[go: up one dir, main page]

CN114332477A - Feature recognition model training method, item feature recognition method and device - Google Patents

Feature recognition model training method, item feature recognition method and device Download PDF

Info

Publication number
CN114332477A
CN114332477A CN202111585717.3A CN202111585717A CN114332477A CN 114332477 A CN114332477 A CN 114332477A CN 202111585717 A CN202111585717 A CN 202111585717A CN 114332477 A CN114332477 A CN 114332477A
Authority
CN
China
Prior art keywords
item
article
style
feature
text
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111585717.3A
Other languages
Chinese (zh)
Other versions
CN114332477B (en
Inventor
王兴鹏
史世睿
李天浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jingdong Century Trading Co Ltd
Beijing Wodong Tianjun Information Technology Co Ltd
Original Assignee
Beijing Jingdong Century Trading Co Ltd
Beijing Wodong Tianjun Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jingdong Century Trading Co Ltd, Beijing Wodong Tianjun Information Technology Co Ltd filed Critical Beijing Jingdong Century Trading Co Ltd
Priority to CN202111585717.3A priority Critical patent/CN114332477B/en
Publication of CN114332477A publication Critical patent/CN114332477A/en
Application granted granted Critical
Publication of CN114332477B publication Critical patent/CN114332477B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

本公开提供了一种特征识别模型训练方法、物品特征识别方法及装置。该训练方法包括:获取物品样本数据集,物品样本数据集中包括多条物品样本,将每条物品样本中的物品图像数据、用于描述物品的文本数据和物品风格数据分别输入初始模型的图像特征提取层、文本特征提取层和风格特征提取层,分别输出物品图像特征、文本特征和风格特征;将物品图像特征和文本特征输入初始模型的特征组合层,输出物品组合特征;将物品组合特征和风格特征输入初始模型的匹配层,输出匹配结果;根据匹配结果和风格标签调整初始模型的模型参数,得到训练完成的特征识别模型。

Figure 202111585717

The present disclosure provides a feature recognition model training method, an item feature recognition method and device. The training method includes: acquiring an item sample data set, the item sample data set includes a plurality of item samples, and inputting the item image data, text data used to describe the item and item style data in each item sample into the image features of the initial model respectively The extraction layer, text feature extraction layer and style feature extraction layer output the item image features, text features and style features respectively; input the item image features and text features into the feature combination layer of the initial model, and output the item combination features; The style feature is input into the matching layer of the initial model, and the matching result is output; the model parameters of the initial model are adjusted according to the matching result and the style label, and the trained feature recognition model is obtained.

Figure 202111585717

Description

特征识别模型训练方法、物品特征识别方法及装置Feature recognition model training method, item feature recognition method and device

技术领域technical field

本公开涉及计算机技术领域,更具体地,涉及一种特征识别模型训练方法、物品特征识别方法及装置、电子设备、计算机可读存储介质以及计算机程序产品。The present disclosure relates to the field of computer technologies, and more particularly, to a method for training a feature recognition model, a method and apparatus for recognizing item features, an electronic device, a computer-readable storage medium, and a computer program product.

背景技术Background technique

物品风格标注的传统方式主要采用人工标注,这种方式需要预先设定大量的人工编辑规则,且存在耗费人力、物力、标注效率低、通用性差的问题,而且,在人工编辑规则的设定过程中,由于存在人为主观认知不同,会导致编辑规则的设定差异,进而导致人工标注风格的结果差异。The traditional method of item style labeling mainly uses manual labeling. This method requires a large number of manual editing rules to be set in advance, and there are problems such as labor consumption, material resources, low labeling efficiency, and poor versatility. Moreover, in the process of setting manual editing rules , due to differences in human subjective cognition, it will lead to differences in the setting of editing rules, which in turn lead to differences in the results of manual annotation styles.

相关技术中采用机器学习算法实现对物品风格的标注,但是这种机器学习算法对陌生的物品和陌生的风格泛化性差。In the related art, a machine learning algorithm is used to realize the labeling of item styles, but this machine learning algorithm has poor generalization to unfamiliar items and unfamiliar styles.

发明内容SUMMARY OF THE INVENTION

有鉴于此,本公开提供了一种特征识别模型训练方法、物品特征识别方法及装置、电子设备、计算机可读存储介质以及计算机程序产品。In view of this, the present disclosure provides a feature recognition model training method, an item feature recognition method and apparatus, an electronic device, a computer-readable storage medium, and a computer program product.

本公开的第一方面提供了一种特征识别模型训练方法,包括:A first aspect of the present disclosure provides a feature recognition model training method, including:

获取物品样本数据集,其中,物品样本数据集中包括多条物品样本,每条物品样本包括物品图像数据、用于描述物品的文本数据和物品风格数据,其中,物品样本具有风格标签;obtaining an item sample data set, wherein the item sample data set includes a plurality of item samples, and each item sample includes item image data, text data for describing the item, and item style data, wherein the item sample has a style label;

针对每条物品样本,将物品图像数据输入初始模型的图像特征提取层,输出物品图像特征;将用于描述物品的文本数据输入初始模型的文本特征提取层,输出文本特征;将物品风格数据输入初始模型的风格特征提取层,输出风格特征;For each item sample, input the item image data into the image feature extraction layer of the initial model, and output the item image features; input the text data used to describe the item into the text feature extraction layer of the initial model, and output the text features; input the item style data into The style feature extraction layer of the initial model outputs style features;

将物品图像特征和文本特征输入初始模型的特征组合层,输出物品组合特征;Input the item image features and text features into the feature combination layer of the initial model, and output the item combination features;

将物品组合特征和风格特征输入初始模型的匹配层,输出用于表征物品组合特征和风格特征的匹配结果;Input the item combination feature and style feature into the matching layer of the initial model, and output the matching result used to characterize the item combination feature and style feature;

根据匹配结果和风格标签调整初始模型的模型参数,得到训练完成的特征识别模型。The model parameters of the initial model are adjusted according to the matching results and style labels, and the trained feature recognition model is obtained.

根据本公开的实施例,将物品图像特征和文本特征输入初始模型的图像组合层,输出物品组合特征包括:According to an embodiment of the present disclosure, the item image features and text features are input into the image combination layer of the initial model, and the output item combination features include:

利用图像组合层将物品图像特征和文本特征拼接成物品组合特征。The image combination layer is used to stitch item image features and text features into item combination features.

根据本公开的实施例,在获取物品样本数据集之后,还包括:According to an embodiment of the present disclosure, after acquiring the item sample data set, the method further includes:

根据物品样本数据集生成扩增物品样本数据集。Generate an augmented item sample dataset from the item sample dataset.

根据本公开的实施例,根据物品样本数据集生成扩增物品样本数据集,包括:According to an embodiment of the present disclosure, generating an augmented item sample data set according to the item sample data set includes:

根据物品图像数据,从物品数据库中,确定与物品图像数据相似的第一物品数据列表,其中,第一物品数据列表包括不同物品的物品图像数据、用于描述物品的文本数据和物品风格数据;According to the item image data, from the item database, determine a first item data list that is similar to the item image data, wherein the first item data list includes item image data of different items, text data for describing the item, and item style data;

根据用于描述物品的文本数据,从物品数据库中,确定与用于描述物品的文本数据相似的第二物品数据列表,其中,第二物品数据列表包括不同物品的物品图像数据、用于描述物品的文本数据和物品风格数据;According to the text data for describing the item, from the item database, a second item data list similar to the text data for describing the item is determined, wherein the second item data list includes item image data for different items, and a second item data list for describing the item. text data and item style data;

根据第一物品数据列表和第二物品数据列表,生成扩增物品样本数据集。An augmented item sample data set is generated according to the first item data list and the second item data list.

根据本公开的实施例,初始模型的模型参数包括初始模型的图像特征提取层的模型参数、初始模型的文本特征提取层的模型参数、初始模型的风格特征提取层的模型参数,根据匹配结果和风格标签调整初始模型的模型参数,得到训练完成的特征识别模型,包括:According to an embodiment of the present disclosure, the model parameters of the initial model include model parameters of the image feature extraction layer of the initial model, model parameters of the text feature extraction layer of the initial model, and model parameters of the style feature extraction layer of the initial model. According to the matching result and The style label adjusts the model parameters of the initial model to obtain the trained feature recognition model, including:

根据匹配结果与风格标签,调整初始模型的图像特征提取层的模型参数、初始模型的文本特征提取层的模型参数和初始模型的风格特征提取层的模型参数,得到训练完成的特征识别模型。According to the matching results and style labels, the model parameters of the image feature extraction layer of the initial model, the model parameters of the text feature extraction layer of the initial model, and the model parameters of the style feature extraction layer of the initial model are adjusted to obtain the trained feature recognition model.

本公开的第二方面提供了一种物品特征识别方法,包括:A second aspect of the present disclosure provides an item feature identification method, comprising:

获取待处理物品的物品信息,其中,物品信息包括物品图像信息和用于描述物品的文本信息;Obtain item information of the item to be processed, wherein the item information includes item image information and text information used to describe the item;

将物品图像信息输入特征识别模型的图像特征提取层,输出待处理物品的物品图像特征,其中,特征识别模型是通过本公开实施例的训练方法训练得到的;Input the image information of the item into the image feature extraction layer of the feature recognition model, and output the item image feature of the item to be processed, wherein the feature recognition model is trained by the training method of the embodiment of the present disclosure;

将用于描述物品的文本信息输入特征识别模型的文本特征提取层,输出待处理物品的文本特征;Input the text information used to describe the item into the text feature extraction layer of the feature recognition model, and output the text feature of the item to be processed;

将物品图像特征和文本特征输入特征识别模型的特征组合层,输出待处理物品的物品组合特征;Input the image feature and text feature of the item into the feature combination layer of the feature recognition model, and output the item combination feature of the item to be processed;

将物品组合特征和候选风格的描述特征输入特征识别模型的匹配层,输出用于表征物品组合特征和风格特征的匹配结果,其中,候选风格的描述特征是将从候选风格数据库中获取的物品风格信息输入特征识别模型的风格特征提取层后得到的;The item combination feature and the description feature of the candidate style are input into the matching layer of the feature recognition model, and the matching result used to characterize the item combination feature and the style feature is output, wherein the description feature of the candidate style is the item style obtained from the candidate style database. The information is obtained after inputting the style feature extraction layer of the feature recognition model;

根据匹配结果确定与待处理物品的物品组合特征相匹配的风格特征信息。According to the matching result, the style feature information matching the item combination feature of the item to be processed is determined.

根据本公开的实施例,上述特征识别方法还包括:According to an embodiment of the present disclosure, the above feature identification method further includes:

获取多个物品评论文本数据和多个物品标题文本数据;Get multiple item review text data and multiple item title text data;

将多个物品评论文本数据和多个物品标题文本数据进行预处理,得到用于表征物品风格的文本数据集;Preprocessing multiple item review text data and multiple item title text data to obtain a text data set for characterizing item style;

根据用于表征物品风格的文本数据集生成候选风格数据库。Generate a database of candidate styles from a text dataset used to characterize item styles.

根据本公开的实施例,上述特征识别方法还包括:According to an embodiment of the present disclosure, the above feature identification method further includes:

根据用于表征物品风格的文本数据集生成用于表征物品风格的向量数据集;Generate a vector dataset for characterizing item style from a text dataset for characterizing item style;

根据用于表征物品风格的向量数据集生成候选风格数据库。Generate a candidate style database from the vector dataset used to characterize item styles.

本公开的第三方面提供了一种特征识别模型训练装置,包括:第一获取模块、特征提取模块、特征组合模块、匹配模块和调整模块。其中,第一获取模块,用于获取物品样本数据集,其中,物品样本数据集中包括多条物品样本,每条物品样本包括物品图像数据、用于描述物品的文本数据和物品风格数据,物品样本具有风格标签。特征提取模块,用于针对每条物品样本,将物品图像数据输入初始模型的图像特征提取层,输出物品图像特征;将用于描述物品的文本数据输入初始模型的文本特征提取层,输出文本特征;将物品风格数据输入初始模型的风格特征提取层,输出风格特征。特征组合模块,用于将物品图像特征和文本特征输入初始模型的特征组合层,输出物品组合特征。匹配模块,用于将物品组合特征和风格特征输入初始模型的匹配层,输出用于表征物品组合特征和风格特征的匹配结果。调整模块,用于根据匹配结果和风格标签调整初始模型的模型参数,得到训练完成的特征识别模型。A third aspect of the present disclosure provides a feature recognition model training device, including: a first acquisition module, a feature extraction module, a feature combination module, a matching module, and an adjustment module. The first acquisition module is used to acquire an item sample data set, wherein the item sample data set includes a plurality of item samples, and each item sample includes item image data, text data for describing the item, and item style data, and the item sample Has style labels. The feature extraction module is used to input the item image data into the image feature extraction layer of the initial model for each item sample, and output the item image features; input the text data used to describe the item into the text feature extraction layer of the initial model, and output the text features ; Input the item style data into the style feature extraction layer of the initial model, and output the style feature. The feature combination module is used to input the item image features and text features into the feature combination layer of the initial model, and output the item combination features. The matching module is used to input the item combination feature and style feature into the matching layer of the initial model, and output the matching result used to characterize the item combination feature and style feature. The adjustment module is used to adjust the model parameters of the initial model according to the matching results and style labels, and obtain the trained feature recognition model.

根据本公开的实施例,特征组合模块包括拼接单元,用于利用图像组合层将物品图像特征和文本特征拼接成物品组合特征。According to an embodiment of the present disclosure, the feature combination module includes a stitching unit for stitching the item image feature and the text feature into the item combination feature using the image combination layer.

根据本公开的实施例,上述装置还包括:生成模块,用于根据物品样本数据集生成扩增物品样本数据集。According to an embodiment of the present disclosure, the above-mentioned apparatus further includes: a generating module configured to generate an augmented item sample data set according to the item sample data set.

根据本公开的实施例,生成模块包括第一确定单元、第二确定单元和生成单元。其中,第一确定单元,根据物品图像数据,从物品数据库中,确定与物品图像数据相似的第一物品数据列表,其中,第一物品数据列表包括不同物品的物品图像数据、用于描述物品的文本数据和物品风格数据。第二确定单元,用于根据用于描述物品的文本数据,从物品数据库中,确定与用于描述物品的文本数据相似的第二物品数据列表,其中,第二物品数据列表包括不同物品的物品图像数据、用于描述物品的文本数据和物品风格数据。生成单元,用于根据第一物品数据列表和第二物品数据列表,生成扩增物品样本数据集。According to an embodiment of the present disclosure, the generating module includes a first determining unit, a second determining unit, and a generating unit. The first determining unit determines a first item data list similar to the item image data from the item database according to the item image data, wherein the first item data list includes item image data of different items, a description of the item for describing the item Text data and item style data. The second determining unit is configured to determine a second item data list similar to the text data for describing the item from the item database according to the text data for describing the item, wherein the second item data list includes items of different items Image data, text data to describe the item, and item style data. The generating unit is configured to generate an augmented item sample data set according to the first item data list and the second item data list.

根据本公开的实施例,生成单元包括生成子单元,用于根据第一物品数据列表和第二物品数据列表的数据交集,生成扩增物品样本数据集。According to an embodiment of the present disclosure, the generating unit includes a generating subunit for generating an augmented item sample data set according to the data intersection of the first item data list and the second item data list.

根据本公开的实施例,调整模块包括调整单元,用于根据匹配结果与风格标签,调整初始模型的图像特征提取层的模型参数、初始模型的文本特征提取层的模型参数和初始模型的风格特征提取层的模型参数,得到训练完成的特征识别模型。According to an embodiment of the present disclosure, the adjustment module includes an adjustment unit for adjusting the model parameters of the image feature extraction layer of the initial model, the model parameters of the text feature extraction layer of the initial model, and the style features of the initial model according to the matching result and the style label Extract the model parameters of the layer to obtain the trained feature recognition model.

本公开的第四方面提供了一种物品特征识别装置,包括:第二获取模块、第一识别模块、第二识别模块、第三识别模块、第四识别模块和确定模块。其中,第二获取模块,用于获取待处理物品的物品信息,其中,物品信息包括物品图像信息和用于描述物品的文本信息。第一识别模块,用于将物品图像信息输入特征识别模型的图像特征提取层,输出待处理物品的物品图像特征,其中,特征识别模型是通过本公开实施例提供的训练方法训练得到的。第二识别模块,用于将所述用于描述物品的文本信息输入所述特征识别模型的文本特征提取层,输出所述待处理物品的文本特征。第三识别模块,用于将所述物品图像特征和所述文本特征输入所述特征识别模型的特征组合层,输出所述待处理物品的物品组合特征。第四识别模块,用于将所述物品组合特征和候选风格的描述特征输入所述特征识别模型的匹配层,输出用于表征所述物品组合特征和所述候选风格的描述特征的匹配结果,其中,所述候选风格的描述特征是将从候选风格数据库中获取的物品风格信息输入所述特征识别模型的风格特征提取层后得到的。确定模块,用于根据所述匹配结果确定与所述待处理物品的所述物品组合特征相匹配的风格特征信息。A fourth aspect of the present disclosure provides an article feature identification device, comprising: a second acquisition module, a first identification module, a second identification module, a third identification module, a fourth identification module, and a determination module. Wherein, the second acquisition module is used for acquiring item information of the item to be processed, wherein the item information includes item image information and text information for describing the item. The first recognition module is used for inputting the image information of the item into the image feature extraction layer of the feature recognition model, and outputting the item image feature of the item to be processed, wherein the feature recognition model is obtained by training the training method provided by the embodiment of the present disclosure. The second recognition module is configured to input the text information for describing the item into the text feature extraction layer of the feature recognition model, and output the text feature of the item to be processed. The third recognition module is used for inputting the image feature of the item and the text feature into the feature combination layer of the feature recognition model, and outputting the item combination feature of the item to be processed. a fourth recognition module, configured to input the item combination feature and the description feature of the candidate style into the matching layer of the feature recognition model, and output a matching result used to characterize the item combination feature and the description feature of the candidate style, Wherein, the description feature of the candidate style is obtained by inputting the item style information obtained from the candidate style database into the style feature extraction layer of the feature recognition model. A determination module, configured to determine, according to the matching result, style feature information matching the item combination feature of the item to be processed.

本公开的第五方面提供了一种电子设备,包括:一个或多个处理器;存储器,用于存储一个或多个程序,其中,当所述一个或多个程序被所述一个或多个处理器执行时,使得一个或多个处理器执行上述特征识别模型训练方法。A fifth aspect of the present disclosure provides an electronic device, comprising: one or more processors; a memory for storing one or more programs, wherein when the one or more programs are executed by the one or more programs When executed by the processor, one or more processors are caused to execute the above feature recognition model training method.

本公开的第六方面还提供了一种计算机可读存储介质,其上存储有可执行指令,该指令被处理器执行时使处理器执行上述特征识别模型训练方法。A sixth aspect of the present disclosure also provides a computer-readable storage medium on which executable instructions are stored, and when the instructions are executed by a processor, cause the processor to execute the above feature recognition model training method.

本公开的第七方面还提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现上述特征识别模型训练方法。A seventh aspect of the present disclosure also provides a computer program product, including a computer program, which implements the above feature recognition model training method when the computer program is executed by a processor.

根据本公开的实施例,因为采用了包括物品图像数据、用于描述物品的文本数据、物品风格数据和风格标签的物品样本数据集,通过将物品图像数据、用于描述物品的文本数据分别输入初始模型的图像特征提取层、文本特征提取层输出图像特征和文本特征,再输入特征组合层输出物品组合特征,将物品组合特征与利用初始模型的风格特征提取层提取的风格特征输入匹配层,通过输出的匹配结果和风格标签调整初始模型的模型参数的技术手段训练得到特征识别模型,所以至少部分地克服了相关技术中采用机器学习算法对陌生物品和风格泛化性差的技术问题,提高了对陌生物品和陌生风格识别的泛化性。According to the embodiment of the present disclosure, since the item sample data set including item image data, text data for describing the item, item style data, and style tags is used, the item image data and the text data for describing the item are respectively input by inputting the item image data and the text data for describing the item. The image feature extraction layer and text feature extraction layer of the initial model output image features and text features, and then input the feature combination layer to output the item combination feature, and input the item combination feature and the style feature extracted by the style feature extraction layer of the initial model into the matching layer. The feature recognition model is obtained by training the technical means of adjusting the model parameters of the initial model through the output matching results and style labels, so at least partially overcomes the technical problem of poor generalization of unfamiliar objects and styles using machine learning algorithms in the related art, and improves the Generalizability to Unfamiliar Object and Unfamiliar Style Recognition.

附图说明Description of drawings

通过以下参照附图对本公开实施例的描述,本公开的上述以及其他目的、特征和优点将更为清楚,在附图中:The above and other objects, features and advantages of the present disclosure will become more apparent from the following description of embodiments of the present disclosure with reference to the accompanying drawings, in which:

图1示意性示出了可以应用本公开实施例的特征识别模型训练方法的示例性系统架构;FIG. 1 schematically shows an exemplary system architecture to which the feature recognition model training method according to the embodiment of the present disclosure can be applied;

图2示意性示出了根据本公开实施例的特征识别模型训练方法的流程图;FIG. 2 schematically shows a flowchart of a feature recognition model training method according to an embodiment of the present disclosure;

图3示意性示出了根据本公开实施例的扩增样本数据集的方法的流程图;FIG. 3 schematically shows a flowchart of a method for amplifying a sample data set according to an embodiment of the present disclosure;

图4示意性示出了根据本公开实施例的特征识别模型架构示意图;FIG. 4 schematically shows a schematic diagram of the architecture of a feature recognition model according to an embodiment of the present disclosure;

图5示意性示出了根据本公开实施例的物品特征识别方法流程图;FIG. 5 schematically shows a flowchart of a method for identifying an item feature according to an embodiment of the present disclosure;

图6示意性示出了根据本公开实施例的候选风格数据库生成方法流程图;6 schematically shows a flowchart of a method for generating a candidate style database according to an embodiment of the present disclosure;

图7示意性示出了根据本公开实施例的物品特征识别的系统架构图;FIG. 7 schematically shows a system architecture diagram of item feature identification according to an embodiment of the present disclosure;

图8示意性示出了根据本公开实施例的特征识别模型训练装置的框图;8 schematically shows a block diagram of a feature recognition model training apparatus according to an embodiment of the present disclosure;

图9示意性示出了根据本公开实施例的物品特征识别装置的框图;以及FIG. 9 schematically shows a block diagram of an apparatus for identifying characteristics of an item according to an embodiment of the present disclosure; and

图10示意性示出了根据本公开实施例的适于实现特征识别模型训练方法的电子设备的框图。FIG. 10 schematically shows a block diagram of an electronic device suitable for implementing a feature recognition model training method according to an embodiment of the present disclosure.

具体实施方式Detailed ways

以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本公开实施例的全面理解。然而,明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings. It should be understood, however, that these descriptions are exemplary only, and are not intended to limit the scope of the present disclosure. In the following detailed description, for convenience of explanation, numerous specific details are set forth in order to provide a thorough understanding of the embodiments of the present disclosure. It will be apparent, however, that one or more embodiments may be practiced without these specific details. Also, in the following description, descriptions of well-known structures and techniques are omitted to avoid unnecessarily obscuring the concepts of the present disclosure.

在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本公开。在此使用的术语“包括”、“包含”等表明了所述特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the present disclosure. The terms "comprising", "comprising" and the like as used herein indicate the presence of stated features, steps, operations and/or components, but do not preclude the presence or addition of one or more other features, steps, operations or components.

在此使用的所有术语(包括技术和科学术语)具有本领域技术人员通常所理解的含义,除非另外定义。应注意,这里使用的术语应解释为具有与本说明书的上下文相一致的含义,而不应以理想化或过于刻板的方式来解释。All terms (including technical and scientific terms) used herein have the meaning as commonly understood by one of ordinary skill in the art, unless otherwise defined. It should be noted that the terms used herein should be construed to have meanings consistent with the context of the present specification and should not be construed in an idealized or overly rigid manner.

在使用类似于“A、B和C等中至少一个”这样的表述的情况下,一般来说应该按照本领域技术人员通常理解该表述的含义来予以解释 (例如,“具有A、B和C中至少一个的系统”应包括但不限于单独具有A、单独具有B、单独具有C、具有A和B、具有A和C、具有 B和C、和/或具有A、B、C的系统等)。Where expressions like "at least one of A, B, and C, etc.," are used, they should generally be interpreted in accordance with the meaning of the expression as commonly understood by those skilled in the art (eg, "has A, B, and C") At least one of the "systems" shall include, but not be limited to, systems with A alone, B alone, C alone, A and B, A and C, B and C, and/or A, B, C, etc. ).

本公开的实施例提供了一种特征识别模型训练方法,采用包括物品图像数据、用于描述物品的文本数据、物品风格数据和物品风格标签的物品样本数据集,通过将物品图像数据、用于描述物品的文本数据分别输入初始模型的图像特征提取层、文本特征提取层输出图像特征和文本特征,再输入特征组合层输出物品组合特征,将物品组合特征与利用初始模型的风格特征提取层提取的风格特征输入匹配层,通过输出的匹配结果和风格标签调整初始模型的模型参数的技术手段训练得到特征识别模型。Embodiments of the present disclosure provide a method for training a feature recognition model, using an item sample data set including item image data, text data for describing items, item style data, and item style labels, by using item image data, used for The text data describing the item is input into the image feature extraction layer and text feature extraction layer of the initial model respectively to output image features and text features, and then input to the feature combination layer to output the item combination feature. The item combination feature and the style feature extraction layer using the initial model are extracted The style features are input to the matching layer, and the feature recognition model is obtained by training the technical means of adjusting the model parameters of the initial model through the output matching results and style labels.

图1示意性示出了根据本公开实施例的可以应用特征识别模型训练方法的示例性系统架构100。需要注意的是,图1所示仅为可以应用本公开实施例的系统架构的示例,以帮助本领域技术人员理解本公开的技术内容,但并不意味着本公开实施例不可以用于其他设备、系统、环境或场景。FIG. 1 schematically illustrates an exemplary system architecture 100 to which a feature recognition model training method may be applied, according to an embodiment of the present disclosure. It should be noted that FIG. 1 is only an example of a system architecture to which the embodiments of the present disclosure can be applied, so as to help those skilled in the art to understand the technical content of the present disclosure, but it does not mean that the embodiments of the present disclosure cannot be used for other A device, system, environment or scene.

如图1所示,根据该实施例的系统架构100可以包括终端设备101、 102、103,网络104和服务器105。网络104用以在终端设备101、102、 103和服务器105之间提供通信链路的介质。网络104可以包括各种连接类型,例如有线和/或无线通信链路等等。As shown in FIG. 1 , the system architecture 100 according to this embodiment may include terminal devices 101 , 102 , and 103 , a network 104 and a server 105 . The network 104 is a medium used to provide a communication link between the terminal devices 101 , 102 , 103 and the server 105 . The network 104 may include various connection types, such as wired and/or wireless communication links, and the like.

用户可以使用终端设备101、102、103通过网络104与服务器105 交互,以接收或发送消息等。终端设备101、102、103上可以安装有各种通讯客户端应用,例如购物类应用、网页浏览器应用、搜索类应用、即时通信工具、邮箱客户端和/或社交平台软件等(仅为示例)。The user can use the terminal devices 101, 102, 103 to interact with the server 105 through the network 104 to receive or send messages and the like. Various communication client applications may be installed on the terminal devices 101, 102, and 103, such as shopping applications, web browser applications, search applications, instant messaging tools, email clients and/or social platform software, etc. (just an example). ).

终端设备101、102、103可以是具有显示屏并且支持网页浏览的各种电子设备,包括但不限于智能手机、平板电脑、膝上型便携计算机和台式计算机等等。The terminal devices 101, 102, 103 may be various electronic devices having a display screen and supporting web browsing, including but not limited to smart phones, tablet computers, laptop computers, desktop computers, and the like.

服务器105可以是提供各种服务的服务器,例如对用户利用终端设备101、102、103所浏览的网站提供支持的后台管理服务器(仅为示例)。后台管理服务器可以对接收到的用户请求等数据进行分析等处理,并将处理结果(例如根据用户请求获取或生成的网页、信息、或数据等)反馈给终端设备。The server 105 may be a server that provides various services, such as a background management server (just an example) that provides support for websites browsed by users using the terminal devices 101 , 102 , and 103 . The background management server can analyze and process the received user requests and other data, and feed back the processing results (such as web pages, information, or data obtained or generated according to user requests) to the terminal device.

需要说明的是,本公开实施例所提供的特征识别模型训练方法或特征识别方法一般可以由服务器105执行。相应地,本公开实施例所提供的特征识别模型训练装置或特征识别装置一般可以设置于服务器105中。本公开实施例所提供的特征识别模型训练方法或特征识别方法也可以由不同于服务器105且能够与终端设备101、102、103和/或服务器105通信的服务器或服务器集群执行。相应地,本公开实施例所提供的特征识别模型训练装置或特征识别装置也可以设置于不同于服务器105且能够与终端设备101、102、103和/或服务器105通信的服务器或服务器集群中。或者,本公开实施例所提供的特征识别模型训练方法或特征识别方法也可以由终端设备101、102、或103执行,或者也可以由不同于终端设备101、102、或103的其他终端设备执行。相应地,本公开实施例所提供的特征识别模型训练装置或特征识别装置也可以设置于终端设备 101、102、或103中,或设置于不同于终端设备101、102、或103的其他终端设备中。It should be noted that, the feature recognition model training method or the feature recognition method provided by the embodiments of the present disclosure may generally be executed by the server 105 . Correspondingly, the feature recognition model training apparatus or the feature recognition apparatus provided by the embodiments of the present disclosure may generally be provided in the server 105 . The feature recognition model training method or feature recognition method provided by the embodiments of the present disclosure may also be executed by a server or server cluster different from the server 105 and capable of communicating with the terminal devices 101 , 102 , 103 and/or the server 105 . Correspondingly, the feature recognition model training apparatus or feature recognition apparatus provided by the embodiments of the present disclosure may also be provided in a server or server cluster different from the server 105 and capable of communicating with the terminal devices 101 , 102 , 103 and/or the server 105 . Alternatively, the feature recognition model training method or feature recognition method provided by the embodiments of the present disclosure may also be executed by the terminal device 101 , 102 , or 103 , or may also be executed by other terminal devices different from the terminal device 101 , 102 , or 103 . . Correspondingly, the feature recognition model training apparatus or feature recognition apparatus provided in the embodiments of the present disclosure may also be set in the terminal equipment 101 , 102 , or 103 , or set in other terminal equipment different from the terminal equipment 101 , 102 , or 103 . middle.

例如,物品样本数据集可以通过终端设备101、102、或103中的任意一个(例如,终端设备101,但不限于此)获取,也可以存储在终端设备101、102、或103中的任意一个之中,或者存储在外部存储设备上并可以导入到终端设备101中。然后,终端设备101可以在本地执行本公开实施例所提供的特征识别模型训练方法,或者将物品样本数据集发送到其他终端设备、服务器、或服务器集群,并由接收该物品样本数据集的其他终端设备、服务器、或服务器集群来执行本公开实施例所提供的特征识别模型训练方法。For example, the item sample data set can be acquired through any one of the terminal devices 101 , 102 , or 103 (for example, the terminal device 101 , but not limited to), and can also be stored in any one of the terminal devices 101 , 102 , or 103 or stored on an external storage device and can be imported into the terminal device 101 . Then, the terminal device 101 can locally execute the feature recognition model training method provided by the embodiment of the present disclosure, or send the item sample data set to other terminal devices, servers, or server clusters, and other devices that receive the item sample data set A terminal device, a server, or a server cluster is used to execute the feature recognition model training method provided by the embodiments of the present disclosure.

应该理解,图1中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。It should be understood that the numbers of terminal devices, networks and servers in FIG. 1 are merely illustrative. There can be any number of terminal devices, networks and servers according to implementation needs.

图2示意性示出了根据本公开实施例的特征识别模型训练方法的流程图。FIG. 2 schematically shows a flowchart of a method for training a feature recognition model according to an embodiment of the present disclosure.

如图2所示,该实施例的特征识别模型训练方法包括操作 S210~S270。As shown in FIG. 2, the feature recognition model training method of this embodiment includes operations S210-S270.

在操作S210,获取物品样本数据集,其中,物品样本数据集中包括多条物品样本,每条物品样本包括物品图像数据、用于描述物品的文本数据和物品风格数据,其中,物品样本具有风格标签。In operation S210, an item sample data set is obtained, wherein the item sample data set includes a plurality of item samples, and each item sample includes item image data, text data for describing the item, and item style data, wherein the item sample has a style tag .

根据本公开的实施例,物品图像数据可以包括物品图片,物品图片中除包括物品本身之后,也可以包括展示物品的模特或展示架、展示柜等等。用于描述物品的文本数据,可以包括描述物品颜色的文本数据、描述物品品牌的文本数据、描述物品款式的文本数据等等,例如:红色百褶裙、蓝色某运动品牌T恤衫等等。物品风格数据可以包括运动风格、休闲风格、商务风格、甜美风格等等。风格标签可以采用二进制数表示物品与风格是否匹配,当物品与风格匹配时,风格标签为1;当物品与风格不匹配时,风格标签为0。例如:蓝色某运动品牌T恤衫的风格是运动风格,则该风格标签为1。蓝色某运动品牌T恤衫的风格是淑女风格,则该风格标签为0。According to an embodiment of the present disclosure, the image data of the item may include a picture of the item, and the image of the item may also include a model or a display stand, a display cabinet, and the like for displaying the item after the item itself. The text data used to describe the item may include text data describing the color of the item, text data describing the brand of the item, text data describing the style of the item, etc., for example: red pleated skirt, blue T-shirt of a certain sports brand, etc. The item style data may include sports style, casual style, business style, sweet style, and the like. The style tag can use a binary number to indicate whether the item matches the style. When the item matches the style, the style tag is 1; when the item does not match the style, the style tag is 0. For example, if the style of a blue T-shirt of a sports brand is sports style, the style label is 1. The style of the blue T-shirt of a sports brand is lady style, then the style tag is 0.

在操作S220,针对每条物品样本,将物品图像数据输入初始模型的图像特征提取层,输出物品图像特征。In operation S220, for each item sample, the item image data is input into the image feature extraction layer of the initial model, and the item image features are output.

根据本公开的实施例,例如:物品图像数据为蓝色某运动品牌T恤衫的图片,将该物品图像数据输入初始模型的图像特征提取层,输出的物品图像特征,可以包括蓝色、运动品牌的标志、T恤衫等等。According to an embodiment of the present disclosure, for example: the item image data is a picture of a blue T-shirt of a certain sports brand, the item image data is input into the image feature extraction layer of the initial model, and the output item image features may include blue, sports brand logos, T-shirts, etc.

在操作S230,将用于描述物品的文本数据输入初始模型的文本特征提取层,输出文本特征。In operation S230, the text data for describing the item is input into the text feature extraction layer of the initial model, and the text features are output.

根据本公开的实施例,例如:用于描述物品的文本数据为蓝色某运动品牌T恤衫,将该物品图像数据输入初始模型的文本数据提取层,输出的文本数据特征,可以包括蓝色、运动品牌的名称、T恤衫等等。According to an embodiment of the present disclosure, for example: the text data used to describe the item is a blue T-shirt of a certain sports brand, the item image data is input into the text data extraction layer of the initial model, and the output text data features may include blue, Sports brand names, t-shirts, etc.

在操作S240,将物品风格数据输入初始模型的风格特征提取层,输出风格特征。In operation S240, the item style data is input into the style feature extraction layer of the initial model, and the style feature is output.

根据本公开的实施例,例如:该蓝色某运动品牌的T恤衫的风格为运动风格,则物品风格标签为1,代表该物品与风格匹配,该样本数据为正样本数据。将物品风格数据输入初始模型的风格特征提取层,输出的风格特征可以为运动。According to an embodiment of the present disclosure, for example, if the style of the blue T-shirt of a certain sports brand is sports style, the item style tag is 1, indicating that the item matches the style, and the sample data is positive sample data. Input the item style data into the style feature extraction layer of the initial model, and the output style feature can be motion.

在操作S250,将物品图像特征和文本特征输入初始模型的特征组合层,输出物品组合特征。In operation S250, the item image feature and the text feature are input into the feature combination layer of the initial model, and the item combination feature is output.

根据本公开的实施例,将上述物品的图像特征“蓝色、运动品牌的标志、T恤衫”与文本特征“蓝色、运动品牌的名称、T恤衫”输入特征组合层,输出的物品组合特征为“蓝色、运动品牌的标志、运动品牌的名称、T恤衫”。According to an embodiment of the present disclosure, the image feature "blue, the logo of a sports brand, T-shirt" and the text feature "blue, the name of a sports brand, T-shirt" of the above-mentioned items are input into the feature combination layer, and the output item combination feature It is "blue, the logo of the sports brand, the name of the sports brand, the T-shirt".

在操作S260,将物品组合特征和风格特征输入初始模型的匹配层,输出用于表征物品组合特征和风格特征的匹配结果。In operation S260, the item combination feature and the style feature are input into the matching layer of the initial model, and a matching result for characterizing the item combination feature and the style feature is output.

根据本公开的实施例,将物品组合特征“蓝色、运动品牌的标志、运动品牌的名称、T恤衫”和风格特征“运动“输入初始模型的匹配层,输出用于表征物品组合特征和风格特征的匹配结果,例如匹配结果为 0.8。According to an embodiment of the present disclosure, the item combination feature "blue, the logo of the sports brand, the name of the sports brand, T-shirt" and the style feature "sports" are input into the matching layer of the initial model, and the output is used to characterize the item combination feature and style. The matching result of the feature, for example, the matching result is 0.8.

根据本公开的实施例,物品组合特征和风格特征可以以向量表示,初始模型的匹配层可以通过计算物品组合特征向量和风格特征向量的距离,例如:欧式距离、余弦相似度等等,确定用于表征物品组合特征和风格特征的匹配结果。According to the embodiment of the present disclosure, the item combination feature and the style feature can be represented by a vector, and the matching layer of the initial model can determine the distance between the item combination feature vector and the style feature vector by calculating the distance between the item combination feature vector and the style feature vector, such as Euclidean distance, cosine similarity, etc. Matching results for characterizing item combination features and style features.

在操作S270,根据匹配结果和风格标签调整初始模型的模型参数,得到训练完成的特征识别模型。In operation S270, the model parameters of the initial model are adjusted according to the matching result and the style label, so as to obtain a trained feature recognition model.

根据本公开的实施例,由于上述输入的是正样本数据,风格标签为1,因此,可以根据匹配结果0.8与风格标签1,调整初始模型的模型参数,调整完成之后,输出的匹配结果可以变为0.9、0.95或更接近于1的数值,输出的匹配结果越接近于1证明该特征识别模型的识别准确率越高。According to the embodiment of the present disclosure, since the above input is positive sample data and the style label is 1, the model parameters of the initial model can be adjusted according to the matching result 0.8 and the style label 1. After the adjustment is completed, the output matching result can be changed to A value of 0.9, 0.95 or closer to 1, the closer the output matching result is to 1, the higher the recognition accuracy of the feature recognition model.

根据本公开的实施例,因为采用了包括物品图像数据、用于描述物品的文本数据、物品风格数据和物品风格标签的物品样本数据集,通过将物品图像数据、用于描述物品的文本数据分别输入初始模型的图像特征提取层、文本特征提取层输出图像特征和文本特征,再输入特征组合层输出物品组合特征,将物品组合特征与利用初始模型的风格特征提取层提取的风格特征输入匹配层,通过输出的匹配结果和风格标签调整初始模型的模型参数的技术手段训练得到特征识别模型,所以至少部分地克服了相关技术中采用机器学习算法对陌生物品和风格泛化性差的技术问题,提高了对陌生物品和陌生风格识别的泛化性。According to the embodiment of the present disclosure, since the item sample data set including item image data, text data for describing the item, item style data, and item style label is adopted, by dividing the item image data and the text data for describing the item, respectively Input the image feature extraction layer and text feature extraction layer of the initial model to output image features and text features, then input the feature combination layer to output the item combination feature, and input the item combination feature and the style feature extracted by the style feature extraction layer of the initial model into the matching layer. , through the technical means of adjusting the model parameters of the initial model through the output matching results and style labels to obtain a feature recognition model, so at least partially overcomes the technical problem of poor generalization of unfamiliar items and styles using machine learning algorithms in related technologies, and improves the The generalization of recognition of unfamiliar objects and unfamiliar styles.

根据本公开的实施例,将物品图像特征和文本特征输入初始模型的图像组合层,输出物品组合特征包括:According to an embodiment of the present disclosure, the item image features and text features are input into the image combination layer of the initial model, and the output item combination features include:

利用图像组合层将物品图像特征和文本特征拼接成物品组合特征。The image combination layer is used to stitch item image features and text features into item combination features.

根据本公开的实施例,物品图像特征、文本特征均可以用向量表示,利用图像组合层可以将物品图像特征向量和文本特征向量拼接成一维向量,例如:物品图像特征向量为(a,b,c),文本特征向量为(e,f, g),则拼接成的物品组合特征向量可以为(a,b,c,e,f,g)。According to the embodiment of the present disclosure, both the image feature and text feature of the item can be represented by a vector, and the image combination layer can be used to stitch the item image feature vector and the text feature vector into a one-dimensional vector, for example: the item image feature vector is (a, b, c), the text feature vector is (e, f, g), then the spliced item combination feature vector can be (a, b, c, e, f, g).

根据本公开的实施例,利用图像组合层也可以将物品图像特征向量和文本特征向量拼接成二维向量或矩阵,在此不做赘述。According to the embodiments of the present disclosure, the image combination layer can also be used to stitch the item image feature vector and the text feature vector into a two-dimensional vector or matrix, which will not be repeated here.

根据本公开的实施例,通过拼接的方式得到物品组合特征,可以将物品的图像特征和文本特征结合起来,用于识别与该物品匹配的风格,提高模型预测的准确率。According to the embodiments of the present disclosure, the combination feature of the item is obtained by splicing, and the image feature and the text feature of the item can be combined to identify the style matching the item and improve the accuracy of the model prediction.

根据本公开的实施例,在获取物品样本数据集之后,上述训练方法还包括:According to an embodiment of the present disclosure, after acquiring the item sample data set, the above training method further includes:

根据物品样本数据集生成扩增物品样本数据集。Generate an augmented item sample dataset from the item sample dataset.

根据本公开的实施例,扩增物品样本数据集包括在获取的物品样本数据集的基础上,通过图片数据增强和文本数据增强两种方式,分别对物品样本数据集中的图片数据、文本数据进行深度表示,得到的扩增物品样本数据集。According to an embodiment of the present disclosure, the augmented item sample data set includes on the basis of the acquired item sample data set, and the image data and text data in the item sample data set are respectively processed in two ways: image data enhancement and text data enhancement. Depth representation, the resulting augmented item sample dataset.

根据本公开的实施例,例如:物品样本数据中包括的物品图像数据可以为带有某品牌标志的黑色运动鞋图片,用于描述物品的文本数据可以为某品牌黑色运动鞋,物品风格数据为运动风格,物品风格标签为1。可以根据该物品样本数据的共同特征,对物品样本数据进行扩增,例如扩增的物品样本数据可以为带有某品牌标志的红色或绿色运动鞋的物品图像数据、用于描述物品的文本数据和物品风格数据、物品风格标签,也可以为不带有某品牌标志的且款式与物品样本数据中的款式类似的各种不同颜色的运动鞋的物品图像数据、用于描述物品的文本数据和物品风格数据、风格标签等等。上述列举的物品样本数据集扩增的物品样本数据均是物品与风格相匹配的正样本数据,因此,风格标签为1。According to an embodiment of the present disclosure, for example, the item image data included in the item sample data may be a picture of a black sneaker with a certain brand logo, the text data used to describe the item may be a certain brand of black sneakers, and the item style data may be Sports style, item style tag is 1. The item sample data can be augmented according to the common characteristics of the item sample data. For example, the augmented item sample data can be the item image data of red or green sneakers with a certain brand logo, and the text data used to describe the item. and item style data, item style tags, item image data, text data for describing items, and item image data for sports shoes of various colors that do not carry a certain brand logo and whose styles are similar to those in the item sample data Item style data, style tags, etc. The item sample data augmented by the item sample data set listed above are all positive sample data that match the item and style, so the style label is 1.

根据本公开的实施例,在进行模型训练时,还可以采用物品与风格不匹配的负样本数据,例如:负样本数据包括的物品图像数据可以为带有某品牌标志的黑色运动鞋图片,用于描述物品的文本数据可以为某品牌黑色运动鞋,物品风格数据为商务风格,风格标签为0。According to an embodiment of the present disclosure, when performing model training, negative sample data that does not match the item and style may also be used. For example, the item image data included in the negative sample data may be a picture of black sneakers with a The text data describing the item can be a certain brand of black sneakers, the item style data is business style, and the style tag is 0.

根据本公开的实施例,在实施本公开实施例的特征识别模型训练方法时,正样本数据与负样本数据的比例范围可以为1∶1~1∶5之间。According to the embodiment of the present disclosure, when implementing the feature recognition model training method of the embodiment of the present disclosure, the ratio of the positive sample data to the negative sample data may range from 1:1 to 1:5.

根据本公开的实施例,由于物品样本数据集主要来源于领域专家数据和少量人工标注的数据,数据流有限,生成扩增物品样本数据集,利用扩增物品样本数据集和物品样本数据训练初始模型,可以提高特征识别模型识别预测的准确度。According to an embodiment of the present disclosure, since the item sample data set is mainly derived from domain expert data and a small amount of manually labeled data, the data flow is limited, an augmented item sample data set is generated, and the augmented item sample data set and the item sample data are used to train the initial The model can improve the accuracy of the recognition prediction of the feature recognition model.

下面参考图3~图7,结合具体实施例对图2所示的方法做进一步说明。The method shown in FIG. 2 will be further described below with reference to FIGS. 3 to 7 in conjunction with specific embodiments.

图3示意性示出了根据本公开实施例的生成扩增样本数据集的方法的流程图。FIG. 3 schematically shows a flowchart of a method for generating an amplified sample data set according to an embodiment of the present disclosure.

如图3所示,该实施例的生成扩增样本数据集包括操作S310~ S330。As shown in FIG. 3 , the generating of the amplified sample data set in this embodiment includes operations S310 to S330.

在操作S310,根据物品图像数据,从物品数据库中,确定与物品图像数据相似的第一物品数据列表,其中,第一物品数据列表包括不同物品的物品图像数据、用于描述物品的文本数据和物品风格数据。In operation S310, a first item data list similar to the item image data is determined from the item database according to the item image data, wherein the first item data list includes item image data of different items, text data for describing the item, and Item style data.

根据本公开的实施例,例如:以物品图像数据为带有蕾丝花边的粉色连衣裙的图片为例,可以从物品数据库中确定与物品图像数据相似的第一物品数据列表中可以包括多个不同的物品,例如:红色连衣裙、带有蕾丝花边的半身裙、带有波点的粉色连衣裙。以第一物品数据列表中的红色连衣裙物品为例,第一物品数据列表中包括该红色连衣裙的图片,例如:一个穿着该红色连衣裙的小女孩的图片;用于描述该红色连衣裙的文本数据,例如:红色、连衣裙;物品风格数据,例如:甜美风格、淑女风格。According to an embodiment of the present disclosure, for example, taking the item image data as a picture of a pink dress with lace as an example, it can be determined from the item database that the first item data list that is similar to the item image data may include a plurality of different items. Items such as: red dress, skirt with lace, pink dress with polka dots. Taking the red dress item in the first item data list as an example, the first item data list includes a picture of the red dress, for example: a picture of a little girl wearing the red dress; text data used to describe the red dress, For example: red, dress; item style data, for example: sweet style, lady style.

在操作S320,根据用于描述物品的文本数据,从物品数据库中,确定与用于描述物品的文本数据相似的第二物品数据列表,其中,第二物品数据列表包括不同物品的物品图像数据、用于描述物品的文本数据和物品风格数据。In operation S320, a second item data list similar to the text data for describing the item is determined from the item database according to the text data for describing the item, wherein the second item data list includes item image data of different items, Text data and item style data used to describe the item.

根据本公开的实施例,例如:以带有蕾丝花边的粉色连衣裙的文本数据为例,从物品数据库中,可以确定与用于描述物品的文本数据相似的第二物品数据列表中包括多个不同的物品,例如:带有蕾丝花边的半身裙、带有蕾丝花边的红色连衣裙、带有波点的粉色连衣裙。以第二物品数据列表中包括带有蕾丝花边的半身裙为例,第二物品数据列表包括的物品图像数据为一张带有蕾丝花边的半身裙的图片,用于描述物品的文本数据为蕾丝花边、半身裙,物品的风格数据为淑女风格、甜美风格。According to an embodiment of the present disclosure, for example, taking the text data of a pink dress with lace as an example, from the item database, it can be determined that the second item data list that is similar to the text data used to describe the item includes a plurality of different items. Items such as: skirt with lace, red dress with lace, pink dress with polka dots. Take the second item data list including a skirt with lace as an example, the item image data included in the second item data list is a picture of a skirt with lace, and the text data used to describe the item is lace Lace, skirt, the style data of the item is lady style, sweet style.

在操作S330,根据第一物品数据列表和第二物品数据列表,生成扩增物品样本数据集。In operation S330, an augmented item sample data set is generated according to the first item data list and the second item data list.

根据本公开的实施例,可以根据第一物品数据列表和第二物品数据列表中的全部数据,生成扩增物品样本数据集,则生成的扩增物品样本数据集包括红色连衣裙、带有蕾丝花边的半身裙、带有波点的粉色连衣裙、带有蕾丝花边的红色连衣裙的物品图像数据、用于描述物品的文本数据和物品的风格数据。According to an embodiment of the present disclosure, an augmented item sample data set can be generated according to all data in the first item data list and the second item data list, and the generated augmented item sample data set includes a red dress with lace Item image data, text data for describing the item, and style data for the item.

根据本公开的实施例,通过物品图像数据和用于描述物品的文本数据分别生成物品数据列表,可以自动扩增物品样本数据,以解决相关技术中仅依赖于获取的样本数据进行模型训练,导致模型预测准确度低、泛化性差的问题。According to the embodiments of the present disclosure, the item data list is generated by the item image data and the text data used to describe the item respectively, and the item sample data can be automatically expanded, so as to solve the problem that the related art only relies on the acquired sample data for model training, resulting in The problem of low model prediction accuracy and poor generalization.

根据本公开的实施例,根据第一物品数据列表和第二物品数据列表,生成扩增物品样本数据集,包括:According to an embodiment of the present disclosure, generating an augmented item sample data set according to the first item data list and the second item data list, including:

根据第一物品数据列表和第二物品数据列表的数据交集,生成扩增物品样本数据集。An augmented item sample data set is generated according to the data intersection of the first item data list and the second item data list.

根据本公开的实施例,例如:第一物品数据列表中包括红色连衣裙、带有蕾丝花边的半身裙、带有波点的粉色连衣裙。第二物品数据列表中包括带有蕾丝花边的半身裙、带有蕾丝花边的红色连衣裙、带有波点的粉色连衣裙。则生成的扩增物品样本数据集包括物品图像数据为带有蕾丝花边的粉色半身裙的图片,用于描述物品的文本数据包括:蕾丝花边、粉色、连衣裙、半身裙、红色,物品的风格包括:淑女风格、甜美风格。According to an embodiment of the present disclosure, for example, the first item data list includes a red dress, a skirt with lace, and a pink dress with polka dots. The second item data list includes a skirt with lace, a red dress with lace, and a pink dress with polka dots. The generated augmented item sample data set includes the image data of the item as a picture of a pink skirt with lace, and the text data used to describe the item includes: lace, pink, dress, skirt, red, and the style of the item includes : Lady style, sweet style.

根据本公开的实施例,通过物品图像数据和用于描述物品的文本数据分别生成物品数据列表,再对两个数据列表取交集,在达到自动扩增样本数据的同时,又提高了扩增后样本数据的准确性。According to the embodiment of the present disclosure, an item data list is separately generated from the item image data and the text data used to describe the item, and then the intersection of the two data lists is obtained. While achieving automatic amplification of sample data, it also improves the post-amplification performance. Accuracy of sample data.

根据本公开的实施例,初始模型的模型参数包括初始模型的图像特征提取层的模型参数、初始模型的文本特征提取层的模型参数、初始模型的风格特征提取层的模型参数,根据匹配结果和风格标签调整初始模型的模型参数,得到训练完成的特征识别模型,包括:According to an embodiment of the present disclosure, the model parameters of the initial model include model parameters of the image feature extraction layer of the initial model, model parameters of the text feature extraction layer of the initial model, and model parameters of the style feature extraction layer of the initial model. According to the matching result and The style label adjusts the model parameters of the initial model to obtain the trained feature recognition model, including:

根据匹配结果与风格标签,调整初始模型的图像特征提取层的模型参数、初始模型的文本特征提取层的模型参数和初始模型的风格特征提取层的模型参数,得到训练完成的特征识别模型。According to the matching results and style labels, the model parameters of the image feature extraction layer of the initial model, the model parameters of the text feature extraction layer of the initial model, and the model parameters of the style feature extraction layer of the initial model are adjusted to obtain the trained feature recognition model.

根据本公开的实施例,风格标签可以以二进制数表示,当风格标签为1时,表示该物品样本数据中的物品与风格匹配;当风格标签为0时,表示该物品样本数据中的物品与风格不匹配。According to an embodiment of the present disclosure, the style tag can be represented by a binary number. When the style tag is 1, it means that the item in the item sample data matches the style; when the style tag is 0, it means that the item in the item sample data matches the style. Style does not match.

根据本公开的实施例,例如将物品与风格匹配的正物品样本数据输入初始模型之后,输出的匹配结果为0.8,而该风格标签为1,则可以通过调整初始模型中图像特征提取层、文本特征提取层、风格特征提取层的模型参数,改变输出的匹配结果。According to an embodiment of the present disclosure, for example, after inputting the sample data of a genuine item that matches the item and style into the initial model, the output matching result is 0.8, and the style label is 1, then the image feature extraction layer, text can be adjusted by adjusting the initial model. The model parameters of the feature extraction layer and the style feature extraction layer change the output matching result.

根据本公开的实施例,可以采用式(一)所示的公式计算匹配结果与实际结果的差值。According to the embodiment of the present disclosure, the formula shown in formula (1) can be used to calculate the difference between the matching result and the actual result.

Figure BDA0003426141920000151
Figure BDA0003426141920000151

其中,XOR是异或函数,当2个取值为0或1的数相等时XOR 函数返回值为0,否则为1;Among them, XOR is the exclusive OR function. When the two numbers with the value of 0 or 1 are equal, the XOR function returns a value of 0, otherwise it is 1;

(Itemi,Stylej)true是实际的物品与风格的匹配关系,取值为0或1,1表示对应,0表示不对应;(Item i , Style j ) true is the matching relationship between the actual item and the style, the value is 0 or 1, 1 means corresponding, 0 means not corresponding;

(Itemi,Stylej)pred是算法预测的物品与风格的匹配关系,取值范围是 0~1之间的浮点数,数值越大代表算法认为物品与风格匹配程度越高;(Item i , Style j ) pred is the matching relationship between the item and the style predicted by the algorithm. The value range is a floating point number between 0 and 1. The larger the value, the higher the matching degree between the item and the style is considered by the algorithm;

I(·)是一种指示函数,这里当输入值小于0时其返回0,当输入值大于0时其返回1。I(·) is an indicator function, here it returns 0 when the input value is less than 0, and it returns 1 when the input value is greater than 0.

根据本公开的实施例,可以将多次调整模型参数之后输出的多个匹配结果和风格标签输入损失函数,当损失函数的变化趋近于零时,此时,初始模型中图像特征提取层、文本特征提取层、风格特征提取层提取的图像特征、文本特征与风格特征的匹配程度最高,表示特征识别模型的预测准确度最高,则完成对初始模型的训练,得到训练完成的特征识别模型。According to the embodiments of the present disclosure, multiple matching results and style labels output after adjusting the model parameters for many times can be input into the loss function. When the change of the loss function approaches zero, at this time, the image feature extraction layer, The image features, text features and style features extracted by the text feature extraction layer and style feature extraction layer have the highest matching degree, indicating that the prediction accuracy of the feature recognition model is the highest, then the training of the initial model is completed, and the trained feature recognition model is obtained.

根据本公开的实施例,通过匹配层输出的匹配结果与风格标签调整初始模型的图像特征提取层、文本特征提取层、风格特征提取层,实现有监督的模型训练过程,提高模型识别预测的准确度。According to the embodiments of the present disclosure, the image feature extraction layer, text feature extraction layer, and style feature extraction layer of the initial model are adjusted through the matching result outputted by the matching layer and the style label, so as to realize the supervised model training process and improve the accuracy of model recognition and prediction. Spend.

图4示意性示出了根据本公开实施例的特征识别模型架构示意图。FIG. 4 schematically shows a schematic diagram of the architecture of a feature recognition model according to an embodiment of the present disclosure.

如图4所示,该实施例的特征识别模型包括三层架构:最底层包括图像特征提取层、文本特征提取层和风格特征提取层,分别用于提取物品样本数据中的图像特征、文本特征和风格特征。中间层包括特征组合层,用于将图像特征与文本特征进行组合,形成物品组合特征。最上层包括匹配层,用于将物品组合特征与风格特征进行匹配,输出匹配结果,并根据匹配结果和风格标签调整最底层的模型参数。As shown in FIG. 4 , the feature recognition model of this embodiment includes a three-layer architecture: the bottom layer includes an image feature extraction layer, a text feature extraction layer, and a style feature extraction layer, which are respectively used to extract image features and text features in the item sample data. and style characteristics. The middle layer includes a feature combination layer, which is used for combining image features and text features to form item combination features. The top layer includes a matching layer, which is used to match the item combination features with the style features, output the matching results, and adjust the bottom-most model parameters according to the matching results and style labels.

图5示意性示出了根据本公开实施例的物品特征识别方法流程图。Fig. 5 schematically shows a flow chart of a method for identifying a feature of an item according to an embodiment of the present disclosure.

如图5所示,该实施例的物品特征识别方法包括操作S510~S560。As shown in FIG. 5 , the object feature identification method of this embodiment includes operations S510 to S560.

在操作S510,获取待处理物品的物品信息,其中,物品信息包括物品图像信息和用于描述物品的文本信息。In operation S510, item information of the item to be processed is acquired, wherein the item information includes item image information and text information for describing the item.

根据本公开的实施例,例如:带处理物品的物品信息包括的物品图像信息为深蓝色带有毛领和某品牌专属图案的牛仔外套的图片,用于描述物品的文本信息为某品牌深蓝色毛领牛仔外套。According to an embodiment of the present disclosure, for example, the item image information included in the item information with the processed item is a picture of a dark blue denim jacket with fur collar and a certain brand's exclusive pattern, and the text information used to describe the item is a certain brand of dark blue Fur collar denim jacket.

在操作S520,将物品图像信息输入特征识别模型的图像特征提取层,输出待处理物品的物品图像特征,其中,特征识别模型是通过本公开实施例的训练方法训练得到的。In operation S520, the item image information is input into the image feature extraction layer of the feature recognition model, and the item image feature of the item to be processed is output, wherein the feature recognition model is trained by the training method of the embodiment of the present disclosure.

根据本公开的实施例,将深蓝色带有毛领和某品牌专属图案的牛仔外套的图片输入采用本公开实施例提供的训练方法训练得到特征识别模型的图像特征提取层,输出的物品图像特征可以包括:深蓝色、毛领、牛仔外套、某品牌专属图案,例如可以是四叶草的图案。According to an embodiment of the present disclosure, a picture of a dark blue denim jacket with a fur collar and an exclusive pattern of a certain brand is input into an image feature extraction layer of a feature recognition model obtained by training with the training method provided by the embodiment of the present disclosure, and the output image features of the item are Can include: dark blue, fur collar, denim jacket, a brand-specific pattern, such as a four-leaf clover pattern.

在操作S530,将用于描述物品的文本信息输入特征识别模型的文本特征提取层,输出待处理物品的文本特征。In operation S530, the text information for describing the item is input into the text feature extraction layer of the feature recognition model, and the text feature of the item to be processed is output.

根据本公开的实施例,将某品牌深蓝色毛领牛仔外套的文本信息输入特征识别模型的文本特征提取层,输出的待处理物品的文本特征,可以包括:深蓝色、某品牌、毛领、牛仔外套。According to the embodiment of the present disclosure, the text information of a certain brand of dark blue fur-collar denim jacket is input into the text feature extraction layer of the feature recognition model, and the output text features of the item to be processed may include: dark blue, a certain brand, fur collar, denim jacket.

在操作S540,将物品图像特征和文本特征输入特征识别模型的特征组合层,输出待处理物品的物品组合特征。In operation S540, the item image feature and the text feature are input into the feature combination layer of the feature recognition model, and the item combination feature of the item to be processed is output.

根据本公开的实施例,将物品图像特征“深蓝色、毛领、牛仔外套、某品牌专属图案,例如可以是四叶草的图案”与文本特征“深蓝色、某品牌、毛领、牛仔外套”输入特征识别模型的特征组合层,输出待处理物品的物品组合特征,可以为“深蓝色、毛领、牛仔外套、四叶草的图案、某品牌”。According to an embodiment of the present disclosure, the object image feature "dark blue, fur collar, denim jacket, a brand-specific pattern, such as a four-leaf clover pattern" is combined with the text feature "dark blue, a certain brand, fur collar, denim jacket" "Input the feature combination layer of the feature recognition model, and output the item combination feature of the item to be processed, which can be "dark blue, fur collar, denim jacket, four-leaf clover pattern, a certain brand".

在操作S550,将物品组合特征和候选风格的描述特征输入特征识别模型的匹配层,输出用于表征物品组合特征和风格特征的匹配结果,其中,候选风格的描述特征是将从候选风格数据库中获取的物品风格信息输入特征识别模型的风格特征提取层后得到的。In operation S550, the item combination feature and the description feature of the candidate style are input into the matching layer of the feature recognition model, and a matching result for characterizing the item combination feature and the style feature is output, wherein the description feature of the candidate style is obtained from the candidate style database. The obtained item style information is obtained by inputting the style feature extraction layer of the feature recognition model.

根据本公开的实施例,例如:将物品组合特征“深蓝色、毛领、牛仔外套、四叶草的图案,某品牌”和候选风格的描述特征,例如候选风格的描述特征为休闲风格,输入特征识别模型的匹配层,输出匹配结果。According to an embodiment of the present disclosure, for example, the item combination feature "dark blue, fur collar, denim jacket, four-leaf clover pattern, a certain brand" and the description feature of the candidate style, for example, the description feature of the candidate style is casual style, enter The matching layer of the feature recognition model outputs the matching results.

在操作S560,根据匹配结果确定待处理商品的商品风格信息与待处理物品的物品组合特征相匹配的风格特征信息。In operation S560, according to the matching result, determine the style feature information in which the commodity style information of the item to be processed matches the item combination feature of the item to be processed.

根据本公开的实施例,可以从候选风格数据库中获取多个物品风格信息输入特征识别模型的风格特征提取层之后得到多个风格特征。将物品组合特征与多个风格特征输入特征识别模型的匹配层,得到的多个匹配结果进行排序,若待处理物品仅保留一个风格,则可以采用匹配结果最高的风格作为待处理物品的物品风格信息。若待处理物品可以保留N个风格,可以从排序之后的匹配结果中,自上至下,依次取N个匹配结果对应的风格作为待处理物品的物品风格信息。According to the embodiment of the present disclosure, a plurality of style features can be obtained after obtaining a plurality of item style information from the candidate style database and inputting the style feature extraction layer of the feature recognition model. Input the item combination feature and multiple style features into the matching layer of the feature recognition model, and sort the obtained multiple matching results. If only one style is reserved for the item to be processed, the style with the highest matching result can be used as the item style of the item to be processed. information. If the items to be processed can retain N styles, the styles corresponding to the N matching results can be sequentially selected from the sorted matching results from top to bottom as the item style information of the items to be processed.

根据本公开的实施例,通过特征识别模型,可以识别与风格相匹配的物品图像特征和文本特征,并将物品图像特征和文本特征组合形成物品组合特征,利用特征识别模型中的风格特征提取层从候选风格数据库中提取风格特征,确定与该物品组合特征相匹配的风格特征,从而确定该物品的风格,达到可以自动确定新物品风格的技术效果。According to the embodiments of the present disclosure, through the feature recognition model, it is possible to identify the item image features and text features that match the style, and combine the item image features and text features to form the item combination feature, and use the style feature extraction layer in the feature recognition model. The style feature is extracted from the candidate style database, and the style feature matching the combination feature of the item is determined, so as to determine the style of the item, and the technical effect of automatically determining the style of the new item is achieved.

图6示意性示出了根据本公开实施例的候选风格数据库生成方法流程图。FIG. 6 schematically shows a flowchart of a method for generating a candidate style database according to an embodiment of the present disclosure.

如图6所示,该实施例的候选风格数据库生成方法包括:S610~ S630。As shown in FIG. 6 , the method for generating a candidate style database in this embodiment includes: S610-S630.

在操作S610,获取多个物品评论文本数据和多个物品标题文本数据。In operation S610, a plurality of item review text data and a plurality of item title text data are acquired.

根据本公开的实施例,物品评论文本数据可以包括这件衣服适合居家、旅行或任何休闲场合,穿着舒适等等。物品标题文本数据可以包括居家、旅行必备,舒适等等。According to an embodiment of the present disclosure, the article review text data may include that this piece of clothing is suitable for home, travel, or any leisure occasion, is comfortable to wear, and the like. Item title text data may include home, travel essentials, comfort, and the like.

在操作S620,将多个物品评论文本数据和多个物品标题文本数据进行预处理,得到用于表征物品风格的文本数据集。In operation S620, a plurality of item review text data and a plurality of item title text data are preprocessed to obtain a text data set for characterizing the style of the item.

根据本公开的实施例,预处理可以包括对数据进行清洗,例如切词、去除停用词、去除标点符号、去除特征符号、过滤过高频率的词、过滤过低频率的词等等。预处理还包括对清洗之后的数据进行聚类计算之后得到用于表征物品风格的文本数据集。例如:休闲、运动等等。According to an embodiment of the present disclosure, preprocessing may include cleaning the data, such as word segmentation, stop word removal, punctuation removal, feature symbol removal, filtering of high-frequency words, filtering of low-frequency words, and the like. The preprocessing also includes performing a clustering calculation on the cleaned data to obtain a text data set used to characterize the style of the item. For example: leisure, sports, etc.

在操作S630,根据用于表征物品风格的文本数据集生成候选风格数据库。In operation S630, a candidate style database is generated according to the text data set used to characterize the style of the item.

根据本公开的实施例,可以将用于表征物品风格的文本数据集存储在数据库中,生成候选风格数据库。According to an embodiment of the present disclosure, a text data set used to characterize the style of an item can be stored in a database to generate a candidate style database.

根据本公开的实施例,通过获取物品的评论数据和标题数据,经过数据的预处理,得到用于表征物品风格的文本数据集。解决了在机器学习过程中缺乏候选风格数据库或自动生成候选风格数据库困难的问题。According to an embodiment of the present disclosure, by acquiring the comment data and title data of the item, and through data preprocessing, a text data set for characterizing the style of the item is obtained. It solves the problem of lack of candidate style database or the difficulty of automatically generating candidate style database in machine learning process.

根据本公开的实施例,生成候选风格数据库的方法还包括:According to an embodiment of the present disclosure, the method for generating a candidate style database further includes:

根据用于表征物品风格的文本数据集生成用于表征物品风格的向量数据集。Generate a vector dataset for characterizing item style from a text dataset for characterizing item style.

根据用于表征物品风格的向量数据集生成候选风格数据库。Generate a candidate style database from the vector dataset used to characterize item styles.

根据本公开的实施例,可以将候选风格数据库中的数据以向量表示,在为新物品匹配风格时,可以通过向量检索从候选风格数据库中查询风格数据,可以节约匹配时间。According to the embodiments of the present disclosure, the data in the candidate style database can be represented by a vector, and when matching styles for new items, the style data can be queried from the candidate style database through vector retrieval, which can save matching time.

为了对比向量检索与普通检索的预测时间,可以通过式(二)、式 (三)表示两种检索方式的预测时间的复杂度。In order to compare the prediction time of vector retrieval and ordinary retrieval, the complexity of prediction time of the two retrieval methods can be expressed by formula (2) and formula (3).

cost=|I|*|J|*d (二)cost=|I|*|J|*d (2)

Figure BDA0003426141920000191
Figure BDA0003426141920000191

其中,t是迭代次数,|J|是风格的数量,k是聚类中心数,|I|是物品的数量,c是查找最近的聚类中心数量,d是模型训练结果的向量维度。where t is the number of iterations, |J| is the number of styles, k is the number of cluster centers, |I| is the number of items, c is the number of nearest cluster centers to find, and d is the vector dimension of the model training results.

式(二)代表普通检索的预测时间复杂度,式(三)代表暴力检索的预测时间复杂度。Equation (2) represents the predicted time complexity of ordinary retrieval, and Equation (3) represents the predicted time complexity of violent retrieval.

因为t和c都是常数,k是远远小于|J|也远远小于|I|的数,所以式 (三)的计算结果远远小于式(二)的计算结果,即使用向量检索算法比普通检索算法的预测时间段。Because both t and c are constants, and k is a number much smaller than |J| and |I|, the calculation result of formula (3) is much smaller than the calculation result of formula (2), even if the vector retrieval algorithm is used than the predicted time period of common retrieval algorithms.

图7示意性示出了根据本公开实施例的物品特征识别的系统架构图。FIG. 7 schematically shows a system architecture diagram of item feature recognition according to an embodiment of the present disclosure.

如图7所示,物品特征识别系统包括模型训练模块、候选风格数据库生成模块和模型预测模块三个部分。As shown in Figure 7, the item feature recognition system includes three parts: a model training module, a candidate style database generation module and a model prediction module.

模型训练模块,通过获取领域专家数据和人工标注数据,对样本数据进行扩增,利用扩增样本数据对初始模型训练得到特征识别模型。The model training module augments the sample data by acquiring domain expert data and manual annotation data, and uses the augmented sample data to train the initial model to obtain a feature recognition model.

候选风格数据库生成模块,通过获取物品评论数据和物品标题数据,按照本公开实施例中生成候选风格数据库的方法得到候选风格数据库。The candidate style database generation module obtains the candidate style database according to the method for generating the candidate style database in the embodiment of the present disclosure by acquiring the item review data and the item title data.

模型预测模块,将待处理物品的物品图像数据输入图像特征提取层提取待处理物品的图像特征;将待处理物品的用于描述物品的文本数据提取待处理物品文本特征;并利用物品特征组合层将待处理物品的图像特征和文本特征进行组合,得到物品组合特征。将物品组合特征与利用风格特征提取层提取的候选风格的描述特征在匹配层匹配,确定待处理物品的风格。The model prediction module inputs the item image data of the item to be processed into the image feature extraction layer to extract the image feature of the item to be processed; extracts the text feature of the item to be processed from the text data of the item to be processed which is used to describe the item; and uses the item feature combination layer The image feature and text feature of the item to be processed are combined to obtain the item combination feature. Match the item combination feature with the description feature of the candidate style extracted by the style feature extraction layer in the matching layer to determine the style of the item to be processed.

图8示意性示出了根据本公开实施例的特征识别模型训练装置的框图。FIG. 8 schematically shows a block diagram of an apparatus for training a feature recognition model according to an embodiment of the present disclosure.

如图8所示,特征识别模型训练装置800包括:第一获取模块810、特征提取模块820、特征组合模块830、匹配模块840和调整模块850。As shown in FIG. 8 , the feature recognition model training apparatus 800 includes: a first acquisition module 810 , a feature extraction module 820 , a feature combination module 830 , a matching module 840 and an adjustment module 850 .

第一获取模块810,用于获取物品样本数据集,其中,物品样本数据集中包括多条物品样本,每条物品样本包括物品图像数据、用于描述物品的文本数据和物品风格数据,所述物品样本具有物风格标签。The first acquisition module 810 is configured to acquire an item sample data set, wherein the item sample data set includes a plurality of item samples, and each item sample includes item image data, text data for describing the item, and item style data. Samples have object style labels.

特征提取模块820,用于针对每条物品样本,将物品图像数据输入初始模型的图像特征提取层,输出物品图像特征;将用于描述物品的文本数据输入初始模型的文本特征提取层,输出文本特征;将物品风格数据输入初始模型的风格特征提取层,输出风格特征。The feature extraction module 820 is used for, for each item sample, input the item image data into the image feature extraction layer of the initial model, and output the item image features; input the text data used to describe the item into the text feature extraction layer of the initial model, and output the text Features; input item style data into the style feature extraction layer of the initial model, and output style features.

特征组合模块830,用于将物品图像特征和文本特征输入初始模型的特征组合层,输出物品组合特征。The feature combination module 830 is used for inputting the item image features and text features into the feature combination layer of the initial model, and outputting the item combination features.

匹配模块840,用于将物品组合特征和风格特征输入初始模型的匹配层,输出用于表征物品组合特征和风格特征的匹配结果。The matching module 840 is configured to input the item combination feature and the style feature into the matching layer of the initial model, and output a matching result for characterizing the item combination feature and the style feature.

调整模块850,用于根据匹配结果和风格标签调整初始模型的模型参数,得到训练完成的特征识别模型。The adjustment module 850 is configured to adjust the model parameters of the initial model according to the matching result and the style label, so as to obtain a trained feature recognition model.

根据本公开的实施例,特征组合模块830包括拼接单元,用于利用图像组合层将物品图像特征和文本特征拼接成物品组合特征。According to an embodiment of the present disclosure, the feature combination module 830 includes a stitching unit for stitching the item image feature and the text feature into the item combination feature using the image combination layer.

根据本公开的实施例,上述装置还包括:生成模块,用于根据物品样本数据集生成扩增物品样本数据集。According to an embodiment of the present disclosure, the above-mentioned apparatus further includes: a generating module configured to generate an augmented item sample data set according to the item sample data set.

根据本公开的实施例,生成模块包括第一确定单元、第二确定单元和生成单元。其中,第一确定单元,根据物品图像数据,从物品数据库中,确定与物品图像数据相似的第一物品数据列表,其中,第一物品数据列表包括不同物品的物品图像数据、用于描述物品的文本数据和物品风格数据。第二确定单元,用于根据用于描述物品的文本数据,从物品数据库中,确定与用于描述物品的文本数据相似的第二物品数据列表,其中,第二物品数据列表包括不同物品的物品图像数据、用于描述物品的文本数据和物品风格数据。生成单元,用于根据第一物品数据列表和第二物品数据列表,生成扩增物品样本数据集。According to an embodiment of the present disclosure, the generating module includes a first determining unit, a second determining unit, and a generating unit. The first determining unit determines a first item data list similar to the item image data from the item database according to the item image data, wherein the first item data list includes item image data of different items, a description of the item for describing the item Text data and item style data. The second determining unit is configured to determine a second item data list similar to the text data for describing the item from the item database according to the text data for describing the item, wherein the second item data list includes items of different items Image data, text data to describe the item, and item style data. The generating unit is configured to generate an augmented item sample data set according to the first item data list and the second item data list.

根据本公开的实施例,生成单元包括生成子单元,用于根据第一物品数据列表和第二物品数据列表的数据交集,生成扩增物品样本数据集。According to an embodiment of the present disclosure, the generating unit includes a generating subunit for generating an augmented item sample data set according to the data intersection of the first item data list and the second item data list.

根据本公开的实施例,调整模块包括调整单元,用于根据匹配结果与风格标签,调整初始模型的图像特征提取层的模型参数、初始模型的文本特征提取层的模型参数和初始模型的风格特征提取层的模型参数,得到训练完成的特征识别模型。According to an embodiment of the present disclosure, the adjustment module includes an adjustment unit for adjusting the model parameters of the image feature extraction layer of the initial model, the model parameters of the text feature extraction layer of the initial model, and the style features of the initial model according to the matching result and the style label Extract the model parameters of the layer to obtain the trained feature recognition model.

图9示意性示出了根据本公开实施例的物品特征识别装置的框图。FIG. 9 schematically shows a block diagram of an apparatus for identifying characteristics of an item according to an embodiment of the present disclosure.

如图9所示,该实施例的物品特征识别装置包括第二获取模块910、第一识别模块920、第二识别模块930、第三识别模块940、第四识别模块950和确定模块960。As shown in FIG. 9 , the article feature identification device of this embodiment includes a second acquisition module 910 , a first identification module 920 , a second identification module 930 , a third identification module 940 , a fourth identification module 950 and a determination module 960 .

第二获取模块910,用于获取待处理物品的物品信息,其中,物品信息包括物品图像信息和用于描述物品的文本信息。The second acquiring module 910 is configured to acquire item information of the item to be processed, wherein the item information includes item image information and text information for describing the item.

第一识别模块920,用于将物品图像信息输入特征识别模型的图像特征提取层,输出待处理物品的物品图像特征,其中,特征识别模型是通过本公开实施例提供的训练方法训练得到的。The first recognition module 920 is configured to input the image information of the item into the image feature extraction layer of the feature recognition model, and output the item image features of the item to be processed, wherein the feature recognition model is trained by the training method provided by the embodiment of the present disclosure.

第二识别模块930,用于将所述用于描述物品的文本信息输入所述特征识别模型的文本特征提取层,输出所述待处理物品的文本特征。The second recognition module 930 is configured to input the text information for describing the item into the text feature extraction layer of the feature recognition model, and output the text feature of the item to be processed.

第三识别模块940,用于将所述物品图像特征和所述文本特征输入所述特征识别模型的特征组合层,输出所述待处理物品的物品组合特征。The third recognition module 940 is configured to input the image feature and the text feature of the item into the feature combination layer of the feature recognition model, and output the item combination feature of the item to be processed.

第四识别模块950,用于将所述物品组合特征和候选风格的描述特征输入所述特征识别模型的匹配层,输出用于表征所述物品组合特征和所述候选风格的描述特征的匹配结果,其中,所述候选风格的描述特征是将从候选风格数据库中获取的物品风格信息输入所述特征识别模型的风格特征提取层后得到的。The fourth identification module 950 is configured to input the item combination feature and the description feature of the candidate style into the matching layer of the feature recognition model, and output a matching result used to characterize the item combination feature and the description feature of the candidate style , wherein the description feature of the candidate style is obtained by inputting the item style information obtained from the candidate style database into the style feature extraction layer of the feature recognition model.

确定模块960,用于根据所述匹配结果确定与所述待处理物品的所述物品组合特征相匹配的风格特征信息。需要说明的是,本公开装置部分的实施例与本公开方法部分的实施例对应相同或类似,本公开在此不再赘述。The determining module 960 is configured to determine, according to the matching result, style feature information matching the item combination feature of the item to be processed. It should be noted that, the embodiments of the apparatus part of the present disclosure correspond to or are similar to the embodiments of the method part of the present disclosure, and details are not described herein again.

根据本公开的实施例的模块、单元、子单元中的任意多个、或其中任意多个的至少部分功能可以在一个模块中实现。根据本公开实施例的模块、单元、子单元中的任意一个或多个可以被拆分成多个模块来实现。根据本公开实施例的模块、单元、子单元中的任意一个或多个可以至少被部分地实现为硬件电路,例如现场可编程门阵列(FPGA)、可编程逻辑阵列(PLA)、片上系统、基板上的系统、封装上的系统、专用集成电路(ASIC),或可以通过对电路进行集成或封装的任何其他的合理方式的硬件或固件来实现,或以软件、硬件以及固件三种实现方式中任意一种或以其中任意几种的适当组合来实现。或者,根据本公开实施例的模块、单元、子单元中的一个或多个可以至少被部分地实现为计算机程序模块,当该计算机程序模块被运行时,可以执行相应的功能。Any of the modules, units, sub-units, or at least part of the functions of any of the modules, units, and sub-units according to the embodiments of the present disclosure may be implemented in one module. Any one or more of the modules, units, and sub-units according to the embodiments of the present disclosure may be divided into multiple modules for implementation. Any one or more of the modules, units, sub-units according to embodiments of the present disclosure may be implemented at least partially as hardware circuits, such as field programmable gate arrays (FPGAs), programmable logic arrays (PLAs), systems on chips, A system on a substrate, a system on a package, an application specific integrated circuit (ASIC), or any other reasonable hardware or firmware implementation that can integrate or package a circuit, or in software, hardware, and firmware. Any one of them or an appropriate combination of any of them can be implemented. Alternatively, one or more of the modules, units, and sub-units according to the embodiments of the present disclosure may be implemented at least in part as computer program modules, which, when executed, may perform corresponding functions.

例如,第一获取模块810、特征提取模块820、特征组合模块830、匹配模块840、调整模块850或第二获取模块910、第一识别模块920、第二识别模块930、第三识别模块940、第四识别模块950、确定模块 960中的任意多个可以合并在一个模块/单元/子单元中实现,或者其中的任意一个模块/单元/子单元可以被拆分成多个模块/单元/子单元。或者,这些模块/单元/子单元中的一个或多个模块/单元/子单元的至少部分功能可以与其他模块/单元/子单元的至少部分功能相结合,并在一个模块/ 单元/子单元中实现。根据本公开的实施例,第一获取模块810、特征提取模块820、特征组合模块830、匹配模块840、调整模块850或第二获取模块910、第一识别模块920、第二识别模块930、第三识别模块940、第四识别模块950、确定模块960中的至少一个可以至少被部分地实现为硬件电路,例如现场可编程门阵列(FPGA)、可编程逻辑阵列(PLA)、片上系统、基板上的系统、封装上的系统、专用集成电路(ASIC),或可以通过对电路进行集成或封装的任何其他的合理方式等硬件或固件来实现,或以软件、硬件以及固件三种实现方式中任意一种或以其中任意几种的适当组合来实现。或者,第一获取模块810、特征提取模块820、特征组合模块830、匹配模块840、调整模块850或第二获取模块910、第一识别模块920、第二识别模块930、第三识别模块940、第四识别模块950和确定模块960中的至少一个可以至少被部分地实现为计算机程序模块,当该计算机程序模块被运行时,可以执行相应的功能。For example, the first acquisition module 810, the feature extraction module 820, the feature combination module 830, the matching module 840, the adjustment module 850 or the second acquisition module 910, the first identification module 920, the second identification module 930, the third identification module 940, Any number of the fourth identification module 950 and the determination module 960 may be combined into one module/unit/subunit, or any one of the modules/units/subunits may be split into multiple modules/units/subunits. unit. Alternatively, at least part of the functionality of one or more of these modules/units/subunits may be combined with at least part of the functionality of other modules/units/subunits and combined in one module/unit/subunit realized in. According to an embodiment of the present disclosure, the first acquisition module 810 , the feature extraction module 820 , the feature combination module 830 , the matching module 840 , the adjustment module 850 or the second acquisition module 910 , the first identification module 920 , the second identification module 930 , the first At least one of the three identification module 940, the fourth identification module 950, and the determination module 960 may be implemented at least in part as a hardware circuit, such as a field programmable gate array (FPGA), a programmable logic array (PLA), a system on a chip, a substrate A system on a package, a system on a package, an application specific integrated circuit (ASIC), or any other reasonable way to integrate or package a circuit, such as hardware or firmware, or in software, hardware, and firmware. Any one or an appropriate combination of any of them is implemented. Or, the first acquisition module 810, the feature extraction module 820, the feature combination module 830, the matching module 840, the adjustment module 850 or the second acquisition module 910, the first recognition module 920, the second recognition module 930, the third recognition module 940, At least one of the fourth identification module 950 and the determination module 960 may be implemented at least in part as a computer program module that, when executed, may perform corresponding functions.

图10示意性示出了根据本公开实施例的适于实现上文描述的方法 的电子设备的框图。图10示出的电子设备仅仅是一个示例,不应对本 公开实施例的功能和使用范围带来任何限制。Figure 10 schematically shows a block diagram of an electronic device suitable for implementing the method described above, according to an embodiment of the present disclosure. The electronic device shown in FIG. 10 is only an example, and should not impose any limitation on the function and scope of use of the embodiments of the present disclosure.

如图10所示,根据本公开实施例的电子设备1000包括处理器1001, 其可以根据存储在只读存储器(ROM)1002中的程序或者从存储部分 1008加载到随机访问存储器(RAM)1003中的程序而执行各种适当的 动作和处理。处理器1001例如可以包括通用微处理器(例如CPU)、指 令集处理器和/或相关芯片组和/或专用微处理器(例如,专用集成电路(ASIC)),等等。处理器1001还可以包括用于缓存用途的板载存储器。 处理器1001可以包括用于执行根据本公开实施例的方法流程的不同动 作的单一处理单元或者是多个处理单元。As shown in FIG. 10 , an electronic device 1000 according to an embodiment of the present disclosure includes a processor 1001 that can be loaded into a random access memory (RAM) 1003 according to a program stored in a read only memory (ROM) 1002 or from a storage part 1008 program to perform various appropriate actions and processes. The processor 1001 may include, for example, a general-purpose microprocessor (e.g., a CPU), an instruction set processor and/or a related chipset, and/or a special-purpose microprocessor (e.g., an application specific integrated circuit (ASIC)), among others. The processor 1001 may also include onboard memory for caching purposes. The processor 1001 may include a single processing unit or multiple processing units for performing different actions of the method flow according to the embodiments of the present disclosure.

在RAM 1003中,存储有电子设备1000操作所需的各种程序和数据。处理器1001、ROM 1002以及RAM 1003通过总线1004彼此相连。处理器1001通过执行ROM 1002和/或RAM1003中的程序来执行根据本公开实施例的方法流程的各种操作。需要注意,所述程序也可以存储在除ROM 1002和RAM 1003以外的一个或多个存储器中。处理器1001 也可以通过执行存储在所述一个或多个存储器中的程序来执行根据本公开实施例的方法流程的各种操作。In the RAM 1003, various programs and data necessary for the operation of the electronic device 1000 are stored. The processor 1001 , the ROM 1002 and the RAM 1003 are connected to each other through a bus 1004 . The processor 1001 performs various operations of the method flow according to the embodiment of the present disclosure by executing the programs in the ROM 1002 and/or the RAM 1003 . Note that the program may also be stored in one or more memories other than the ROM 1002 and the RAM 1003 . The processor 1001 may also perform various operations of the method flow according to the embodiments of the present disclosure by executing programs stored in the one or more memories.

根据本公开的实施例,电子设备1000还可以包括输入/输出(I/O) 接口1005,输入/输出(I/O)接口1005也连接至总线1004。系统1000 还可以包括连接至I/O接口1005的以下部件中的一项或多项:包括键盘、鼠标等的输入部分1006;包括诸如阴极射线管(CRT)、液晶显示器(LCD) 等以及扬声器等的输出部分1007;包括硬盘等的存储部分1008;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分1009。通信部分1009经由诸如因特网的网络执行通信处理。驱动器1010也根据需要连接至I/O接口1005。可拆卸介质1011,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器1010上,以便于从其上读出的计算机程序根据需要被安装入存储部分1008。According to an embodiment of the present disclosure, the electronic device 1000 may also include an input/output (I/O) interface 1005 that is also connected to the bus 1004 . System 1000 may also include one or more of the following components connected to I/O interface 1005: input portion 1006 including keyboard, mouse, etc.; including components such as cathode ray tube (CRT), liquid crystal display (LCD), etc., and speakers An output section 1007 including a hard disk, etc.; a storage section 1008 including a hard disk, etc.; and a communication section 1009 including a network interface card such as a LAN card, a modem, and the like. The communication section 1009 performs communication processing via a network such as the Internet. A drive 1010 is also connected to the I/O interface 1005 as needed. A removable medium 1011, such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc., is mounted on the drive 1010 as needed so that a computer program read therefrom is installed into the storage section 1008 as needed.

根据本公开的实施例,根据本公开实施例的方法流程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在计算机可读存储介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分1009从网络上被下载和安装,和/或从可拆卸介质1011被安装。在该计算机程序被处理器1001执行时,执行本公开实施例的系统中限定的上述功能。根据本公开的实施例,上文描述的系统、设备、装置、模块、单元等可以通过计算机程序模块来实现。According to an embodiment of the present disclosure, the method flow according to an embodiment of the present disclosure may be implemented as a computer software program. For example, embodiments of the present disclosure include a computer program product comprising a computer program carried on a computer-readable storage medium, the computer program containing program code for performing the method illustrated in the flowchart. In such an embodiment, the computer program may be downloaded and installed from the network via the communication portion 1009, and/or installed from the removable medium 1011. When the computer program is executed by the processor 1001, the above-described functions defined in the system of the embodiment of the present disclosure are executed. According to embodiments of the present disclosure, the above-described systems, apparatuses, apparatuses, modules, units, etc. can be implemented by computer program modules.

本公开还提供了一种计算机可读存储介质,该计算机可读存储介质可以是上述实施例中描述的设备/装置/系统中所包含的;也可以是单独存在,而未装配入该设备/装置/系统中。上述计算机可读存储介质承载有一个或者多个程序,当上述一个或者多个程序被执行时,实现根据本公开实施例的方法。The present disclosure also provides a computer-readable storage medium. The computer-readable storage medium may be included in the device/apparatus/system described in the above embodiments; it may also exist alone without being assembled into the device/system. device/system. The above-mentioned computer-readable storage medium carries one or more programs, and when the above-mentioned one or more programs are executed, implement the method according to the embodiment of the present disclosure.

根据本公开的实施例,计算机可读存储介质可以是非易失性的计算机可读存储介质。例如可以包括但不限于:便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。According to an embodiment of the present disclosure, the computer-readable storage medium may be a non-volatile computer-readable storage medium. Examples may include, but are not limited to, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), portable compact disk read only memory (CD- ROM), optical storage devices, magnetic storage devices, or any suitable combination of the above. In this disclosure, a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.

例如,根据本公开的实施例,计算机可读存储介质可以包括上文描述的ROM 1002和/或RAM 1003和/或ROM 1002和RAM 1003以外的一个或多个存储器。For example, according to embodiments of the present disclosure, a computer-readable storage medium may include one or more memories other than ROM 1002 and/or RAM 1003 and/or ROM 1002 and RAM 1003 described above.

附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,上述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图或流程图中的每个方框、以及框图或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present disclosure. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more logical functions for implementing the specified functions executable instructions. It should also be noted that, in some alternative implementations, the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It is also noted that each block of the block diagrams or flowchart illustrations, and combinations of blocks in the block diagrams or flowchart illustrations, can be implemented in special purpose hardware-based systems that perform the specified functions or operations, or can be implemented using A combination of dedicated hardware and computer instructions is implemented.

本领域技术人员可以理解,本公开的各个实施例和/或权利要求中记载的特征可以进行多种组合和/或结合,即使这样的组合或结合没有明确记载于本公开中。特别地,在不脱离本公开精神和教导的情况下,本公开的各个实施例和/或权利要求中记载的特征可以进行多种组合和/或结合。所有这些组合和/或结合均落入本公开的范围。Those skilled in the art will appreciate that various combinations and/or combinations of features recited in various embodiments and/or claims of the present disclosure are possible, even if such combinations or combinations are not expressly recited in the present disclosure. In particular, various combinations and/or combinations of the features recited in the various embodiments of the present disclosure and/or in the claims may be made without departing from the spirit and teachings of the present disclosure. All such combinations and/or combinations fall within the scope of this disclosure.

以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。本公开的范围由所附权利要求及其等同物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。Embodiments of the present disclosure have been described above. However, these examples are for illustrative purposes only, and are not intended to limit the scope of the present disclosure. Although the various embodiments are described above separately, this does not mean that the measures in the various embodiments cannot be used in combination to advantage. The scope of the present disclosure is defined by the appended claims and their equivalents. Without departing from the scope of the present disclosure, those skilled in the art can make various substitutions and modifications, and these substitutions and modifications should all fall within the scope of the present disclosure.

Claims (14)

1. A feature recognition model training method comprises the following steps:
acquiring an article sample data set, wherein the article sample data set comprises a plurality of article samples, each article sample comprises article image data, text data for describing an article and article style data, and the article samples are provided with style labels;
inputting the article image data into an image feature extraction layer of an initial model and outputting article image features aiming at each article sample; inputting the text data for describing the article into a text feature extraction layer of the initial model, and outputting text features; inputting the article style data into a style feature extraction layer of the initial model, and outputting style features;
inputting the article image features and the text features into a feature combination layer of the initial model, and outputting article combination features;
inputting the article combination characteristics and the style characteristics into a matching layer of the initial model, and outputting a matching result for representing the article combination characteristics and the style characteristics;
and adjusting the model parameters of the initial model according to the matching result and the style label to obtain a trained feature recognition model.
2. The training method of claim 1, wherein the item image features and the text features are input into an image combination layer of the initial model, and outputting item combination features comprises:
and splicing the article image features and the text features into the article combination features by utilizing the image combination layer.
3. The training method of claim 1, wherein after acquiring the sample set of article data, further comprising:
and generating an amplified article sample data set according to the article sample data set.
4. The training method of claim 3, wherein said generating an augmented article sample data set from said article sample data set comprises:
determining a first item data list similar to the item image data from an item database according to the item image data, wherein the first item data list comprises item image data of different items, text data for describing the items and item style data;
according to the text data for describing the article, determining a second article data list similar to the text data for describing the article from the article database, wherein the second article data list comprises article image data of different articles, text data for describing the article and article style data;
and generating the amplified article sample data set according to the first article data list and the second article data list.
5. The training method of claim 4, wherein said generating the augmented item sample dataset from the first item data list and the second item data list comprises:
and generating the amplified article sample data set according to the data intersection of the first article data list and the second article data list.
6. The training method according to claim 1, wherein the model parameters of the initial model include model parameters of an image feature extraction layer of the initial model, model parameters of a text feature extraction layer of the initial model, and model parameters of a style feature extraction layer of the initial model, and the adjusting the model parameters of the initial model according to the matching result and the style label to obtain the trained feature recognition model includes:
and adjusting the model parameters of the image feature extraction layer of the initial model, the model parameters of the text feature extraction layer of the initial model and the model parameters of the style feature extraction layer of the initial model according to the error between the matching result and the style label to obtain the trained feature recognition model.
7. An article feature identification feature recognition method comprises the following steps:
acquiring article information of an article to be processed, wherein the article information comprises article image information and text information for describing the article;
inputting the article image information into an image feature extraction layer of a feature recognition model, and outputting article image features of the article to be processed, wherein the feature recognition model is obtained by training through the training method of any one of claims 1 to 6;
inputting the text information for describing the article into a text feature extraction layer of the feature recognition model, and outputting the text feature of the article to be processed;
inputting the article image features and the text features into a feature combination layer of the feature recognition model, and outputting article combination features of the article to be processed;
inputting the item combination characteristics and the description characteristics of the candidate style into a matching layer of the characteristic identification model, and outputting a matching result for representing the item combination characteristics and the description characteristics of the candidate style, wherein the description characteristics of the candidate style are obtained by inputting item style information acquired from a candidate style database into a style characteristic extraction layer of the characteristic identification model;
and determining style characteristic information matched with the article combination characteristics of the article to be processed according to the matching result.
8. The method of claim 7, further comprising:
acquiring a plurality of item comment text data and a plurality of item title text data;
preprocessing the plurality of item comment text data and the plurality of item title text data to obtain a text data set for representing the style of the item;
and generating the candidate style database according to the text data set for representing the style of the article.
9. The method of claim 8, further comprising:
generating a vector data set for representing the style of the article according to the text data set for representing the style of the article;
and generating the candidate style database according to the vector data set for characterizing the style of the article.
10. A feature recognition model training apparatus comprising:
the system comprises a first acquisition module, a second acquisition module and a third acquisition module, wherein the article sample data set comprises a plurality of article samples, each article sample comprises article image data, text data for describing an article and article style data, and the article sample has a style label;
the feature extraction module is used for inputting the article image data into an image feature extraction layer of an initial model and outputting article image features aiming at each article sample; inputting the text data for describing the article into a text feature extraction layer of the initial model, and outputting text features; inputting the article style data into a style feature extraction layer of the initial model, and outputting style features;
the feature combination module is used for inputting the article image features and the text features into a feature combination layer of the initial model and outputting article combination features;
the matching module is used for inputting the article combination characteristics and the style characteristics into a matching layer of the initial model and outputting a matching result for representing the article combination characteristics and the style characteristics;
and the adjusting module is used for adjusting the model parameters of the initial model according to the matching result and the style label to obtain a trained feature recognition model.
11. An article feature identification device comprising:
the second acquisition module is used for acquiring article information of the article to be processed, wherein the article information comprises article image information and text information used for describing the article;
a first recognition module, configured to input the article image information into an image feature extraction layer of a feature recognition model, and output an article image feature of the article to be processed, where the feature recognition model is obtained by training according to the training method of any one of claims 1 to 6;
the second identification module is used for inputting the text information for describing the article into a text feature extraction layer of the feature identification model and outputting the text feature of the article to be processed;
the third identification module is used for inputting the article image characteristics and the text characteristics into a characteristic combination layer of the characteristic identification model and outputting article combination characteristics of the article to be processed;
a fourth identification module, configured to input the item combination feature and the description feature of the candidate style into a matching layer of the feature identification model, and output a matching result for characterizing the item combination feature and the description feature of the candidate style, where the description feature of the candidate style is obtained by inputting item style information acquired from a candidate style database into a style feature extraction layer of the feature identification model;
and the determining module is used for determining style characteristic information matched with the article combination characteristic of the article to be processed according to the matching result.
12. An electronic device, comprising:
one or more processors;
a storage device for storing one or more programs,
wherein the one or more programs, when executed by the one or more processors, cause the one or more processors to perform the method of any of claims 1-6 or 7-9.
13. A computer readable storage medium having stored thereon executable instructions which, when executed by a processor, cause the processor to perform the method of any one of claims 1 to 6 or 7 to 9.
14. A computer program product comprising a computer program which, when executed by a processor, implements a method according to any one of claims 1 to 6 or 7 to 9.
CN202111585717.3A 2021-12-22 2021-12-22 Feature recognition model training method, object feature recognition method and device Active CN114332477B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111585717.3A CN114332477B (en) 2021-12-22 2021-12-22 Feature recognition model training method, object feature recognition method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111585717.3A CN114332477B (en) 2021-12-22 2021-12-22 Feature recognition model training method, object feature recognition method and device

Publications (2)

Publication Number Publication Date
CN114332477A true CN114332477A (en) 2022-04-12
CN114332477B CN114332477B (en) 2025-06-20

Family

ID=81053785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111585717.3A Active CN114332477B (en) 2021-12-22 2021-12-22 Feature recognition model training method, object feature recognition method and device

Country Status (1)

Country Link
CN (1) CN114332477B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115658964A (en) * 2022-05-25 2023-01-31 腾讯科技(深圳)有限公司 Training method and device for pre-training model and somatosensory picture wind recognition model

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107683469A (en) * 2015-12-30 2018-02-09 中国科学院深圳先进技术研究院 A kind of product classification method and device based on deep learning
CN109902678A (en) * 2019-02-12 2019-06-18 北京奇艺世纪科技有限公司 Model training method, character recognition method, device, electronic equipment and computer-readable medium
CN110232188A (en) * 2019-06-04 2019-09-13 上海电力学院 The Automatic document classification method of power grid user troublshooting work order
EP3754549A1 (en) * 2019-06-17 2020-12-23 Sap Se A computer vision method for recognizing an object category in a digital image
CN112232067A (en) * 2020-11-03 2021-01-15 汉海信息技术(上海)有限公司 Method for generating file, method, device and equipment for training file evaluation model
CN112836013A (en) * 2021-01-29 2021-05-25 北京大米科技有限公司 Data labeling method and device, readable storage medium and electronic equipment
CN112884046A (en) * 2021-02-24 2021-06-01 润联软件系统(深圳)有限公司 Image classification method and device based on incomplete supervised learning and related equipment
WO2021123083A1 (en) * 2019-12-18 2021-06-24 Koninklijke Philips N.V. A method to improve instance selection in bootstrapping framework for concept extraction from text documents
CN113378784A (en) * 2021-07-01 2021-09-10 北京百度网讯科技有限公司 Training method of video label recommendation model and method for determining video label

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107683469A (en) * 2015-12-30 2018-02-09 中国科学院深圳先进技术研究院 A kind of product classification method and device based on deep learning
CN109902678A (en) * 2019-02-12 2019-06-18 北京奇艺世纪科技有限公司 Model training method, character recognition method, device, electronic equipment and computer-readable medium
CN110232188A (en) * 2019-06-04 2019-09-13 上海电力学院 The Automatic document classification method of power grid user troublshooting work order
EP3754549A1 (en) * 2019-06-17 2020-12-23 Sap Se A computer vision method for recognizing an object category in a digital image
WO2021123083A1 (en) * 2019-12-18 2021-06-24 Koninklijke Philips N.V. A method to improve instance selection in bootstrapping framework for concept extraction from text documents
CN112232067A (en) * 2020-11-03 2021-01-15 汉海信息技术(上海)有限公司 Method for generating file, method, device and equipment for training file evaluation model
CN112836013A (en) * 2021-01-29 2021-05-25 北京大米科技有限公司 Data labeling method and device, readable storage medium and electronic equipment
CN112884046A (en) * 2021-02-24 2021-06-01 润联软件系统(深圳)有限公司 Image classification method and device based on incomplete supervised learning and related equipment
CN113378784A (en) * 2021-07-01 2021-09-10 北京百度网讯科技有限公司 Training method of video label recommendation model and method for determining video label

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
田;郭智;黄宇;黄廷磊;付琨;: "一种基于多模态主题模型的图像自动标注方法", 国外电子测量技术, no. 05, 15 May 2015 (2015-05-15) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115658964A (en) * 2022-05-25 2023-01-31 腾讯科技(深圳)有限公司 Training method and device for pre-training model and somatosensory picture wind recognition model

Also Published As

Publication number Publication date
CN114332477B (en) 2025-06-20

Similar Documents

Publication Publication Date Title
US11657084B2 (en) Correlating image annotations with foreground features
US10810252B2 (en) Searching using specific attributes found in images
US10789525B2 (en) Modifying at least one attribute of an image with at least one attribute extracted from another image
US9678989B2 (en) System and method for use of images with recognition analysis
US10083521B1 (en) Content recommendation based on color match
JP6328761B2 (en) Image-based search
CN111325226B (en) Information presentation method and device
US7542610B2 (en) System and method for use of images with recognition analysis
CN112567361A (en) System and method for attribute-based visual search on computer communication network
CN111819554A (en) Computer vision and image feature search
US10902053B2 (en) Shape-based graphics search
KR102115573B1 (en) System, method and program for acquiring user interest based on input image data
US11195227B2 (en) Visual search, discovery and attribution method, system, and computer program product
US11972466B2 (en) Computer storage media, method, and system for exploring and recommending matching products across categories
CN111767420B (en) Method and device for generating clothing collocation data
GB2542890A (en) Searching using specific attributes found in images
CN114332477A (en) Feature recognition model training method, item feature recognition method and device
CN115114506A (en) Commodity searching method and device, electronic equipment and storage medium
KR20200141387A (en) System, method and program for searching image data by using deep-learning algorithm
WO2007041647A2 (en) System and method for use of images with recognition analysis
Li et al. Analysis of the Dynamic Co-purchase Network Based on Image Shape Feature

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant