[go: up one dir, main page]

CN103743435A - Multi-sensor data fusion method - Google Patents

Multi-sensor data fusion method Download PDF

Info

Publication number
CN103743435A
CN103743435A CN201310721964.0A CN201310721964A CN103743435A CN 103743435 A CN103743435 A CN 103743435A CN 201310721964 A CN201310721964 A CN 201310721964A CN 103743435 A CN103743435 A CN 103743435A
Authority
CN
China
Prior art keywords
sigma
sensors
sensor
fusion
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310721964.0A
Other languages
Chinese (zh)
Inventor
罗文广
张晓亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University of Science and Technology
Original Assignee
Guangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University of Science and Technology filed Critical Guangxi University of Science and Technology
Priority to CN201310721964.0A priority Critical patent/CN103743435A/en
Publication of CN103743435A publication Critical patent/CN103743435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

The invention discloses a multi-sensor data fusion method. Multi-sensors acquire data signals and the data signals are converted through an A/D converter so as to obtain digital signals; the digital signals undergo data filtering and pretreatment; and finally, feature extraction and algorithm fusion are carried out to obtain a result after multi-sensor data fusion. During the data-level multi-sensor data fusion, two same sensors simultaneously measure a same indoor environment quality factor. Thus, real-time performance and measurement accuracy of sensors of the same type are simultaneously raised. By the method, original measurement data of sensors is fully utilized; and fusion of information, such as error of mean square, measurement accuracy and the like, of sensors is carried out. It is not required to know any experiment knowledge about sensor measurement data. Drifting and noise of sensors are inhibited to some extent, and measurement accuracy of a system is raised.

Description

一种多传感器数据融合方法A multi-sensor data fusion method

技术领域technical field

本发明涉及一种多传感器数据融合方法。The invention relates to a multi-sensor data fusion method.

背景技术Background technique

目前,随着多传感器数据融合技术的发展和待解决问题的复杂程度的提高,单一融合算法的局限性日益暴露,将多种数据融合算法进行结合成为多传感器数据融合技术的发展趋势。而目前的自适应加权融合算法是对同类传感器数据融合的常用算法。在室内环境品质各个因素的测量过程中,得到的实际测量值存在噪声误差,经常用均方误差来评判实际测量数据的精确程度。At present, with the development of multi-sensor data fusion technology and the increasing complexity of the problems to be solved, the limitations of a single fusion algorithm are increasingly exposed, and the combination of multiple data fusion algorithms has become the development trend of multi-sensor data fusion technology. The current adaptive weighted fusion algorithm is a commonly used algorithm for the fusion of similar sensor data. In the process of measuring various factors of indoor environmental quality, the actual measurement values obtained have noise errors, and the mean square error is often used to judge the accuracy of the actual measurement data.

发明内容Contents of the invention

本发明目的是针对现有技术存在的缺陷提供一种多传感器数据融合方法。The purpose of the present invention is to provide a multi-sensor data fusion method aiming at the defects existing in the prior art.

本发明为实现上述目的,采用如下技术方案:一种多传感器数据融合方法,多传感器获取数据信号,然后通过A/D转换器进行转换,得到数字信号;然后进行数据滤波和预处理,然后再经过特征提取和算法融合得到多传感器数据融合后的结果。In order to achieve the above object, the present invention adopts the following technical solutions: a multi-sensor data fusion method, multi-sensors obtain data signals, and then convert them through A/D converters to obtain digital signals; then perform data filtering and preprocessing, and then After feature extraction and algorithm fusion, the result of multi-sensor data fusion is obtained.

进一步的,所述多传感器为采用两个传感器,则两个传感器的方差分别为σ1 2、σ2 2,所要估计的真值为X,传感器的测量值分别为x1、x2,彼此相互独立,并且

Figure BDA0000444711730000014
是X的无偏估计,加权因子分别为w1、w2,融合后的加权因子和值分别满足:Further, the multi-sensor adopts two sensors, and the variances of the two sensors are σ 1 2 and σ 2 2 respectively, the true value to be estimated is X, and the measured values of the sensors are x 1 and x 2 , respectively. independent of each other, and
Figure BDA0000444711730000014
is the unbiased estimate of X, the weighting factors are w 1 and w 2 , and the weighting factors and values after fusion satisfy:

w1+w2=1     (2-1)w 1 +w 2 =1 (2-1)

xx ^^ == ww 11 ww 22 xx 11 xx 22 TT == ΣΣ ii == 11 22 ww ii xx ii -- -- -- (( 22 -- 22 ))

由式(2-2)可知

Figure BDA0000444711730000012
为X的无偏估计,并且融合值是各个传感器测量值的线性函数;It can be seen from formula (2-2)
Figure BDA0000444711730000012
is an unbiased estimate of X, and the fusion value is a linear function of the individual sensor measurements;

各个传感器方差为:The variance of each sensor is:

σσ 22 == EE. [[ 11 44 ΣΣ jj == 11 44 (( xx jj -- xx ‾‾ )) 22 ]] -- -- -- (( 22 -- 33 ))

式(2-3)中:i为测量次数;In formula (2-3): i is the number of measurements;

总均方差为:The total mean square error is:

σσ 22 == EE. [[ (( xx -- xx ^^ )) 22 ]] == EE. [[ ΣΣ ii == 11 22 ww ii 22 (( xx -- xx ii )) 22 ++ 22 ΣΣ ii == 11 ,, jj == 11 ii ≠≠ jj 22 ww ii xx jj (( xx -- xx ii )) (( xx -- xx jj )) -- -- -- (( 22 -- 44 ))

由式(2-4)可知,总均方差σ2是关于各个加权因子的多元二次函,必然存在最小值,根据拉格朗日定理极值理论可知,在总均方差σ2最小时对应的加权因子为:It can be seen from formula (2-4) that the total mean square error σ 2 is a multivariate quadratic function about each weighting factor, and there must be a minimum value. According to the extreme value theory of Lagrangian theorem, when the total mean square error σ 2 is the smallest, it corresponds to The weighting factor for is:

ww ii ′′ == 11 σσ ii 22 ΣΣ ii == 11 22 11 σσ ii 22 -- -- -- (( 22 -- 55 ))

此时所对应的最小均方差为:The corresponding minimum mean square error at this time is:

σσ minmin 22 == 11 ΣΣ ii == 11 22 11 σσ ii 22 -- -- -- (( 22 -- 66 )) ..

本发明的有益效果:本发明在数据级多传感器数据融合中采用两个相同的传感器同时测量同一个室内环境品质因数,这样同时提高了同类传感器的实时性和测量精度。该方法充分利用了传感器的原始测量数据,讲传感器的均方误差、测量精度等信息进行融合,不要求知道传感器测量数据的任何实验知识,它在一定程度上抑制了传感器的漂移和噪声,提高了系统的测量精度。Beneficial effects of the present invention: the present invention uses two identical sensors to simultaneously measure the same indoor environmental quality factor in data-level multi-sensor data fusion, thus simultaneously improving the real-time performance and measurement accuracy of similar sensors. This method makes full use of the original measurement data of the sensor, and fuses information such as the mean square error and measurement accuracy of the sensor. It does not require any experimental knowledge of the sensor measurement data. It suppresses the drift and noise of the sensor to a certain extent and improves the measurement accuracy of the system.

具体实施方式Detailed ways

本发明涉及一种多传感器数据融合方法,多传感器获取数据信号,然后通过A/D转换器进行转换,得到数字信号;然后进行数据滤波和预处理,然后再经过特征提取和算法融合得到多传感器数据融合后的结果。The invention relates to a multi-sensor data fusion method. Multi-sensors acquire data signals, and then convert them through an A/D converter to obtain digital signals; then perform data filtering and preprocessing, and then obtain multi-sensors through feature extraction and algorithm fusion. The result of data fusion.

进一步的,所述多传感器为采用两个传感器,则两个传感器的方差分别为σ1 2、σ2 2,所要估计的真值为X,传感器的测量值分别为x1、x2,彼此相互独立,并且x?是X的无偏估计,加权因子分别为w1、w2,融合后的加权因子和值分别满足:Further, the multi-sensor adopts two sensors, and the variances of the two sensors are σ 1 2 and σ 2 2 respectively, the true value to be estimated is X, and the measured values of the sensors are x 1 and x 2 , respectively. are independent of each other, and x? is an unbiased estimate of X, the weighting factors are w 1 and w 2 respectively, and the weighting factors and values after fusion satisfy respectively:

w1+w2=1     (2-1)w 1 +w 2 =1 (2-1)

xx ^^ == ww 11 ww 22 xx 11 xx 22 TT == ΣΣ ii == 11 22 ww ii xx ii -- -- -- (( 22 -- 22 ))

由式(2-2)可知

Figure BDA0000444711730000025
为X的无偏估计,并且融合值是各个传感器测量值的线性函数;It can be seen from formula (2-2)
Figure BDA0000444711730000025
is an unbiased estimate of X, and the fusion value is a linear function of the individual sensor measurements;

各个传感器方差为:The variance of each sensor is:

σσ 22 == EE. [[ 11 44 ΣΣ jj == 11 44 (( xx jj -- xx ‾‾ )) 22 ]] -- -- -- (( 22 -- 33 ))

式(2-3)中:i为测量次数;In formula (2-3): i is the number of measurements;

总均方差为:The total mean square error is:

σσ 22 == EE. [[ (( xx -- xx ^^ )) 22 ]] == EE. [[ ΣΣ ii == 11 22 ww ii 22 (( xx -- xx ii )) 22 ++ 22 ΣΣ ii == 11 ,, jj == 11 ii ≠≠ jj 22 ww ii xx jj (( xx -- xx ii )) (( xx -- xx jj )) -- -- -- (( 22 -- 44 ))

由式(2-4)可知,总均方差σ2是关于各个加权因子的多元二次函,必然存在最小值,根据拉格朗日定理极值理论可知,在总均方差σ2最小时对应的加权因子为:It can be seen from formula (2-4) that the total mean square error σ 2 is a multivariate quadratic function about each weighting factor, and there must be a minimum value. According to the extreme value theory of Lagrangian theorem, when the total mean square error σ 2 is the smallest, it corresponds to The weighting factor for is:

ww ii ′′ == 11 σσ ii 22 ΣΣ ii == 11 22 11 σσ ii 22 -- -- -- (( 22 -- 55 ))

此时所对应的最小均方差为:The corresponding minimum mean square error at this time is:

σσ minmin 22 == 11 ΣΣ ii == 11 22 11 σσ ii 22 -- -- -- (( 22 -- 66 )) ..

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.

Claims (2)

1.一种多传感器数据融合方法,其特征在于,多传感器获取数据信号,然后通过A/D转换器进行转换,得到数字信号;然后进行数据滤波和预处理,然后再经过特征提取和算法融合得到多传感器数据融合后的结果。1. A multi-sensor data fusion method is characterized in that multi-sensors acquire data signals, then convert them through an A/D converter to obtain digital signals; then perform data filtering and preprocessing, and then undergo feature extraction and algorithm fusion The result of multi-sensor data fusion is obtained. 2.如权利要求1所述的一种多传感器数据融合方法,其特征在于,所述多传感器为采用两个传感器,则两个传感器的方差分别为σ1 2、σ2 2,所要估计的真值为X,传感器的测量值分别为x1、x2,彼此相互独立,并且x?是X的无偏估计,加权因子分别为w1、w2,融合后的加权因子和值分别满足:2. A multi-sensor data fusion method according to claim 1, wherein the multi-sensor uses two sensors, and the variances of the two sensors are σ 1 2 and σ 2 2 respectively, and the estimated The true value is X, the measured values of the sensor are x 1 , x 2 , which are independent of each other, and x? is an unbiased estimate of X, the weighting factors are w 1 , w 2 , and the fused weighting factors and values respectively satisfy : w1+w2=1     (2-1)w 1 +w 2 =1 (2-1) xx ^^ == ww 11 ww 22 xx 11 xx 22 TT == ΣΣ ii == 11 22 ww ii xx ii -- -- -- (( 22 -- 22 )) 由式(2-2)可知为X的无偏估计,并且融合值是各个传感器测量值的线性函数;It can be seen from formula (2-2) is an unbiased estimate of X, and the fusion value is a linear function of the individual sensor measurements; 各个传感器方差为:The variance of each sensor is: σσ 22 == EE. [[ 11 44 ΣΣ jj == 11 44 (( xx jj -- xx ‾‾ )) 22 ]] -- -- -- (( 22 -- 33 )) 式(2-3)中:i为测量次数;In formula (2-3): i is the number of measurements; 总均方差为:The total mean square error is: σσ 22 == EE. [[ (( xx -- xx ^^ )) 22 ]] == EE. [[ ΣΣ ii == 11 22 ww ii 22 (( xx -- xx ii )) 22 ++ 22 ΣΣ ii == 11 ,, jj == 11 ii ≠≠ jj 22 ww ii xx jj (( xx -- xx ii )) (( xx -- xx jj )) -- -- -- (( 22 -- 44 )) 由式(2-4)可知,总均方差σ2是关于各个加权因子的多元二次函,必然存在最小值,根据拉格朗日定理极值理论可知,在总均方差σ2最小时对应的加权因子为:It can be seen from formula (2-4) that the total mean square error σ 2 is a multivariate quadratic function about each weighting factor, and there must be a minimum value. According to the extreme value theory of Lagrangian theorem, when the total mean square error σ 2 is the smallest, it corresponds to The weighting factor for is: ww ii ′′ == 11 σσ ii 22 ΣΣ ii == 11 22 11 σσ ii 22 -- -- -- (( 22 -- 55 )) 此时所对应的最小均方差为:The corresponding minimum mean square error at this time is: σσ minmin 22 == 11 ΣΣ ii == 11 22 11 σσ ii 22 -- -- -- (( 22 -- 66 )) ..
CN201310721964.0A 2013-12-23 2013-12-23 Multi-sensor data fusion method Pending CN103743435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310721964.0A CN103743435A (en) 2013-12-23 2013-12-23 Multi-sensor data fusion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310721964.0A CN103743435A (en) 2013-12-23 2013-12-23 Multi-sensor data fusion method

Publications (1)

Publication Number Publication Date
CN103743435A true CN103743435A (en) 2014-04-23

Family

ID=50500477

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310721964.0A Pending CN103743435A (en) 2013-12-23 2013-12-23 Multi-sensor data fusion method

Country Status (1)

Country Link
CN (1) CN103743435A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197975A (en) * 2014-08-13 2014-12-10 电子科技大学 Sensor measurement accuracy improving method based on measured value differential constraining
CN104680002A (en) * 2015-02-10 2015-06-03 电子科技大学 Distributed fusion method based on random set theory
CN105808708A (en) * 2016-03-04 2016-07-27 广东轻工职业技术学院 Quick data compression method
CN106384598A (en) * 2016-08-18 2017-02-08 海信(山东)空调有限公司 Noise quality determination method and device
CN107451623A (en) * 2017-09-01 2017-12-08 南京森斯哈贝电子科技有限公司 A kind of multi-Sensor Information Fusion Approach and device
CN108836344A (en) * 2018-04-26 2018-11-20 深圳市臻络科技有限公司 Step-length cadence evaluation method and device and gait detector
CN109039882A (en) * 2018-09-07 2018-12-18 安徽建筑大学 Full fastener type steel pipe scaffold safety monitoring system and method
CN109636659A (en) * 2018-10-22 2019-04-16 广东精点数据科技股份有限公司 Agriculture Internet of Things multi-source data fusion method and system based on quality factor
CN109696221A (en) * 2019-02-01 2019-04-30 浙江大学 A kind of real-time surface gathered water on-Line Monitor Device and method of multi-sensor cooperated calibration
CN110987068A (en) * 2019-11-28 2020-04-10 中国人民解放军陆军炮兵防空兵学院郑州校区 Data fusion method for multi-sensor integrated control system
CN119642925A (en) * 2024-10-31 2025-03-18 四川泛华航空仪表电器有限公司 A method for measuring aircraft fuel by dynamic fusion of multiple sensors and multiple measurements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472673A (en) * 2003-06-05 2004-02-04 上海交通大学 A Data Fusion Method Based on Linear Constrained Truncated Least Squares
US20050156776A1 (en) * 2003-11-25 2005-07-21 Waite James W. Centerline and depth locating method for non-metallic buried utility lines
CN101226689A (en) * 2008-02-03 2008-07-23 北京交通大学 Multi-sensor access device and data fusion method for road traffic information collection
CN102323382A (en) * 2011-07-20 2012-01-18 暨南大学 Multiple index lamination and fusion visualization method for detecting structural damages

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472673A (en) * 2003-06-05 2004-02-04 上海交通大学 A Data Fusion Method Based on Linear Constrained Truncated Least Squares
US20050156776A1 (en) * 2003-11-25 2005-07-21 Waite James W. Centerline and depth locating method for non-metallic buried utility lines
CN101226689A (en) * 2008-02-03 2008-07-23 北京交通大学 Multi-sensor access device and data fusion method for road traffic information collection
CN102323382A (en) * 2011-07-20 2012-01-18 暨南大学 Multiple index lamination and fusion visualization method for detecting structural damages

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张晓亮: "室内环境品质监控系统研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *
张晓亮等: "多传感器数据融合技术在室内环境品质监控系统中的应用", 《仪表技术与传感器》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104197975A (en) * 2014-08-13 2014-12-10 电子科技大学 Sensor measurement accuracy improving method based on measured value differential constraining
CN104680002A (en) * 2015-02-10 2015-06-03 电子科技大学 Distributed fusion method based on random set theory
CN104680002B (en) * 2015-02-10 2017-10-17 电子科技大学 A kind of distributed fusion method theoretical based on random set
CN105808708A (en) * 2016-03-04 2016-07-27 广东轻工职业技术学院 Quick data compression method
CN106384598A (en) * 2016-08-18 2017-02-08 海信(山东)空调有限公司 Noise quality determination method and device
CN107451623B (en) * 2017-09-01 2019-11-08 南京森斯哈贝电子科技有限公司 A multi-sensor data fusion method and device
CN107451623A (en) * 2017-09-01 2017-12-08 南京森斯哈贝电子科技有限公司 A kind of multi-Sensor Information Fusion Approach and device
CN108836344A (en) * 2018-04-26 2018-11-20 深圳市臻络科技有限公司 Step-length cadence evaluation method and device and gait detector
CN108836344B (en) * 2018-04-26 2020-12-15 深圳市臻络科技有限公司 Step length step frequency estimation method and device and gait detector
CN109039882A (en) * 2018-09-07 2018-12-18 安徽建筑大学 Full fastener type steel pipe scaffold safety monitoring system and method
CN109636659A (en) * 2018-10-22 2019-04-16 广东精点数据科技股份有限公司 Agriculture Internet of Things multi-source data fusion method and system based on quality factor
CN109696221A (en) * 2019-02-01 2019-04-30 浙江大学 A kind of real-time surface gathered water on-Line Monitor Device and method of multi-sensor cooperated calibration
CN110987068A (en) * 2019-11-28 2020-04-10 中国人民解放军陆军炮兵防空兵学院郑州校区 Data fusion method for multi-sensor integrated control system
CN119642925A (en) * 2024-10-31 2025-03-18 四川泛华航空仪表电器有限公司 A method for measuring aircraft fuel by dynamic fusion of multiple sensors and multiple measurements

Similar Documents

Publication Publication Date Title
CN103743435A (en) Multi-sensor data fusion method
CN104484857A (en) Instrument data reading method and system
CN101586997A (en) Method for calculating guy cable vibrating base frequency
CN105804734A (en) Method for identifying thickened oil reservoir by utilizing nuclear magnetic resonance well logging
CN109827629A (en) A Distributed Reliability Estimation Method for Urban River Water Level
CN104820168A (en) Lightning stroke fault determination method based on waveform difference degree and lightning stroke fault sample database
CN104318072A (en) QKF-MMF (Quantitative Kalman Filtering-Multi Method Fusion) based multi-sensor quantitative fusion method
CN104931040A (en) Installation and debugging method of Beidou generation-II navigation system electric iron tower deformation monitoring device based on machine learning
CN104166130A (en) Method for carrying out synchronous inversion to obtain temperature and salinity of sea water according to Brillouin frequency shift and Brillouin line width
CN105976381A (en) Quantitative evaluation method for large-area defect of pipeline based on far-field eddy false peak removal
CN103914993B (en) A kind of intelligent parking detection method based on magnetic field sensor
CN105571666A (en) Flow compensation method, compensation device and flow sensor
CN101251576A (en) A Method of Circuit Fault Diagnosis Based on Neural Network
CN108767822B (en) Method for matching line model and transformer type for relay protection
CN104090228B (en) Analog circuit fuzzy group identification method
CN107203495B (en) S parameter circular interpolation method
CN102590694B (en) A kind of double circuits on same tower transmission line of electricity internal fault external fault Simulation after test recognition methods based on lumped parameter T model
CN104484545B (en) A kind of aerial drainage structural vibration response dynamic fusion method based on variance contribution ratio
CN105631213B (en) Structural damage early warning method based on EMD decomposition and AR model residual error
CN104950215A (en) Microcomputer protection method
CN104483361B (en) A Method for Improving Measurement Accuracy of Electrochemical Analytical Instruments
CN103400201A (en) Method for solving state estimation problem taking maximum normal rate of measurement point as target
CN102564486A (en) Correction method for slow deviation faults of sensor
CN102508108A (en) Method for softly starting traveling wave in low signal to noise ratio
CN106679659A (en) Signal denoising method based on parameter-adjustable nonlinear track differentiator

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140423