CN103743435A - Multi-sensor data fusion method - Google Patents
Multi-sensor data fusion method Download PDFInfo
- Publication number
- CN103743435A CN103743435A CN201310721964.0A CN201310721964A CN103743435A CN 103743435 A CN103743435 A CN 103743435A CN 201310721964 A CN201310721964 A CN 201310721964A CN 103743435 A CN103743435 A CN 103743435A
- Authority
- CN
- China
- Prior art keywords
- sigma
- sensors
- sensor
- fusion
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007500 overflow downdraw method Methods 0.000 title claims abstract description 8
- 230000004927 fusion Effects 0.000 claims abstract description 22
- 238000005259 measurement Methods 0.000 claims abstract description 18
- 238000000605 extraction Methods 0.000 claims abstract description 4
- 238000001914 filtration Methods 0.000 claims abstract description 4
- 238000012886 linear function Methods 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 3
- 238000012887 quadratic function Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 4
- 238000002474 experimental method Methods 0.000 abstract 1
- 230000007613 environmental effect Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Landscapes
- Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种多传感器数据融合方法。The invention relates to a multi-sensor data fusion method.
背景技术Background technique
目前,随着多传感器数据融合技术的发展和待解决问题的复杂程度的提高,单一融合算法的局限性日益暴露,将多种数据融合算法进行结合成为多传感器数据融合技术的发展趋势。而目前的自适应加权融合算法是对同类传感器数据融合的常用算法。在室内环境品质各个因素的测量过程中,得到的实际测量值存在噪声误差,经常用均方误差来评判实际测量数据的精确程度。At present, with the development of multi-sensor data fusion technology and the increasing complexity of the problems to be solved, the limitations of a single fusion algorithm are increasingly exposed, and the combination of multiple data fusion algorithms has become the development trend of multi-sensor data fusion technology. The current adaptive weighted fusion algorithm is a commonly used algorithm for the fusion of similar sensor data. In the process of measuring various factors of indoor environmental quality, the actual measurement values obtained have noise errors, and the mean square error is often used to judge the accuracy of the actual measurement data.
发明内容Contents of the invention
本发明目的是针对现有技术存在的缺陷提供一种多传感器数据融合方法。The purpose of the present invention is to provide a multi-sensor data fusion method aiming at the defects existing in the prior art.
本发明为实现上述目的,采用如下技术方案:一种多传感器数据融合方法,多传感器获取数据信号,然后通过A/D转换器进行转换,得到数字信号;然后进行数据滤波和预处理,然后再经过特征提取和算法融合得到多传感器数据融合后的结果。In order to achieve the above object, the present invention adopts the following technical solutions: a multi-sensor data fusion method, multi-sensors obtain data signals, and then convert them through A/D converters to obtain digital signals; then perform data filtering and preprocessing, and then After feature extraction and algorithm fusion, the result of multi-sensor data fusion is obtained.
进一步的,所述多传感器为采用两个传感器,则两个传感器的方差分别为σ1 2、σ2 2,所要估计的真值为X,传感器的测量值分别为x1、x2,彼此相互独立,并且是X的无偏估计,加权因子分别为w1、w2,融合后的加权因子和值分别满足:Further, the multi-sensor adopts two sensors, and the variances of the two sensors are σ 1 2 and σ 2 2 respectively, the true value to be estimated is X, and the measured values of the sensors are x 1 and x 2 , respectively. independent of each other, and is the unbiased estimate of X, the weighting factors are w 1 and w 2 , and the weighting factors and values after fusion satisfy:
w1+w2=1 (2-1)w 1 +w 2 =1 (2-1)
由式(2-2)可知为X的无偏估计,并且融合值是各个传感器测量值的线性函数;It can be seen from formula (2-2) is an unbiased estimate of X, and the fusion value is a linear function of the individual sensor measurements;
各个传感器方差为:The variance of each sensor is:
式(2-3)中:i为测量次数;In formula (2-3): i is the number of measurements;
总均方差为:The total mean square error is:
由式(2-4)可知,总均方差σ2是关于各个加权因子的多元二次函,必然存在最小值,根据拉格朗日定理极值理论可知,在总均方差σ2最小时对应的加权因子为:It can be seen from formula (2-4) that the total mean square error σ 2 is a multivariate quadratic function about each weighting factor, and there must be a minimum value. According to the extreme value theory of Lagrangian theorem, when the total mean square error σ 2 is the smallest, it corresponds to The weighting factor for is:
此时所对应的最小均方差为:The corresponding minimum mean square error at this time is:
本发明的有益效果:本发明在数据级多传感器数据融合中采用两个相同的传感器同时测量同一个室内环境品质因数,这样同时提高了同类传感器的实时性和测量精度。该方法充分利用了传感器的原始测量数据,讲传感器的均方误差、测量精度等信息进行融合,不要求知道传感器测量数据的任何实验知识,它在一定程度上抑制了传感器的漂移和噪声,提高了系统的测量精度。Beneficial effects of the present invention: the present invention uses two identical sensors to simultaneously measure the same indoor environmental quality factor in data-level multi-sensor data fusion, thus simultaneously improving the real-time performance and measurement accuracy of similar sensors. This method makes full use of the original measurement data of the sensor, and fuses information such as the mean square error and measurement accuracy of the sensor. It does not require any experimental knowledge of the sensor measurement data. It suppresses the drift and noise of the sensor to a certain extent and improves the measurement accuracy of the system.
具体实施方式Detailed ways
本发明涉及一种多传感器数据融合方法,多传感器获取数据信号,然后通过A/D转换器进行转换,得到数字信号;然后进行数据滤波和预处理,然后再经过特征提取和算法融合得到多传感器数据融合后的结果。The invention relates to a multi-sensor data fusion method. Multi-sensors acquire data signals, and then convert them through an A/D converter to obtain digital signals; then perform data filtering and preprocessing, and then obtain multi-sensors through feature extraction and algorithm fusion. The result of data fusion.
进一步的,所述多传感器为采用两个传感器,则两个传感器的方差分别为σ1 2、σ2 2,所要估计的真值为X,传感器的测量值分别为x1、x2,彼此相互独立,并且x?是X的无偏估计,加权因子分别为w1、w2,融合后的加权因子和值分别满足:Further, the multi-sensor adopts two sensors, and the variances of the two sensors are σ 1 2 and σ 2 2 respectively, the true value to be estimated is X, and the measured values of the sensors are x 1 and x 2 , respectively. are independent of each other, and x? is an unbiased estimate of X, the weighting factors are w 1 and w 2 respectively, and the weighting factors and values after fusion satisfy respectively:
w1+w2=1 (2-1)w 1 +w 2 =1 (2-1)
由式(2-2)可知为X的无偏估计,并且融合值是各个传感器测量值的线性函数;It can be seen from formula (2-2) is an unbiased estimate of X, and the fusion value is a linear function of the individual sensor measurements;
各个传感器方差为:The variance of each sensor is:
式(2-3)中:i为测量次数;In formula (2-3): i is the number of measurements;
总均方差为:The total mean square error is:
由式(2-4)可知,总均方差σ2是关于各个加权因子的多元二次函,必然存在最小值,根据拉格朗日定理极值理论可知,在总均方差σ2最小时对应的加权因子为:It can be seen from formula (2-4) that the total mean square error σ 2 is a multivariate quadratic function about each weighting factor, and there must be a minimum value. According to the extreme value theory of Lagrangian theorem, when the total mean square error σ 2 is the smallest, it corresponds to The weighting factor for is:
此时所对应的最小均方差为:The corresponding minimum mean square error at this time is:
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (2)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310721964.0A CN103743435A (en) | 2013-12-23 | 2013-12-23 | Multi-sensor data fusion method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310721964.0A CN103743435A (en) | 2013-12-23 | 2013-12-23 | Multi-sensor data fusion method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CN103743435A true CN103743435A (en) | 2014-04-23 |
Family
ID=50500477
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310721964.0A Pending CN103743435A (en) | 2013-12-23 | 2013-12-23 | Multi-sensor data fusion method |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN103743435A (en) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104197975A (en) * | 2014-08-13 | 2014-12-10 | 电子科技大学 | Sensor measurement accuracy improving method based on measured value differential constraining |
| CN104680002A (en) * | 2015-02-10 | 2015-06-03 | 电子科技大学 | Distributed fusion method based on random set theory |
| CN105808708A (en) * | 2016-03-04 | 2016-07-27 | 广东轻工职业技术学院 | Quick data compression method |
| CN106384598A (en) * | 2016-08-18 | 2017-02-08 | 海信(山东)空调有限公司 | Noise quality determination method and device |
| CN107451623A (en) * | 2017-09-01 | 2017-12-08 | 南京森斯哈贝电子科技有限公司 | A kind of multi-Sensor Information Fusion Approach and device |
| CN108836344A (en) * | 2018-04-26 | 2018-11-20 | 深圳市臻络科技有限公司 | Step-length cadence evaluation method and device and gait detector |
| CN109039882A (en) * | 2018-09-07 | 2018-12-18 | 安徽建筑大学 | Full fastener type steel pipe scaffold safety monitoring system and method |
| CN109636659A (en) * | 2018-10-22 | 2019-04-16 | 广东精点数据科技股份有限公司 | Agriculture Internet of Things multi-source data fusion method and system based on quality factor |
| CN109696221A (en) * | 2019-02-01 | 2019-04-30 | 浙江大学 | A kind of real-time surface gathered water on-Line Monitor Device and method of multi-sensor cooperated calibration |
| CN110987068A (en) * | 2019-11-28 | 2020-04-10 | 中国人民解放军陆军炮兵防空兵学院郑州校区 | Data fusion method for multi-sensor integrated control system |
| CN119642925A (en) * | 2024-10-31 | 2025-03-18 | 四川泛华航空仪表电器有限公司 | A method for measuring aircraft fuel by dynamic fusion of multiple sensors and multiple measurements |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1472673A (en) * | 2003-06-05 | 2004-02-04 | 上海交通大学 | A Data Fusion Method Based on Linear Constrained Truncated Least Squares |
| US20050156776A1 (en) * | 2003-11-25 | 2005-07-21 | Waite James W. | Centerline and depth locating method for non-metallic buried utility lines |
| CN101226689A (en) * | 2008-02-03 | 2008-07-23 | 北京交通大学 | Multi-sensor access device and data fusion method for road traffic information collection |
| CN102323382A (en) * | 2011-07-20 | 2012-01-18 | 暨南大学 | Multiple index lamination and fusion visualization method for detecting structural damages |
-
2013
- 2013-12-23 CN CN201310721964.0A patent/CN103743435A/en active Pending
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1472673A (en) * | 2003-06-05 | 2004-02-04 | 上海交通大学 | A Data Fusion Method Based on Linear Constrained Truncated Least Squares |
| US20050156776A1 (en) * | 2003-11-25 | 2005-07-21 | Waite James W. | Centerline and depth locating method for non-metallic buried utility lines |
| CN101226689A (en) * | 2008-02-03 | 2008-07-23 | 北京交通大学 | Multi-sensor access device and data fusion method for road traffic information collection |
| CN102323382A (en) * | 2011-07-20 | 2012-01-18 | 暨南大学 | Multiple index lamination and fusion visualization method for detecting structural damages |
Non-Patent Citations (2)
| Title |
|---|
| 张晓亮: "室内环境品质监控系统研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
| 张晓亮等: "多传感器数据融合技术在室内环境品质监控系统中的应用", 《仪表技术与传感器》 * |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104197975A (en) * | 2014-08-13 | 2014-12-10 | 电子科技大学 | Sensor measurement accuracy improving method based on measured value differential constraining |
| CN104680002A (en) * | 2015-02-10 | 2015-06-03 | 电子科技大学 | Distributed fusion method based on random set theory |
| CN104680002B (en) * | 2015-02-10 | 2017-10-17 | 电子科技大学 | A kind of distributed fusion method theoretical based on random set |
| CN105808708A (en) * | 2016-03-04 | 2016-07-27 | 广东轻工职业技术学院 | Quick data compression method |
| CN106384598A (en) * | 2016-08-18 | 2017-02-08 | 海信(山东)空调有限公司 | Noise quality determination method and device |
| CN107451623B (en) * | 2017-09-01 | 2019-11-08 | 南京森斯哈贝电子科技有限公司 | A multi-sensor data fusion method and device |
| CN107451623A (en) * | 2017-09-01 | 2017-12-08 | 南京森斯哈贝电子科技有限公司 | A kind of multi-Sensor Information Fusion Approach and device |
| CN108836344A (en) * | 2018-04-26 | 2018-11-20 | 深圳市臻络科技有限公司 | Step-length cadence evaluation method and device and gait detector |
| CN108836344B (en) * | 2018-04-26 | 2020-12-15 | 深圳市臻络科技有限公司 | Step length step frequency estimation method and device and gait detector |
| CN109039882A (en) * | 2018-09-07 | 2018-12-18 | 安徽建筑大学 | Full fastener type steel pipe scaffold safety monitoring system and method |
| CN109636659A (en) * | 2018-10-22 | 2019-04-16 | 广东精点数据科技股份有限公司 | Agriculture Internet of Things multi-source data fusion method and system based on quality factor |
| CN109696221A (en) * | 2019-02-01 | 2019-04-30 | 浙江大学 | A kind of real-time surface gathered water on-Line Monitor Device and method of multi-sensor cooperated calibration |
| CN110987068A (en) * | 2019-11-28 | 2020-04-10 | 中国人民解放军陆军炮兵防空兵学院郑州校区 | Data fusion method for multi-sensor integrated control system |
| CN119642925A (en) * | 2024-10-31 | 2025-03-18 | 四川泛华航空仪表电器有限公司 | A method for measuring aircraft fuel by dynamic fusion of multiple sensors and multiple measurements |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN103743435A (en) | Multi-sensor data fusion method | |
| CN104484857A (en) | Instrument data reading method and system | |
| CN101586997A (en) | Method for calculating guy cable vibrating base frequency | |
| CN105804734A (en) | Method for identifying thickened oil reservoir by utilizing nuclear magnetic resonance well logging | |
| CN109827629A (en) | A Distributed Reliability Estimation Method for Urban River Water Level | |
| CN104820168A (en) | Lightning stroke fault determination method based on waveform difference degree and lightning stroke fault sample database | |
| CN104318072A (en) | QKF-MMF (Quantitative Kalman Filtering-Multi Method Fusion) based multi-sensor quantitative fusion method | |
| CN104931040A (en) | Installation and debugging method of Beidou generation-II navigation system electric iron tower deformation monitoring device based on machine learning | |
| CN104166130A (en) | Method for carrying out synchronous inversion to obtain temperature and salinity of sea water according to Brillouin frequency shift and Brillouin line width | |
| CN105976381A (en) | Quantitative evaluation method for large-area defect of pipeline based on far-field eddy false peak removal | |
| CN103914993B (en) | A kind of intelligent parking detection method based on magnetic field sensor | |
| CN105571666A (en) | Flow compensation method, compensation device and flow sensor | |
| CN101251576A (en) | A Method of Circuit Fault Diagnosis Based on Neural Network | |
| CN108767822B (en) | Method for matching line model and transformer type for relay protection | |
| CN104090228B (en) | Analog circuit fuzzy group identification method | |
| CN107203495B (en) | S parameter circular interpolation method | |
| CN102590694B (en) | A kind of double circuits on same tower transmission line of electricity internal fault external fault Simulation after test recognition methods based on lumped parameter T model | |
| CN104484545B (en) | A kind of aerial drainage structural vibration response dynamic fusion method based on variance contribution ratio | |
| CN105631213B (en) | Structural damage early warning method based on EMD decomposition and AR model residual error | |
| CN104950215A (en) | Microcomputer protection method | |
| CN104483361B (en) | A Method for Improving Measurement Accuracy of Electrochemical Analytical Instruments | |
| CN103400201A (en) | Method for solving state estimation problem taking maximum normal rate of measurement point as target | |
| CN102564486A (en) | Correction method for slow deviation faults of sensor | |
| CN102508108A (en) | Method for softly starting traveling wave in low signal to noise ratio | |
| CN106679659A (en) | Signal denoising method based on parameter-adjustable nonlinear track differentiator |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C12 | Rejection of a patent application after its publication | ||
| RJ01 | Rejection of invention patent application after publication |
Application publication date: 20140423 |