitation, many forms of RAM are available. For example, static RAM (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (SDRAM), double data rate synchronous dynamic random access Memory (double data date SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM) , DR RAM).
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。In the above-mentioned embodiments, it may be implemented in whole or in part by software, hardware, firmware or any combination thereof. When implemented in software, it can be implemented in whole or in part in the form of a computer program product. A computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on a computer, the processes or functions according to the present application result in whole or in part. The computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device. Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包括于本申请的至少一个实施例或示例中。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, description with reference to the terms "one embodiment," "some embodiments," "example," "specific example," or "some examples", etc., mean specific features described in connection with the embodiment or example , structure, material or feature is included in at least one embodiment or example of the present application. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with "first", "second" may expressly or implicitly include at least one of that feature. In the description of the present application, "plurality" means two or more, unless otherwise expressly and specifically defined.
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分。并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能。Any description of a process or method in the flowcharts or otherwise described herein may be understood to represent a module, segment or portion of code comprising one or more executable instructions for implementing a specified logical function or step of the process . Also, the scope of the preferred embodiments of the present application includes alternative implementations in which the functions may be performed out of the order shown or discussed, including performing the functions substantially concurrently or in the reverse order depending upon the functions involved.
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。The logic and/or steps represented in flowcharts or otherwise described herein, for example, may be considered an ordered listing of executable instructions for implementing the logical functions, may be embodied in any computer-readable medium, For use with, or in conjunction with, an instruction execution system, apparatus, or device (such as a computer-based system, a system including a processor, or other system that can fetch instructions from and execute instructions from an instruction execution system, apparatus, or apparatus) or equipment.
应理解的是,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。上述实施例方法的全部或部分步骤是可以通过程序来指令相关的硬件完成,该程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。It should be understood that various parts of the present application may be implemented in hardware, software, firmware, or a combination thereof. In the above-described embodiments, various steps or methods may be implemented in software or firmware stored in memory and executed by a suitable instruction execution system. All or part of the steps of the method in the above-mentioned embodiments can be completed by instructing the relevant hardware through a program, and the program can be stored in a computer-readable storage medium. When the program is executed, it includes one of the steps of the method embodiment or its combination.
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。上述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读存储介质中。该存储介质可以是只读存储器,磁盘或光盘等。In addition, each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist physically alone, or two or more units may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. If the above-mentioned integrated modules are implemented in the form of software functional modules and sold or used as independent products, they may also be stored in a computer-readable storage medium. The storage medium may be a read-only memory, a magnetic disk or an optical disk, and the like.
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到其各种变化或替换,这些都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。The above are only specific embodiments of the present application, but the protection scope of the present application is not limited thereto. Any person skilled in the art who is familiar with the technical field disclosed in the present application can easily think of various changes or Replacement, these should be covered within the scope of protection of the present application. Therefore, the protection scope of the present application shall be subject to the protection scope of the claims.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210302023.2A CN114780830B (en) | 2022-03-24 | 2022-03-24 | Content recommendation method, device, electronic device and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210302023.2A CN114780830B (en) | 2022-03-24 | 2022-03-24 | Content recommendation method, device, electronic device and storage medium |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114780830A true CN114780830A (en) | 2022-07-22 |
CN114780830B CN114780830B (en) | 2025-01-21 |
Family
ID=82425521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210302023.2A Active CN114780830B (en) | 2022-03-24 | 2022-03-24 | Content recommendation method, device, electronic device and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114780830B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115905714A (en) * | 2022-12-30 | 2023-04-04 | 企知道网络技术有限公司 | Information content recall method and device, electronic equipment and storage medium |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10134044B1 (en) * | 2008-05-28 | 2018-11-20 | Excalibur Ip, Llc | Collection and use of fine-grained user behavior data |
CN110991476A (en) * | 2019-10-18 | 2020-04-10 | 北京奇艺世纪科技有限公司 | Training of decision classifier, audio and video recommendation method, device and storage medium |
CN111090822A (en) * | 2019-12-18 | 2020-05-01 | 浙江口碑网络技术有限公司 | Business object pushing method and device |
CN111737441A (en) * | 2020-08-07 | 2020-10-02 | 北京百度网讯科技有限公司 | Human-computer interaction method, device and medium based on neural network |
CN112597395A (en) * | 2020-12-28 | 2021-04-02 | 上海众源网络有限公司 | Object recommendation method, device, equipment and storage medium |
CN113343089A (en) * | 2021-06-11 | 2021-09-03 | 北京完美赤金科技有限公司 | User recall method, device and equipment |
CN113392329A (en) * | 2021-07-20 | 2021-09-14 | 西安力传智能技术有限公司 | Content recommendation method and device, electronic equipment and storage medium |
CN113836388A (en) * | 2020-06-08 | 2021-12-24 | 北京达佳互联信息技术有限公司 | Information recommendation method and device, server and storage medium |
-
2022
- 2022-03-24 CN CN202210302023.2A patent/CN114780830B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10134044B1 (en) * | 2008-05-28 | 2018-11-20 | Excalibur Ip, Llc | Collection and use of fine-grained user behavior data |
CN110991476A (en) * | 2019-10-18 | 2020-04-10 | 北京奇艺世纪科技有限公司 | Training of decision classifier, audio and video recommendation method, device and storage medium |
CN111090822A (en) * | 2019-12-18 | 2020-05-01 | 浙江口碑网络技术有限公司 | Business object pushing method and device |
CN113836388A (en) * | 2020-06-08 | 2021-12-24 | 北京达佳互联信息技术有限公司 | Information recommendation method and device, server and storage medium |
CN111737441A (en) * | 2020-08-07 | 2020-10-02 | 北京百度网讯科技有限公司 | Human-computer interaction method, device and medium based on neural network |
CN112597395A (en) * | 2020-12-28 | 2021-04-02 | 上海众源网络有限公司 | Object recommendation method, device, equipment and storage medium |
CN113343089A (en) * | 2021-06-11 | 2021-09-03 | 北京完美赤金科技有限公司 | User recall method, device and equipment |
CN113392329A (en) * | 2021-07-20 | 2021-09-14 | 西安力传智能技术有限公司 | Content recommendation method and device, electronic equipment and storage medium |
Non-Patent Citations (2)
Title |
---|
GIUSEPPE BIANCHI等: "Let me grab your App: Preliminary proof-of-concept design of opportunistic content augmentation", 《IEEE》, 29 November 2012 (2012-11-29), pages 7034 - 7039 * |
王末等: "基于混合过滤的地学数据个性化推荐方法设计与实现", 《 地理研究》, 16 April 2018 (2018-04-16), pages 814 - 824 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115905714A (en) * | 2022-12-30 | 2023-04-04 | 企知道网络技术有限公司 | Information content recall method and device, electronic equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN114780830B (en) | 2025-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12212638B2 (en) | Method and apparatus for real-time personalization | |
CN113077317B (en) | Item recommendation method, device, equipment and storage medium based on user data | |
CN109165975B (en) | Label recommending method, device, computer equipment and storage medium | |
JP5736469B2 (en) | Search keyword recommendation based on user intention | |
US8781813B2 (en) | Intent management tool for identifying concepts associated with a plurality of users' queries | |
US7747601B2 (en) | Method and apparatus for identifying and classifying query intent | |
US8290818B1 (en) | System for recommending item bundles | |
US8166062B1 (en) | Search-caching and threshold alerting for commerce sites | |
CN108960945A (en) | Method of Commodity Recommendation and device | |
US20230214895A1 (en) | Methods and systems for product discovery in user generated content | |
US8660901B2 (en) | Matching of advertising sources and keyword sets in online commerce platforms | |
US8655737B1 (en) | Brand name synonymy | |
US20200226168A1 (en) | Methods and systems for optimizing display of user content | |
CN107507041A (en) | The construction method and construction device of user model | |
CN113744015B (en) | Ordering method, ordering device, ordering equipment and computer storage medium | |
CN114549125B (en) | Item recommendation method and device, electronic device and computer-readable storage medium | |
US20160323232A1 (en) | Aggregating content associated with topics in a social network | |
US20230030560A1 (en) | Methods and systems for tagged image generation | |
US20250298837A1 (en) | Methods and systems for dynamic content provisioning | |
CN110827101B (en) | Shop recommending method and device | |
CN114092194A (en) | Product recommendation method, device, medium and equipment | |
Hole et al. | The use of heuristic optimization algorithms to facilitate maximum simulated likelihood estimation of random parameter logit models | |
Bhat et al. | Item-based hybrid recommender system for newly marketed pharmaceutical drugs | |
CN111831892A (en) | Information recommendation method, information recommendation device, server and storage medium | |
CN116089745A (en) | Information recommendation method, device, electronic equipment and computer readable storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |