[go: up one dir, main page]

CN103440269B - A kind of video data search method based on study mutually - Google Patents

A kind of video data search method based on study mutually Download PDF

Info

Publication number
CN103440269B
CN103440269B CN201310332612.6A CN201310332612A CN103440269B CN 103440269 B CN103440269 B CN 103440269B CN 201310332612 A CN201310332612 A CN 201310332612A CN 103440269 B CN103440269 B CN 103440269B
Authority
CN
China
Prior art keywords
video data
matrix
elements
calculate
similarity matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310332612.6A
Other languages
Chinese (zh)
Other versions
CN103440269A (en
Inventor
韩军伟
吉祥
郭雷
胡新韬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201310332612.6A priority Critical patent/CN103440269B/en
Publication of CN103440269A publication Critical patent/CN103440269A/en
Application granted granted Critical
Publication of CN103440269B publication Critical patent/CN103440269B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Analysis (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

本发明涉及一种基于相互学习的视频数据检索方法,其特征在于:计算不同种类视频数据特征的相似性矩阵,并利用相似性矩阵计算拉普拉斯矩阵;计算不同种类视频数据拉普拉斯矩阵的特征值和特征向量,以拉普拉斯矩阵中前M个最大特征值所对应的特征向量;计算不同种类视频数据特征向量的相似性矩阵,将特征向量的相似性矩阵的对应元素相乘得到学习矩阵;将学习矩阵和每种特征的相似性矩阵的对应元素相乘,得到学习后的相似性矩阵;利用学习后的相似性矩阵对视频数据进行排序,统计前若干个排序后的视频数据中与查询目标视频数据属于同一类别的视频数据数量,得到相应的检索准确率。本发明方法,检索准确率比学习前都有了大幅提高。

The invention relates to a video data retrieval method based on mutual learning, which is characterized in that: calculating the similarity matrix of different types of video data features, and using the similarity matrix to calculate the Laplacian matrix; calculating the Laplacian of different types of video data The eigenvalues and eigenvectors of the matrix are the eigenvectors corresponding to the first M largest eigenvalues in the Laplacian matrix; the similarity matrix of different types of video data eigenvectors is calculated, and the corresponding elements of the similarity matrix of the eigenvectors are compared Multiply the learning matrix; multiply the learning matrix and the corresponding elements of the similarity matrix of each feature to obtain the learned similarity matrix; use the learned similarity matrix to sort the video data, and count the first few sorted In the video data, the number of video data belonging to the same category as the query target video data is used to obtain the corresponding retrieval accuracy. In the method of the invention, the retrieval accuracy rate is greatly improved compared with that before learning.

Description

一种基于相互学习的视频数据检索方法A Video Data Retrieval Method Based on Mutual Learning

技术领域technical field

本发明涉及一种基于相互学习的视频数据检索方法,可以应用于不同种类视频数据的检索当中。The invention relates to a video data retrieval method based on mutual learning, which can be applied to the retrieval of different types of video data.

背景技术Background technique

互联网技术和数码摄影技术的迅速发展使得网络上的视频数据越来越多,视频数据检索也成为一个多媒体技术中的热点和难点问题。国内外学者提出了多种特征来进行视频数据的检索,这些特征大都基于视频数据的颜色,纹理和形状,统称为底层特征,近年来,有学者提出了基于人脑认知的脑功能特征,比底层特征的检索准确率有所提高,但是我们发现,不同种类的特征反映视频数据不同的特质,如果能将这些特征的优势融合起来,那么检索的准确率必将得到更大的提高。The rapid development of Internet technology and digital photography technology makes more and more video data on the network, and video data retrieval has become a hot and difficult problem in multimedia technology. Scholars at home and abroad have proposed a variety of features to retrieve video data. Most of these features are based on the color, texture, and shape of video data, collectively referred to as underlying features. In recent years, some scholars have proposed brain function features based on human brain cognition. Compared with the bottom-level features, the retrieval accuracy has been improved, but we found that different types of features reflect different characteristics of video data. If the advantages of these features can be combined, the retrieval accuracy will be greatly improved.

发明内容Contents of the invention

要解决的技术问题technical problem to be solved

为了避免现有技术的不足之处,本发明提出一种基于相互学习的视频数据检索方法,让底层特征和脑功能特征相互学习对方的优点,然后用于视频数据的检索中,结果显示,经过相互学习的特征可以大幅提高检索的准确率。In order to avoid the deficiencies of the prior art, the present invention proposes a video data retrieval method based on mutual learning, so that the underlying features and brain function features learn each other's advantages, and then used in video data retrieval, the results show that after The features learned from each other can greatly improve the accuracy of retrieval.

技术方案Technical solutions

一种基于相互学习的视频数据检索方法,其特征在于步骤如下:A video data retrieval method based on mutual learning, characterized in that the steps are as follows:

步骤1、计算N个视频数据的特征X1,X2,...,XN的相似性矩阵W1和特征Y1,Y2,...,YN的相似性矩阵W2Step 1. Calculate the similarity matrix W 1 of the features X 1 , X 2 ,...,X N of N video data and the similarity matrix W 2 of the features Y 1 , Y 2 ,...,Y N :

采用 w i , j 1 = exp ( X i - X j ) T × ( X i - X j ) σ 2 计算得到相似性矩阵W1use w i , j 1 = exp ( x i - x j ) T × ( x i - x j ) σ 2 Calculate the similarity matrix W 1 ;

采用 w i , j 2 = exp ( Y i - Y j ) T × ( Y i - Y j ) σ 2 计算得到相似性矩阵W2use w i , j 2 = exp ( Y i - Y j ) T × ( Y i - Y j ) σ 2 Calculate the similarity matrix W 2 ;

其中,X1,X2,...,XN表示第1、2和N个视频数据的第一种特征;Y1,Y2,...,YN表示第1、2和N个视频数据的第二种特征;表示矩阵W1第i行第j列元素;表示矩阵W2第i行第j列元素;Xi,Xj表示第i个和第j个视频数据的第一种特征;Yi,Yj表示第i个和第j个视频数据的第二种特征;exp表示取指数;i,j=1,2,...,N;N>0;σ>0,为常数;上标T表示向量转置;Among them, X 1 , X 2 ,..., X N represent the first feature of the 1st, 2nd and N video data; Y 1 , Y 2 ,..., Y N represent the 1st, 2nd and N The second feature of the video data; Indicates the element in row i, column j of matrix W 1 ; Represents the elements of the i-th row and the j-th column of the matrix W 2 ; X i , X j represent the first feature of the i-th and j-th video data; Y i , Y j represent the i-th and j-th video data Two kinds of features; exp means taking exponents; i, j=1,2,...,N; N>0;σ>0, which is a constant; superscript T means vector transposition;

步骤2:利用计算W1的拉普拉斯矩阵L1;利用计算W2的拉普拉斯矩阵L2Step 2: Take advantage of Calculate the Laplacian matrix L 1 of W 1 ; use Calculate the Laplacian matrix L 2 of W 2 ;

其中,D1表示对角线矩阵,其元素 d i , j 1 = Σ t = 1 N w i , t 1 i = j 0 i ≠ j ; t=1,2,...,N;表示矩阵W1的第i行第t列的元素;D2表示对角线矩阵,其元素 d i , j 2 = Σ t = 1 N w i , t 2 i = j 0 i ≠ j ; t=1,2,...,N;表示矩阵W2的第i行第t列的元素;where D1 represents a diagonal matrix whose elements d i , j 1 = Σ t = 1 N w i , t 1 i = j 0 i ≠ j ; t=1,2,...,N; Represents the elements of row i and column t of matrix W 1 ; D 2 represents a diagonal matrix whose elements d i , j 2 = Σ t = 1 N w i , t 2 i = j 0 i ≠ j ; t=1,2,...,N; Represents the elements of the i-th row and the t-column of the matrix W 2 ;

步骤3:计算拉普拉斯矩阵L1和L2的特征值和特征向量,然后分别选取前M个最大特征值所对应的特征向量U1,U2,...,UM和V1,V2,...,VM;其中,M≥1表示常数;U1,U2,...,UM表示属于L1的大小为N×1的特征向量;V1,V2,...,VM表示属于L2的大小为N×1的特征向量;Step 3: Calculate the eigenvalues and eigenvectors of the Laplacian matrices L 1 and L 2 , and then select the eigenvectors U 1 , U 2 ,..., U M and V 1 corresponding to the first M largest eigenvalues respectively ,V 2 ,...,V M ; among them, M≥1 means a constant; U 1 , U 2 ,..., U M means a feature vector of size N×1 belonging to L 1 ; V 1 , V 2 ,...,V M represents the feature vector of size N×1 belonging to L 2 ;

步骤4:利用特征向量U1,U2,...,UM和V1,V2,...,VM构造矩阵P=[U1U2...UM]和Q=[V1V2...VM];计算[K1K2...KN]T的相似性矩阵S1和[L1L2...LN]T的相似性矩阵S2Step 4: Use eigenvectors U 1 , U 2 ,..., U M and V 1 , V 2 ,..., V M to construct matrix P=[U 1 U 2 ... U M ] and Q=[ V 1 V 2 ... V M ]; calculate the similarity matrix S 1 of [K 1 K 2 ... K N ] T and the similarity matrix S 2 of [L 1 L 2 ... L N ] T ,

S1的元素计算公式为 s i , j 1 = exp ( K i - K j ) T × ( K i - K j ) σ 2 ; The formula for calculating the elements of S 1 is the s i , j 1 = exp ( K i - K j ) T × ( K i - K j ) σ 2 ;

S2的元素计算公式为 s i , j 2 = exp ( L i - L j ) T × ( L i - L j ) σ 2 ; The element calculation formula of S 2 is the s i , j 2 = exp ( L i - L j ) T × ( L i - L j ) σ 2 ;

其中,K1,K2,...,KN表示矩阵P的第1,2,...,N行元素;L1,L2,...,LN表示矩阵Q的第1,2,...,N行元素;Among them, K 1 , K 2 ,...,K N represent elements of the 1st, 2nd,...,N rows of the matrix P; L 1 , L 2 ,...,L N represent the 1st, 2nd,...,N elements of the matrix Q 2,...,N rows of elements;

步骤5:将相似性矩阵S1和S2的对应元素相乘得到学习矩阵S;Step 5 : Multiply the corresponding elements of the similarity matrix S1 and S2 to obtain the learning matrix S;

步骤6:将相似性矩阵W1和学习矩阵S的对应元素相乘得到学习后的相似性矩阵E1,将相似性矩阵W2和学习矩阵S的对应元素相乘得到学习后的相似性矩阵E2Step 6: Multiply the similarity matrix W 1 and the corresponding elements of the learning matrix S to obtain the learned similarity matrix E 1 , multiply the similarity matrix W 2 and the corresponding elements of the learning matrix S to obtain the learned similarity matrix E2 ;

步骤7:利用公式r=β(I-λE1)-1T和f=β(I-λE2)-1T计算N个视频数据两种特征学习后的分数向量r和f,并将N个视频数据按照分数大小从高到低排列,得到排序后的视频数据;Step 7: Use the formula r=β(I-λE 1 ) -1 T and f=β(I-λE 2 ) -1 T to calculate the score vectors r and f of N video data after two kinds of feature learning, and set N A video data is arranged according to the score size from high to low, and the sorted video data is obtained;

其中,r=(r1,r2,...,rN)表示N个视频数据的第一种特征进行检索后的得分向量,r1,r2,...,rN表示第1,2,...,N个视频数据的得分;f=(f1,f2,...,fN)表示N个视频数据的第二种特征进行检索后的得分向量;f1,f2,...,fN表示第1,2,...,N个视频数据的得分;β=1-λ表示常数;λ>0表示常数;T=[t1,...,tN]T表示检索时的查询向量,ti=1表示第i个视频数据为查询目标视频数据,否则ti=0。Among them, r=(r 1 ,r 2 ,...,r N ) represents the score vector after retrieval of the first feature of N video data, and r 1 ,r 2 ,...,r N represents the first ,2,...,N video data scores; f=(f 1 ,f 2 ,...,f N ) represents the score vector after retrieval of the second feature of N video data; f 1 , f 2 ,...,f N represent the scores of the 1st, 2nd,...,N video data; β=1-λ represents a constant; λ>0 represents a constant; T=[t 1 ,..., t N ] T represents the query vector during retrieval, t i =1 indicates that the i-th video data is the query target video data, otherwise t i =0.

在步骤7后采用统计前Q个排序后的视频数据中与查询目标视频数据属于同一类的视频数据数量C,计算检索准确率A=C/Q。After step 7, the number C of video data belonging to the same category as the query target video data in the first Q sorted video data is counted, and the retrieval accuracy rate A=C/Q is calculated.

有益效果Beneficial effect

本发明提出的一种基于相互学习的视频数据检索方法,首先,计算不同种类视频数据特征的相似性矩阵,并利用相似性矩阵计算拉普拉斯矩阵;其次,计算不同种类视频数据拉普拉斯矩阵的特征值和特征向量,分别找出这些拉普拉斯矩阵中前M个最大特征值所对应的特征向量;第三,分别计算不同种类视频数据特征向量的相似性矩阵,将特征向量的相似性矩阵的对应元素相乘得到学习矩阵;第四,利用学习矩阵和第一步中每种特征的相似性矩阵的对应元素相乘,得到学习后的相似性矩阵,第五,对每个查询目标视频数据,利用学习后的相似性矩阵,计算每个视频数据的分数,并将视频数据按照分数从高到低排列,统计前若干个视频数据中和查询目标视频数据一致的视频数据数量,计算检索准确率。A kind of video data retrieval method based on mutual learning that the present invention proposes, at first, calculate the similarity matrix of different kinds of video data features, and utilize the similarity matrix to calculate Laplacian matrix; Secondly, calculate different kinds of video data Laplacian The eigenvalues and eigenvectors of the Laplacian matrices, respectively find out the eigenvectors corresponding to the first M largest eigenvalues in these Laplacian matrices; third, calculate the similarity matrix of the eigenvectors of different types of video data, and divide the eigenvectors The learning matrix is obtained by multiplying the corresponding elements of the similarity matrix of each feature; fourth, the learning matrix is multiplied by the corresponding elements of the similarity matrix of each feature in the first step to obtain the learned similarity matrix; fifth, for each Query target video data, use the similarity matrix after learning to calculate the score of each video data, and arrange the video data according to the score from high to low, and count the video data consistent with the query target video data in the first few video data Quantity to calculate the retrieval accuracy.

本发明提出的方法,能够让不同种类的视频数据特征相互学习对方的优点,与学习前相比,大大提高了视频数据检索的准确率。The method proposed by the invention can allow different types of video data features to learn each other's advantages, and compared with before learning, the accuracy of video data retrieval is greatly improved.

附图说明Description of drawings

图1:本发明方法的基本流程图Fig. 1: basic flowchart of the inventive method

图2:本发明方法的检索准确率Fig. 2: the retrieval accuracy rate of the method of the present invention

具体实施方式detailed description

现结合实施例、附图对本发明作进一步描述:Now in conjunction with embodiment, accompanying drawing, the present invention will be further described:

用于实施的硬件环境是:AMDAthlon64×25000+计算机、2GB内存、256M显卡,运行的软件环境是:Matlab2009a和WindowsXP。我们用Matlab软件实现了本发明提出的方法。The hardware environment used for implementation is: AMDAthlon64×25000+ computer, 2GB memory, 256M graphics card, and the running software environment is: Matlab2009a and WindowsXP. We have realized the method that the present invention proposes with Matlab software.

本发明具体实施如下:The present invention is specifically implemented as follows:

本发明流程图如附图1所示。用于检索的1256个视频数据包含三类,分别为:561个运动视频数据、364个天气预报视频数据和331个广告视频数据。两种特征分别为脑功能特征和底层特征,具体步骤如下:The flow chart of the present invention is as shown in accompanying drawing 1. The 1256 video data used for retrieval include three categories, namely: 561 sports video data, 364 weather forecast video data and 331 advertising video data. The two features are brain function features and underlying features. The specific steps are as follows:

1、计算N个视频数据的特征X1,X2,...,XN的相似性矩阵W1和特征Y1,Y2,...,YN的相似性矩阵W2,W1的元素计算公式为:1. Calculate the similarity matrix W 1 of the features X 1 , X 2 ,...,X N of N video data and the similarity matrix W 2 , W 1 of the features Y 1 , Y 2 ,...,Y N The element calculation formula of is:

同理计算矩阵W2,其元素计算公式为 w i , j 2 = exp ( Y i - Y j ) T × ( Y i - Y j ) σ 2 ; Calculate the matrix W 2 in the same way, and its element calculation formula is w i , j 2 = exp ( Y i - Y j ) T × ( Y i - Y j ) σ 2 ;

其中,X1,X2,...,XN表示第1、2和N个视频数据的第一种特征;Y1,Y2,...,YN表示第1、2和N个视频数据的第二种特征;表示矩阵W1第i行第j列元素;表示矩阵W2第i行第j列元素;Xi,Xj表示第i个和第j个视频数据的第一种特征;Yi,Yj表示第i个和第j个视频数据的第二种特征;exp表示取指数;i,j=1,2,...,N;N=1256;上标T表示向量转置;σ=8×10-6Among them, X 1 , X 2 ,..., X N represent the first feature of the 1st, 2nd and N video data; Y 1 , Y 2 ,..., Y N represent the 1st, 2nd and N The second feature of the video data; Indicates the element in row i, column j of matrix W 1 ; Represents the elements of the i-th row and the j-th column of the matrix W 2 ; X i , X j represent the first feature of the i-th and j-th video data; Y i , Y j represent the i-th and j-th video data Two kinds of features; exp means taking exponents; i, j=1,2,...,N; N=1256; superscript T means vector transposition; σ=8×10 -6 ;

2、利用公式计算W1的拉普拉斯矩阵L1,同理计算其中,D1表示对角线矩阵,2. Use the formula Calculate the Laplacian matrix L 1 of W 1 , and calculate in the same way where D1 represents the diagonal matrix,

其元素 d i , j 1 = Σ t = 1 N w i , t 1 i = j 0 i ≠ j ; t=1,2,...,N;表示矩阵W1的第i行第t列的元素;D2表示对角线矩阵,其元素 d i , j 2 = Σ t = 1 N w i , t 2 i = j 0 i ≠ j ; t=1,2,...,N;表示矩阵W2的第i行第t列的元素;its elements d i , j 1 = Σ t = 1 N w i , t 1 i = j 0 i ≠ j ; t=1,2,...,N; Represents the elements of row i and column t of matrix W 1 ; D 2 represents a diagonal matrix whose elements d i , j 2 = Σ t = 1 N w i , t 2 i = j 0 i ≠ j ; t=1,2,...,N; Represents the elements of the i-th row and the t-column of the matrix W 2 ;

3、计算拉普拉斯矩阵L1和L2的特征值和特征向量,选取前M个最大特征值所对应的特征向量U1,U2,...,UM和V1,V2,...,VM3. Calculate the eigenvalues and eigenvectors of the Laplacian matrices L 1 and L 2 , and select the eigenvectors U 1 , U 2 ,..., U M and V 1 , V 2 corresponding to the first M largest eigenvalues ,...,V M ;

其中,M≥1表示常数;U1,U2,...,UM表示属于L1的大小为N×1的特征向量;V1,V2,...,VM表示属于L2的大小为N×1的特征向量;Among them, M≥1 represents a constant; U 1 , U 2 ,..., U M represent the eigenvectors of size N×1 belonging to L 1 ; V 1 , V 2 ,..., V M represent those belonging to L 2 An eigenvector of size N×1;

4、利用特征向量U1,U2,...,UM和V1,V2,...,VM构造矩阵P=[U1U2...UM]和Q=[V1V2...VM];计算[K1K2...KN]T的相似性矩阵S1和[L1L2...LN]T的相似性矩阵S2,S1的元素计算公式为:4. Utilize eigenvectors U 1 , U 2 ,..., U M and V 1 , V 2 ,..., V M to construct matrix P=[U 1 U 2 ... U M ] and Q=[V 1 V 2 ... V M ]; calculate the similarity matrix S 1 of [K 1 K 2 ... K N ] T and the similarity matrix S 2 of [L 1 L 2 ... L N ] T , S The formula for calculating the elements of 1 is:

同理计算S2,S2的元素计算公式为 s i , j 2 = exp ( L i - L j ) T × ( L i - L j ) σ 2 ; Calculate S 2 in the same way, the element calculation formula of S 2 is the s i , j 2 = exp ( L i - L j ) T × ( L i - L j ) σ 2 ;

其中,K1,K2,...,KN表示矩阵P的第1,2,...,N行元素;L1,L2,...,LN表示矩阵Q的第1,2,...,N行元素;Among them, K 1 , K 2 ,...,K N represent elements of the 1st, 2nd,...,N rows of the matrix P; L 1 , L 2 ,...,L N represent the 1st, 2nd,...,N elements of the matrix Q 2,...,N rows of elements;

5、将相似性矩阵S1和S2的对应元素相乘得到学习矩阵S。5. Multiply the corresponding elements of the similarity matrix S 1 and S 2 to obtain the learning matrix S.

6、将相似性矩阵W1和学习矩阵S的对应元素相乘得到学习后的相似性矩阵E1,将相似性矩阵W2和学习矩阵S的对应元素相乘得到学习后的相似性矩阵E2 6. Multiply the similarity matrix W 1 and the corresponding elements of the learning matrix S to obtain the learned similarity matrix E 1 , multiply the similarity matrix W 2 and the corresponding elements of the learning matrix S to obtain the learned similarity matrix E 2

7、利用公式r=β(I-λE1)-1T和f=β(I-λE2)-1T计算N个视频数据两种特征学习后的分数向量r和f,并将N个视频数据按照分数大小从高到低排列,得到排序后的视频数据。7. Use the formula r=β(I-λE 1 ) -1 T and f=β(I-λE 2 ) -1 T to calculate the score vectors r and f after learning the two features of N video data, and combine N The video data is arranged according to the scores from high to low, and the sorted video data is obtained.

其中,r=(r1,r2,...,rN)表示N个视频数据的第一种特征进行检索后的得分向量,r1,r2,...,rN表示第1,2,...,N个视频数据的得分;f=(f1,f2,...,fN)表示N个视频数据的第二种特征进行检索后的得分向量;f1,f2,...,fN表示第1,2,...,N个视频数据的得分;β=1-λ表示常数;λ=0.99;T=[t1,...,tN]T表示检索时的查询向量,ti=1表示第i个视频数据为查询目标视频数据,否则ti=0;Among them, r=(r 1 ,r 2 ,...,r N ) represents the score vector after retrieval of the first feature of N video data, and r 1 ,r 2 ,...,r N represents the first ,2,...,N video data scores; f=(f 1 ,f 2 ,...,f N ) represents the score vector after retrieval of the second feature of N video data; f 1 , f 2 ,...,f N represent the scores of the 1st, 2nd,...,N video data; β=1-λ represents a constant; λ=0.99; T=[t 1 ,...,t N ] T represents the query vector when retrieving, t i =1 means that the i-th video data is the query target video data, otherwise t i =0;

8、统计前Q个排序后的视频数据中与查询目标视频数据属于同一类的视频数据数量C,计算检索准确率A=C/Q。8. Count the number C of video data belonging to the same category as the query target video data among the first Q sorted video data, and calculate the retrieval accuracy rate A=C/Q.

利用本算法进行视频数据检索,将1256个视频数据中每个视频数据都作为查询目标视频数据进行一次检索,在前5,10,15和20个排序后的视频数据内分别统计与查询目标视频数据属于同一类别的视频数据所占的百分比。对1256个视频数据查询所得的百分比进行平均,得到1256个视频的平均检索准确率。如附图2所示。作为对比,我们也使用脑功能特征和底层特征单独进行检索,检索过程不进行相互学习,将得到的检索准确率也显示在附图2中,从图中可以看出,学习后的脑功能特征和底层特征的检索准确率比学习前都有了大幅提高。其中,脑功能特征比学习前提高了19.8%,底层特征比学习前提高了27.5%。Use this algorithm to retrieve video data, and use each of the 1256 video data as the query target video data for a retrieval, and count and query target videos in the first 5, 10, 15 and 20 sorted video data respectively The percentage of video data whose data belongs to the same category. The average retrieval accuracy of 1256 videos is obtained by averaging the percentages obtained from the query of 1256 videos. As shown in Figure 2. As a comparison, we also use the brain function features and underlying features to search separately. The retrieval process does not carry out mutual learning, and the retrieval accuracy obtained is also shown in Figure 2. It can be seen from the figure that the brain function features after learning The retrieval accuracy of the low-level and low-level features has been greatly improved compared with that before learning. Among them, the brain function features have improved by 19.8% compared with before learning, and the underlying features have increased by 27.5% compared with before learning.

Claims (2)

1.一种基于相互学习的视频数据检索方法,其特征在于步骤如下:1. A video data retrieval method based on mutual learning, characterized in that the steps are as follows: 步骤1、计算N个视频数据的特征X1,X2,...,XN的相似性矩阵W1和特征Y1,Y2,...,YN的相似性矩阵W2Step 1. Calculate the similarity matrix W 1 of the features X 1 , X 2 ,...,X N of N video data and the similarity matrix W 2 of the features Y 1 , Y 2 ,...,Y N : 采用计算得到相似性矩阵W1use Calculate the similarity matrix W 1 ; 采用计算得到相似性矩阵W2use Calculate the similarity matrix W 2 ; 其中,X1,X2,...,XN表示第1、2…N个视频数据的第一种特征;Y1,Y2,...,YN表示第1、2…N个视频数据的第二种特征,第一种特征和第二种特征分别为脑功能特征和底层特征;表示矩阵W1第i行第j列元素;表示矩阵W2第i行第j列元素;Xi,Xj表示第i个和第j个视频数据的第一种特征;Yi,Yj表示第i个和第j个视频数据的第二种特征;exp表示取指数;i,j=1,2,...,N;N>0;σ>0,为常数;上标T表示向量转置;Among them, X 1 , X 2 ,...,X N represent the first feature of the 1st, 2nd...N video data; Y 1 , Y 2 ,...,Y N represent the 1st, 2...N The second feature of the video data, the first feature and the second feature are brain function features and underlying features respectively; Indicates the element in row i, column j of matrix W 1 ; Represents the elements of the i-th row and the j-th column of the matrix W 2 ; X i , X j represent the first feature of the i-th and j-th video data; Y i , Y j represent the i-th and j-th video data Two kinds of features; exp means taking exponents; i, j=1,2,...,N; N>0;σ>0, which is a constant; superscript T means vector transposition; 步骤2:利用计算W1的拉普拉斯矩阵L1;利用计算W2的拉普拉斯矩阵L2Step 2: Take advantage of Calculate the Laplacian matrix L 1 of W 1 ; use Calculate the Laplacian matrix L 2 of W 2 ; 其中,D1表示对角线矩阵,其元素 表示矩阵W1的第i行第t列的元素;D2表示对角线矩阵,其元素 表示矩阵W2的第i行第t列的元素;where D1 represents a diagonal matrix whose elements Represents the elements of the i-th row and column t of the matrix W 1 ; D 2 represents the diagonal matrix, whose elements Represents the elements of the i-th row and the t-column of the matrix W 2 ; 步骤3:计算拉普拉斯矩阵L1和L2的特征值和特征向量,然后分别选取前M个最大特征值所对应的特征向量U1,U2,...,UM和V1,V2,...,VM;其中,M≥1表示常数;U1,U2,...,UM表示属于L1的大小为N×1的特征向量;V1,V2,...,VM表示属于L2的大小为N×1的特征向量;Step 3: Calculate the eigenvalues and eigenvectors of the Laplacian matrices L 1 and L 2 , and then select the eigenvectors U 1 , U 2 ,..., U M and V 1 corresponding to the first M largest eigenvalues respectively ,V 2 ,...,V M ; among them, M≥1 means a constant; U 1 , U 2 ,..., U M means a feature vector of size N×1 belonging to L 1 ; V 1 , V 2 ,...,V M represents the feature vector of size N×1 belonging to L 2 ; 步骤4:利用特征向量U1,U2,...,UM和V1,V2,...,VM构造矩阵P=[U1U2...UM]和Q=[V1V2...VM];计算[K1K2...KN]T的相似性矩阵S1和[L1L2...LN]T的相似性矩阵S2Step 4: Use eigenvectors U 1 , U 2 ,..., U M and V 1 , V 2 ,..., V M to construct matrix P=[U 1 U 2 ... U M ] and Q=[ V 1 V 2 ... V M ]; calculate the similarity matrix S 1 of [K 1 K 2 ... K N ] T and the similarity matrix S 2 of [L 1 L 2 ... L N ] T , S1的元素计算公式为 The formula for calculating the elements of S 1 is S2的元素计算公式为 The element calculation formula of S 2 is 其中,K1,K2,...,KN表示矩阵P的第1,2,...,N行元素;L1,L2,...,LN表示矩阵Q的第1,2,...,N行元素;Among them, K 1 , K 2 ,...,K N represent elements of the 1st, 2nd,...,N rows of the matrix P; L 1 , L 2 ,...,L N represent the 1st, 2nd,...,N elements of the matrix Q 2,...,N rows of elements; 步骤5:将相似性矩阵S1和S2的对应元素相乘得到学习矩阵S;Step 5 : Multiply the corresponding elements of the similarity matrix S1 and S2 to obtain the learning matrix S; 步骤6:将相似性矩阵W1和学习矩阵S的对应元素相乘得到学习后的相似性矩阵E1,将相似性矩阵W2和学习矩阵S的对应元素相乘得到学习后的相似性矩阵E2Step 6: Multiply the similarity matrix W 1 and the corresponding elements of the learning matrix S to obtain the learned similarity matrix E 1 , multiply the similarity matrix W 2 and the corresponding elements of the learning matrix S to obtain the learned similarity matrix E2 ; 步骤7:利用公式r=β(I-λE1)-1T和f=β(I-λE2)-1T计算N个视频数据两种特征学习后的分数向量r和f,并将N个视频数据按照分数大小从高到低排列,得到排序后的视频数据;Step 7: Use the formula r=β(I-λE 1 ) -1 T and f=β(I-λE 2 ) -1 T to calculate the score vectors r and f of N video data after two kinds of feature learning, and set N A video data is arranged according to the score size from high to low, and the sorted video data is obtained; 其中,r=(r1,r2,...,rN)表示N个视频数据的第一种特征进行检索后的得分向量,r1,r2,...,rN表示第1,2,...,N个视频数据的得分;f=(f1,f2,...,fN)表示N个视频数据的第二种特征进行检索后的得分向量;f1,f2,...,fN表示第1,2,...,N个视频数据的得分;β=1-λ表示常数;λ>0表示常数;T=[t1,...,tN]T表示检索时的查询向量,ti=1表示第i个视频数据为查询目标视频数据,否则ti=0。Among them, r=(r 1 ,r 2 ,...,r N ) represents the score vector after retrieval of the first feature of N video data, and r 1 ,r 2 ,...,r N represents the first ,2,...,N video data scores; f=(f 1 ,f 2 ,...,f N ) represents the score vector after retrieval of the second feature of N video data; f 1 , f 2 ,...,f N represent the scores of the 1st, 2nd,...,N video data; β=1-λ represents a constant; λ>0 represents a constant; T=[t 1 ,..., t N ] T represents the query vector during retrieval, t i =1 indicates that the i-th video data is the query target video data, otherwise t i =0. 2.根据权利要求1所述的基于相互学习的视频数据检索方法,其特征在于:在步骤7后采用统计前Q个排序后的视频数据中与查询目标视频数据属于同一类的视频数据数量C,计算检索准确率A=C/Q。2. the video data retrieval method based on mutual learning according to claim 1 is characterized in that: after step 7, adopt the video data quantity C that belongs to the same class with the query target video data in the video data after the first Q ordering of statistics , calculate the retrieval accuracy rate A=C/Q.
CN201310332612.6A 2013-08-01 2013-08-01 A kind of video data search method based on study mutually Expired - Fee Related CN103440269B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310332612.6A CN103440269B (en) 2013-08-01 2013-08-01 A kind of video data search method based on study mutually

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310332612.6A CN103440269B (en) 2013-08-01 2013-08-01 A kind of video data search method based on study mutually

Publications (2)

Publication Number Publication Date
CN103440269A CN103440269A (en) 2013-12-11
CN103440269B true CN103440269B (en) 2016-06-08

Family

ID=49693961

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310332612.6A Expired - Fee Related CN103440269B (en) 2013-08-01 2013-08-01 A kind of video data search method based on study mutually

Country Status (1)

Country Link
CN (1) CN103440269B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104111969B (en) * 2014-06-04 2017-06-20 百度移信网络技术(北京)有限公司 The method and system of a kind of similarity measurement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101071439A (en) * 2007-05-24 2007-11-14 北京交通大学 Interactive video searching method based on multi-view angle
CN101650728A (en) * 2009-08-26 2010-02-17 北京邮电大学 Video high-level characteristic retrieval system and realization thereof
CN102142037A (en) * 2011-05-05 2011-08-03 西北工业大学 Video data search method based on functional magnetic resonance imaging

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7076485B2 (en) * 2001-03-07 2006-07-11 The Mitre Corporation Method and system for finding similar records in mixed free-text and structured data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101071439A (en) * 2007-05-24 2007-11-14 北京交通大学 Interactive video searching method based on multi-view angle
CN101650728A (en) * 2009-08-26 2010-02-17 北京邮电大学 Video high-level characteristic retrieval system and realization thereof
CN102142037A (en) * 2011-05-05 2011-08-03 西北工业大学 Video data search method based on functional magnetic resonance imaging

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于多特征距离学习的视频分类;李真超等;《计算机应用与软件》;20121231;第29卷(第12期);第10-12页 *

Also Published As

Publication number Publication date
CN103440269A (en) 2013-12-11

Similar Documents

Publication Publication Date Title
CN109685819B (en) A 3D Medical Image Segmentation Method Based on Feature Enhancement
CN114169442B (en) Remote sensing image small sample scene classification method based on double prototype network
CN109063719B (en) Image classification method combining structure similarity and class information
CN112836646B (en) Video pedestrian re-identification method based on channel attention mechanism and application
CN110046575A (en) Based on the remote sensing images scene classification method for improving residual error network
CN103559196A (en) Video retrieval method based on multi-core canonical correlation analysis
CN107239565A (en) A kind of image search method based on salient region
CN101989302A (en) Multilayer bitmap color feature-based image retrieval method
CN110297931A (en) A kind of image search method
CN108154094A (en) Hyperspectral image unsupervised waveband selection method based on subinterval division
CN103336835B (en) Image retrieval method based on weight color-sift characteristic dictionary
CN106203483A (en) A kind of zero sample image sorting technique of multi-modal mapping method of being correlated with based on semanteme
CN107133640A (en) Image classification method based on topography's block description and Fei Sheer vectors
CN105320764A (en) 3D model retrieval method and 3D model retrieval apparatus based on slow increment features
CN102117337B (en) Space information fused Bag of Words method for retrieving image
CN106034264A (en) Method for acquiring video abstract based on collaborative model
CN103473308B (en) High-dimensional multimedia data classifying method based on maximum margin tensor study
CN102831161B (en) For the semi-supervised sequence learning method based on manifold regularization of image retrieval
CN114419361A (en) Neural network image classification method based on gated local channel attention
CN106780422A (en) A kind of notable figure fusion method based on Choquet integrations
CN106709566A (en) Deep learning-based data missing value refilling method
CN105740917A (en) High-resolution remote sensing image semi-supervised multi-view feature selection method with tag learning
CN102142037B (en) Video data search method based on functional magnetic resonance imaging
CN103440269B (en) A kind of video data search method based on study mutually
CN105975940A (en) Palm print image identification method based on sparse directional two-dimensional local discriminant projection

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160608

Termination date: 20190801