[go: up one dir, main page]

CN114328766A - A method, device, medium and equipment for constructing a geographic knowledge graph database - Google Patents

A method, device, medium and equipment for constructing a geographic knowledge graph database Download PDF

Info

Publication number
CN114328766A
CN114328766A CN202011029805.0A CN202011029805A CN114328766A CN 114328766 A CN114328766 A CN 114328766A CN 202011029805 A CN202011029805 A CN 202011029805A CN 114328766 A CN114328766 A CN 114328766A
Authority
CN
China
Prior art keywords
geographic
entity
remote sensing
data
tile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011029805.0A
Other languages
Chinese (zh)
Other versions
CN114328766B (en
Inventor
彭玲
陈栾杰
陈嘉辉
李玮超
葛星彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Information Research Institute of CAS
Original Assignee
Aerospace Information Research Institute of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Information Research Institute of CAS filed Critical Aerospace Information Research Institute of CAS
Priority to CN202011029805.0A priority Critical patent/CN114328766B/en
Publication of CN114328766A publication Critical patent/CN114328766A/en
Application granted granted Critical
Publication of CN114328766B publication Critical patent/CN114328766B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Or Creating Images (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本文是关于一种地理知识图数据库构建方法、装置、介质及设备。其方法包括:将遥感影像转换为地理矢量文本,获取电子地图中的POI数据集,将地理矢量文本和所述POI数据集进行融合,生成带有地理属性的地理实体集的文本化数据;将地理实体集的文本化数据导入Neo4j图数据库,并与墨卡托瓦片坐标关联,构建基于瓦片索引的地理知识图数据库。实现地理数据和空间信息的关联,将地理数据和空间信息以图的结构进行表示存储在图数据库中,从而达到更准确、更高效的地理信息的语义查询与搜索。

Figure 202011029805

This article is about a method, device, medium and equipment for constructing a geographic knowledge graph database. The method includes: converting remote sensing images into geographic vector texts, obtaining POI data sets in an electronic map, and fusing the geographic vector texts with the POI data sets to generate textual data of geographic entity sets with geographic attributes; The textual data of the geographic entity set is imported into the Neo4j graph database and associated with the Mercator tile coordinates to construct a geographic knowledge graph database based on the tile index. Realize the association of geographic data and spatial information, and store geographic data and spatial information in a graph structure in a graph database, so as to achieve more accurate and efficient semantic query and search of geographic information.

Figure 202011029805

Description

一种地理知识图数据库构建方法、装置、介质及设备A method, device, medium and equipment for constructing a geographic knowledge graph database

技术领域technical field

本文涉及图数据库,尤其涉及一种地理知识图数据库构建方法、装置、介质及设备。This paper relates to a graph database, in particular to a method, device, medium and device for constructing a geographic knowledge graph database.

背景技术Background technique

瓦片金字塔模型是一种多分辨率层次模型,从瓦片金字塔的底层到顶层,分辨率越来越低,但表示的地理范围不变。瓦片金字塔模型是基于Web墨卡托投影的模型。墨卡托投影是一种“等角正切圆柱投影”。它是通过数学变换,将地球投影到二维平面当中。墨卡托投影的优点在于其不会改变投影前后对象的相对位置。Web墨卡托投影是将地球由椭球体简化为球体后的投影,在对地球进行Web墨卡托投影后,采用四叉树的切分方式对投影后的地球平面进行分块与分层,建立一系列不同分辨率层次的矩形集合。每一个层次的矩形集合由若干个瓦片组成。在建立瓦片金字塔模型时,对于每一级别的瓦片,从地图投影的左上角开始,从左至右、从上到下进行切割,分割成相同大小的矩形瓦片。其中第0级的瓦片个数为1,即整个地图投影被当做1个瓦片。而从第1级开始,使用把上一级的每个瓦片切割成2x2个瓦片的方法形成当前级的瓦片矩阵。相关技术中,瓦片坐标虽然能够实现定位与经纬度坐标的映射,但还不能提供地理实体的地理位置相关的信息,例如目标地理实体所属的行政区域,占地面积等详细信息。The tile pyramid model is a multi-resolution hierarchical model. From the bottom layer to the top layer of the tile pyramid, the resolution becomes lower and lower, but the geographic extent of the representation remains unchanged. The tile pyramid model is a model based on the Web Mercator projection. The Mercator projection is an "equirectangular cylindrical projection". It is a mathematical transformation that projects the earth into a two-dimensional plane. The advantage of the Mercator projection is that it does not change the relative position of objects before and after the projection. The Web Mercator projection is a projection that simplifies the earth from an ellipsoid to a sphere. After performing the Web Mercator projection on the earth, the quadtree segmentation method is used to segment and layer the projected earth plane. Create a series of rectangular collections of different resolution levels. The rectangular set of each level consists of several tiles. When building a tile pyramid model, for each level of tile, start from the upper left corner of the map projection, cut from left to right, and top to bottom, and divide it into rectangular tiles of the same size. The number of tiles at level 0 is 1, that is, the entire map projection is regarded as one tile. From the first level, the tile matrix of the current level is formed by cutting each tile of the previous level into 2x2 tiles. In the related art, although tile coordinates can realize the mapping between positioning and latitude and longitude coordinates, they cannot provide information related to the geographic location of a geographic entity, such as the administrative region to which the target geographic entity belongs, and detailed information such as area.

同时,对于遥感影像,遥感影像中包括非常多的地理实体,而这些地理实体又存在无穷多个经纬度坐标,在建立图数据库的过程中,难以对如此多的经纬度坐标进行存储,难以达到更准确、更高效的地理信息的语义查询与搜索。At the same time, for remote sensing images, there are many geographic entities in remote sensing images, and these geographic entities have infinite latitude and longitude coordinates. In the process of establishing a map database, it is difficult to store so many latitude and longitude coordinates, and it is difficult to achieve more accurate , More efficient semantic query and search of geographic information.

发明内容SUMMARY OF THE INVENTION

为克服相关技术中存在的问题,本文提供一种地理知识图数据库构建方法、装置、介质及设备。In order to overcome the problems existing in the related technologies, this paper provides a method, device, medium and equipment for constructing a geographic knowledge graph database.

根据本文的第一方面,提供一种地理知识图数据库构建方法,包括:According to the first aspect of this article, a method for constructing a geographic knowledge graph database is provided, including:

将遥感影像转换为地理矢量文本,所述地理矢量文本至少包括地理实体标识信息及对应的经纬度坐标;Converting the remote sensing image into geographic vector text, the geographic vector text at least includes geographic entity identification information and corresponding latitude and longitude coordinates;

获取电子地图中的POI数据集,所述POI数据集至少包括地理实体名称、地物实体位置信息,地物实体经纬度坐标等地理属性;Obtain the POI data set in the electronic map, and the POI data set at least includes geographical attributes such as the name of the geographical entity, the location information of the feature entity, and the latitude and longitude coordinates of the feature entity;

将所述地理矢量文本和所述POI数据集进行融合,生成带有地理属性的地理实体集的文本化数据;Integrating the geographic vector text and the POI data set to generate textual data of a geographic entity set with geographic attributes;

将所述地理实体集的文本化数据导入Neo4j图数据库,并与墨卡托瓦片坐标关联,构建基于瓦片索引的地理知识图数据库。Import the textual data of the geographic entity set into the Neo4j graph database, and associate with the Mercator tile coordinates to construct a geographic knowledge graph database based on the tile index.

所述将遥感影像转换为地理矢量文本包括:The converting remote sensing image into geographic vector text includes:

提取所述遥感影像中的地理实体,获取与所述地理实体相关的栅格图像;Extracting geographic entities in the remote sensing images, and obtaining raster images related to the geographic entities;

根据所述地理实体在所述遥感影像中的位置,将与所述位置相关的属性赋值给所述栅格图像中的地理实体,生成赋值后的栅格数据;According to the position of the geographic entity in the remote sensing image, assign the attribute related to the position to the geographic entity in the raster image, and generate the assigned raster data;

将赋值后的栅格数据转换为地理矢量文件;Convert the assigned raster data into geographic vector files;

基于所述地理矢量文件生成地理矢量文本。Generate geographic vector text based on the geographic vector file.

所述提取所述遥感影像中的地理实体,获取栅格图像包括:The extracting the geographic entities in the remote sensing image, and acquiring the raster image includes:

将所述遥感影像切割为多个子影像;splitting the remote sensing image into multiple sub-images;

对每一个子影像进行信息提取,并生成多个子栅格图像;Extract information for each sub-image and generate multiple sub-raster images;

将所述多个子栅格图像按对应的子影像的位置拼接,拼接为与所述遥感影像大小相同的栅格图像。The plurality of sub-raster images are spliced according to the positions of the corresponding sub-images to form a raster image with the same size as the remote sensing image.

所述将与所述位置相关的属性赋值给所述栅格图像中的地理实体包括:The assigning the attribute related to the location to the geographic entity in the raster image includes:

将所述遥感影像和所述栅格图像转为ASCII编码;converting the remote sensing image and the raster image into ASCII encoding;

将所述遥感影像的ASCII编码中的坐标信息复制到栅格图像的ASCII编码中对应的地理实体中;Copy the coordinate information in the ASCII encoding of the remote sensing image to the corresponding geographic entity in the ASCII encoding of the raster image;

将添加了坐标信息的栅格图像的ASCII编码生成赋值后的栅格数据。The ASCII code of the raster image to which the coordinate information is added is generated into the raster data after assignment.

所述基于所述地理矢量文件生成地理矢量文本包括:The generating geographic vector text based on the geographic vector file includes:

将所述地理矢量文件转换为geojson格式的特征集合;converting the geographic vector file into a feature set in geojson format;

将所述geojson格式的特征集合转换为地理矢量文本。Convert the feature collection in the geojson format to geographic vector text.

所述将所述地理矢量文本和所述POI数据集进行融合,包括:The fusion of the geographic vector text and the POI dataset includes:

将所述地理矢量文本中地理实体的经纬度坐标与所述POI数据集中的坐标进行匹配,如匹配成功,将所述POI数据集中的地理属性复制到所述地理实体对应的矢量文本中。The latitude and longitude coordinates of the geographic entities in the geographic vector text are matched with the coordinates in the POI data set, and if the matching is successful, the geographic attributes in the POI data set are copied to the vector text corresponding to the geographic entities.

所述将所述地理实体集的文本化数据与墨卡托瓦片坐标关联包括:The associating the textual data of the geographic entity set with the Mercator tile coordinates includes:

遍历所述地理实体集中的每一行数据;traverse each row of data in the geographic entity set;

根据所述每一行数据中的经纬度坐标,确定与所述经纬度坐标对应的墨卡托瓦片是否存在;According to the latitude and longitude coordinates in each row of data, determine whether the Mercator tile corresponding to the latitude and longitude coordinates exists;

如与所述经纬度坐标对应的墨卡托瓦片不存在,则创建墨卡托瓦片;如存在与所述经纬度坐标对应的墨卡托瓦片,则将所述经纬度坐标对应的地理实体的地理属性关联到所述墨卡托瓦片。If the Mercator tile corresponding to the latitude and longitude coordinates does not exist, a Mercator tile is created; if there is a Mercator tile corresponding to the latitude and longitude coordinates, the geographic entity corresponding to the latitude and longitude coordinates A geographic attribute is associated to the Mercator tile.

根据本文的另一方面,提供一种地理知识图数据库构建装置,包括:According to another aspect of this paper, an apparatus for constructing a geographic knowledge graph database is provided, comprising:

遥感影像转换模块,用于将遥感影像转换为地理矢量文本,所述地理矢量文本包括地理实体及对应的经纬度坐标;A remote sensing image conversion module for converting remote sensing images into geographic vector text, where the geographic vector text includes geographic entities and corresponding latitude and longitude coordinates;

POI数据获取模块,用于获取电子地图中的POI数据集,所述POI数据集至少包括地理实体名称、地物实体位置信息,地物实体经纬度坐标等地理属性;The POI data acquisition module is used to acquire the POI data set in the electronic map, and the POI data set at least includes geographical attributes such as the name of the geographic entity, the location information of the feature entity, and the latitude and longitude coordinates of the feature entity;

数据融合模块,用于将所述地理矢量文本和所述POI数据集进行融合,生成带有地理属性的地理实体集的文本化数据;A data fusion module, for merging the geographic vector text and the POI data set to generate textual data of a geographic entity set with geographic attributes;

导入模块,将所述地理实体集的文本化数据导入Neo4j图数据库,并与墨卡托瓦片坐标关联,构建基于墨卡托瓦片索引的地理知识图数据库。The import module imports the textual data of the geographic entity set into the Neo4j graph database, and associates it with the coordinates of the Mercator tile to construct a geographic knowledge graph database based on the Mercator tile index.

根据本文的另一方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被执行时实现地理知识图数据库构建方法的步骤。According to another aspect of this document, there is provided a computer-readable storage medium on which a computer program is stored, and when the computer program is executed, implements the steps of a method for constructing a geographic knowledge graph database.

根据本文的另一方面,提供一种计算机设备,包括处理器、存储器和存储于所述存储器上的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现实现地理知识图数据库构建方法的步骤。According to another aspect of this document, a computer device is provided, comprising a processor, a memory and a computer program stored on the memory, wherein the processor implements the construction of a geographic knowledge graph database when the processor executes the computer program steps of the method.

本文通过将电子地图爬取的POI数据集融合到由遥感影像转换成的地理矢量文本中,再将地理矢量文本导入Neo4j图数据库,并与墨卡托瓦片坐标关联,从而构建基于墨卡托瓦片索引的地理知识图数据库。能够实现将无穷多个经纬度坐标的空间描述转换为有穷多个的瓦片坐标描述,从而解决无穷多个经纬度坐标难以存储的问题。并以此实现地理数据和空间信息的关联,将地理数据和空间信息以图的结构进行表示存储在图数据库中,从而达到更准确、更高效的地理信息的语义查询与搜索。This paper integrates the POI data set crawled from the electronic map into the geographic vector text converted from remote sensing images, and then imports the geographic vector text into the Neo4j map database, and associates it with the coordinates of the Mercator tile, so as to construct a Mercator-based model based on Mercator. A tile-indexed geographic knowledge graph database. It can realize the transformation of the infinite number of latitude and longitude coordinates into the infinite number of tile coordinate descriptions, so as to solve the problem that infinite number of latitude and longitude coordinates are difficult to store. In this way, the association between geographic data and spatial information is realized, and geographic data and spatial information are represented in a graph structure and stored in a graph database, so as to achieve more accurate and efficient semantic query and search of geographic information.

应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本文。It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not limiting.

附图说明Description of drawings

构成本文的一部分的附图用来提供对本文的进一步理解,本文的示意性实施例及其说明用于解释本文,并不构成对本文的不当限定。在附图中:The accompanying drawings, which form a part hereof, are used to provide a further understanding of this document, and the illustrative embodiments and their descriptions herein are used to explain this document and do not constitute an undue limitation to this document. In the attached image:

图1是根据一示例性实施例示出的一种地理知识图数据库构建方法的流程图。Fig. 1 is a flow chart of a method for constructing a geographic knowledge graph database according to an exemplary embodiment.

图2是根据一示例性实施例示出的一种地理知识图数据库构建装置的框图。Fig. 2 is a block diagram of an apparatus for constructing a geographic knowledge graph database according to an exemplary embodiment.

图3是根据一示例性实施例示出的一种用于地理知识图数据库构建的计算机设备的框图Fig. 3 is a block diagram of a computer device for constructing a geographic knowledge graph database according to an exemplary embodiment

具体实施方式Detailed ways

为使本文实施例的目的、技术方案和优点更加清楚,下面将结合本文实施例中的附图,对本文实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本文一部分实施例,而不是全部的实施例。基于本文中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本文保护的范围。需要说明的是,在不冲突的情况下,本文中的实施例及实施例中的特征可以相互任意组合。In order to make the purposes, technical solutions and advantages of the embodiments herein more clear, the technical solutions in the embodiments herein will be clearly and completely described below with reference to the accompanying drawings in the embodiments herein. Some examples, but not all examples. Based on the embodiments herein, all other embodiments obtained by persons of ordinary skill in the art without creative efforts shall fall within the scope of protection herein. It should be noted that, the embodiments herein and the features in the embodiments may be arbitrarily combined with each other under the condition of no conflict.

传统技术中,人们通过遥感影像,只能确定目标实体的地理空间分布和环境状况,但无法获知更为详细的信息。例如,遥感影像中的一座建筑物,人们通过遥感影像并不能获知其具体的地理属性,比如建筑物的名称,建筑物的占地面积,建筑物所属的行政区域,周边道路名称等地理信息。In the traditional technology, people can only determine the geospatial distribution and environmental conditions of the target entity through remote sensing images, but cannot obtain more detailed information. For example, for a building in a remote sensing image, people cannot know its specific geographic attributes through the remote sensing image, such as the name of the building, the area of the building, the administrative area to which the building belongs, and the names of surrounding roads and other geographic information.

本文提供一种地理知识图数据库构建方法,图1是根据一示例性实施例示出的地理知识图数据库构建方法的流程图,参考图1,地理知识图数据库构建方法包括:This paper provides a method for constructing a geographic knowledge graph database. FIG. 1 is a flowchart of a method for constructing a geographic knowledge graph database according to an exemplary embodiment. Referring to FIG. 1, the method for constructing a geographic knowledge graph database includes:

步骤S11,将遥感影像转换为地理矢量文本,地理矢量文本至少包括地理实体标识信息及对应的经纬度坐标;Step S11, convert the remote sensing image into geographic vector text, and the geographic vector text at least includes geographic entity identification information and corresponding latitude and longitude coordinates;

步骤S12,获取电子地图中的POI数据集,POI数据集至少包括地理实体名称、地物实体位置信息,地物实体经纬度坐标等地理属性;Step S12, obtains the POI data set in the electronic map, and the POI data set at least includes geographical attributes such as the name of the geographical entity, the location information of the feature entity, and the latitude and longitude coordinates of the feature entity;

步骤S13,将地理矢量文本和POI数据集进行融合,生成带有地理属性的地理实体集的文本化数据;Step S13, the geographic vector text and POI data set are fused, and the textual data of the geographic entity set with geographic attributes is generated;

步骤S14,将所述地理实体集的文本化数据导入Neo4j图数据库,并与墨卡托瓦片坐标关联,构建基于墨卡托瓦片索引的地理知识图数据库。Step S14, import the textual data of the geographic entity set into the Neo4j graph database, and associate with the Mercator tile coordinates to construct a geographic knowledge graph database based on the Mercator tile index.

步骤S11中,为了在遥感影像中添加地理信息,先将遥感影像转换为地理矢量文本,在地理矢量文本中,每一行为一个地理实体的相关信息,至少包括地理实体的标识信息,以及经纬度坐标。当然还可以包括地理实体的类别,编码,尺寸以及其他信息。例如将某遥感影像转换为地理矢量文本后,地理实体为遥感影像中的道路,对于每一条道路,以地理矢量文本中的一行来描述,每一行中可以标识出对应道路的编号,类别,临时名称,经纬度坐标等信息。当然可以只列出地理实体标识信息(例如道路的编号)和经纬度坐标,是否包括其他信息,本文不做限制。In step S11, in order to add geographic information to the remote sensing image, the remote sensing image is first converted into geographic vector text. In the geographic vector text, each row is related information of a geographic entity, including at least the identification information of the geographic entity, and the latitude and longitude coordinates. . Of course, the category, code, size and other information of the geographic entity can also be included. For example, after converting a remote sensing image into geographic vector text, the geographic entity is a road in the remote sensing image. For each road, it is described by a line in the geographic vector text. Each line can identify the number, category, temporary Name, latitude and longitude coordinates and other information. Of course, only the geographic entity identification information (for example, the road number) and the latitude and longitude coordinates can be listed. Whether other information is included is not limited in this article.

在一实施例中,将遥感影像转换为地理矢量文本包括:In one embodiment, converting remote sensing imagery to geographic vector text includes:

提取遥感影像中的地理实体,获取与地理实体相关的栅格图像;Extract geographic entities in remote sensing images, and obtain raster images related to geographic entities;

根据地理实体在遥感影像中的位置,将与所述位置相关的属性赋值给所述栅格图像中的地理实体,生成赋值后的栅格数据;According to the position of the geographic entity in the remote sensing image, assign the attribute related to the position to the geographic entity in the raster image, and generate the assigned raster data;

将赋值后的栅格数据转换为地理矢量文件;Convert the assigned raster data into geographic vector files;

基于地理矢量文件生成地理矢量文本。Generate geographic vector text based on geographic vector files.

对遥感影像图片进行特征识别,识别遥感影像中哪些是建筑物,哪些是道路,哪些是植被,根据需要识别的目标物,以及对应的目标物的类别,输出相应的栅格图像。例如,在道路识别时,只需要识别遥感影像中哪些像素是道路,哪些像素是非道路,在识别后的栅格图中,可以用红色代表道路,黑色代表非道路,此时的栅格图为2值图。在某些情况下,也可以同时识别道路和建筑,识别后的栅格图中,红色代表道路,黄色代表建筑,黑色代表背景。本文只是以举例的方式对栅格图进行说明,列举的颜色和实体并不能构成对本文中方法的限制。通过特征识别,将原始遥感影像变为标记有每个像素点类别的栅格图像,格式一般为PNG。但栅格图像中,虽然识别出了图像中的地理实体,但是在遥感影像转换为栅格图像的过程中,栅格图像并没有获得遥感影像中的位置信息,因此还需要将地理实体在遥感影像中的位置赋值给栅格图像中的地理实体。然后就可以在赋值后的栅格图像基础上,生成与遥感影像对应的地理矢量文本。Perform feature recognition on remote sensing images, identify which are buildings, which are roads, and which are vegetation in the remote sensing images, and output corresponding raster images according to the targets to be identified and the corresponding target categories. For example, in road identification, it is only necessary to identify which pixels in the remote sensing image are roads and which pixels are non-roads. In the identified raster image, red can be used to represent roads, and black can be used to represent non-roads. The raster image at this time is 2-value graph. In some cases, roads and buildings can also be identified at the same time. In the identified raster image, red represents roads, yellow represents buildings, and black represents background. This article only illustrates the raster map by way of example, and the listed colors and entities do not constitute a limitation on the method in this article. Through feature recognition, the original remote sensing image is turned into a raster image marked with each pixel category, and the format is generally PNG. However, in the raster image, although the geographic entities in the image are identified, in the process of converting the remote sensing image to the raster image, the raster image does not obtain the location information in the remote sensing image, so it is necessary to put the geographic entity in the remote sensing image. Locations in the imagery are assigned to geographic entities in the raster image. Then, on the basis of the assigned raster image, the geographic vector text corresponding to the remote sensing image can be generated.

对遥感影像进行特征识别,可以使用深度学习算法,将遥感影像输入训练好的机器学习模型,以便快速输出对应的栅格图像。但由于遥感影像一般比较大,受当前计算机装备水平的限制,在对遥感影像进行识别时,还需要采取相应的措施。在一实施例中,提取遥感影像中的地理实体,获取栅格图像包括:将遥感影像切割为多个子影像;对每一个子影像进行信息提取,并生成相同数量的多个子栅格图像;将多个子栅格图像按对应的子影像的位置拼接,拼接为与遥感影像大小相同的栅格图像。遥感影像的存储格式一般为GeoTIFF格式,在机器模型进行特征识别时,为了防止内存溢出,先将遥感影像切割成若干个GeoTIFF格式的子影像,例如本实施例中每个子影像的像素个数为512*512。对每一个子影像进行特征识别,可以生成与子影像对应的大小相同的多个子栅格图像,子栅格图像的格式为PNG,将多个子栅格图像按对应的子影像的位置拼接,拼接为与遥感影像大小相同的栅格图像。For feature recognition of remote sensing images, deep learning algorithms can be used to input remote sensing images into a trained machine learning model to quickly output corresponding raster images. However, because remote sensing images are generally relatively large and limited by the current level of computer equipment, it is necessary to take corresponding measures when identifying remote sensing images. In one embodiment, extracting geographic entities in a remote sensing image, and obtaining a raster image includes: dividing the remote sensing image into multiple sub-images; extracting information from each sub-image, and generating the same number of multiple sub-raster images; Multiple sub-raster images are spliced according to the positions of the corresponding sub-images to form a raster image with the same size as the remote sensing image. The storage format of remote sensing images is generally GeoTIFF format. When the machine model performs feature recognition, in order to prevent memory overflow, the remote sensing image is first divided into several sub-images in GeoTIFF format. For example, in this embodiment, the number of pixels of each sub-image is 512*512. Perform feature recognition on each sub-image to generate multiple sub-raster images of the same size as the sub-images. The format of the sub-raster images is PNG. The multiple sub-raster images are spliced according to the positions of the corresponding sub-images. It is a raster image of the same size as the remote sensing image.

在一实施例中,将与位置相关的属性赋值给栅格图像中的地理实体包括:In one embodiment, assigning a location-related attribute to a geographic entity in the raster image includes:

将遥感影像和对应的栅格图像转为ASCII编码;将遥感影像的ASCII编码中的坐标信息复制到栅格图像的ASCII编码中对应的地理实体中;将添加了坐标信息的栅格图像的ASCII编码生成赋值后的栅格数据。将遥感影像和栅格图像转换为ASCII编码,将遥感影像的ASCII编码中的地理信息,根据地理实体在遥感影像中的像素的位置,复制到栅格图像的ASCII编码中的对应位置,使得在识别出的地理实体中添加地理位置信息。实际应用中,除了将遥感影像中的位置信息赋值给识别出的地理实体,还可以进一步在栅格图中获取地理实体的其他相关属性,例如对于识别出的道路,还可以确定出道路宽度,道路端点的类型(断头路或者交叉路口)等信息,而对于建筑物,可以获取建筑物的面积,这些相关属性信息也可以添加到栅格图像的ASCII编码。由添加了地理信息的ASCII编码可以生成赋值后的栅格数据。本实施例中,赋值后的栅格数据为tiff格式。Convert the remote sensing image and the corresponding raster image to ASCII code; copy the coordinate information in the ASCII code of the remote sensing image to the corresponding geographic entity in the ASCII code of the raster image; convert the ASCII code of the raster image with the coordinate information added Encoding generates assigned raster data. Convert the remote sensing image and raster image to ASCII code, and copy the geographic information in the ASCII code of the remote sensing image to the corresponding position in the ASCII code of the raster image according to the pixel position of the geographic entity in the remote sensing image, so that the Add geographic information to the identified geographic entities. In practical applications, in addition to assigning the location information in the remote sensing image to the identified geographic entities, other related attributes of the geographic entities can also be obtained in the raster image. Information such as the type of road endpoints (broken road or intersection), and for buildings, the area of the building can be obtained, and these related attribute information can also be added to the ASCII encoding of the raster image. The assigned raster data can be generated by ASCII encoding with added geographic information. In this embodiment, the assigned raster data is in tiff format.

接下来,使用ArcPy这个Python工具包中的arcpy.RasterToPolygon_conversion方法,可以将赋值后的栅格数据,转换为地理矢量文件,本实施例中,地理矢量文件为SHP格式。Next, using the arcpy.RasterToPolygon_conversion method in the ArcPy Python toolkit, the assigned raster data can be converted into a geographic vector file. In this embodiment, the geographic vector file is in SHP format.

为了获得地理矢量文本,在一实施例中,基于所述地理矢量文件生成地理矢量文本包括:将地理矢量文件转换为geojson格式的特征集合;将geojson格式的特征集合转换为地理矢量文本。shapefile这个Python包可以将前面制作出来的shp格式地理矢量文件转为geojson格式地理文本数据,为了方便后续操作,再对geojson格式的地理文本数据进一步转换,转换为CSV格式的地理矢量文本,在地理矢量文本中,每一行的数据表示一个地理实体,包括地理实体的名称,编号,经纬度,以及其他相关属性,地理矢量文本不但便于观察,更方便在后续对地理实体进行信息补充时,添加更多的附加信息。In order to obtain the geographic vector text, in one embodiment, generating the geographic vector text based on the geographic vector file includes: converting the geographic vector file into a feature set in geojson format; and converting the feature set in geojson format into geographic vector text. Shapefile is a Python package that can convert the shp format geographic vector file produced earlier into geojson format geographic text data. In order to facilitate subsequent operations, the geographic text data in geojson format is further converted into geographic vector text in CSV format. In vector text, each line of data represents a geographic entity, including the name, serial number, latitude and longitude of the geographic entity, and other related attributes. The geographic vector text is not only easy to observe, but also more convenient to add more information when supplementing the geographic entity in the future. additional information.

在步骤S12中,获取电子地图中的POI数据集,例如使用爬虫工具,爬取电子地图中的POI数据,获得多个地理实体的地物名称、经纬度坐标、所属省份等相关信息。然后就可以将电子地图中爬取的地理实体的相关信息补充到地理矢量文本中,将地理矢量文本和POI数据集进行融合。In step S12, the POI data set in the electronic map is obtained, for example, a crawler tool is used to crawl the POI data in the electronic map, and relevant information such as feature names, latitude and longitude coordinates, and provinces to which multiple geographic entities are obtained are obtained. Then, the relevant information of the geographic entities crawled in the electronic map can be supplemented into the geographic vector text, and the geographic vector text and POI datasets can be integrated.

在步骤S13中,将前面步骤中获取到的地理矢量文本和电子地图中的POI数据进行融合,从而生成带有地理属性的地理实体集的文本化数据。在一实施例中,将所述地理矢量文本和所述POI数据集进行融合,包括:将地理矢量文本中地理实体的经纬度坐标与POI数据集中的坐标进行匹配,如匹配成功,将POI数据集中的地理属性复制到地理实体对应的矢量文本中。如果存在匹配的经纬度坐标,说明电子地图和地理矢量文本中描述的目标为同一目标,是同一地理实体,因此可以将POI数据集中与该经纬度坐标对应的地理属性复制到地理矢量文本中相同经纬度对应的地理实体中。例如,在地理矢量文本中某一行的数据,只能标识出其中的地理实体为道路,所处的经纬度坐标,并分配唯一编码,而道路名称,所处省分,道路宽度等信息并不确定。根据地理矢量文本中的经纬度坐标,可以在POI数据中进行匹配,如果匹配成功,说明在地理矢量文本中标识的这条道路在电子地图中也有标识,而且信息更为详实,只需将POI数据中的和该经纬度对应的地理属性复制到地理矢量文本中,添加在道路名称,所处省分,道路宽度等属性的对应位置,即可实现地理矢量文本和POI数据集的融合。按上述方法,对全部地理实体进行融合后,生成带有地理属性的地理实体集的文本化数据。In step S13, the geographic vector text obtained in the previous steps and the POI data in the electronic map are fused, thereby generating textual data of a geographic entity set with geographic attributes. In one embodiment, fusing the geographic vector text and the POI dataset includes: matching the latitude and longitude coordinates of the geographic entities in the geographic vector text with the coordinates in the POI dataset, and if the matching is successful, merging the POI dataset into the POI dataset. The geographic attributes of are copied into the vector text corresponding to the geographic entity. If there are matching latitude and longitude coordinates, it means that the target described in the electronic map and the geographic vector text is the same target and is the same geographic entity. Therefore, the geographic attributes corresponding to the latitude and longitude coordinates in the POI dataset can be copied to the geographic vector text corresponding to the same latitude and longitude. in the geographic entity. For example, in the data of a certain line in the geographic vector text, only the geographic entity in it can be identified as a road, the latitude and longitude coordinates where it is located, and a unique code is assigned, while the information such as the name of the road, the province where it is located, and the width of the road are not certain. . According to the latitude and longitude coordinates in the geographic vector text, the POI data can be matched. If the match is successful, it means that the road identified in the geographic vector text is also marked in the electronic map, and the information is more detailed. The geographic attributes corresponding to the latitude and longitude in the text are copied to the geographic vector text, and added to the corresponding positions of the attributes such as road name, province, and road width, so as to realize the integration of geographic vector text and POI datasets. According to the above method, after all geographic entities are fused, the textual data of the geographic entity set with geographic attributes is generated.

步骤S14,将地理实体集的文本化数据导入Neo4j图数据库,就生成了包括遥感影像内容的图数据库,进一步的,将地理实体集的文本化数据和与墨卡托瓦片坐标关联,在图数据库中加入瓦片坐标,实现在图数据库中由瓦片坐标代替经纬度来表示地理实体的位置信息,构建基于瓦片索引的地理知识图数据库。In step S14, the textual data of the geographic entity set is imported into the Neo4j graph database, and a graph database including the remote sensing image content is generated. The tile coordinates are added to the database, and the location information of geographic entities is represented by tile coordinates instead of latitude and longitude in the graph database, and a geographic knowledge graph database based on tile index is constructed.

在一实施例中,将地理实体集的文本化数据与墨卡托瓦片坐标关联包括:In one embodiment, associating the textual data of the geographic entity set with Mercator tile coordinates includes:

遍历地理实体集中的每一行数据;根据每一行数据中的经纬度坐标,确定与所述经纬度坐标对应的墨卡托瓦片是否存在;如与所述经纬度坐标对应的墨卡托瓦片不存在,则创建墨卡托瓦片;如存在与所述经纬度坐标对应的墨卡托瓦片,则将所述经纬度坐标对应的地理实体的地理属性关联到所述墨卡托瓦片。Traverse each row of data in the geographic entity set; according to the latitude and longitude coordinates in each row of data, determine whether the Mercator tile corresponding to the latitude and longitude coordinates exists; if the Mercator tile corresponding to the latitude and longitude coordinates does not exist, Then create a Mercator tile; if there is a Mercator tile corresponding to the latitude and longitude coordinates, associate the geographic attribute of the geographic entity corresponding to the latitude and longitude coordinates to the Mercator tile.

将地理矢量文本中每一行中的经纬度坐标进行转换,转换为对应的瓦片编号,可以确定该经纬度坐标对应的地理实体属于哪一个瓦片,将该经纬度坐标对应的地理属性与瓦片进行关联,实现了遥感影像图数据库和瓦片地图的融合。Convert the latitude and longitude coordinates in each line of the geographic vector text into the corresponding tile number, you can determine which tile the geographic entity corresponding to the latitude and longitude coordinates belongs to, and associate the geographic attributes corresponding to the latitude and longitude coordinates with the tile. , to realize the fusion of remote sensing image database and tile map.

通过以上实施例,本文通过将电子地图爬取的POI数据集融合到由遥感影像转换成的地理矢量文本中,再将地理矢量文本导入Neo4j图数据库,并与墨卡托瓦片坐标关联,从而构建基于瓦片索引的地理知识图数据库。能够实现将无穷多个经纬度坐标的空间描述转换为有穷多个的瓦片坐标描述,从而解决无穷多个经纬度坐标难以存储的问题。并以此实现地理数据和空间信息的关联,将地理数据和空间信息以图的结构进行表示存储在图数据库中,从而达到更准确、更高效的地理信息的语义查询与搜索。Through the above embodiments, this paper integrates the POI data set crawled from the electronic map into the geographic vector text converted from remote sensing images, and then imports the geographic vector text into the Neo4j map database and associates it with the coordinates of the Mercator tile, thereby Build a geographic knowledge graph database based on tile index. It can realize the transformation of the infinite number of latitude and longitude coordinates into the infinite number of tile coordinate descriptions, so as to solve the problem that infinite number of latitude and longitude coordinates are difficult to store. In this way, the association between geographic data and spatial information is realized, and geographic data and spatial information are represented in a graph structure and stored in a graph database, so as to achieve more accurate and efficient semantic query and search of geographic information.

图2是根据一示例性实施例示出的地理知识图数据库构建装置的框图。参考图2,地理知识图数据库构建装置包括:遥感影像转换模块201,POI数据获取模块202,数据融合模块203,导入模块204。Fig. 2 is a block diagram of an apparatus for constructing a geographic knowledge graph database according to an exemplary embodiment. Referring to FIG. 2 , the apparatus for constructing a geographic knowledge graph database includes: a remote sensing image conversion module 201 , a POI data acquisition module 202 , a data fusion module 203 , and an import module 204 .

该遥感影像转换模块201被配置为用于将遥感影像转换为地理矢量文本,所述地理矢量文本包括地理实体及对应的经纬度坐标。The remote sensing image conversion module 201 is configured to convert the remote sensing image into geographic vector text, where the geographic vector text includes geographic entities and corresponding latitude and longitude coordinates.

该POI数据获取模块202被配置为用于获取电子地图中的POI数据集,POI数据集至少包括地理实体名称、地物实体位置信息,地物实体经纬度坐标等地理属性。The POI data acquisition module 202 is configured to acquire a POI data set in the electronic map, where the POI data set at least includes geographical attributes such as the name of a geographic entity, the location information of the feature entity, and the latitude and longitude coordinates of the feature entity.

该数据融合模块203被配置为用于将所述地理矢量文本和所述POI数据集进行融合,生成带有地理属性的地理实体集的文本化数据。The data fusion module 203 is configured to fuse the geographic vector text and the POI data set to generate textual data of a geographic entity set with geographic attributes.

该导入模块204被配置为将所述地理实体集的文本化数据导入Neo4j图数据库,并与墨卡托瓦片坐标关联,构建基于瓦片索引的地理知识图数据库。The import module 204 is configured to import the textual data of the geographic entity set into the Neo4j graph database, and associate it with the Mercator tile coordinates to construct a tile index-based geographic knowledge graph database.

图3是根据一示例性实施例示出的一种用于地理知识图数据库构建的计算机设备300的框图。例如,计算机设备300可以被提供为一服务器。参照图3,计算机设备300包括处理器301,处理器的个数可以根据需要设置为一个或者多个。计算机设备300还包括存储器302,用于存储可由处理器301的执行的指令,例如应用程序。存储器的个数可以根据需要设置一个或者多个。其存储的应用程序可以为一个或者多个。处理器301被配置为执行指令,以执行上述地理知识图数据库构建方法FIG. 3 is a block diagram of a computer device 300 for constructing a geographic knowledge graph database according to an exemplary embodiment. For example, computer device 300 may be provided as a server. Referring to FIG. 3 , the computer device 300 includes a processor 301, and the number of the processors can be set to one or more as required. Computer device 300 also includes memory 302 for storing instructions executable by processor 301, such as application programs. The number of memories can be set to one or more as required. It can store one or more applications. The processor 301 is configured to execute instructions to execute the above-mentioned method for constructing a geographic knowledge graph database

本领域技术人员应明白,本文的实施例可提供为方法、装置(设备)、或计算机程序产品。因此,本文可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本文可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质上实施的计算机程序产品的形式。计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质,包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质等。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。As will be appreciated by those skilled in the art, the embodiments herein may be provided as a method, an apparatus (apparatus), or a computer program product. Accordingly, this document may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, this document may take the form of a computer program product embodied on one or more computer-usable storage media having computer-usable program code embodied therein. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data , including but not limited to RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may be used for Any other medium that stores desired information and can be accessed by a computer, etc. In addition, communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

本文是参照根据本文实施例的方法、装置(设备)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。Described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (apparatus) and computer program products according to embodiments herein. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The means implements the functions specified in one or more of the flowcharts and/or one or more blocks of the block diagrams

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.

在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的物品或者设备中还存在另外的相同要素。As used herein, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that an article or device comprising a list of elements includes not only those elements, but also others not expressly listed elements, or elements inherent to the article or equipment. Without further limitation, an element defined by the phrase "comprising" does not preclude the presence of additional identical elements in the article or device comprising said element.

尽管已描述了本文的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本文范围的所有变更和修改。While the preferred embodiments have been described herein, additional changes and modifications to these embodiments may occur to those skilled in the art once the basic inventive concepts are known. Therefore, the appended claims are intended to be construed to include the preferred embodiment and all changes and modifications that fall within the scope of this document.

显然,本领域的技术人员可以对本文进行各种改动和变型而不脱离本文的精神和范围。这样,倘若本文的这些修改和变型属于本文权利要求及其等同技术的范围之内,则本文的意图也包含这些改动和变型在内。It will be apparent to those skilled in the art that various modifications and variations can be made in this document without departing from the spirit and scope of this document. Thus, provided that such modifications and variations herein come within the scope of the claims herein and their equivalents, it is intended that such modifications and variations are also included herein.

Claims (10)

1. A method for constructing a geographic knowledge base is characterized by comprising the following steps:
converting the remote sensing image into a geographic vector text, wherein the geographic vector text at least comprises geographic entity identification information and corresponding longitude and latitude coordinates;
the method comprises the steps of obtaining a POI data set in an electronic map, wherein the POI data set at least comprises geographic attributes such as geographic entity names, surface feature entity position information, surface feature entity longitude and latitude coordinates and the like;
fusing the geographic vector text and the POI data set to generate textual data of a geographic entity set with geographic attributes;
and importing the textual data of the geographic entity set into a Neo4j database, associating the textual data with coordinates of mercator tiles, and constructing a geographic knowledge database based on tile indexes.
2. The method for constructing a geographical knowledge base database according to claim 1, wherein said converting the remote sensing image into a geographical vector text comprises:
extracting a geographic entity in the remote sensing image, and acquiring a raster image related to the geographic entity;
according to the position of the geographic entity in the remote sensing image, assigning the attribute related to the position to the geographic entity in the raster image to generate assigned raster data;
converting the assigned raster data into a geographic vector file;
and generating geographic vector text based on the geographic vector file.
3. The method for constructing a geographical knowledge base database according to claim 2, wherein the extracting the geographical entities from the remote sensing image and obtaining the raster image comprises:
cutting the remote sensing image into a plurality of sub-images;
extracting information of each sub-image and generating a plurality of sub-grid images;
and splicing the plurality of sub-grid images according to the positions of the corresponding sub-images to form a grid image with the same size as the remote sensing image.
4. The method of constructing a geographical knowledge base database of claim 3, wherein said assigning attributes related to the location to geographical entities in the raster image comprises:
converting the remote sensing image and the raster image into an ASCI I code;
copying coordinate information in the ASCI I code of the remote sensing image to a corresponding geographic entity in the ASCI I code of the raster image;
and generating assigned raster data by ASCI I coding of the raster image added with the coordinate information.
5. The method of constructing a geographical knowledge base database according to claim 2, wherein said generating geographical vector text based on said geographical vector file comprises:
converting the geographic vector file into a feature set in a geojson format;
and converting the characteristic set in the geojson format into geographic vector text.
6. The method of constructing a geographical knowledge base database according to claim 1, wherein said fusing said geographical vector text and said POI data sets comprises:
and matching the longitude and latitude coordinates of the geographic entity in the geographic vector text with the coordinates in the POI data set, and copying the geographic attributes in the POI data set into the vector text corresponding to the geographic entity if the matching is successful.
7. The method of constructing a geographic knowledge base database according to claim 1, wherein said associating textual data of said set of geographic entities with mercator tile coordinates comprises:
traversing each row of data in the set of geographic entities;
determining whether the ink card tray tile corresponding to the longitude and latitude coordinates exists according to the longitude and latitude coordinates in each line of data;
if the ink card tray tile corresponding to the longitude and latitude coordinates does not exist, creating the ink card tray tile; and if the mercator tile corresponding to the longitude and latitude coordinates exists, associating the geographic attribute of the geographic entity corresponding to the longitude and latitude coordinates to the mercator tile.
8. A map knowledge base construction apparatus, comprising:
the remote sensing image conversion module is used for converting the remote sensing image into a geographic vector text, and the geographic vector text comprises a geographic entity and corresponding longitude and latitude coordinates;
the system comprises a POI data acquisition module, a map information acquisition module and a map information acquisition module, wherein the POI data acquisition module is used for acquiring a POI data set in an electronic map, and the POI data set at least comprises geographic attributes such as geographic entity names, surface feature entity position information, surface feature entity longitude and latitude coordinates and the like;
the data fusion module is used for fusing the geographic vector text and the POI data set to generate textual data of a geographic entity set with geographic attributes;
and the importing module is used for importing the textual data of the geographic entity set into a Neo4j database, associating the textual data with coordinates of the mercator tile and constructing a geographic knowledge database based on mercator tile indexes.
9. A computer-readable storage medium, on which a computer program is stored, characterized in that the computer program, when executed, implements the steps of the method according to any one of claims 1-8.
10. A computer arrangement comprising a processor, a memory and a computer program stored on the memory, characterized in that the steps of the method according to any of claims 1-8 are implemented when the computer program is executed by the processor.
CN202011029805.0A 2020-09-27 2020-09-27 A method, device, medium and equipment for constructing a geographic knowledge graph database Active CN114328766B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011029805.0A CN114328766B (en) 2020-09-27 2020-09-27 A method, device, medium and equipment for constructing a geographic knowledge graph database

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011029805.0A CN114328766B (en) 2020-09-27 2020-09-27 A method, device, medium and equipment for constructing a geographic knowledge graph database

Publications (2)

Publication Number Publication Date
CN114328766A true CN114328766A (en) 2022-04-12
CN114328766B CN114328766B (en) 2025-01-24

Family

ID=81010700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011029805.0A Active CN114328766B (en) 2020-09-27 2020-09-27 A method, device, medium and equipment for constructing a geographic knowledge graph database

Country Status (1)

Country Link
CN (1) CN114328766B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114820990A (en) * 2022-06-29 2022-07-29 浙江远算科技有限公司 A digital twin-based visualization method and system for flood control in river basins
CN115248837A (en) * 2022-09-21 2022-10-28 中科雨辰科技有限公司 Data processing system for obtaining geographic entity of text
CN117807176A (en) * 2023-12-29 2024-04-02 中国地质调查局油气资源调查中心 Knowledge base index construction method, device and equipment based on two-dimensional gridding
CN118628322A (en) * 2024-08-12 2024-09-10 广州市城市规划设计有限公司 A land use optimization analysis method and system for land space planning
CN118711019A (en) * 2024-08-27 2024-09-27 中国四维测绘技术有限公司 Training sample set processing method, electronic device and storage medium
CN119206385A (en) * 2024-11-29 2024-12-27 中国科学院空天信息创新研究院 Image geolocation method, device and equipment based on multimodal large model
CN119961238A (en) * 2024-11-28 2025-05-09 二十一世纪空间技术应用股份有限公司 Method and equipment for constructing geographical teaching library based on remote sensing products

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060041375A1 (en) * 2004-08-19 2006-02-23 Geographic Data Technology, Inc. Automated georeferencing of digitized map images
CN107766471A (en) * 2017-09-27 2018-03-06 中国农业大学 The organization and management method and device of a kind of multi-source data
CN108304593A (en) * 2018-04-19 2018-07-20 北京星球时空科技有限公司 The method that paper map is shown with electronic map interactive
CN108491427A (en) * 2018-02-08 2018-09-04 中国人民解放军61540部队 PDF tile maps and production method
CN108764193A (en) * 2018-06-04 2018-11-06 北京师范大学 Merge the city function limited region dividing method of POI and remote sensing image
CN111291016A (en) * 2020-02-19 2020-06-16 江苏易图地理信息科技股份有限公司 Layered mixed storage and indexing method for mass remote sensing image data

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060041375A1 (en) * 2004-08-19 2006-02-23 Geographic Data Technology, Inc. Automated georeferencing of digitized map images
CN107766471A (en) * 2017-09-27 2018-03-06 中国农业大学 The organization and management method and device of a kind of multi-source data
CN108491427A (en) * 2018-02-08 2018-09-04 中国人民解放军61540部队 PDF tile maps and production method
CN108304593A (en) * 2018-04-19 2018-07-20 北京星球时空科技有限公司 The method that paper map is shown with electronic map interactive
CN108764193A (en) * 2018-06-04 2018-11-06 北京师范大学 Merge the city function limited region dividing method of POI and remote sensing image
CN111291016A (en) * 2020-02-19 2020-06-16 江苏易图地理信息科技股份有限公司 Layered mixed storage and indexing method for mass remote sensing image data

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李鹤元;陈刚;: "基于改进Web墨卡托投影的瓦片地图服务设计与实现", 测绘工程, no. 02, 25 February 2016 (2016-02-25) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114820990A (en) * 2022-06-29 2022-07-29 浙江远算科技有限公司 A digital twin-based visualization method and system for flood control in river basins
CN114820990B (en) * 2022-06-29 2022-09-20 浙江远算科技有限公司 Digital twin-based river basin flood control visualization method and system
CN115248837A (en) * 2022-09-21 2022-10-28 中科雨辰科技有限公司 Data processing system for obtaining geographic entity of text
CN115248837B (en) * 2022-09-21 2022-12-23 中科雨辰科技有限公司 Data processing system for obtaining geographic entity of text
CN117807176A (en) * 2023-12-29 2024-04-02 中国地质调查局油气资源调查中心 Knowledge base index construction method, device and equipment based on two-dimensional gridding
CN118628322A (en) * 2024-08-12 2024-09-10 广州市城市规划设计有限公司 A land use optimization analysis method and system for land space planning
CN118711019A (en) * 2024-08-27 2024-09-27 中国四维测绘技术有限公司 Training sample set processing method, electronic device and storage medium
CN119961238A (en) * 2024-11-28 2025-05-09 二十一世纪空间技术应用股份有限公司 Method and equipment for constructing geographical teaching library based on remote sensing products
CN119206385A (en) * 2024-11-29 2024-12-27 中国科学院空天信息创新研究院 Image geolocation method, device and equipment based on multimodal large model

Also Published As

Publication number Publication date
CN114328766B (en) 2025-01-24

Similar Documents

Publication Publication Date Title
CN114328766A (en) A method, device, medium and equipment for constructing a geographic knowledge graph database
CN113434623B (en) Fusion method based on multi-source heterogeneous space planning data
Hackeloeer et al. Georeferencing: a review of methods and applications
Grote et al. Road network extraction in suburban areas
Gamal et al. Automatic LIDAR building segmentation based on DGCNN and euclidean clustering
CN109684428A (en) Spatial data building method, device, equipment and storage medium
Malpica et al. Change detection of buildings from satellite imagery and lidar data
Zhang et al. An improved multi‐task pointwise network for segmentation of building roofs in airborne laser scanning point clouds
Yeum Computer vision-based structural assessment exploiting large volumes of images
Pédrinis et al. Change detection of cities
Goldberg et al. Urban 3d challenge: building footprint detection using orthorectified imagery and digital surface models from commercial satellites
CN112711645B (en) Method and device for expanding position point information, storage medium and electronic equipment
CN109657728B (en) Sample production method and model training method
CN116108059B (en) Geographic mapping framing vector data singulation method and device and electronic equipment
Potůčková et al. Comparison of quality measures for building outline extraction
Chiang Unlocking textual content from historical maps-potentials and applications, trends, and outlooks
CN113449741A (en) Remote sensing image positioning method and system based on semantic inference and image understanding
Sarretta et al. Towards the integration of authoritative and OpenStreetMap geospatial datasets in support of the European strategy for data
Liu et al. A framework of road extraction from airborne lidar data and aerial imagery
CN104063421B (en) Method and device for searching mass traffic remote sensing data
CN113656979B (en) Road network data generation method and device, electronic equipment and storage medium
Eremeev et al. Comparison of urban areas based on database of topological relationships in geoinformational systems
CN116955517B (en) Intersection region detection method, device, equipment and computer readable storage medium
Zhang et al. Enrichment of topographic road database for the purpose of routing and navigation
Jalan Exploring the potential of object based image analysis for mapping urban land cover

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant